WO2017146057A1 - 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法 - Google Patents

転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法 Download PDF

Info

Publication number
WO2017146057A1
WO2017146057A1 PCT/JP2017/006402 JP2017006402W WO2017146057A1 WO 2017146057 A1 WO2017146057 A1 WO 2017146057A1 JP 2017006402 W JP2017006402 W JP 2017006402W WO 2017146057 A1 WO2017146057 A1 WO 2017146057A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel material
steel
fatigue life
rolling fatigue
Prior art date
Application number
PCT/JP2017/006402
Other languages
English (en)
French (fr)
Inventor
章弘 大脇
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016245766A external-priority patent/JP2017150066A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017146057A1 publication Critical patent/WO2017146057A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening

Definitions

  • This disclosure relates to steel materials and carburized steel parts having excellent stability of rolling fatigue life, and methods for producing the same.
  • Bearing parts such as bearings, shafts, and gears used in automobiles and various industrial machines or machine structural parts are a method of obtaining sufficient strength by quenching high carbon steel materials. It is manufactured by a method of hardening the surface by performing a surface hardening treatment such as a carburizing treatment or a carbonitriding treatment.
  • a surface hardening treatment such as a carburizing treatment or a carbonitriding treatment.
  • the case-hardened steel include chrome steel (JIS G4053 standard SCr steel), chromium molybdenum steel (JIS G4053 standard SCM steel), nickel chrome molybdenum steel (JIS G4053 standard SNCM steel), etc., and then carburized. Alternatively, it is used on the assumption that carbonitriding is performed.
  • Patent Document 1 discloses a high-precision gear that reduces distortion generated when a gear formed body is quenched after carburizing or carbonitriding. A case-hardened steel that can be manufactured is disclosed.
  • Patent Document 1 in order to obtain the dimensional accuracy required for recent gears, it is not sufficient to measure the center segregation degree of C in a slab, and micro segregation of C and Mn in the radial cross section of the slab. From the viewpoint that it is important to eliminate the state, the degree of microsegregation of C and Mn is controlled within a predetermined range.
  • Patent Document 2 discloses a technique for improving the seizure resistance of a gear by controlling the nitrogen concentration at a depth of 20 ⁇ m from the surface within a predetermined range.
  • An object of an embodiment of the present invention is to provide a steel material and a carburized steel part excellent in stability of rolling fatigue life, and a manufacturing method thereof.
  • the steel material excellent in the stability of rolling fatigue life according to the embodiment of the present invention that can solve the above problems is C: 0.15 to 0.25%, Si: 0.35 to 0.00. 75%, Mn: 0.2 to 1%, Cr: 1.2 to 1.7%, Mo: 0.3 to 0.6%, P: more than 0% to 0.05%, S: more than 0% to 0.05% or less, Al: 0.005 to 0.2%, N: more than 0% to 0.05%, O: more than 0% to 0.005% or less, and Ti: more than 0% to 0.014% or less
  • the balance is composed of iron and inevitable impurities, and has a gist in that the Cr segregation rate obtained by measurement under the following conditions is 2.0 or less.
  • the steel material further includes, in mass%, Cu: more than 0% and 1% or less, Ni: more than 0% and 1% or less, B: more than 0% and 0.005% or less, V: 0 1% or more selected from the group consisting of more than 1% or less, W: more than 0% and 0.5% or less, and Nb: more than 0% and 0.1% or less.
  • the carburized steel parts excellent in rolling fatigue life and stability according to the embodiment of the present invention that can solve the above-mentioned problems are mass%, C: 0.15 to 0.25%, Si: 0.35. ⁇ 0.75%, Mn: 0.2 ⁇ 1%, Cr: 1.2 ⁇ 1.7%, Mo: 0.3 ⁇ 0.6%, P: more than 0% and 0.05% or less, S: More than 0% and 0.05% or less, Al: 0.005 to 0.2%, N: more than 0% and 0.05% or less, O: more than 0% and 0.005% or less, and Ti: more than 0%.
  • the number density of carbide, nitride, and carbonitride having an equivalent circle diameter of 0.1 to 1.0 ⁇ m that is present in the surface layer from the surface to a depth of 50 ⁇ m, including 014% or less, the balance being iron and inevitable impurities This is summarized in that the ratio of the maximum value to the minimum value is 2.0 or less.
  • the component further comprises, in mass%, Cu: more than 0% to 1%, Ni: more than 0% to 1%, B: more than 0% to 0.005%, V: 0 1% or more selected from the group consisting of more than 1% or less, W: more than 0% and 0.5% or less, and Nb: more than 0% and 0.1% or less.
  • the parts have an average number density of 0.5 to 3.0 / ⁇ m 2 .
  • the method for manufacturing the steel material according to the embodiment of the present invention which can solve the above problems, after cooling the temperature range from the solidification start temperature to the solidification end temperature of the molten steel at an average cooling rate of 150 ° C./hour or more, 1100
  • the main point is that the soaking is performed at a temperature of ⁇ 1300 ° C. for 1.0 to 40 hours.
  • the temperature range from the solidification start temperature to the solidification end temperature of the molten steel is cooled at an average cooling rate of 150 ° C./hour or more, and 1100 to The main point is that the steel material is manufactured by heating to 1300 ° C. and soaking for 1.0 to 40 hours, followed by carburizing or carbonitriding.
  • FIG. 1 is a diagram for explaining the measurement points of Cr concentration on a cut surface perpendicular to the rolling direction of a steel material.
  • FIG. 2 is a diagram for explaining the measurement points of the Cr concentration on the cut surface parallel to the rolling direction of the steel material.
  • the present inventors have studied in order to provide steel materials and carburized steel parts (steel materials that have been carburized or carbonitrided) that can stably ensure an excellent rolling fatigue life.
  • the ratio between the maximum value and the minimum value of the number density of fine precipitates on the surface layer can be controlled within an appropriate range.
  • the present inventors have found that carburized steel parts having excellent stability of rolling fatigue life can be obtained. Further, in order to obtain such a carburized steel part, while appropriately controlling the Cr content, the steel material obtained by appropriately controlling the cooling conditions during casting and the subsequent soaking conditions, carburizing or The present inventors have found that carbonitriding may be performed and completed the present invention.
  • the Cr segregation rate is calculated by measuring the Cr concentration not only in the cut surface perpendicular to the rolling direction of the steel material but also in the cut surface parallel to the rolling direction of the steel material. Since the distribution state of Cr in the inside is more strictly controlled, the variation in rolling fatigue life characteristics can be remarkably suppressed. As a matter of fact, the No. in Table 2 of the examples described later. 4 and Table 3 No. As shown in FIG. 18, even if the Cr segregation rate of the cut surface perpendicular to the rolling direction of the steel material is controlled, if the Cr segregation rate of the cut surface parallel to the rolling direction of the steel material is not controlled, rolling fatigue life characteristics This variation cannot be suppressed.
  • the carburized parts are those obtained by carburizing or carbonitriding a steel material, and examples thereof include bearing parts, sliding parts, machine structural parts, and the like.
  • the embodiment of the present invention is characterized in that the Cr segregation rate calculated by measurement under the following conditions is 2.0 or less.
  • the Cr concentration in an arbitrary cut surface perpendicular to the rolling direction of the steel material is a total of four locations every 90 ° on the line from the outer peripheral portion to the central portion of the test piece (in FIG. 1, 1 ⁇ 4) are measured.
  • 1 to 4 correspond to the radii of the Cr concentration measurement test pieces. That is, the Cr concentration is measured over the radius of the test piece in the vertical section of the steel material in the rolling direction.
  • the Cr concentration in an arbitrary cut surface parallel to the rolling direction of the steel material is 5 mm in length every 90 ° starting from the center of the steel material on the line at the 1/4 position of the diameter of the steel material as shown in FIG. A total of 4 points (5 to 8 in FIG. 2) are measured.
  • the Cr concentration at each of the measurement points 1 to 8 is measured, and the minimum value [Cr] min and the maximum value [Cr] max of the Cr concentration are obtained to calculate [Cr] max / [Cr] min .
  • the average relative concentration of [Cr] max / [Cr] min of a total of 8 points and Cr segregation ratio is measured.
  • the Cr segregation rate of the steel material calculated as described above is 2.0 or less.
  • the Cr segregation rate is preferably as small as possible, and the upper limit of the Cr segregation rate is preferably 1.9 or less, more preferably 1.8 or less, and even more preferably 1.7 or less.
  • the lower limit of the Cr segregation rate is not particularly limited, but in consideration of manufacturability and the like, it is preferably 1.2 or more, more preferably 1.3 or more.
  • C 0.15-0.25%
  • the lower limit of the C amount is 0.15% or more.
  • the lower limit of the C amount is preferably 0.16% or more, more preferably 0.17% or more.
  • the upper limit of the C amount is 0.25% or less.
  • the upper limit of the C amount is preferably 0.24% or less, more preferably 0.23% or less.
  • Si 0.35 to 0.75% Si is an element effective for improving solid solution strengthening, hardenability and temper softening resistance of the matrix. Therefore, the lower limit of the Si amount is set to 0.35% or more. The lower limit of the Si amount is preferably 0.38% or more, more preferably 0.40% or more. However, if the amount of Si becomes too large, the machinability and cold forgeability of the steel material are significantly reduced. Therefore, the upper limit of the Si amount is set to 0.75% or less. The upper limit of the Si amount is preferably 0.70% or less, more preferably 0.60% or less.
  • Mn 0.2-1% Mn is an effective element for improving the solid solution strengthening and hardenability of the matrix. Therefore, the lower limit of the amount of Mn is 0.2% or more.
  • the lower limit of the amount of Mn is preferably 0.25% or more, more preferably 0.30% or more.
  • the upper limit of the amount of Mn is made 1% or less.
  • the upper limit of the amount of Mn is preferably 0.80% or less, more preferably 0.60% or less.
  • Cr 1.2 to 1.7% Cr is an important element in the embodiment of the present invention, improves hardenability, forms precipitates such as carbides, nitrides, carbonitrides, etc. in the surface hardened layer by surface hardening treatment, rolling fatigue life It is an element that contributes to the improvement of. Further, Cr is an element that greatly contributes to the stability of the rolling fatigue life. Therefore, the lower limit of the Cr amount is set to 1.2% or more. The lower limit of the Cr amount is preferably 1.3% or more, more preferably 1.35% or more. However, when the amount of Cr is excessively large, the machinability and cold forgeability of the steel material are reduced, and coarse precipitates are precipitated, thereby reducing the rolling fatigue life and the stability of the rolling fatigue life. Therefore, the upper limit of Cr content is set to 1.7% or less. The upper limit of the Cr content is preferably 1.6% or less, more preferably 1.5% or less.
  • Mo 0.3-0.6% Mo is an element that remarkably improves hardenability and is effective in improving impact strength. Therefore, the lower limit of the Mo amount is set to 0.3% or more. The lower limit of the amount of Mo is preferably 0.35% or more, more preferably 0.40% or more. However, if the amount of Mo increases too much, the machinability decreases and the cost increases. Therefore, the upper limit of the Mo amount is set to 0.6% or less. The upper limit of the Mo amount is preferably 0.55% or less, more preferably 0.50% or less.
  • the upper limit of the P amount is 0.05% or less.
  • the upper limit of the P amount is preferably 0.04% or less, more preferably 0.03% or less.
  • the lower limit of the P amount is preferably 0.001% or more.
  • S more than 0% and 0.05% or less S is an element that is inevitably contained as an impurity.
  • the upper limit of the amount of S is made 0.05% or less.
  • the upper limit of the amount of S is preferably 0.04% or less, more preferably 0.03% or less.
  • the lower limit of the amount of S is preferably 0.001% or more.
  • Al 0.005 to 0.2%
  • Al is an element that has a strong deoxidizing effect and contributes to the improvement of the rolling fatigue life by forming a nitride by combining with N to refine crystal grains. Therefore, the lower limit of the Al amount is set to 0.005% or more.
  • the lower limit of the Al content is preferably 0.010% or more, more preferably 0.015% or more. However, even if Al is added in excess of 0.2%, this effect is saturated, so the upper limit of Al content is set to 0.2% or less.
  • the upper limit of the amount of Al is preferably 0.1% or less, more preferably 0.05% or less.
  • N more than 0% and 0.05% or less N is an element that forms a nitride with Al and suppresses the growth of austenite crystal grains, refines the crystal grains and contributes to the improvement of the rolling fatigue life. Therefore, the lower limit of the N amount is preferably 0.0010% or more, more preferably 0.0015% or more, and further preferably 0.0020% or more. However, if the amount of N becomes too large, coarse Al or Ti nitrides are generated, which becomes the starting point of fine cracks. Therefore, the upper limit of the N amount is set to 0.05% or less. The upper limit of the N amount is preferably 0.040% or less, more preferably 0.020% or less.
  • O more than 0% to 0.005% or less
  • O is an element that combines with Al and Si to form oxide inclusions, which adversely affects the rolling fatigue life and also adversely affects cold workability. It is. Therefore, the upper limit of the amount of O is made 0.005% or less.
  • the upper limit of the amount of O is preferably 0.004% or less, more preferably 0.003% or less. However, it is practically difficult to reduce the amount of O to 0%. If the amount is excessively reduced, the steelmaking cost is increased. Therefore, the lower limit of the O amount is preferably 0.0001% or more.
  • Ti more than 0% and not more than 0.014% Ti is an element that is inevitably contained as an impurity, and easily forms coarse TiN by combining with N in steel, and has an adverse effect on surface properties during polishing. It is a big harmful element. Therefore, the upper limit of Ti content is set to 0.014% or less.
  • the upper limit of the Ti amount is preferably 0.008% or less, more preferably 0.005% or less.
  • the lower limit of the Ti amount is preferably 0.0001% or more.
  • the elements in steel used in the embodiment of the present invention are as described above, and the balance is iron and inevitable impurities.
  • the inevitable impurities can be mixed by raw materials, materials, manufacturing equipment, and the like, and examples thereof include As and H.
  • steel material of the embodiment of the present invention can also contain the following selective elements.
  • Cu more than 0% and less than 1%
  • Ni more than 0% and less than 1%
  • B more than 0% and less than 0.005%
  • All of Cu, Ni and B are parent phases It is an element that acts as a hardenability improving element and contributes to improving the rolling fatigue life by increasing the hardness. These elements may be added alone or in combination of two or more.
  • the lower limit of each of the Cu amount and the Ni amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • the lower limit of the B amount is preferably 0.0001% or more, more preferably 0.0005% or more, and further preferably 0.0010% or more.
  • each upper limit of Cu amount and Ni amount is preferably 1% or less, more preferably 0.20% or less, and further preferably 0.15% or less.
  • the upper limit of the amount of B is preferably 0.005% or less, more preferably 0.0040% or less, and still more preferably 0.0030% or less.
  • V more than 0% and less than 1%
  • W more than 0% and less than 0.5%
  • Nb more than 0% and less than 0.1%
  • V, W, and Nb are hard It is an element that forms charcoal and nitride and contributes to the improvement of rolling fatigue life. These elements may be added alone or in combination of two or more.
  • the lower limit of the V amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • the lower limit of the W amount is preferably 0.005% or more, more preferably 0.007% or more, and further preferably 0.010% or more.
  • the lower limit of the Nb amount is preferably 0.01% or more, more preferably 0.02% or more, and further preferably 0.03% or more.
  • the upper limit of the V amount is preferably 1% or less, more preferably 0.9% or less, and still more preferably 0.8% or less.
  • the upper limit of the W amount is preferably 0.5% or less, more preferably 0.4% or less, and still more preferably 0.3% or less.
  • the upper limit of the Nb amount is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.07% or less.
  • the ratio of the maximum value to the minimum value of the number density of precipitates having a circle-equivalent diameter of 0.1 to 1.0 ⁇ m existing in the surface layer from the surface to a depth of 50 ⁇ m is 2.0 or less.
  • the average number density of precipitates having a circle-equivalent diameter of 0.1 to 1.0 ⁇ m existing in the surface layer from the surface to a depth of 50 ⁇ m is 0.5 to 3.0 / ⁇ m 2 . Thereby, the outstanding rolling fatigue life can be obtained.
  • the precipitate refers to all carbides in which carbide forming elements and carbon are bonded as shown below, all nitrides in which nitride forming elements and nitrogen are bonded, and carbon in which these are combined.
  • Nitride means. Carbides [(Fe, Cr) 3 C, (Fe, Cr) 7 C 3 , Mo 2 C, VC, etc.] Nitride [(Cr, V, Al) N, etc.] Carbonitride [(Fe, Cr) 3 (C, N), (Fe, Cr) 7 (C, N) 3 , Mo 2 (C, N), V (C, N), etc.]
  • the lower limit is preferably 0.5 pieces / ⁇ m 2 or more.
  • the lower limit of the average number density is more preferably 0.6 / ⁇ m 2 or more, and even more preferably 0.7 / ⁇ m 2 or more.
  • the upper limit of the average number density is preferably 3.0 / ⁇ m 2 or less.
  • the upper limit of the average number density is more preferably 2.8 / ⁇ m 2 or less, and even more preferably 2.6 / ⁇ m 2 or less.
  • the upper limit of the ratio is set to 2.0 or less.
  • the upper limit of the ratio is preferably 1.9 or less, more preferably 1.8 or less.
  • the lower limit of the ratio is not particularly limited, but is preferably 1.2 or more in consideration of manufacturability.
  • the temperature range from the solidification start temperature to the solidification end temperature of the molten steel satisfying the above component composition is cooled at an average cooling rate of 150 ° C./hour or more, and then heated to 1100 to 1300 ° C. It is characterized in that the soaking process is performed for 1.0 to 40 hours. Thereby, the segregation rate of Cr can be suppressed to 2.0 or less.
  • the average cooling rate in the temperature range from the solidification start temperature to the solidification end temperature of the molten steel is set to 150 ° C./hour or more.
  • the “temperature range from the solidification start temperature to the solidification end temperature of the molten steel” means a temperature range from the liquidus temperature to the solidus temperature of the molten steel, and the average cooling rate in the temperature range is a slab. Means the average solidification rate. When the average cooling rate is low, solidification is too slow, so that a Cr concentrated portion is formed and the Cr segregation rate increases.
  • the average cooling rate in the conventional steel material is about 50 ° C./hour, and it is estimated that the Cr segregation rate was very high.
  • the lower limit of the average cooling rate is preferably 160 ° C./hour or more, more preferably 170 ° C./hour or more.
  • the upper limit of the average cooling rate is not particularly limited, but in consideration of manufacturability and the like, it is preferably 300 ° C./hour or less, more preferably 250 ° C./hour or less.
  • the average cooling rate is measured as follows using a thermocouple type temperature measuring device having a temperature sensing unit at the tip.
  • the temperature sensing unit is installed at 1/2 position of the height h of the mold for casting the molten steel and 1/4 position of the diameter D, and the temperature of the molten steel is directly measured. From the solidification start temperature of the molten steel to the solidification end temperature. Until the average cooling rate is calculated.
  • the solidification start temperature and solidification end temperature of the molten steel are calculated using the integrated thermodynamic calculation system (THREMO-CALC SOFTWARE VER.R, ITOCHU Techno-Solutions), C amount, Si amount, Cr amount, Mn amount, Mo amount, Al Calculate by specifying the amount.
  • the solidification start temperature and the solidification end temperature do not change significantly. Therefore, in the examples described later, the solidification start temperature: 1507 ° C., which is the calculated value of steel type A, the solidification end temperature: Based on 1463 degreeC, the average cooling rate was computed.
  • the slab obtained by cooling to the solidification end temperature of the molten steel as described above is heated to 1100 to 1300 ° C. and soaked for 1.0 to 40 hours.
  • the lower limit of the heating temperature is set to 1100 ° C. or higher.
  • the lower limit of the heating temperature is preferably 1150 ° C or higher, more preferably 1170 ° C or higher. From the viewpoint of reducing the Cr segregation rate, the higher the heating temperature, the better. However, if the heating temperature is too high, the productivity is lowered, so the upper limit is 1300 ° C. or less.
  • the upper limit of the heating temperature is preferably 1280 ° C. or lower, more preferably 1270 ° C. or lower.
  • the lower limit of the soaking time is 1.0 hour or longer.
  • the lower limit of the soaking time is preferably 5 hours or more, more preferably 8 hours or more.
  • the soaking time is preferably as long as possible. However, if the time is too long, the manufacturability and the like are lowered, so the upper limit is 40 hours or less.
  • the upper limit of the soaking time is preferably 25 hours or less, more preferably 20 hours or less.
  • Steel materials according to the embodiment of the present invention include linear and rod-like materials.
  • Hot forging according to a conventional method, Hot working such as hot rolling is performed. If necessary, solution treatment and normalization treatment may be further performed.
  • hot forging is preferably performed in the range of 1100 to 1300 ° C., for example. If the hot forging temperature is too low, the slab becomes difficult to deform and the productivity is lowered. More preferably, it is 1150 degreeC or more. On the other hand, if the hot forging temperature is too high, a time for heating to a high temperature, fuel, and the like are required, and productivity is lowered. More preferably, it is 1250 degrees C or less.
  • Hot rolling is preferably performed by heating in the range of 850 to 1300 ° C., for example. If the heating temperature of the hot rolling is too low, the steel slab becomes difficult to deform and the productivity is lowered. More preferably, it is 900 ° C. or higher. On the other hand, if the heating temperature is too high, the time for heating to a high temperature, fuel, etc. are required, and the productivity is lowered. More preferably, it is 1200 degrees C or less.
  • the average cooling rate is 0.01 to 10 ° C./second. If the average cooling rate is too slow, the productivity decreases. More preferably, it is 0.05 ° C./second or more. On the other hand, if the average cooling rate is too fast, cracks and wrinkles occur. More preferably, it is 8 ° C./second or less.
  • the solution treatment is performed for the purpose of dissolving coarse precipitates generated during hot forging and hot rolling. Specifically, it is preferable to heat to 1100 to 1300 ° C., hold for 1 to 5 hours, and then cool at an average cooling rate of 0.5 to 20 ° C./second.
  • the heating temperature of the solution treatment is too low, the precipitate does not dissolve. More preferably, it is 1150 degreeC or more. On the other hand, if the heating temperature is too high, the productivity decreases. More preferably, it is 1250 degrees C or less.
  • the retention time of the solution treatment is too short, the precipitate does not dissolve. More preferably, it is 2 hours or more. On the other hand, if the holding time is too long, the productivity decreases. More preferably, it is 4 hours or less.
  • the average cooling rate after the solution treatment is preferably 0.5 to 20 ° C./second. If the average cooling rate is too slow, coarse precipitates are generated and cannot be dissolved. More preferably, it is 1.0 ° C./second or more. On the other hand, if the average cooling rate is too fast, cracks and wrinkles occur. More preferably, it is 10 ° C./second or less.
  • the normalizing treatment is performed for the purpose of obtaining a uniform structure composed of a single phase of ferrite, a single phase of pearlite, a double phase structure of ferrite and pearlite, or a double phase structure of proeutectoid cementite and pearlite.
  • the normalizing treatment may be performed by heating to 750 to 1100 ° C., holding for 10 minutes to 5 hours, and then cooling to room temperature at an average cooling rate of 0.01 to 10 ° C./second.
  • the heating temperature of the normalizing treatment is too low, the heating becomes insufficient and the above-described normalizing effect cannot be obtained. More preferably, it is 760 degreeC or more. On the other hand, if the heating temperature is too high, the productivity decreases. More preferably, it is 1050 degrees C or less.
  • the holding time of the normalizing process is too short, the heating becomes insufficient and the above-described normalizing effect cannot be obtained. More preferably, it is 20 minutes or more. On the other hand, if the holding time is too long, the productivity decreases. More preferably, it is 4 hours or less.
  • the average cooling rate of the normalizing treatment is preferably 0.01 to 10 ° C./second. If the average cooling rate is too slow, productivity decreases. More preferably, it is 0.02 ° C./second or more. On the other hand, if the average cooling rate is too fast, cracks and wrinkles occur. More preferably, it is 8 ° C./second or less.
  • the steel material according to the embodiment of the present invention thus obtained is excellent in stability of rolling fatigue life because the Cr segregation rate is controlled to 2.0 or less.
  • the steel material according to the embodiment of the present invention is suitably used as a material for bearing parts, sliding parts, machine structural parts, etc. used in automobiles and various industrial machines.
  • the parts include rolling bearings such as roller bearings and ball bearings; inner and outer rings of rolling bearings; rolling elements of rolling bearings; rolling contact parts such as shafts and gears.
  • the carburized steel part according to the embodiment of the present invention is obtained by performing cold working such as machining and cold forging according to a conventional method for the steel material obtained as described above to obtain a predetermined part shape, followed by carburizing treatment or Obtained by carbonitriding.
  • the carburizing treatment among the surface hardening treatments for example, after carburizing at 850 to 950 ° C. for 1 hour to 6 hours and Cp (Carbon Potential): 0.6 to 1.4%, a refrigerant such as oil or water is used. And quenching.
  • the cooling at this time is preferably up to 680 ° C., more preferably up to 650 ° C., preferably 50 ° C./second or more and 150 ° C./second or less, more preferably 70 ° C./second or more and 130 ° C./second or less. Do.
  • a method of performing a two-stage carburizing treatment as described below and a method of performing carbonitriding that performs nitriding after carburizing are preferably used.
  • the above-mentioned two-stage carburizing treatment is performed at 900 to 950 ° C. in an atmosphere of Cp (Carbon Potential): 1.0 to 1.4% for 2 to 6 hours, and then up to 680 ° C.
  • a second carburizing step in which quenching is performed after holding in a% atmosphere for 0.5 to 8 hours.
  • the lower limit of the holding temperature is preferably 900 ° C. or higher, more preferably 930 ° C. or higher.
  • the carbon amount of the surface layer becomes excessive, and the amount of precipitates becomes excessive in the second carburizing step.
  • the upper limit of the holding temperature is preferably 950 ° C. or lower, more preferably 940 ° C. or lower.
  • the lower limit of Cp is preferably 1.0% or more, more preferably 1.1% or more.
  • the upper limit of Cp is preferably 1.4% or less, more preferably 1.3% or less.
  • the lower limit of the holding time is preferably 2 hours or more, more preferably 3 hours or more.
  • the upper limit of the holding time is preferably 6 hours or less, more preferably 5 hours or less.
  • cooling is preferably performed at an average cooling rate of up to 680 ° C., more preferably up to 650 ° C., preferably 50 ° C./second or more, more preferably 70 ° C./second or more.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably 150 ° C./second or less, more preferably 130 ° C./second or less in consideration of manufacturability.
  • the cooling method in the first carburizing step may be quenching into a refrigerant such as oil or water, or gas cooling may be performed.
  • heating is preferably performed at a temperature rising rate of 800 to 880 ° C., more preferably 820 to 860 ° C., preferably 25 ° C./min or more, more preferably 30 ° C./min or more.
  • the upper limit of the average temperature increase rate is not particularly limited, but is 100 ° C./min or less in consideration of manufacturability and the like.
  • the lower limit of the holding temperature is preferably 800 ° C. or higher, more preferably 820 ° C. or higher.
  • the upper limit of the holding temperature is preferably 880 ° C. or lower, more preferably 860 ° C. or lower.
  • the lower limit of Cp is preferably 0.8% or more, more preferably 0.9% or more.
  • the upper limit of Cp is preferably 1.2% or less, more preferably 1.1% or less.
  • the lower limit of the holding time is preferably 0.5 hours or more, more preferably 2 hours or more.
  • the upper limit of the holding time is preferably 8 hours or less, more preferably 7 hours or less.
  • fine precipitates can be dispersed by quenching in a refrigerant such as oil or water.
  • Cp can be measured by a commonly used method such as an O 2 sensor method, a CO 2 method using an infrared analyzer, a dew point measurement method, or a carbon potentiometer using an iron wire.
  • a method in which an iron wire called a Cp coil is left in the furnace atmosphere and quantitative analysis is performed using the Cp coil by an infrared absorption method or the like is most excellent in terms of measurement accuracy.
  • Carbonitriding The carbonitriding is performed at 900 to 950 ° C. in a Cp: 0.7 to 1.2% atmosphere for 2 to 6 hours and then cooled to 800 to 880 ° C. And a nitriding step in which quenching is performed after holding at a cooling temperature in an atmosphere of Cp: 0.5 to 0.9% and NH 3 content: 6 to 12% by volume for 2 to 8 hours.
  • preferable conditions for the carburizing process are the conditions for the first carburizing process in the two-stage carburizing process described above, except that Cp is 0.7 to 1.2% and cooling to 800 to 880 ° C. Is the same.
  • the lower limit of Cp is preferably 0.7% or more, more preferably 0.8% or more.
  • the upper limit of Cp is preferably 1.2% or less, more preferably 1.1% or less.
  • Cooling from 900 to 950 ° C. to 800 to 880 ° C. may be performed by furnace cooling.
  • the lower limit of the holding temperature is preferably 800 ° C. or higher, more preferably 820 ° C. or higher.
  • the upper limit of the holding temperature is preferably 880 ° C. or lower, more preferably 860 ° C. or lower.
  • the lower limit of Cp is preferably 0.5% or more, more preferably 0.6% or more.
  • the upper limit of Cp is preferably 0.9% or less, more preferably 0.8% or less.
  • the lower limit of the amount of NH 3 is preferably 6% by volume or more, more preferably 7% by volume or more.
  • the upper limit of the NH 3 amount is preferably 12% by volume or less, more preferably 10% by volume or less.
  • fine precipitates can be dispersed by quenching in a refrigerant such as oil or water.
  • a tempering treatment may be performed as necessary.
  • the tempering treatment is preferably performed at 80 to 250 ° C. for 30 to 240 minutes, for example.
  • the carburized steel parts of the embodiment of the present invention thus obtained are suitably used as materials for bearing parts, sliding parts, machine structural parts, etc. used in automobiles and various industrial machines.
  • the parts include rolling bearings such as roller bearings and ball bearings; inner and outer rings of rolling bearings; rolling elements of rolling bearings; rolling contact parts such as shafts and gears.
  • Example 1 In Example 1, the rolling fatigue life after carburizing the steel was measured.
  • test steels having various chemical composition compositions shown in Table 1 were melted and cooled at the average cooling rate shown in Table 2, and then the conditions shown in Table 2 A slab was produced by soaking in The slab thus obtained was heated to 1250 ° C., hot forged at 1200 ° C., and cooled to room temperature. Subsequently, it heated to 1100 degreeC and hot-rolled, and it cooled by the average cooling rate of 0.5 degree-C / sec to room temperature, and manufactured the round bar steel of diameter D70mm. In addition, the said average cooling rate was computed by the method mentioned above.
  • the Weibull coefficient m was used as an index of stability of rolling fatigue life.
  • the Weibull coefficient m is the slope of an approximate curve obtained by plotting the rolling fatigue life test results on Weibull probability paper. The larger the Weibull coefficient m, the better the stability of the rolling fatigue life. In this example, it was evaluated that the stability of the rolling fatigue life was excellent when the Weibull coefficient m was 0.6 or more.
  • Table 2 also shows the L 10 life required when calculating the Weibull coefficient m, that is, the number of stress repetitions until fatigue failure at a cumulative failure probability of 10%.
  • Test No. in Table 2 1, 2, 6 to 13 are tables that satisfy the requirements defined in the embodiments of the present invention using the steel types A to F, L, and O in Table 1 that satisfy the component compositions defined in the embodiments of the present invention.
  • Test No. 2 This is an example of manufacturing under the manufacturing conditions of 1, 2, 6-13. It can be seen that these have a Weibull coefficient m of 0.6 or more and are excellent in stability of rolling fatigue life after carburizing treatment.
  • Test No. in Table 2 No. 4 the component composition satisfied the requirements of the embodiment of the present invention, but the Cr segregation rate increased because the soaking temperature was low, and the stability of the rolling fatigue life was lowered. Furthermore, L 10 life was low. Specifically, as shown in Table 2, test no. In No. 4, the Cr segregation rate perpendicular to the rolling direction was small, but since the Cr segregation rate parallel to the rolling direction was large, the average Cr segregation rate increased and the stability of the rolling fatigue life decreased. Thus, it can be seen that the stability of the rolling fatigue life cannot be improved only by reducing the Cr segregation rate perpendicular to the rolling direction.
  • Test No. in Table 2 No. 14 is an example using the steel type P of Table 1 with a small amount of Cr, and the Cr segregation rate was increased and the stability of the rolling fatigue life was lowered. Furthermore, L 10 life was low.
  • Test No. in Table 2 15 is an example using the steel type Q of Table 1 with a large amount of Cr.
  • the Cr segregation rate was increased, and the stability of the rolling fatigue life was decreased. Furthermore, L 10 life was low.
  • Example 2 In Example 2, the rolling fatigue life after carbonitriding the steel material was measured.
  • Example 1 round bar steel was prepared in the same manner as in Example 1 except that cooling to the solidification end temperature was performed at the average cooling rate shown in Table 3 and soaking was performed under the conditions shown in Table 3. And the Cr segregation rate was measured.
  • Example 2 After carburizing the round steel bar by the same method as in Example 1, it was cooled to 860 ° C., and Cp: 0.7%, NH 3 amount 4 volume at that temperature for 2 hours. % Nitriding and oil quenching. Thereafter, tempering was performed at 160 ° C. for 120 minutes. The nitriding gas was NH 3 gas, and the ratio was 4% by volume with respect to the base gas (RX gas). Cp was measured using a Cp coil.
  • Example 2 Using the obtained test piece, the rolling fatigue life was measured in the same manner as in Example 1, and it was evaluated that the stability of the rolling fatigue life was excellent when the Weibull coefficient m was 0.6 or more. did.
  • Test No. in Table 3 16, 19, 20, 22 to 28 are requirements defined in the embodiment of the present invention using the steel types A, G to K, M, and N of Table 1 that satisfy the component composition defined in the embodiment of the present invention.
  • Test No. in Table 3 satisfying This is an example manufactured under the manufacturing conditions of 16, 19, 20, 22 to 28. It can be seen that these have a Weibull coefficient m of 0.6 or more and are excellent in stability of rolling fatigue life after carbonitriding.
  • Example 3 In Example 3, the rolling fatigue life after the steel material was subjected to the two-stage carburizing treatment was measured.
  • test steels having various chemical composition compositions shown in Table 4 were melted and cooled at an average cooling rate shown in Table 5, and then the conditions shown in Table 5 A slab was produced by soaking in The slab thus obtained was heated to 1250 ° C., hot forged at 1200 ° C., and cooled to room temperature. Subsequently, it heated to 1100 degreeC and hot-rolled, and it cooled by the average cooling rate of 0.5 degree-C / sec to room temperature, and manufactured the round bar steel of diameter D70mm. In addition, the said average cooling rate was computed by the method mentioned above.
  • a disc-shaped test piece having a diameter of 60 mm and a thickness of 5 mm was cut out from the round bar steel.
  • a two-stage carburizing process was performed under the conditions shown in Table 5. Thereafter, tempering was performed at 160 ° C. for 120 minutes.
  • the cooling in the first carburizing step and the second carburizing step was oil quenching.
  • the cooling to 650 ° C. in the first carburizing step was performed at an average cooling rate: 70 ° C./second.
  • the temperature increase from 820 to 860 ° C. in the second carburizing step was performed at an average temperature increase rate of 30 ° C./min.
  • RX gas was used as a base gas for carburizing treatment
  • propane gas was used as a carburizing gas for controlling Cp.
  • Cp was measured using a Cp coil.
  • the identification of carbides, nitrides, and carbonitrides targeted in the embodiment of the present invention is carried out by using the electron beam microprobe X-ray analyzer manufactured by JEOL Datum Co., Ltd. This was done by analyzing (C, N, Cr, Mo, V, Al).
  • particle analysis software Particle Analysis III for Windows. Version 3.00 SUMITOMO METAL TECHNOLOGY (trade name)] was used, the number of observation fields was 10 (area of one field: 108 ⁇ m 2 ), and the equivalent circle diameter was measured.
  • the number of carbides, nitrides, and carbonitrides having an equivalent circle diameter of 0.1 to 1.0 ⁇ m was measured, and the average value of number density converted to 1 ⁇ m 2 is shown in Table 6.
  • the number density was calculated for each field of view.
  • Table 6 below also shows the ratio of the maximum value to the minimum value of the number density observed in 10 visual fields (that is, the number density obtained for each visual field in 10 visual fields).
  • Test No. in Table 6 1 to 3, 8 to 17, 20, and 21 are steel types A, B, D, F to H, Q, and T of Table 4 that satisfy the component composition defined in the embodiment of the present invention.
  • Test No. in Table 5 that satisfies the requirements specified in the embodiment. This is an example manufactured under the manufacturing conditions of 1 to 3, 8 to 17, 20, and 21.
  • the ratio of the maximum value to the minimum value of the number density of the precipitates on the surface layer of the carburized steel part is appropriately controlled, so that the Weibull coefficient m is 0.6 or more. It can be seen that the stability of the rolling fatigue life after carburization is excellent.
  • the L 10 life is 1. It can be seen that 0 ⁇ 10 7 times or more is excellent in rolling fatigue life and preferable.
  • Test No. in Table 6 18 is an example using the steel kind U of Cr amount is small Table 4, L 10 life is lower number density of fine precipitates is decreased.
  • Test No. in Table 6 19 is an example using the steel kind V of Cr amount is large Table 4, L 10 life is lower number density of fine precipitates is increased.
  • Example 4 In Example 4, the rolling fatigue life after carbonitriding the steel material was measured.
  • Example 3 a round bar steel was manufactured by the same method as in Example 3 except that after cooling at the average cooling rate shown in Table 7, soaking was performed under the conditions shown in Table 7. .
  • Example 3 a disk-shaped test piece was cut out from the round steel bar, carburized and nitrided under the conditions shown in Table 7, and then tempered at 160 ° C. for 120 minutes. Went. The carburization process and the nitriding process were cooled by oil quenching. Further, RX gas was used as a base gas for carburizing treatment, propane gas was used as a carburizing gas for controlling Cp, and Cp was measured using a Cp coil. The nitriding gas was NH 3 gas, and the ratio was 4% by volume with respect to the base gas (RX gas).
  • the rolling fatigue life was measured by the same method as in Example 3, and L 10 life is preferably excellent over 1.0 ⁇ 10 7 times the rolling fatigue life evaluation When the Weibull coefficient m was 0.6 or more, it was evaluated that the rolling fatigue life was excellent in stability.
  • Test No. in Table 8 22, 26, 27, 29 to 38 are requirements defined in the embodiment of the present invention using the steel types A, K, M to O, and R in Table 4 that satisfy the component composition defined in the embodiment of the present invention.
  • Test No. in Table 7 satisfying This is an example of manufacturing under the manufacturing conditions of 22, 26, 27, 29-38.
  • the ratio of the maximum value to the minimum value of the number density of the precipitates on the surface layer of the carburized steel part is appropriately controlled, so that the Weibull coefficient m is 0.6 or more. It can be seen that the rolling fatigue life after carbonitriding and its stability are excellent.
  • the L 10 life is 1.0. It can be seen that ⁇ 10 7 times or more is excellent in rolling fatigue life and is preferable.
  • the present invention includes the following aspects.
  • Aspect 1 C 0.15 to 0.25% by mass% Si: 0.35 to 0.75%, Mn: 0.2 to 1% Cr: 1.2 to 1.7%, Mo: 0.3 to 0.6%, P: more than 0% and 0.05% or less, S: more than 0% and 0.05% or less, Al: 0.005 to 0.2%, N: more than 0% and 0.05% or less, O: more than 0% and 0.005% or less, and Ti: more than 0% and 0.014% or less, with the balance consisting of iron and inevitable impurities,
  • a steel material excellent in stability of rolling fatigue life characterized in that a Cr segregation rate obtained by measurement under the following conditions is 2.0 or less.
  • Aspect 2 Furthermore, in mass%, Cu: more than 0% and 1% or less, The steel material according to aspect 1, containing one or more selected from the group consisting of Ni: more than 0% and 1% or less and B: more than 0% and 0.005% or less.
  • Aspect 3 Furthermore, in mass%, V: more than 0% and 1% or less, The steel material according to aspect 1 or 2, containing one or more selected from the group consisting of W: more than 0% and 0.5% or less, and Nb: more than 0% and 0.1% or less.
  • the manufacturing method of the steel material excellent in stability of the rolling fatigue life to do.
  • Aspect 5 % By mass C: 0.15-0.25%, Si: 0.35 to 0.75%, Mn: 0.2 to 1% Cr: 1.2 to 1.7%, Mo: 0.3 to 0.6%, P: more than 0% and 0.05% or less, S: more than 0% and 0.05% or less, Al: 0.005 to 0.2%, N: more than 0% and 0.05% or less, O: more than 0% and 0.005% or less, and Ti: more than 0% and 0.014% or less, with the balance consisting of iron and inevitable impurities,
  • the ratio of the maximum value to the minimum value of the number density of carbide, nitride, and carbonitride having an equivalent circle diameter of 0.1 to 1.0 ⁇ m existing in the surface layer from the surface to a depth of 50 ⁇ m is 2.0 or less.
  • Aspect 6 The carburized steel part according to aspect 5, wherein the average number density is 0.5 to 3.0 pieces / ⁇ m 2 .
  • Aspect 7 Furthermore, in mass%, Cu: more than 0% and 1% or less, The carburized steel part according to aspect 5 or 6, containing one or more selected from the group consisting of Ni: more than 0% and 1% or less and B: more than 0% and 0.005% or less.
  • Aspect 8 Furthermore, in mass%, V: more than 0% and 1% or less, The carburized steel part according to any one of aspects 5 to 7, comprising one or more selected from the group consisting of W: more than 0% and 0.5% or less, and Nb: more than 0% and 0.1% or less.
  • Aspect 9 A method for producing a carburized steel part according to any one of aspects 5 to 8, comprising: The temperature range from the solidification start temperature to the solidification end temperature of the molten steel was cooled at an average cooling rate of 150 ° C./hour or more, heated to 1100 to 1300 ° C., and subjected to a soaking treatment for 1.0 to 40 hours to produce a steel material. Thereafter, carburizing treatment or carbonitriding treatment, a method for producing a carburized steel part excellent in rolling fatigue life and stability thereof.
  • the present application is a Japanese patent application whose application date is February 24, 2016, Japanese Patent Application No. 2016-033663, and a Japanese patent application whose application date is February 24, 2016, Japanese Patent Application No. 2016-033664. This is accompanied by a priority claim based on the Japanese patent application No. 2016-245766, whose application date is December 19, 2016, and Japanese Patent Application No. 2016-245766.
  • Japanese Patent Application No. 2016-033663, Japanese Patent Application No. 2016-033664 and Japanese Patent Application No. 2016-245766 are incorporated herein by reference.

Abstract

質量%でC :0.15~0.25%、Si:0.35~0.75%、 Mn:0.2~1%、Cr:1.2~1.7%、Mo:0.3~0.6%、 P :0%超0.05%以下、S :0%超0.05%以下、Al:0.005~0.2%、N :0%超0.05%以下、O :0%超0.005%以下、およびTi:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、下記条件で測定して求められるCr偏析率が2.0以下であることを特徴とする転動疲労寿命の安定性に優れた鋼材である。 (i)測定位置 ・前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所 ・前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所 (ii)測定方法 上記の各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出し、合計8箇所の平均をCr偏析率とする。

Description

転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法
 本開示は、転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、ならびにそれらの製造方法に関する。
自動車および各種産業機械などに使用される軸受、シャフト、ギヤ等の軸受部品または機械構造用部品は、高炭素鋼材に焼入れ処理を施して十分な強度を得る方法、低炭素鋼の肌焼鋼材に浸炭処理や浸炭窒化処理などの表面硬化処理を施して表面を硬化する方法などによって製造される。上記肌焼鋼材としては、例えばクロム鋼(JIS G4053規格のSCr鋼)、クロムモリブデン鋼(JIS G4053規格のSCM鋼)、ニッケルクロムモリブデン鋼(JIS G4053規格のSNCM鋼)などが、その後に浸炭処理または浸炭窒化処理を行なうことを前提として使用されている。
 しかしながら、近年、機械類の高性能化や軽量化に伴い、上記部品は、接触面圧が高く、外力が変動するなどの過酷な環境で使用されている。そのため、非常に微細な欠陥(介在物や不完全焼入れ組織など)から疲労き裂が生じ易いという問題がある。しかも、上記欠陥の分布に偏りがあるため、転動疲労寿命が安定しないという問題がある。特に肌焼鋼材に表面硬化処理を施して製造された部品では、表面硬化層の組織のバラツキもあるため、転動疲労寿命が一層不安定になって部品間のバラツキが大きい。そのため、このような部品を用いる場合、安全性を重視して、バラツキが大きい寿命の平均値でなく下限値を採用して部品の交換や点検などを行なっており、無駄が大きい。
 転動疲労寿命の向上を解決課題として掲げたものではないが、例えば特許文献1には、歯車成形体を浸炭処理や浸炭窒化処理後に焼入れした際に発生する歪を低減し、高精度な歯車の製造を可能とする肌焼鋼が開示されている。特許文献1では、最近の歯車に要求される寸法精度を得るためには鋳片におけるCの中心偏析度の測定では不十分で、鋳片の径方向断面内においてC、Mnのミクロ的な偏析状態を解消することが重要であるとの観点に立ち、CとMnのミクロ偏析度を所定範囲に制御している。
 また、特許文献2には、表面から20μm深さにおける窒素濃度を所定範囲内に制御することにより歯車の耐焼付き性を向上させる技術が開示されている。
特開2006-097066号公報 特開2013-227674号公報
 本発明の実施形態の目的は、転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法を提供することにある。
 上記課題を解決し得た本発明の実施形態に係る転動疲労寿命の安定性に優れた鋼材は、質量%で、C:0.15~0.25%、Si:0.35~0.75%、Mn:0.2~1%、Cr:1.2~1.7%、Mo:0.3~0.6%、P:0%超0.05%以下、S:0%超0.05%以下、Al:0.005~0.2%、N:0%超0.05%以下、O:0%超0.005%以下、およびTi:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、下記条件で測定して求められるCr偏析率が2.0以下であるところに要旨を有する。
(i)測定位置
・前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所
・前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所
(ii)測定方法
上記の各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出し、合計8箇所の平均をCr偏析率とする。
 本発明の好ましい実施形態において、上記鋼材は、更に、質量%で、Cu:0%超1%以下、Ni:0%超1%以下、B:0%超0.005%以下、V:0%超1%以下、W:0%超0.5%以下、およびNb:0%超0.1%以下よりなる群から選択される1種以上を含有する。
 上記課題を解決し得た本発明の実施形態に係る転動疲労寿命およびその安定性に優れた浸炭鋼部品は、質量%で、C:0.15~0.25%、Si:0.35~0.75%、Mn:0.2~1%、Cr:1.2~1.7%、Mo:0.3~0.6%、P:0%超0.05%以下、S:0%超0.05%以下、Al:0.005~0.2%、N:0%超0.05%以下、O:0%超0.005%以下、およびTi:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、表面から50μm深さまでの表層に存在する円相当直径0.1~1.0μmの炭化物、窒化物、および炭窒化物の個数密度の最小値に対する最大値の比が2.0以下であるところに要旨を有する。
 本発明の好ましい実施形態において、上記部品は、更に、質量%で、Cu:0%超1%以下、Ni:0%超1%以下、B:0%超0.005%以下、V:0%超1%以下、W:0%超0.5%以下、およびNb:0%超0.1%以下よりなる群から選択される1種以上を含有する。
 本発明の好ましい実施形態において、上記部品は、前記個数密度の平均が0.5~3.0個/μmである。
 上記課題を解決し得た本発明の実施形態に係る上記鋼材の製造方法は、溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却した後、1100~1300℃に加熱して1.0~40時間均熱処理を行うところに要旨を有する。
 上記課題を解決し得た本発明の実施形態に係る上記部品の製造方法は、溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却し、1100~1300℃に加熱して1.0~40時間均熱処理を行って鋼材を製造した後、浸炭処理または浸炭窒化処理するところに要旨を有する。
 本発明の実施形態によれば、上記構成を採用することにより、転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品が得られる。
図1は、鋼材の圧延方向に垂直な切断面におけるCr濃度の測定箇所を説明する図である。 図2は、鋼材の圧延方向に平行な切断面におけるCr濃度の測定箇所を説明する図である。
 本発明者らは、優れた転動疲労寿命を安定して確保できる鋼材および浸炭鋼部品(鋼材を浸炭処理、または浸炭窒化処理したもの)提供するため、検討を行なった。特に上記課題を解決するためには、鋼材を表面硬化処理したときに生成する析出物(炭化物、窒化物、炭窒化物)のバラツキを抑制する必要があり、当該析出物の分布(偏析)が転動疲労寿命の不安定さを招く原因になっているとの観点に立ち、鋭意検討を行なった。
 その結果、転動疲労寿命を安定して確保できる鋼材を得るためには、上記析出物の形成元素であって、鋼材中に最も多く含まれるCrの分布状態(偏析)を改善する必要が有効であることが判明した。また、このような鋼材を得るためには、Crの含有量を適切に制御すると共に、鋳造時の冷却条件およびその後の均熱条件を適切に制御すれば良いことを見出した。
 また、転動疲労寿命を安定して確保できる浸炭鋼部品を得るためには、鋼材レベルにおいて、上記析出物の形成元素であって鋼材中に最も多く含まれるCrの分布状態(偏析)を改善する必要があることが判明した。そして、Cr偏析率が適切に制御された鋼材を用いて、浸炭処理や浸炭窒化処理を行えば、表層の微細な析出物の個数密度の最大値と最小値の比を適切な範囲に制御でき、転動疲労寿命の安定性に優れた浸炭鋼部品が得られることを見出した。また、このような浸炭鋼部品を得るためには、Crの含有量を適切に制御すると共に、鋳造時の冷却条件およびその後の均熱条件を適切に制御して得られた鋼材を、浸炭または浸炭窒化処理すれば良いことを見出し、本発明を完成した。
 なお、前述した特許文献1にも、鋼材中のCとMnの偏析度を制御する技術が開示されているが、本発明の実施形態とは異なりCrの偏析状態を何ら考慮していないため、優れた転動疲労寿命を安定して得ることはできないと考えられる。また、上記特許文献1では、CとMnの偏析度を測定するに当たり、特許文献1の図1に示すように鋳片の径方向断面を90°間隔で4等分する夫々の等分線上で、径方向に等間隔となる複数箇所についてC、Mnの含有量を測定しているが、この測定箇所は、本発明の実施形態における、鋼材の圧延方向に垂直な切断面における測定箇所に相当する。これに対し、本発明の実施形態では、鋼材の圧延方向に垂直な切断面のみならず、鋼材の圧延方向に平行な切断面におけるCr濃度も測定してCr偏析率を算出しており、鋼材中のCr分布状態をより厳密に制御しているため、転動疲労寿命特性のバラツキを顕著に抑制することができる。実際のところ、後記する実施例の表2のNo.4、および表3のNo.18に示すように鋼材の圧延方向に垂直な切断面のCr偏析率が制御されていても、鋼材の圧延方向に平行な切断面のCr偏析率が制御されていないと、転動疲労寿命特性のバラツキを抑制することはできない。
 本明細書において浸炭部品とは、鋼材を浸炭処理、または浸炭窒化処理したものであり、例えば、軸受部品、摺動部品、機械構造用部品等が挙げられる。
 以下、本発明の実施形態に係る浸炭鋼部品の素材として用いることができる、本発明の実施形態の鋼材について詳述する。
 まず、本発明を最も特徴付けるCr偏析率について説明する。本発明の実施形態では、下記条件で測定して算出されるCr偏析率が2.0以下である点に特徴がある。
(i)測定位置
・前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所
・前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所
(ii)測定方法
上記の各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出し、合計8箇所の平均をCr偏析率とする。
 以下、図1および図2を参照しながら、Cr偏析率の測定方法を詳述する。鋼材を切断して、Cr濃度測定用試験片を用意し、以下の手順に従ってCr偏析率を測定する。
 まず鋼材の圧延方向に垂直な任意の切断面におけるCr濃度は、図1に示すように上記試験片の外周部から中心部までの線上で、90°ごとに合計4箇所(図1中、1~4)を測定する。図1の1~4は、Cr濃度測定用試験片の半径に相当する。すなわち、鋼材の圧延方向垂直断面では試験片の半径にわたってCr濃度を測定する。
 一方、鋼材の圧延方向に平行な任意の切断面におけるCr濃度は、図2に示すように鋼材の直径の1/4位置の線上で、鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所(図2中、5~8)を測定する。
 上記の各測定箇所(図1の1~4、図2の5~8)について、EPMAを用いてCr濃度の線分析を行なう。EPMAの測定条件は以下のとおりである。
・日本電子データム製のJXA-8500F
・加速電圧:15kV
・測定ピッチ:10μm
 それぞれの測定箇所1~8におけるCr濃度を測定し、Cr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出する。本発明の実施形態では、合計8箇所の[Cr]max/[Cr]minの平均相対濃度をCr偏析率とする。
 上記のように算出される鋼材のCr偏析率は2.0以下である。Cr偏析率が上記範囲に制御された鋼材に表面硬化処理を行なうと、浸炭鋼部品表層に生成する析出物の分布が抑制されて、転動疲労寿命が高く、且つバラツキのない浸炭鋼部品を得ることができる。このような効果を有効に発揮させるためにはCr偏析率は小さい程よく、Cr偏析率の上限は、好ましくは1.9以下、より好ましくは1.8以下、更に好ましくは1.7以下である。一方、Cr偏析率の下限は、特に限定されないが製造性などを考慮すると、好ましくは1.2以上、より好ましくは1.3以上である。
 次に、鋼材の鋼中成分について説明する。なお、浸炭鋼部品の鋼中成分は鋼材と同じである。
 以下の成分の説明で示す「%」は特に断りのない限り「質量%」を意味する。
 C:0.15~0.25%
 Cは、軸受部品などの芯部硬さを確保するために有効な元素である。そのためにC量の下限を0.15%以上とする。C量の下限は、好ましくは0.16%以上、より好ましくは0.17%以上である。しかしながら、C量が0.25%を超えると鋼材の被削性や冷間鍛造性が悪化し、更に軸受部品などの靱性が劣化する。そのためにC量の上限を0.25%以下とする。C量の上限は、好ましくは0.24%以下、より好ましくは0.23%以下である。
 Si:0.35~0.75%
 Siは、マトリックスの固溶強化、焼入れ性および焼戻し軟化抵抗性の向上に有効な元素である。そのためにSi量の下限を0.35%以上とする。Si量の下限は、好ましくは0.38%以上、より好ましくは0.40%以上である。しかしながら、Si量が多くなり過ぎると鋼材の被削性や冷間鍛造性が著しく低下する。そのためにSi量の上限を0.75%以下とする。Si量の上限は、好ましくは0.70%以下、より好ましくは0.60%以下である。
 Mn:0.2~1%
 Mnは、マトリックスの固溶強化および焼入れ性を向上させるために有効な元素である。そのためにMn量の下限を0.2%以上とする。Mn量の下限は、好ましくは0.25%以上、より好ましくは0.30%以上である。しかしながら、Mn量が多くなり過ぎると鋼材の被削性や冷間鍛造性が低下し、浸炭後に残留オーステナイトが多量に発生することで、部品の強度を低下させる。そのためにMn量の上限を1%以下とする。Mn量の上限は、好ましくは0.80%以下、より好ましくは0.60%以下である。
 Cr:1.2~1.7%
 Crは、本発明の実施形態における重要な元素であり、焼入れ性を向上させ、表面硬化処理により表面硬化層内に炭化物、窒化物、炭窒化物などの析出物を形成し、転動疲労寿命の向上に寄与する元素である。更にCrは、転動疲労寿命の安定性に大きく寄与する元素でもある。そのためにCr量の下限を1.2%以上とする。Cr量の下限は、好ましくは1.3%以上、より好ましくは1.35%以上である。しかしながら、Cr量が多くなり過ぎると、鋼材の被削性や冷間鍛造性が低下し、更に粗大な析出物が析出して転動疲労寿命、および転動疲労寿命の安定性を低下させる。そのためにCr量の上限を1.7%以下とする。Cr量の上限は、好ましくは1.6%以下、より好ましくは1.5%以下である。
 Mo:0.3~0.6%
 Moは、焼入れ性を著しく向上し、衝撃強度の向上に有効な元素である。そのためにMo量の下限を0.3%以上とする。Mo量の下限は、好ましくは0.35%以上、より好ましくは0.40%以上である。しかしながら、Mo量が多くなり過ぎると被削性が低下し、コストが増加する。そのためにMo量の上限を0.6%以下とする。Mo量の上限は、好ましくは0.55%以下、より好ましくは0.50%以下である。
 P:0%超0.05%以下
 Pは、不可避的に不純物として含有する元素であり、粒界に偏析し、加工性を低下させる。そのためにP量の上限を0.05%以下とする。P量の上限は、好ましくは0.04%以下、より好ましくは0.03%以下である。しかしながら、P量を0%にすることは実質的に困難であり、過度に低減すると製鋼コストの増大を招く。そのためにP量の下限は、好ましくは0.001%以上である。
 S:0%超0.05%以下
 Sは、不可避的に不純物として含有する元素であり、S量が多くなり過ぎるとMnSとして析出し、微細なクラックの起点となり耐磨耗性を低下させる。そのためにS量の上限を0.05%以下とする。S量の上限は、好ましくは0.04%以下、より好ましくは0.03%以下である。しかしながら、S量を0%にすることは実質的に困難であり、過度に低減すると製鋼コストの増大を招く。そのためにS量の下限は、好ましくは0.001%以上である。
 Al:0.005~0.2%
 Alは、強度の脱酸作用を有すると共に、Nと結合して窒化物を形成して結晶粒を微細化して転動疲労寿命の向上に寄与する元素である。そのためにAl量の下限を0.005%以上とする。Al量の下限は、好ましくは0.010%以上、より好ましくは0.015%以上である。しかしながら、0.2%を超えてAlを添加してもこの効果は飽和するため、Al量の上限を0.2%以下とした。Al量の上限は、好ましくは0.1%以下、より好ましくは0.05%以下である。
 N:0%超0.05%以下
 Nは、Alと窒化物を形成してオーステナイト結晶粒の成長を抑制して結晶粒を微細化し、転動疲労寿命の向上に寄与する元素である。そのためにN量の下限を好ましくは0.0010%以上、より好ましくは0.0015%以上、更に好ましくは0.0020%以上とする。しかしながら、N量が多くなり過ぎると粗大なAlやTiの窒化物が生成し、微細なクラックの起点となる。そのためにN量の上限を0.05%以下とする。N量の上限は、好ましくは0.040%以下、より好ましくは0.020%以下とする。
 O:0%超0.005%以下
 Oは、Al、Siと結合して酸化物系介在物を生成して、転動疲労寿命に悪影響を及ぼし、更に冷間加工性にも悪影響を及ぼす元素である。そのためにO量の上限を0.005%以下とする。O量の上限は、好ましくは0.004%以下、より好ましくは0.003%以下である。しかしながら、O量を0%にすることは実質的に困難であり、過度に低減すると製鋼コストの増大を招く。そのためにO量の下限は、好ましくは0.0001%以上である。
 Ti:0%超0.014%以下
 Tiは、不可避的に不純物として含有する元素であり、鋼中のNと結合して粗大なTiNを生成し易やすく、研磨時の表面性状への悪影響が大きい有害な元素である。そのためにTi量の上限を0.014%以下とする。Ti量の上限は、好ましくは0.008%以下、より好ましくは0.005%以下である。しかしながら、Ti量を0%にすることは実質的に困難であり、過度に低減すると製鋼コストの増大を招く。そのためにTi量の下限は、好ましくは0.0001%以上である。
 本発明の実施形態に用いられる鋼中元素は上記の通りであり、残部は鉄および不可避的不純物である。上記不可避的不純物は、原料、資材、製造設備などによって混入され得るものであり、例えば、As、H等が挙げられる。
 更に本発明の実施形態の鋼材は、下記の選択元素を含有することもできる。
 Cu:0%超1%以下、Ni:0%超1%以下、およびB:0%超0.005%以下よりなる群から選択される1種以上
 Cu、NiおよびBは、いずれも母相の焼入れ性向上元素として作用し、硬さを高めて転動疲労寿命の向上に寄与する元素である。これらの元素は単独で添加しても良いし、二種以上を併用しても良い。
 上記作用を有効に発揮させるために、Cu量、Ni量のそれぞれの下限を、好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.03%以上とする。B量の下限は、好ましくは0.0001%以上、より好ましくは0.0005%以上、更に好ましくは0.0010%以上とする。しかしながら、各元素の含有量が過剰になると鋼材の製造性が劣化することになる。そのために、Cu量、Ni量のそれぞれの上限を、好ましくは1%以下、より好ましくは0.20%以下、更に好ましくは0.15%以下とする。B量の上限は、好ましくは0.005%以下、より好ましくは0.0040%以下、更に好ましくは0.0030%以下とする。
 V:0%超1%以下、W:0%超0.5%以下、およびNb:0%超0.1%以下よりなる群から選択される1種以上
 V、W、Nbは、硬質な炭・窒化物を形成し、転動疲労寿命の向上に寄与する元素である。これらの元素は単独で添加しても良いし、二種以上を併用しても良い。
 上記作用を有効に発揮させるために、V量の下限を、好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.03%以上とする。W量の下限は、好ましくは0.005%以上、より好ましくは0.007%以上、更に好ましくは0.010%以上とする。Nb量の下限は、好ましくは0.01%以上、より好ましくは0.02%以上、更に好ましくは0.03%以上とする。しかしながら、各元素の含有量が過剰になると鋼材の被削性や冷間鍛造性が低下する。そのためにV量の上限を、好ましくは1%以下、より好ましくは0.9%以下、更に好ましくは0.8%以下とする。W量の上限は、好ましくは0.5%以下、より好ましくは0.4%以下、更に好ましくは0.3%以下とする。Nb量の上限は、好ましくは0.1%以下、より好ましくは0.08%以下、更に好ましくは0.07%以下とする。
 次に、本発明の実施形態の浸炭鋼部品について説明する。
 本発明の実施形態の浸炭鋼部品は、表面から50μm深さまでの表層に存在する円相当直径0.1~1.0μmの析出物の個数密度の最小値に対する最大値の比が2.0以下である点に特徴がある。これにより優れた転動疲労寿命の安定性を得ることができる。
 また、好ましくは、表面から50μm深さまでの表層に存在する円相当直径0.1~1.0μmの析出物の個数密度の平均が0.5~3.0個/μmである。これにより、優れた転動疲労寿命をえることができる。
 本発明の実施形態において、析出物とは、以下に示すような炭化物形成元素と炭素が結合した全ての炭化物や、窒化物形成元素と窒素が結合した全ての窒化物や、これらが複合した炭窒化物を意味する。
炭化物[(Fe,Cr)C、(Fe,Cr)、MoC、VC等]
窒化物[(Cr,V,Al)N,等]
炭窒化物[(Fe,Cr)(C,N)、(Fe,Cr)(C,N)、Mo(C,N)、V(C,N)等]
 上記析出物の個数密度の平均が0.5個/μm未満では、優れた転動疲労寿命が得られないため、下限は0.5個/μm以上であることが好ましい。個数密度の平均の下限は、より好ましくは0.6個/μm以上、さらにより好ましくは0.7個/μm以上である。一方、上記析出物の個数密度の平均が3.0個/μmを超えると、析出物にCr、Mo等が固溶して、母相の焼入れ向上元素の濃度が低くなって焼入れ性が低下し、転動疲労特性が劣化する。そのために、個数密度の平均の上限は好ましくは3.0個/μm以下である。個数密度の平均の上限は、より好ましくは2.8個/μm以下、さらにより好ましくは2.6個/μm以下である。
 一方、上記析出物の個数密度の、最小値に対する最大値の比を低減することが、優れた転動疲労寿命を安定して得るために重要である。上記比が2.0を超えると、転動疲労特性を安定して得ることができない。そのために上記比の上限を2.0以下とする。上記比の上限は、好ましくは1.9以下、より好ましくは1.8以下である。上記比の下限は、特に限定されないが製造性を考慮すると、好ましくは1.2以上である。
 次に、本発明の実施形態の鋼材を製造する方法について説明する。
 本発明の実施形態の製造方法は、上記成分組成を満足する溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却した後、1100~1300℃に加熱して1.0~40時間の均熱処理を行うところに特徴を有する。これにより、Crの偏析率を2.0以下に抑制することができる。
 まず、溶鋼の凝固開始温度から凝固終了温度までの温度域の平均冷却速度を150℃/時間以上とする。本発明の実施形態では、鋳造過程で生じるCrの偏析を抑制するため、溶鋼の冷却条件を適切に制御する必要がある。ここで「溶鋼の凝固開始温度から凝固終了温度までの温度域」とは、溶鋼の液相線温度から固相線温度までの温度域を意味し、上記温度域の平均冷却速度は、鋳片の平均凝固速度を意味する。上記平均冷却速度が遅いと、凝固が遅すぎるため、Crの濃化部が形成されてCr偏析率が高くなる。上記平均冷却速度が速い程、Cr偏析率は小さくなる。従来の鋼材における上記平均冷却速度は、50℃/時間程度であり、Cr偏析率が非常に高くなっていたと推測される。平均冷却速度の下限は、好ましくは160℃/時間以上、より好ましくは170℃/時間以上である。平均冷却速度の上限は特に限定されないが、製造性などを考慮すると、好ましくは300℃/時間以下、より好ましくは250℃/時間以下である。
 ここで、上記平均冷却速度は、先端部に温度感知部を備える熱電対型温度測定器を用いて、以下のようにして測定する。溶鋼を鋳込む鋳型の高さhの1/2位置、直径Dの1/4位置に、上記温度感知部を設置し、溶鋼の温度を直接、測定し、溶鋼の凝固開始温度から凝固終了温度までの時間を測定して、平均冷却速度を算出する。溶鋼の凝固開始温度と凝固終了温度は、統合型熱力学計算システム(THREMO-CALC SOFTWARE Ver.R、伊藤忠テクノソリューションズ)を用いて、C量、Si量、Cr量、Mn量、Mo量、Al量を指定して算出する。なお、表1に示す成分組成の範囲では、凝固開始温度と凝固終了温度は大きく変化しないことから、後述する実施例では、鋼種Aの算出値である凝固開始温度:1507℃、凝固終了温度:1463℃に基づいて、平均冷却速度を算出した。
 次に、上記のように溶鋼の凝固終了温度まで冷却して得られた鋳片を、1100~1300℃に加熱して1.0~40時間均熱する。
 ここで、上記加熱温度(均熱処理温度)が1100℃を下回る場合、Crの拡散が不十分となるため、Cr偏析率を低減させることができない。そのために上記加熱温度の下限を1100℃以上とする。上記加熱温度の下限は、好ましくは1150℃以上、より好ましくは1170℃以上である。Cr偏析率低減の観点からは上記加熱温度は高い程良いが、高くなり過ぎると製造性などが低下するため、その上限は1300℃以下である。上記加熱温度の上限は、好ましくは1280℃以下、より好ましくは1270℃以下とする。
 また、均熱処理時間が1.0時間を下回る場合、Crの拡散が不十分となるためCr偏析率を低減させることができない。そのために均熱処理時間の下限は1.0時間以上とする。従来の鋼材では、加熱後、直ちに冷却を行っていた(均熱処理時間ゼロ)ため、従来の鋼材のCr偏析率は2.0を大きく上回っていたと予想される。均熱処理時間の下限は、好ましくは5時間以上、より好ましくは8時間以上である。Cr偏析率低減の観点からは上記均熱処理時間は長い程良いが、長くなり過ぎると製造性などが低下するため、その上限は40時間以下である。上記均熱処理時間の上限は、好ましくは25時間以下、より好ましくは20時間以下とする。
以上、本発明の実施形態の製造方法を最も特徴付ける工程について説明した。本発明の実施形態の製造方法は、上記工程に特徴があり、それ以外の工程は特に限定されず、通常の方法を採用することができる。
 本発明の実施形態の鋼材には線状や棒状のものが含まれるが、このような形状に制御するためには、上記の均熱処理を施した後、常法に従って熱間鍛造し、次いで熱間圧延などの熱間加工を行う。必要に応じて、更に溶体化処理、焼ならし処理を行っても良い。
 これらのうち熱間鍛造は、例えば、1100~1300℃の範囲で行うことが好ましい。熱間鍛造温度が低過ぎると鋳片が変形しにくくなり製造性が低下する。より好ましくは1150℃以上である。一方、熱間鍛造温度が高過ぎると、高温まで加熱するための時間、燃料等が必要になり製造性が低下する。より好ましくは1250℃以下である。
 熱間圧延は、例えば、850~1300℃の範囲に加熱して行うことが好ましい。熱間圧延の加熱温度が低過ぎると、鋼片が変形しにくくなり製造性が低下する。より好ましくは900℃以上である。一方、加熱温度が高過ぎると、高温まで加熱するための時間、燃料等が必要になり製造性が低下する。より好ましくは1200℃以下である。
 熱間圧延後、室温まで0.01~10℃/秒の平均冷却速度で冷却することが好ましい。平均冷却速度が遅過ぎると製造性が低下する。より好ましくは0.05℃/秒以上である。一方、平均冷却速度が速過ぎると割れや疵が発生する。より好ましくは8℃/秒以下である。
 溶体化処理は熱間鍛造や熱間圧延の際に生成した粗大な析出物を固溶させる目的で行なわれる。具体的には、1100~1300℃に加熱し、1~5時間保持してから0.5~20℃/秒の平均冷却速度で冷却することが好ましい。
 溶体化処理の加熱温度が低過ぎると析出物が固溶しない。より好ましくは1150℃以上である。一方、加熱温度が高過ぎると製造性が低下する。より好ましくは1250℃以下である。
 また、溶体化処理の保持時間が短過ぎると析出物が固溶しない。より好ましくは2時間以上である。一方、保持時間が長過ぎると製造性が低下する。より好ましくは4時間以下である。
 溶体化処理後の平均冷却速度は0.5~20℃/秒であることが好ましい。上記平均冷却速度が遅過ぎると粗大な析出物が生成し、固溶させることができない。より好ましくは1.0℃/秒以上である。一方、平均冷却速度が速過ぎると割れや疵が発生する。より好ましくは10℃/秒以下である。
 焼ならし処理は、フェライト単相、パーライト単相、フェライトとパーライトの複相組織、または初析セメンタイトとパーライトの複相組織からなる均一な組織を得る目的で行われる。具体的には、焼ならし処理は、750~1100℃に加熱し、10分以上5時間以下保持してから、0.01~10℃/秒の平均冷却速度で室温まで冷却すればよい。
 焼ならし処理の加熱温度が低過ぎると加熱が不十分となり、上述した焼きならし効果が得られない。より好ましくは760℃以上である。一方、加熱温度が高過ぎると製造性が低下する。より好ましくは1050℃以下である。
 また、焼ならし処理の保持時間が短過ぎると加熱が不十分となり、上述した焼きならし効果が得られない。より好ましくは20分以上である。一方、保持時間が長過ぎると製造性が低下する。より好ましくは4時間以下である。
 焼ならし処理の平均冷却速度は0.01~10℃/秒であることが好ましい。上記平均冷却速度が遅過ぎると製造性が低下する。より好ましくは0.02℃/秒以上である。一方、平均冷却速度が速過ぎると割れや疵が発生する。より好ましくは8℃/秒以下である。
 このようにして得られた本発明の実施形態の鋼材は、Cr偏析率が2.0以下に制御されているため、転動疲労寿命の安定性に優れている。
 本発明の実施形態の鋼材は、自動車や各種産業の機械等に使用される軸受部品、摺動部品、機械構造用部品などの素材として好適に用いられる。上記部品としては、例えば、ころ軸受、玉軸受等の転がり軸受;転がり軸受の内・外輪;転がり軸受の転動体;シャフト、ギヤ等の転がり接触部品が挙げられる。
 次に本発明の実施形態に係る浸炭鋼部品の製造方法を説明する。
 本発明の実施形態の浸炭鋼部品は、上記のようにして得られた鋼材を、常法に従って被削や冷間鍛造等の冷間加工を行い、所定の部品形状とした後、浸炭処理または浸炭窒化処理することによって得られる。
 表面硬化処理のうち浸炭処理としては、例えば850~950℃で1時間以上6時間以下、Cp(Carbon Potential):0.6~1.4%で浸炭した後、油や水等の冷媒を用いて焼入れを行う方法が挙げられる。この時の冷却は、好ましくは680℃まで、より好ましくは650℃まで、好ましくは50℃/秒以上150℃/秒以下、より好ましくは70℃/秒以上130℃/秒以下の平均冷却速度で行う。
 例えば以下のように2段階の浸炭処理を行う方法、浸炭後に窒化を行う浸炭窒化を行う方法が好ましく用いられる。
(1)2段階の浸炭処理
 上記2段階の浸炭処理は、900~950℃にてCp(Carbon Potential):1.0~1.4%の雰囲気で2~6時間保持した後、680℃まで50℃/秒以上の平均冷却速度で冷却する第1浸炭工程と、800~880℃まで25℃/分以上の平均昇温速度で加熱し、上記温度にてCp:0.8~1.2%の雰囲気で0.5~8時間保持した後、焼入れを行う第2浸炭工程と、を含むことが好ましい。
 第1浸炭工程における保持温度が900℃を下回ると、表層の浸炭量が不足し、第2浸炭工程を実施しても微細な析出物の量を十分に確保することができない。そのために保持温度の下限は、好ましくは900℃以上、より好ましくは930℃以上である。一方、950℃を超えると、表層の炭素量が過剰となり、第2浸炭工程で析出物量が過剰となる。析出物量が多くなると、析出物のバラツキは低減されるが、母相の焼入れ向上元素の濃度が低くなって焼入れ性が低下し、転動疲労特性が劣化する。そのために保持温度の上限は、好ましくは950℃以下、より好ましくは940℃以下である。
 第1浸炭工程におけるCpが1.0%を下回ると、表層の浸炭量が不足し、第2浸炭工程を実施しても微細な析出物の量を十分に確保することができない。そのためにCpの下限は、好ましくは1.0%以上、より好ましくは1.1%以上である。一方、Cpが1.4%を超えると、表層の炭素量が過剰となる。そのためにCpの上限は、好ましくは1.4%以下、より好ましくは1.3%以下である。
 第1浸炭工程における保持時間が2時間を下回ると、表層の浸炭量が不足し、第2浸炭工程を実施しても微細な析出物の量を十分に確保することができない。そのために保持時間の下限は、好ましくは2時間以上、より好ましくは3時間以上である。一方、保持時間が6時間を超えると、表層の炭素量が過剰となる。そのために保持時間の上限は、好ましくは6時間以下、より好ましくは5時間以下である。
 第1浸炭工程における平均冷却速度が遅いと、冷却過程で粗大な析出物が生成し、所望の微細な析出物の量が不足する。そのために、好ましくは680℃まで、より好ましくは650℃まで、好ましくは50℃/秒以上、より好ましくは70℃/秒以上の平均冷却速度で冷却する。平均冷却速度の上限は、特に限定されないが、製造性を考慮すると、好ましくは150℃/秒以下、より好ましくは130℃/秒以下である。
 第1浸炭工程における冷却方法は、油や水等の冷媒へ焼入れを行ってもよいし、ガス冷却を行ってもよい。
 第2浸炭工程における平均昇温速度が遅いと、加熱過程で粗大な析出物が生成し、所望の微細な析出物の量が不足する。そのために、好ましくは800~880℃まで、より好ましくは820~860℃まで、好ましくは25℃/分以上、より好ましくは30℃/分以上の昇温速度で加熱する。平均昇温速度の上限は、特に限定されないが製造性などを考慮すると、100℃/分以下である。
 第2浸炭工程における保持温度が800℃を下回ると、表層の浸炭量が不足し、微細な析出物の量を十分に確保することができない。そのために保持温度の下限は、好ましくは800℃以上、より好ましくは820℃以上である。一方、880℃を超えると、炭素が母相に固溶し、微細な析出物の量を十分に確保することができない。そのために保持温度の上限は、好ましくは880℃以下、より好ましくは860℃以下である。
 第2浸炭工程におけるCpが0.8%を下回ると、表層の浸炭量が不足し、微細な析出物の量を十分に確保することができない。そのためにCpの下限は、好ましくは0.8%以上、より好ましくは0.9%以上である。一方、Cpが1.2%を超えると、析出物量が過剰となる。そのためにCpの上限は、好ましくは1.2%以下、より好ましくは1.1%以下である。
 第2浸炭工程における保持時間が0.5時間を下回ると、表層の浸炭量が不足し、微細な析出物の量を十分に確保することができない。そのために保持時間の下限は、好ましくは0.5時間以上、より好ましくは2時間以上である。一方、保持時間が8時間を超えると、析出物量が過剰となる。そのために保持時間の上限は、好ましくは8時間以下、より好ましくは7時間以下である。
 上記保持後に、油や水等の冷媒へ焼入れを行うことにより、微細な析出物を分散させることができる。
 なお、Cpの測定は、Oセンサ法や赤外線分析計によるCO法、露点測定法、鉄線を用いたカーボンポテンションメータなど一般に用いられる方法によって測定可能である。そのうちCpコイルと呼ばれる鉄線を炉内雰囲気に放置し、このCpコイルを用いて赤外線吸収法などによって定量分析する方法が、測定精度の点で最も優れている。
 (2)浸炭窒化処理
 上記浸炭窒化処理は、900~950℃にてCp:0.7~1.2%の雰囲気で2~6時間保持した後、800~880℃まで冷却する浸炭工程と、冷却温度にてCp:0.5~0.9%、NH量:6~12体積%の雰囲気で2~8時間保持した後、焼入れを行う窒化工程と、を含むことが好ましい。
 このうち浸炭工程の好ましい条件は、Cpが0.7~1.2%であることと、800~880℃まで冷却することを除いて、前述した2段階の浸炭処理における第1浸炭工程の条件と同じである。
 浸炭工程におけるCpが0.7%を下回ると、表層の浸炭量が不足し、微細な析出物の量を十分に確保することができない。そのためにCpの下限は、好ましくは0.7%以上、より好ましくは0.8%以上である。一方、Cpが1.2%を超えると、表層の炭素量が過剰となり、析出物量が過剰となる。そのためにCpの上限は、好ましくは1.2%以下、より好ましくは1.1%以下である。
 900~950℃から800~880℃の冷却は、炉冷すればよい。
 窒化工程における保持温度が800℃を下回ると、表層の浸炭、浸窒量が不足し、微細な析出物の量を十分に確保することができない。そのために保持温度の下限は、好ましくは800℃以上、より好ましくは820℃以上である。一方、880℃を超えると、炭素、窒素が母相に固溶し、微細な析出物の量を十分に確保することができない。そのために保持温度の上限は、好ましくは880℃以下、より好ましくは860℃以下である。
 窒化工程におけるCpが0.5%を下回ると、表層の浸炭、浸窒量が不足し、微細な析出物の量を十分に確保することができない。そのためにCpの下限は、好ましくは0.5%以上、より好ましくは0.6%以上である。一方、Cpが0.9%を超えると、析出物量が過剰となる。そのためにCpの上限は、好ましくは0.9%以下、より好ましくは0.8%以下である。
 窒化工程におけるNH量が6体積%を下回ると、表層の浸炭、浸窒量が不足し、微細な析出物の量を十分に確保することができない。そのためにNH量の下限は、好ましくは6体積%以上、より好ましくは7体積%以上である。一方、NH量が12体積%を超えると、析出物量が過剰となる。そのためにNH量の上限は、好ましくは12体積%以下、より好ましくは10体積%以下である。
 上記保持後に、油や水等の冷媒へ焼入れを行うことにより、微細な析出物を分散させることができる。
 上記の表面硬化処理の後、必要に応じて焼戻し処理を行ってもよい。焼戻し処理は、例えば80~250℃で30~240分間行うことが好ましい。
 このようにして得られた本発明の実施形態の浸炭鋼部品は、自動車や各種産業の機械等に使用される軸受部品、摺動部品、機械構造用部品等の素材として好適に用いられる。上記部品としては、例えば、ころ軸受、玉軸受等の転がり軸受;転がり軸受の内・外輪;転がり軸受の転動体;シャフト、ギヤ等の転がり接触部品が挙げられる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1
 実施例1では、鋼材を浸炭処理した後の転動疲労寿命を測定した。
 試験片の作製
 容量150kg/1chの小型溶解炉を用いて、表1に示す各種化学成分組成の供試鋼を溶製し、表2に示す平均冷却速度で冷却した後、表2に示す条件で均熱処理して鋳片を作製した。このようにして得られた鋳片を1250℃に加熱した後、1200℃で熱間鍛造し、室温まで冷却した。次いで1100℃に加熱して熱間圧延を行い、室温まで0.5℃/秒の平均冷却速度で冷却することにより直径D70mmの丸棒鋼を製造した。なお、上記平均冷却速度は、前述した方法により算出した。
 次に、このようにして得られた丸棒鋼より、下記の測定箇所が観察できるように直径D70mmの試験片を切り出して前述した方法によりCr偏析率を算出した。表2には、上記Cr偏析率(合計8箇所の平均)と共に、参考のため、鋼材の圧延方向に垂直な任意の切断面におけるCr偏析率(測定箇所1~4の平均)、および鋼材の圧延方向に平行な任意の切断面におけるCr偏析率(測定箇所5~8の平均)も算出して併記した。
 浸炭処理後の転動疲労寿命の測定
 上記丸棒鋼から、直径:60mm、厚さ:5mmの円盤状の試験片を切り出した。次いで、940℃で3時間、Cp:0.85%で浸炭し、油焼入れを行った。その後、160℃で120分間、焼戻しを行った。なお、浸炭後の冷却における平均冷却速度は、680℃まで70℃/秒であった。また、浸炭処理のベースガスとしてRXガス、Cpを制御する浸炭ガスとしてプロパンガスを用いた。Cpは、Cpコイルを用いて測定した。
 各試験No.毎に16個の焼戻し後の試験片を用いて、スラスト型転動疲労試験機にて、繰り返し数:1500rpm、面圧:5.3GPa、中止回数:2×10回の条件で転動疲労寿命を測定した。転動疲労寿命の安定性の指標として、ワイブル係数mを用いた。ワイブル係数mは、転動疲労寿命の試験結果をワイブル確率紙にプロットして求められる近似曲線の傾きである。ワイブル係数mが大きいほど転動疲労寿命の安定性に優れていることを示す。本実施例では、ワイブル係数mが0.6以上のとき転動疲労寿命の安定性に優れていると評価した。また、参考のためにワイブル係数mを算出する際に求められるL10寿命、すなわち累積破損確率10%における疲労破壊までの応力繰り返し数も表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、次のように考察することができる。
 表2の試験No.1、2、6~13は、本発明の実施形態で規定する成分組成を満足する表1の鋼種A~F、L、Oを用いて、本発明の実施形態で規定する要件を満足する表2の試験No.1、2、6~13の製造条件で製造した例である。これらは、ワイブル係数mが0.6以上であり、浸炭処理後の転動疲労寿命の安定性に優れていることが分かる。
 これに対して、以下の試験No.は、本発明の実施形態で規定する要件のいずれかを満足しないものである。
 表2の試験No.3は、成分組成は本発明の実施形態の要件を満足しているが、平均冷却速度が遅いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表2の試験No.4は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理温度が低いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。詳細には、表2に示す通り試験No.4は、圧延方向垂直のCr偏析率は小さかったが、圧延方向平行のCr偏析率が大きかったため、平均のCr偏析率が大きくなり転動疲労寿命の安定性が低くなった。このように、圧延方向垂直のCr偏析率を低減させるだけでは転動疲労寿命の安定性を向上させることはできないことが分かる。
 表2の試験No.5は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理時間が短いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表2の試験No.14は、Cr量が少ない表1の鋼種Pを用いた例であり、Cr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表2の試験No.15は、Cr量が多い表1の鋼種Qを用いた例であり、Cr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 実施例2
 実施例2では、鋼材を浸炭窒化処理した後の転動疲労寿命を測定した。
 上記実施例1において、表3に示す平均冷却速度で凝固終了温度まで冷却を行ったこと、および表3に示す条件で均熱処理を行ったこと以外は上記実施例1と同様の方法により丸棒鋼を製造してCr偏析率を測定した。
 次に、上記丸棒鋼に対して上記実施例1と同様の方法により浸炭処理を行った後、860℃まで冷却して、当該温度で2時間、Cp:0.7%、NH量4体積%で窒化し、油焼入れを行った。その後、160℃で120分間、焼戻しを行った。なお、窒化ガスは、NHガスを用い、ベースガス(RXガス)に対して4体積%の割合とした。Cpは、Cpコイルを用いて測定した。
 得られた試験片を用いて、実施例1と同様の方法にて転動疲労寿命を測定し、ワイブル係数mが0.6以上のときを転動疲労寿命の安定性に優れていると評価した。
 これらの結果を表3に記載する。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、次のように考察することができる。
 表3の試験No.16、19、20、22~28は、本発明の実施形態で規定する成分組成を満足する表1の鋼種A、G~K、M、Nを用いて、本発明の実施形態で規定する要件を満足する表3の試験No.16、19、20、22~28の製造条件で製造した例である。これらは、ワイブル係数mが0.6以上であり、浸炭窒化処理後の転動疲労寿命の安定性に優れていることが分かる。
 これに対して、以下の試験No.は、本発明の実施形態で規定する要件のいずれかを満足しないものである。
 表3の試験No.17は、成分組成は本発明の実施形態の要件を満足しているが、平均冷却速度が遅いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表3の試験No.18は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理温度が低いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。詳細には、表3に示す通り試験No.18は、圧延方向垂直のCr偏析率は小さかったが圧延方向平行のCr偏析率が大きかったため、平均のCr偏析率が大きくなり、転動疲労寿命の安定性が低くなった。このように圧延方向垂直のCr偏析率を低減させるだけでは転動疲労寿命の安定性を向上させることはできないことが分かる。
 表3の試験No.21は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理時間が短いためにCr偏析率が大きくなって、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 上記実施例1および2の結果より、本発明の実施形態の鋼材を用いれば、浸炭処理後および浸炭窒化処理後の部品について、安定して優れた転動疲労寿命を確保できることが分かる。
 実施例3
 実施例3では、鋼材に2段階の浸炭処理を施した後の転動疲労寿命を測定した。
 試験片の作製
 容量150kg/1chの小型溶解炉を用いて、表4に示す各種化学成分組成の供試鋼を溶製し、表5に示す平均冷却速度で冷却した後、表5に示す条件で均熱処理して鋳片を作製した。このようにして得られた鋳片を1250℃に加熱した後、1200℃で熱間鍛造し、室温まで冷却した。次いで1100℃に加熱して熱間圧延を行い、室温まで0.5℃/秒の平均冷却速度で冷却することにより直径D70mmの丸棒鋼を製造した。なお、上記平均冷却速度は、前述した方法により算出した。
 上記丸棒鋼から、直径:60mm、厚さ:5mmの円盤状の試験片を切り出した。次いで、表5に示す条件で2段階の浸炭処理を行った。その後、160℃で120分間、焼戻しを行った。なお、第1浸炭工程と第2浸炭工程の冷却は、油焼入れを行った。第1浸炭工程における650℃までの冷却は、平均冷却速度:70℃/秒で行った。また、第2浸炭工程における820~860℃までの昇温は、平均昇温速度:30℃/分で行った。また、浸炭処理のベースガスとしてRXガス、Cpを制御する浸炭ガスとしてプロパンガスを用いた。Cpは、Cpコイルを用いて測定した。
 表層の円相当直径0.1~1.0μmの炭化物、窒化物、および炭窒化物の測定
 上記焼戻し後の試験片を用いて、表面から50μm位置までの表層に存在する円相当直径0.1~1.0μmの析出物を次の手順で測定した。試験片の表面から50μm位置までの領域が観察できるように切断し、切断面を研磨した後、走査型電子顕微鏡(SEM、Scanning Electron Microscope)を用いて、8000倍で観察し、析出物を同定した。上記析出物のうち本発明の実施形態で対象とする炭化物、窒化物、および炭窒化物の同定は、日本電子データム社製の電子線マイクロプローブX線分析装置を用いて当該析出物中の成分(C、N、Cr、Mo、V、Al)を分析することにより行った。上記のようにして同定した炭化物、窒化物、および炭窒化物について、粒子解析ソフト[粒子解析III for Windows. Version3.00 SUMITOMO METAL TECHNOLOGY(商品名)]を用い、観察視野数は10視野(1視野の面積:108μm)とし、円相当直径を測定した。このうち円相当直径が0.1~1.0μmの炭化物、窒化物、および炭窒化物の個数を計測し、1μmに換算した個数密度の平均値を表6に示す。また、視野毎にも個数密度を算出した。下記表6には、10視野中に観察された個数密度(すなわち、10視野おいて視野毎に求めた個数密度)の、最小値に対する最大値の比を併せて示す。
 浸炭処理後の転動疲労寿命の測定
 各試験No.毎に16個の焼戻し後の試験片を用いて、スラスト型転動疲労試験機にて、繰り返し数:1500rpm、面圧:5.3GPa、中止回数:2×10回の条件で転動疲労寿命を測定した。累積破損確率10%における疲労破壊までの応力繰り返し数、すなわち転動疲労寿命L10(L10寿命)が1.0×10回以上を転動疲労寿命に優れており好ましいと評価した。転動疲労寿命の安定性の指標として、ワイブル係数mを用いた。ワイブル係数mは、転動疲労寿命の試験結果をワイブル確率紙にプロットして求められる近似曲線の傾きである。ワイブル係数mが大きいほど転動疲労寿命の安定性に優れていることを示す。本実施例では、ワイブル係数mが0.6以上のとき転動疲労寿命の安定性に優れていると評価した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの結果から、次のように考察することができる。
 表6の試験No.1~3、8~17、20、21は、本発明の実施形態で規定する成分組成を満足する表4の鋼種A、B、D、F~H、Q、Tを用いて、本発明の実施形態で規定する要件を満足する表5の試験No.1~3、8~17、20、21の製造条件で製造した例である。これらは、鋼材のCr偏析率が抑制された結果、浸炭鋼部品表層の上記析出物の個数密度の最小値に対する最大値の比が適切に制御されているため、ワイブル係数mが0.6以上であり、浸炭処理後の転動疲労寿命の安定性に優れていることが分かる。
 これらのうち、試験No.1、3、9、10、12、14~16、20、21は、表5に示す浸炭処理が本発明の実施形態の好ましい浸炭処理条件で行われていることから、L10寿命が1.0×10回以上と転動疲労寿命に優れており好ましいことが分かる。
 これに対して、以下の試験No.は、本発明の実施形態で規定する要件のいずれかを満足しないものである。
 表6の試験No.4は、成分組成は本発明の実施形態の要件を満足しているが、鋳造時の平均冷却速度が遅いために微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表6の試験No.5は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理温度が低いために微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表6の試験No.6は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理時間が短いために微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表6の試験No.7は、成分組成は本発明の実施形態の要件を満足しているが、鋳造時の平均冷却速度が遅く、均熱処理温度が低く、均熱処理時間が短いために、微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。
 表6の試験No.18は、Cr量が少ない表4の鋼種Uを用いた例であり、微細な析出物の個数密度が小さくなってL10寿命が低くなった。
 表6の試験No.19は、Cr量が多い表4の鋼種Vを用いた例であり、微細な析出物の個数密度が大きくなってL10寿命が低くなった。
 実施例4
 実施例4では、鋼材に浸炭窒化処理を施した後の転動疲労寿命を測定した。
 具体的には、前述した実施例3において、表7に示す平均冷却速度で冷却した後、表7に示す条件で均熱処理したこと以外は上記実施例3と同様の方法により丸棒鋼を製造した。
 次に、上記実施例3と同様の方法により、上記丸棒鋼より円盤状の試験片を切り出し、表7に示す条件で、浸炭処理、および窒化処理を行った後、160℃で120分間、焼戻しを行った。なお、浸炭工程と窒化工程の冷却は、油焼入れを行った。また、浸炭処理のベースガスとしてRXガス、Cpを制御する浸炭ガスとしてプロパンガスを用い、Cpは、Cpコイルを用いて測定した。窒化ガスは、NHガスを用い、ベースガス(RXガス)に対して4体積%の割合とした。
 得られた試験片を用いて、実施例3と同様の方法にて転動疲労寿命を測定し、L10寿命が1.0×10回以上を転動疲労寿命に優れており好ましいと評価し、ワイブル係数mが0.6以上のときを転動疲労寿命の安定性に優れていると評価した。
 これらの結果を表8に記載する。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 これらの結果から、次のように考察することができる。
 表8の試験No.22、26、27、29~38は、本発明の実施形態で規定する成分組成を満足する表4の鋼種A、K、M~O、Rを用いて、本発明の実施形態で規定する要件を満足する表7の試験No.22、26、27、29~38の製造条件で製造した例である。これらは、鋼材のCr偏析率が抑制された結果、浸炭鋼部品表層の上記析出物の個数密度の最小値に対する最大値の比が適切に制御されているため、ワイブル係数mが0.6以上であり、浸炭窒化処理後の転動疲労寿命およびその安定性に優れていることが分かる。
 これのうち、試験No.22、26、27、31、33~35、37は、表7に示す浸窒化炭処理が本発明の実施形態の好ましい浸炭窒化処理条件で行われていることから、L10寿命が1.0×10回以上と転動疲労寿命に優れており好ましいことが分かる。
 これに対して、以下の試験No.は、本発明の実施形態で規定する要件のいずれかを満足しないものである。
 表8の試験No.23は、成分組成は本発明の実施形態の要件を満足しているが、鋳造時の平均冷却速度が遅いために、微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表8の試験No.24は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理温度が低いために微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 表8の試験No.25は、成分組成は本発明の実施形態の要件を満足しているが、鋳造時の平均冷却速度が遅く、均熱処理温度が低く、均熱処理時間が短いために、微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。
 表8の試験No.28は、成分組成は本発明の実施形態の要件を満足しているが、均熱処理時間が短いために、微細な析出物の個数密度のバラツキが大きくなり、転動疲労寿命の安定性が低くなった。更に、L10寿命も低くなった。
 なお、表中には記載していないが、これらの実施例3、4で用いた丸棒鋼のCr偏析率を測定すると、本発明の実施形態の成分組成と鋳造時の冷却条件およびその後の均熱条件を満足するものは、Cr偏析率:2.0以下であったことを確認している。
 本発明は以下の態様を包含する。
 態様1
 質量%で
 C :0.15~0.25%、
 Si:0.35~0.75%、
 Mn:0.2~1%、
 Cr:1.2~1.7%、
 Mo:0.3~0.6%、
 P :0%超0.05%以下、
 S :0%超0.05%以下、
 Al:0.005~0.2%、
 N :0%超0.05%以下、
 O :0%超0.005%以下、および
 Ti:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、
 下記条件で測定して求められるCr偏析率が2.0以下であることを特徴とする転動疲労寿命の安定性に優れた鋼材。
(i)測定位置
・前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所
・前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所
(ii)測定方法
上記の各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出し、合計8箇所の平均をCr偏析率とする。

態様2:
 更に、質量%で、
 Cu:0%超1%以下、
 Ni:0%超1%以下、および
 B :0%超0.005%以下よりなる群から選択される1種以上を含有する態様1に記載の鋼材。

態様3:
 更に、質量%で、
 V :0%超1%以下、
 W :0%超0.5%以下、および
 Nb:0%超0.1%以下よりなる群から選択される1種以上を含有する態様1または2に記載の鋼材。

態様4:
 態様1~3のいずれかに記載の鋼材を製造する方法であって、
 溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却した後、1100~1300℃に加熱して1.0~40時間均熱処理を行うことを特徴とする転動疲労寿命の安定性に優れた鋼材の製造方法。

態様5:
 質量%で、
 C :0.15~0.25%、
 Si:0.35~0.75%、
 Mn:0.2~1%、
 Cr:1.2~1.7%、
 Mo:0.3~0.6%、
 P :0%超0.05%以下、
 S :0%超0.05%以下、
 Al:0.005~0.2%、
 N :0%超0.05%以下、
 O :0%超0.005%以下、および
 Ti:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、
 表面から50μm深さまでの表層に存在する円相当直径0.1~1.0μmの炭化物、窒化物、および炭窒化物の個数密度の最小値に対する最大値の比が2.0以下であることを特徴とする転動疲労寿命およびその安定性に優れた浸炭鋼部品。

態様6:
 前記個数密度の平均が0.5~3.0個/μmである態様5に記載の浸炭鋼部品。

態様7:
 更に、質量%で、
 Cu:0%超1%以下、
 Ni:0%超1%以下、および
 B :0%超0.005%以下よりなる群から選択される1種以上を含有する態様5または6に記載の浸炭鋼部品。

態様8:
 更に、質量%で、
 V :0%超1%以下、
 W :0%超0.5%以下、および
 Nb:0%超0.1%以下よりなる群から選択される1種以上を含有する態様5~7のいずれか1項に記載の浸炭鋼部品。

態様9:
 態様5~8のいずれか1項に記載の浸炭鋼部品を製造する方法であって、
 溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却し、1100~1300℃に加熱して1.0~40時間均熱処理を行って鋼材を製造した後、浸炭処理または浸炭窒化処理することを特徴とする転動疲労寿命およびその安定性に優れた浸炭鋼部品の製造方法。
 本出願は、出願日が2016年2月24日である日本国特許出願、特願第2016-033663号、出願日が2016年2月24日である日本国特許出願、特願第2016-033664号および出願日が2016年12月19日である日本国特許出願、特願第2016-245766号を基礎出願とする優先権主張を伴う。願第2016-033663号、特願第2016-033664号および特願第2016-245766号は参照することにより本明細書に取り込まれる。
 1、2、3、4 圧延方向に垂直な任意の断面のCr濃度の測定箇所
 5、6、7、8 圧延方向に平行な任意の断面のCr濃度の測定箇所

Claims (7)

  1.  質量%で
     C :0.15~0.25%、
     Si:0.35~0.75%、
     Mn:0.2~1%、
     Cr:1.2~1.7%、
     Mo:0.3~0.6%、
     P :0%超0.05%以下、
     S :0%超0.05%以下、
     Al:0.005~0.2%、
     N :0%超0.05%以下、
     O :0%超0.005%以下、および
     Ti:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、
     下記条件で測定して求められるCr偏析率が2.0以下であることを特徴とする転動疲労寿命の安定性に優れた鋼材。
    (i)測定位置
    ・前記鋼材の圧延方向に垂直な任意の切断面において前記鋼材の外周部から中心までの線上で、90°ごとに合計4箇所
    ・前記鋼材の圧延方向に平行な任意の切断面において前記鋼材の直径の1/4位置の線上で、前記鋼材の中心を起点として90°ごとに長さ5mmに渡って合計4箇所
    (ii)測定方法
    上記の各測定位置において、EPMAを用いてCr濃度の線分析を行なってCr濃度の最低値[Cr]min、最大値[Cr]maxを求めて[Cr]max/[Cr]minを算出し、合計8箇所の平均をCr偏析率とする。
  2.  更に、質量%で、
     Cu:0%超1%以下、
     Ni:0%超1%以下、
     B :0%超0.005%以下、
     V :0%超1%以下、
     W :0%超0.5%以下、および
     Nb:0%超0.1%以下よりなる群から選択される1種以上を含有する請求項1に記載の鋼材。
  3.  請求項1または2に記載の鋼材を製造する方法であって、
     溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却した後、1100~1300℃に加熱して1.0~40時間均熱処理を行うことを特徴とする転動疲労寿命の安定性に優れた鋼材の製造方法。
  4.  質量%で、
     C :0.15~0.25%、
     Si:0.35~0.75%、
     Mn:0.2~1%、
     Cr:1.2~1.7%、
     Mo:0.3~0.6%、
     P :0%超0.05%以下、
     S :0%超0.05%以下、
     Al:0.005~0.2%、
     N :0%超0.05%以下、
     O :0%超0.005%以下、および
     Ti:0%超0.014%以下を含有し、残部は鉄および不可避的不純物からなり、
     表面から50μm深さまでの表層に存在する円相当直径0.1~1.0μmの炭化物、窒化物、および炭窒化物の個数密度の最小値に対する最大値の比が2.0以下であることを特徴とする転動疲労寿命およびその安定性に優れた浸炭鋼部品。
  5.  更に、質量%で、
     Cu:0%超1%以下、
     Ni:0%超1%以下、
     B :0%超0.005%以下、
     V :0%超1%以下、
     W :0%超0.5%以下、および
     Nb:0%超0.1%以下よりなる群から選択される1種以上を含有する請求項4に記載の浸炭鋼部品。
  6.  前記個数密度の平均が0.5~3.0個/μmである請求項4または5に記載の浸炭鋼部品。
  7.  請求項4または5に記載の浸炭鋼部品を製造する方法であって、
     溶鋼の凝固開始温度から凝固終了温度までの温度域を150℃/時間以上の平均冷却速度で冷却し、1100~1300℃に加熱して1.0~40時間均熱処理を行って鋼材を製造した後、浸炭処理または浸炭窒化処理することを特徴とする転動疲労寿命およびその安定性に優れた浸炭鋼部品の製造方法。
PCT/JP2017/006402 2016-02-24 2017-02-21 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法 WO2017146057A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-033663 2016-02-24
JP2016033664 2016-02-24
JP2016033663 2016-02-24
JP2016-033664 2016-02-24
JP2016-245766 2016-12-19
JP2016245766A JP2017150066A (ja) 2016-02-24 2016-12-19 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法

Publications (1)

Publication Number Publication Date
WO2017146057A1 true WO2017146057A1 (ja) 2017-08-31

Family

ID=59686561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006402 WO2017146057A1 (ja) 2016-02-24 2017-02-21 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2017146057A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165068A1 (zh) * 2022-03-02 2023-09-07 江阴兴澄特种钢铁有限公司 一种大载荷轧机轴承用渗碳轴承钢及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107694A (ja) * 2002-09-13 2004-04-08 Kobe Steel Ltd 浸炭用鋼材及び浸炭処理部品
JP2005307257A (ja) * 2004-04-20 2005-11-04 Sumitomo Metal Ind Ltd 浸炭部品又は浸炭窒化部品用の鋼材、及び浸炭部品又は浸炭窒化部品の製造方法
JP2014040626A (ja) * 2012-08-21 2014-03-06 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP2016074951A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 肌焼鋼の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107694A (ja) * 2002-09-13 2004-04-08 Kobe Steel Ltd 浸炭用鋼材及び浸炭処理部品
JP2005307257A (ja) * 2004-04-20 2005-11-04 Sumitomo Metal Ind Ltd 浸炭部品又は浸炭窒化部品用の鋼材、及び浸炭部品又は浸炭窒化部品の製造方法
JP2014040626A (ja) * 2012-08-21 2014-03-06 Kobe Steel Ltd 転動疲労特性に優れた軸受用鋼材およびその製造方法
JP2016074951A (ja) * 2014-10-07 2016-05-12 Jfeスチール株式会社 肌焼鋼の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165068A1 (zh) * 2022-03-02 2023-09-07 江阴兴澄特种钢铁有限公司 一种大载荷轧机轴承用渗碳轴承钢及其生产方法

Similar Documents

Publication Publication Date Title
JP4956146B2 (ja) 鍛造性と結晶粒粗大化防止特性に優れた肌焼鋼およびその製造方法並びに浸炭部品
JP4709944B2 (ja) 肌焼鋼、浸炭部品、及び肌焼鋼の製造方法
JP5432105B2 (ja) 肌焼鋼およびその製造方法
JP4688727B2 (ja) 浸炭部品およびその製造方法
JP5862802B2 (ja) 浸炭用鋼
WO2014192117A1 (ja) 軟窒化高周波焼入れ鋼部品
US20060225814A1 (en) Crankshaft and method for manufacturing same
JP5477111B2 (ja) 窒化高周波焼入れ用鋼及び窒化高周波焼入れ部品
JP4941252B2 (ja) 動力伝達部品用肌焼鋼
JP5299118B2 (ja) 真空浸炭用鋼および真空浸炭部品
JP6520347B2 (ja) 高周波焼入れ部品の素形材、高周波焼入れ部品、及びそれらの製造方法
KR20150028354A (ko) 연질화용 강 및 연질화 부품 그리고 이들의 제조 방법
JP6055397B2 (ja) 耐摩耗性に優れた軸受部品、およびその製造方法
JP5886119B2 (ja) 肌焼鋼鋼材
JP4185997B2 (ja) 軸受部品の製造方法
JP4502929B2 (ja) 転動疲労特性および結晶粒粗大化防止特性に優れた肌焼用鋼
JP2017133052A (ja) 浸炭時の粗大粒防止特性と疲労特性と被削性に優れた肌焼鋼およびその製造方法
JP4050512B2 (ja) 浸炭焼入れ部材の製造方法及び浸炭焼入れ部材
JP2006307270A (ja) 耐結晶粒粗大化特性と冷間加工性に優れた肌焼用鋼およびその製法
WO2017146057A1 (ja) 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法
JP2017150066A (ja) 転動疲労寿命の安定性に優れた鋼材および浸炭鋼部品、並びにそれらの製造方法
JP2022170056A (ja) 鋼材
JP6146381B2 (ja) 転動疲労特性に優れた軸受用肌焼鋼およびその製造方法
JP6085210B2 (ja) 転動疲労特性に優れた肌焼鋼、及びその製造方法
JP7436826B2 (ja) 窒化部品及び窒化部品の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756495

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756495

Country of ref document: EP

Kind code of ref document: A1