WO2013146006A1 - 空気調和装置の熱交換器及び空気調和装置 - Google Patents

空気調和装置の熱交換器及び空気調和装置 Download PDF

Info

Publication number
WO2013146006A1
WO2013146006A1 PCT/JP2013/054890 JP2013054890W WO2013146006A1 WO 2013146006 A1 WO2013146006 A1 WO 2013146006A1 JP 2013054890 W JP2013054890 W JP 2013054890W WO 2013146006 A1 WO2013146006 A1 WO 2013146006A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
heat transfer
downstream
paths
Prior art date
Application number
PCT/JP2013/054890
Other languages
English (en)
French (fr)
Inventor
賢治 寺野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201380016507.XA priority Critical patent/CN104246377B/zh
Priority to EP13768496.5A priority patent/EP2835587B1/en
Priority to US14/387,923 priority patent/US9328965B2/en
Publication of WO2013146006A1 publication Critical patent/WO2013146006A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a heat exchanger for an air conditioner and an air conditioner.
  • the heat exchanger provided in the indoor unit of the air conditioner is provided with a heat transfer tube for allowing the refrigerant to flow, and the indoor air is desired by exchanging heat between the refrigerant in the heat transfer tube and the room air. Is adjusted to the temperature.
  • a plurality of heat transfer tubes are arranged in three rows in the air flow direction (air flow direction) in a plurality of stages in the height direction.
  • a heat exchanger of an air conditioner is configured such that refrigerant is divided and supplied to a plurality of paths, and in each path, a plurality of stages and a plurality of rows of heat transfer tubes pass through one refrigerant flow path. Connected together to form.
  • the heat transfer tubes of each path are arranged in a plurality of rows in the air flow direction, and the refrigerant sequentially flows from the upstream row in the air flow direction to the downstream row in the cooling operation.
  • most of the heat exchange is performed between the refrigerant and the room air in the upstream row of the heat transfer tubes, and the temperature of the refrigerant has already increased in the downstream row.
  • there may be almost no heat exchange for example, as shown in FIG. 11, the temperature of the air passing through the heat exchanger decreases by performing heat exchange with the refrigerant in the first and second rows of heat transfer tubes. In the heat transfer tube, almost no heat exchange is performed, and the temperature drop is reduced.
  • the heat transfer tubes are not effectively used in the downstream row, and there is a possibility that the cooling capacity cannot be sufficiently exhibited.
  • the entire heat exchanger when air does not pass through the entire heat exchanger at a uniform speed, there is a high possibility that heat exchange in the heat transfer tubes in the downstream row will not be performed properly, particularly in a region where the air flow speed is low. .
  • the present invention has been made in view of the above-described circumstances, and improves the heat exchange efficiency in the heat transfer tubes on the downstream side in the air flow direction, and can improve the cooling capacity.
  • An object is to provide an air conditioner.
  • the present invention has a plurality of heat transfer tubes arranged in three or more rows in the air flow direction, and is divided into a plurality of paths to the heat transfer tubes and supplied with refrigerant, and is used as an evaporator during cooling operation.
  • a heat exchanger for a harmony device The plurality of paths includes a most downstream path consisting of only the most downstream row of heat transfer tubes in the air flow direction, and an upstream side path consisting of only a plurality of rows of heat transfer tubes arranged upstream of the most downstream path. It is characterized by including.
  • the air passing through the heat exchanger is heat-exchanged with the refrigerant in the most downstream path after being heat-exchanged with the refrigerant in the upstream-side path. Therefore, the heat exchange efficiency in the most downstream row can be improved and the cooling capacity can be increased.
  • the said structure WHEREIN It is preferable that the said most downstream path is provided in the range straddling the downstream of the said some upstream path
  • An air conditioner according to the present invention includes the above-described heat exchanger and a blower that generates an air flow that passes through the heat exchanger, It is preferable that the most downstream path of the heat exchanger is provided corresponding to a region where the air flow speed is low in the air conditioner. The lower the speed of the air flow through the heat exchanger, the more heat exchange takes place in the upstream row of the heat exchanger and almost no heat exchange in the downstream side. By providing the most downstream path corresponding to the low speed region, the heat exchange efficiency in the region can be improved.
  • a drain pan is provided below the heat exchanger, and the most downstream path is provided corresponding to a lower side of the heat exchanger. Since the drain pan arranged below the heat exchanger becomes resistance to air flow, the velocity of air passing through the lower side of the heat exchanger tends to be low. Therefore, by providing the most downstream path on the lower side of the heat exchanger, the heat exchange efficiency on the lower side can be appropriately improved.
  • the blower is a sirocco fan that includes an impeller and a casing in which the impeller is accommodated and an air discharge port is formed, with a virtual line orthogonal to the rotational axis of the impeller sandwiched therebetween. It is preferable that the discharge port is opened in a region on the side, and the most downstream path is provided corresponding to the region on the other side. Since the speed of the airflow discharged from the sirocco fan is low in a region opposite to the discharge port, the heat exchange efficiency can be preferably improved by providing the most downstream path corresponding to this region.
  • the heat exchange efficiency in the heat transfer tubes arranged in the downstream row in the air flow direction can be improved, and the cooling capacity can be increased.
  • It is side surface sectional drawing (AA sectional view taken on the line of FIG. 3) which shows the indoor unit of an air conditioning apparatus.
  • FIG. 1 is a configuration diagram of an air-conditioning apparatus according to the first embodiment of the present invention.
  • the air conditioner 10 includes an indoor unit (use side unit) 11 and an outdoor unit (heat source side unit) 12.
  • the outdoor unit 12 is provided with a compressor 14, a four-way switching valve 18, an outdoor heat exchanger 15, an outdoor expansion valve 16, and the like, which are connected by a refrigerant pipe 25. Further, the outdoor unit 12 is provided with an outdoor blower fan 20.
  • a gas side shut-off valve 22 and a liquid side shut-off valve 23 are provided at a terminal portion of the internal refrigerant circuit of the outdoor unit 12.
  • the gas side closing valve 22 is arranged on the four-way switching valve 18 side, and the liquid side closing valve 23 is arranged on the outdoor expansion valve 16 side.
  • the indoor unit 11 is provided with an indoor expansion valve 28, an indoor heat exchanger 13, and the like.
  • the gas side closing valve 22 and the indoor heat exchanger 13 are connected by a gas side refrigerant communication pipe 24, and the liquid side closing valve 23 and the indoor expansion valve 28 are connected by a liquid side refrigerant communication pipe 26.
  • the four-way switching valve 18 when the cooling operation is performed, the four-way switching valve 18 is maintained in a state indicated by a solid line in FIG. As indicated by solid arrows, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 14 flows into the outdoor heat exchanger 15 via the four-way switching valve 18, and the outdoor blower fan 20 is operated to Heat exchanges to condense and liquefy.
  • the liquefied refrigerant passes through the substantially fully opened outdoor expansion valve 16 and flows into the indoor unit 11 through the liquid side refrigerant communication pipe 26.
  • the refrigerant is depressurized to a predetermined low pressure by the indoor expansion valve 28 and further evaporated by exchanging heat with indoor air in the indoor heat exchanger 13. Then, the indoor air cooled by the evaporation of the refrigerant is blown into the room by the indoor blower fan 19 to cool the room.
  • the refrigerant evaporated and vaporized in the indoor heat exchanger 13 returns to the outdoor unit 12 through the gas side refrigerant communication pipe 24, and is sucked into the compressor 14 through the four-way switching valve 18.
  • the four-way switching valve 18 is held in a state indicated by a broken line in FIG.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 14 flows into the indoor heat exchanger 13 of the indoor unit 11 through the four-way switching valve 18 and exchanges heat with the indoor air.
  • the room air heated by the condensation of the refrigerant is blown into the room by the room blower fan 19 to heat the room.
  • the refrigerant liquefied in the indoor heat exchanger 13 returns to the outdoor unit 12 through the liquid side refrigerant communication pipe 26 from the indoor expansion valve 28 that is substantially fully open.
  • the refrigerant that has returned to the outdoor unit 12 is decompressed to a predetermined low pressure by the outdoor expansion valve 16, and evaporates by exchanging heat with outdoor air in the outdoor heat exchanger 15. Then, the refrigerant evaporated and evaporated in the outdoor heat exchanger 15 is sucked into the compressor 14 through the four-way switching valve 18.
  • FIG. 2 is a side cross-sectional view showing the indoor unit 11 of the air conditioner 10 (a cross-sectional view taken along the line AA in FIG. 3),
  • FIG. 3 is an explanatory plan view of the indoor unit 11, and
  • FIG. FIG. 5 is a bottom view of the indoor unit 11.
  • the indoor unit 11 is a ceiling-embedded indoor unit that is installed behind the ceiling of the room, and includes a main body case 31, a decorative panel 32, an indoor blower fan 19, an indoor heat exchanger 13, a drain pan 33, and the like. .
  • the main body case 31 includes a rectangular upper wall portion 35 in plan view and four peripheral wall portions (front wall portion 36, rear wall portion 37, left wall portion) that hang downward from four sides of the upper wall portion 35. 38, the right wall portion 39) and a box shape opened downward.
  • a decorative panel 32 is attached to the opening at the lower end of the main body case 31. As shown in FIG. 4, the main body case 31 is hung on the lower surface of the upper floor above the ceiling 30 via a hanging tool 40, and the decorative panel 32 is arranged along the lower surface of the ceiling 30. Has been.
  • the interior of the main body case 31 is partitioned into a blower chamber 43 and a heat exchange chamber 44 by a partition plate 42.
  • the blower chamber 43 side is the rear side
  • the heat exchange chamber 44 side is the front side.
  • the decorative panel 32 includes a suction port 45 below the blower chamber 43 and a blower outlet 46 below the front side of the heat exchange chamber 44.
  • a lattice-shaped grille 47 is attached to the suction port 45, and an air guide plate 48 that adjusts the air blowing direction is swingably provided at the air outlet 46.
  • the indoor blower fan 19 of the present embodiment is a sirocco fan including a substantially cylindrical casing 19a and an impeller 19b provided in the casing 19a.
  • a suction port 19a1 is formed on the side surface of the casing 19a.
  • a discharge port 19a2 is opened at the front of the casing 19a, and an air guide tube 19a3 projects forward from the discharge port 19a2.
  • the air guide tube 19a3 is inserted in a state of being sealed in an opening formed in the partition plate.
  • the indoor blower fan 19 When the indoor blower fan 19 is activated, the indoor air is taken into the blower chamber 43 from the suction port 45 and sucked into the suction port 19a1 of the casing 19a, and then blown out from the discharge port 19a2 to the heat exchange chamber 44. Therefore, the space in the blower chamber 43 is a “suction space” in which air is sucked by the indoor blower fan 19, and the space of the heat exchange chamber 44 is a “blowing space” in which air is blown out by the indoor blower fan 19.
  • the indoor heat exchanger 13 is disposed in the heat exchange chamber 44.
  • the indoor heat exchanger 13 is, for example, a cross-fin type fin-and-tube heat exchanger that includes a large number of fins arranged side by side in the left-right direction and heat transfer tubes provided so as to penetrate the fins. It is said that.
  • the indoor heat exchanger 13 has an upper part located on the front side (blower 46 side; downstream side of the airflow) and a lower part located on the rear side (indoor blower fan 19 side; upstream side of the airflow). It is arranged at an angle.
  • the air blown from the indoor blower fan 19 to the heat exchange chamber 44 is heat-exchanged with the indoor heat exchanger 13 and then blown into the room from the blowout port 46.
  • a drain pan 33 is provided below the indoor heat exchanger 13, and the dew condensation water generated in the indoor heat exchanger 13 is received by the drain pan 33.
  • the drain pan 33 is made of a highly heat-insulating material such as styrene foam, and also functions as a heat insulating material. Further, as shown in FIGS. 2 and 3, the inner surfaces of the upper wall portion 35, the front wall portion 36, and the left and right wall portions 38 and 39 of the main body case 31 in the heat exchange chamber 44 are each made of a heat insulating material made of polystyrene foam or the like. 54 to 57 are provided.
  • FIG. 6 is a cross-sectional side view of the indoor unit (a cross-sectional view taken along line BB in FIG. 3).
  • an electrical component unit 58 is disposed at the right end of the blower chamber 43.
  • the electrical component unit 58 includes an electrical component box 59, a control board 60, a terminal block 61, and the like housed in the electrical component box 59.
  • a piping group 62 such as a flow divider and a header connected to the indoor heat exchanger 13, and electrical components such as a drain pump 63, an indoor expansion valve 28, and a thermistor are arranged. Yes.
  • the electrical wiring 64 of these electrical components is connected to the electrical component unit 58 from the heat exchange chamber 44 through the partition plate 42.
  • the drain pump 63 discharges the condensed water stored in the drain pan 33 to the outside by operating a built-in motor (actuator).
  • the drain pump 63 is attached and fixed to the upper wall portion 35 of the main body case 31 via an attachment base (attachment member) 66.
  • a float sensor 65 is also attached to the mounting base 66.
  • the drain pump 63 and the float sensor 65 are assembled as one unit by a connecting frame 67.
  • the mounting base 66 is formed in a U shape in a side view from front and rear leg plates 69 and a base plate 70 that connects lower end portions of both leg plates 69.
  • An upper end portion of the leg plate 69 is fixed to the upper wall portion 35.
  • the connecting frame 67 is integrally formed with guide claws 68 that guide the electrical wiring 64 such as the indoor expansion valve 28, the thermistor, the float sensor 65, and the drain pump 63.
  • the guide claw 68 supports the electrical wiring 64 so that it does not hang down to the drain pan 33 side.
  • FIG. 7 is an explanatory side view showing the indoor heat exchanger.
  • the indoor heat exchanger (hereinafter sometimes simply referred to as “heat exchanger”) 13 has a large number of fins 71 arranged in the left-right direction at predetermined intervals, and passes through the fins 71. It has a plurality of heat transfer tubes 72 provided.
  • the heat transfer tubes 72 are arranged in a plurality of stages in the height direction and in three rows L1 to L3 in the air flow direction.
  • the plurality of heat transfer tubes 72 are supplied with refrigerant by being divided into a plurality of paths P1 to P10 by a flow divider 74, and the refrigerant that has flowed through the heat transfer tubes 72 of the respective paths P1 to P10 is joined by a header 75. It has become.
  • FIG. 8 is a schematic diagram showing a simplified configuration of the indoor heat exchanger.
  • the refrigerant is supplied by being divided into a plurality of paths P1 to P4 in the vertical direction by a flow divider 74 (the boundaries of the paths P1 to P4 are indicated by dotted lines).
  • the end portions of a plurality of (four in the illustrated example) heat transfer tubes 72 are connected to each other by a U-shaped connecting tube 73, thereby reciprocating in the left-right direction (two reciprocating in the illustrated example).
  • One refrigerant flow path is formed.
  • the refrigerant is divided into ten paths P1 to P10 by the flow divider 74.
  • These paths P1 to P10 are roughly classified into upper paths P1 to P5 arranged on the upper side of the indoor heat exchanger 13 and lower paths P6 to P10 arranged on the lower side of the indoor heat exchanger 13. Can do.
  • the upper paths P1 to P5 are paths including a plurality of rows of heat transfer tubes 72 among the heat transfer tubes 72 arranged in three rows in the air flow direction.
  • the first path P1 arranged at the top forms a refrigerant flow path that reciprocates twice in the left-right direction by the four heat transfer tubes 72 arranged in the first row L1 and the second row L2.
  • the thing of the near side is shown with the continuous line among the connection pipes 73 which connect the heat exchanger tube 72, and the thing of the back side is shown with the dotted line.
  • the second and third paths P2 and P3 form a refrigerant flow path that reciprocates in the left-right direction by four heat transfer tubes 72 arranged in the first row L1 to the third row L3.
  • the fourth and fifth paths P4 and P5 form a refrigerant flow path that reciprocates three times in the left-right direction by the six heat transfer tubes 72 arranged in the first row L1 to the third row L3.
  • the refrigerant is supplied to one heat transfer tube 72i arranged in the first row L1, and the refrigerant flows out from one heat transfer tube 72o arranged in the second row L2 or the third row L3. Is done.
  • the lower paths P6 to P10 include upstream paths P6 to P9 that form a refrigerant flow path that reciprocates in the left-right direction by four heat transfer tubes 72 arranged in the first row L1 and the second row L2.
  • the eight heat transfer tubes 72 arranged in L3 can be further classified into the most downstream path P10 that forms a refrigerant flow path that reciprocates four times in the left-right direction.
  • the refrigerant is supplied to one heat transfer tube 72i arranged in the first row L1, and the refrigerant is discharged from one heat transfer tube 72o arranged in the second row L2.
  • the most downstream path P10 the refrigerant is supplied to the lowermost heat transfer tube 72i, and the refrigerant is discharged from the uppermost heat transfer tube 72o.
  • the refrigerant (gas-liquid two-phase refrigerant) supplied to the heat transfer tubes 72 of the paths P1 to P10 via the flow divider 74 during the cooling operation is between the air passing through the indoor heat exchanger 13.
  • the heat exchange is carried out to reduce the temperature of the air.
  • the air flowing through the indoor heat exchanger 13 has a higher flow velocity on the upper side and a lower flow velocity on the lower side. This is due in part to the fact that the drain pan 33 disposed below the indoor heat exchanger 13 provides air resistance.
  • a sirocco fan is used as the blower fan 19, and the upper side of the casing 19a of the sirocco fan 19 (upper side of a substantially horizontal imaginary line X orthogonal to the rotational axis of the impeller 19b). Another reason is that most of the discharge port 19a2 is open.
  • the most downstream path P10 including only the heat transfer tubes 72 in the third row is provided on the lower side of the indoor heat exchanger 13 having a low air flow rate.
  • FIG. 9 is a graph for explaining temperature changes of air and refrigerant in the lower paths P6 to P10.
  • heat is exchanged between the refrigerant flowing through the heat transfer tubes 72 in the first row L1 and the second row and the air, and the temperature of the air reaches the temperature T1. Be lowered.
  • the temperature of the air is further cooled to a temperature T2 that is lower by ⁇ t.
  • the most downstream path P10 is disposed across the downstream sides of the plurality of upstream paths P6 to P9. Therefore, the length of the heat transfer tube 72 in the most downstream path P10 can be sufficiently secured. Therefore, heat exchange between the refrigerant flowing through the most downstream path P10 and the air can be sufficiently performed, and the degree of superheat of the refrigerant in the evaporation step can be appropriately obtained. Further, the most downstream path P10 is disposed in a region below the height X (see also FIG. 2) of the rotation center of the impeller 19b in the blower fan 19, that is, in a region where the air flow velocity is low. The heat exchange efficiency in the region can be preferably improved.
  • the air flow speed is high on the upper side of the indoor heat exchanger 13
  • the most downstream path similar to the lower side may be provided on the upper side of the indoor heat exchanger 13.
  • FIG. 10 is an explanatory side view showing a heat exchanger according to the second embodiment of the present invention.
  • the most downstream path P10 is configured by eight heat transfer tubes 72, but the indoor heat exchanger 13 of the present embodiment has 4 Two most downstream paths P10 and P11 each including a heat transfer tube 72 are provided. Therefore, also in the present embodiment, the cooling capacity can be suitably enhanced by the most downstream paths P10 and P11 of the indoor heat exchanger 13.
  • the length of the heat transfer pipe 72 in each of the most downstream paths P10 and P11 is shortened, and it is difficult to obtain the degree of superheat of the refrigerant in the evaporation step. This form is more advantageous.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the invention described in the claims.
  • the number of rows in the air flow direction of the heat transfer tubes 72 in the indoor heat exchanger 13 is three rows, but may be four or more rows.
  • the most downstream path is constituted only by the most downstream row of heat transfer tubes 72
  • the upstream side path is constituted by a plurality of rows of heat transfer tubes 72 arranged on the upstream side of the most downstream path.
  • the heat exchanger of the present invention is not limited to the one provided with the ceiling-embedded indoor unit, but can also be applied to an air conditioner equipped with a ceiling-suspended or wall-mounted indoor unit. Moreover, although the indoor heat exchanger of the said embodiment was inclined and arrange
  • Air conditioner 11 Indoor unit 13: Indoor heat exchanger 19: Indoor fan 19a: Casing 19a2: Discharge port 19b: Impeller 33: Drain pan 72: Heat transfer pipe 74: Current divider 75: Header P6 to P9: Upstream Side path P10: the most downstream path

Abstract

 空気流方向の下流側の列に配置された伝熱管における熱交換効率を向上させ、冷房能力を高めることができる空気調和装置の熱交換器を提供する。空気流方向に3列以上に配列された複数の伝熱管(72)を有するとともに、当該伝熱管(72)に対して複数のパス(P1~P11)に分流して冷媒が供給され、冷房運転時に蒸発器として用いられる空気調和装置の熱交換器であって、前記複数のパス(P1~P11)が、空気流方向の最下流の列の伝熱管(72)のみからなる最下流パス(P10,P11)と、この最下流パス(P10,P11)の上流側に配置された複数列の伝熱管(72)のみからなる上流側パス(P6~P9)と、を含む。

Description

空気調和装置の熱交換器及び空気調和装置
 本発明は、空気調和装置の熱交換器及び空気調和装置に関する。
 空気調和装置の室内機に設けられる熱交換器には、冷媒を流動させる伝熱管が設けられており、この伝熱管中の冷媒と室内空気との間で熱交換を行うことによって室内空気が所望の温度に調整される。
 下記特許文献1に記載の熱交換器は、複数の伝熱管が高さ方向に複数段で空気の流れ方向(空気流方向)に3列に配列されている。また、一般に、空気調和装置の熱交換器は、冷媒が複数のパスに分流されて供給されるようになっており、各パスにおいて、複数段かつ複数列の伝熱管が1つの冷媒流路を形成するように互いに接続されている。
特開2009-30829号
 上述した熱交換器のように、各パスの伝熱管が空気流方向に関して複数列に配置され、しかも、冷房運転の際に空気流方向の上流側の列から下流側の列へ順次冷媒が流れるように構成されている場合、伝熱管の上流側の列において冷媒と室内空気との間で大部分の熱交換が行われ、下流側の列においては既に冷媒の温度が上昇してしまっていることによって、殆ど熱交換が行われない場合がある。例えば、図11に示されるように、熱交換器を通過する空気は、1列目及び2列目の伝熱管において冷媒との間で熱交換を行うことによって温度が低下するが、3列目の伝熱管においてはほとんど熱交換がなされず、温度の低下も少なくなる。そのため、下流側の列ほど伝熱管が有効に利用されず、冷房能力を十分に発揮できない可能性がある。また、熱交換器の全体を均一な速度で空気が通過しない場合には、特に空気流速度が遅い領域において、下流側の列の伝熱管における熱交換が適切に行われなくなる可能性が高くなる。
 本発明は、上記のような実情に鑑みてなされたものであり、空気流方向の下流側の伝熱管における熱交換効率を向上させ、冷房能力を高めることができる空気調和装置の熱交換器及び空気調和装置を提供することを目的とする。
 本発明は、空気流方向に3列以上に配列された複数の伝熱管を有するとともに、当該伝熱管に対して複数のパスに分流して冷媒が供給され、冷房運転時に蒸発器として用いられる空気調和装置の熱交換器であって、
 前記複数のパスが、空気流方向の最下流の列の伝熱管のみからなる最下流パスと、この最下流パスの上流側に配置された複数列の伝熱管のみからなる上流側パスと、を含むことを特徴とする。
 この構成によれば、熱交換器を通過する空気は、上流側パスにおいて冷媒との間で熱交換された後、最下流パスにおいても冷媒との間で適切に熱交換される。したがって、最下流の列における熱交換効率を向上させ、冷房能力を高めることができる。
 上記構成において、前記最下流パスが、複数の前記上流側パスの下流側に跨る範囲で設けられていることが好ましい。
 このような構成によって、最下流パスにおける伝熱管の長さを十分に確保することができ、冷房運転の際に最下流パスを流れる冷媒の過熱度を適切に得ることができる。
 本発明に係る空気調和装置は、上述の熱交換器と、この熱交換器を通過する空気流を生成する送風機とを備え、
 前記熱交換器の最下流パスは、空気調和装置における空気流速度の低い領域に対応して設けられていることが好ましい。
 熱交換器を通過する空気流の速度が低いほど、熱交換器の上流側の列で大部分の熱交換が行われ、下流側においてほとんど熱交換が行われなくなるので、空気調和装置における空気流速度の低い領域に対応して最下流パスを設けることで、当該領域における熱交換効率を向上させることができる。
 前記熱交換器の下方にドレンパンが設けられており、前記最下流パスは、前記熱交換器の下部側に対応して設けられていることが好ましい。
 熱交換器の下方に配置されたドレンパンは、空気流の抵抗になるため、熱交換器の下部側を通過する空気の速度が低くなる傾向にある。したがって、熱交換器の下部側に最下流パスを設けることによって、当該下部側における熱交換効率を適切に向上させることができる。
 前記送風機は、羽根車と、この羽根車を収容するとともに、空気の吐出口が形成されたケーシングとを備えたシロッコファンであり、前記羽根車の回転軸心に直交する仮想線を挟んで一方側の領域に前記吐出口が開口し、同他方側の領域に対応して前記最下流パスが設けられていることが好ましい。
 シロッコファンから吐出される空気流の速度は、吐出口とは反対側の領域で低くなるので、この領域に対応して最下流パスを設けることによって熱交換効率を好適に向上させることができる。
 本発明によれば、空気流方向の下流側の列に配置された伝熱管における熱交換効率を向上させ、冷房能力を高めることができる。
本発明の第1の実施の形態に係る空気調和装置の構成図である。 空気調和装置の室内機を示す側面断面図(図3のA-A矢視断面図)である。 室内機の平面説明図である。 室内機の正面図である。 室内機の底面図である。 室内機の側面断面図(図3のB-B矢視断面図)である。 熱交換器を示す側面説明図である。 熱交換器を簡略化して示す模式図である。 空気と冷媒の温度変化を説明するグラフである。 本発明の第2の実施の形態に係る熱交換器を示す側面説明図である。 従来の熱交換器による空気と冷媒の温度変化を説明するグラフである。
 以下、図面を参照して本発明の実施の形態を説明する。
 図1は、本発明の第1の実施の形態における空気調和装置の構成図である。この空気調和装置10は、室内機(利用側ユニット)11と室外機(熱源側ユニット)12とを備えている。
 室外機12には、圧縮機14、四路切換弁18、室外熱交換器15、室外膨張弁16等が設けられ、これらは冷媒配管25によって接続されている。また、室外機12には、室外送風ファン20が設けられている。
 室外機12の内部冷媒回路の端末部には、ガス側閉鎖弁22と液側閉鎖弁23とが設けられている。ガス側閉鎖弁22は四路切換弁18側に配置されており、液側閉鎖弁23は室外膨張弁16側に配置されている。
 室内機11には、室内膨張弁28及び室内熱交換器13等が設けられている。ガス側閉鎖弁22と室内熱交換器13とはガス側冷媒連絡配管24により接続され、液側閉鎖弁23と室内膨張弁28とは液側冷媒連絡配管26により接続されている。
 上記構成の空気調和装置10において、冷房運転を行う場合には、四路切換弁18が図1において実線で示す状態に保持される。そして、実線矢印で示すように、圧縮機14から吐出された高温高圧のガス状冷媒は、四路切換弁18を経て室外熱交換器15に流入し、室外送風ファン20の作動により室外空気と熱交換して凝縮・液化する。液化した冷媒は、ほぼ全開状態の室外膨張弁16を通過し、液側冷媒連絡配管26を通って室内機11に流入する。室内機11において、冷媒は、室内膨張弁28で所定の低圧に減圧され、さらに室内熱交換器13で室内空気と熱交換して蒸発する。そして、冷媒の蒸発によって冷却された室内空気は室内送風ファン19によって室内に吹き出され、当該室内を冷房する。また、室内熱交換器13で蒸発して気化した冷媒は、ガス側冷媒連絡配管24を通って室外機12に戻り、四路切換弁18を経て圧縮機14に吸い込まれる。
 他方、暖房運転を行う場合には、四路切換弁18が図1において破線で示す状態に保持される。そして、点線矢印で示すように、圧縮機14から吐出された高温高圧のガス状冷媒は、四路切換弁18を経て室内機11の室内熱交換器13に流入し、室内空気と熱交換して凝縮・液化する。冷媒の凝縮によって加熱された室内空気は、室内送風ファン19によって室内に吹き出され、当該室内を暖房する。室内熱交換器13において液化した冷媒は、ほぼ全開状態の室内膨張弁28から液側冷媒連絡配管26を通って室外機12に戻る。室外機12に戻った冷媒は、室外膨張弁16で所定の低圧に減圧され、室外熱交換器15において室外空気と熱交換して蒸発する。そして、室外熱交換器15で蒸発して気化した冷媒は、四路切換弁18を経て圧縮機14に吸い込まれる。
 図2は、空気調和装置10の室内機11を示す側面断面図(図3のA-A矢視断面図)、図3は、室内機11の平面説明図、図4は、室内機11の正面図、図5は、室内機11の底面図である。
 室内機11は、室内の天井裏等に設置される天井埋込型の室内機であり、本体ケース31、化粧パネル32、室内送風ファン19、室内熱交換器13、ドレンパン33等を備えている。
 本体ケース31は、平面視で四角形状の上壁部35と、この上壁部35の4辺から下方に垂下された4枚の周壁部(前壁部36、後壁部37、左壁部38、右壁部39)とから下方に開放した箱形状に形成されている。そして、本体ケース31における下端の開口部に化粧パネル32が取り付けられている。本体ケース31は、図4に示されるように、天井30の上方にある上階床の下面等に吊り下げ具40を介して吊り下げられ、化粧パネル32は、天井30の下面に沿って配置されている。
 図2及び図3に示されるように、本体ケース31の内部は、仕切り板42によって送風機室43と熱交換室44とに区画されている。本明細書においては、送風機室43側を後側、熱交換室44側を前側とする。
 化粧パネル32は、送風機室43の下方に吸込口45を備え、熱交換室44の前部側の下方に吹出口46を備えている。吸込口45には格子状のグリル47が取り付けられ、吹出口46には、空気の吹出方向を調整する導風板48が揺動可能に設けられている。
 図3に示されるように、送風機室43には、2台の室内送風ファン19が左右方向に間隔をあけて配置されている。2台の室内送風ファン19の間には電動モータ50が配置され、この電動モータ50によって両室内送風ファン19が駆動される。本実施の形態の室内送風ファン19は、図2に示されるように、略円筒形状のケーシング19aと、このケーシング19a内に設けられた羽根車19bとからなるシロッコファンである。ケーシング19aの側面には吸込口19a1が形成され、ケーシング19aの前部には吐出口19a2が開口し、この吐出口19a2から前方に導風筒19a3が突出されている。導風筒19a3は、仕切り板42に形成された開口にシールされた状態で挿入されている。
 室内送風ファン19が作動すると、室内の空気は吸込口45から送風機室43内に取り入れられ、ケーシング19aの吸込口19a1に吸い込まれた後、吐出口19a2から熱交換室44に吹き出される。したがって、送風機室43内の空間は、室内送風ファン19によって空気が吸い込まれる「吸込空間」とされ、熱交換室44の空間は、室内送風ファン19によって空気が吹き出される「吹出空間」とされる。
 熱交換室44には、室内熱交換器13が配置されている。室内熱交換器13は、例えば、左右方向に所定間隔で並べて配置された多数のフィンと、このフィンを貫通するように設けられた伝熱管とを含むクロスフィン型のフィンアンドチューブ式熱交換器とされている。この室内熱交換器13は、上部が前側(吹出口46側;空気流の下流側)に位置し、かつ下部が後側(室内送風ファン19側;空気流の上流側)に位置するように傾斜して配置されている。そして、室内送風ファン19から熱交換室44に吹き出された空気は、室内熱交換器13との間で熱交換され、その後に吹出口46から室内に吹き出される。なお、室内熱交換器13の下方には、ドレンパン33が設けられ、室内熱交換器13で発生した結露水がドレンパン33によって受け止められるようになっている。
 ドレンパン33は、発泡スチロール等の断熱性の高い材料によって形成されており、断熱材としても機能している。また、図2及び図3に示されるように、熱交換室44における本体ケース31の上壁部35、前壁部36、左右壁部38,39の内面には、それぞれ発泡スチロール等からなる断熱材54~57が設けられている。
 図6は、室内機の側面断面図(図3のB-B矢視断面図)である。図3及び図6に示されるように、送風機室43の右端部には電装品ユニット58が配置されている。この電装品ユニット58は、電装品箱59と、この電装品箱59に収容された制御基板60や端子台61等からなる。また、熱交換室44の右端部には、室内熱交換器13に接続される分流器やヘッダ等の配管群62や、ドレンポンプ63、室内膨張弁28、サーミスタ等の電気部品が配置されている。そして、これらの電気部品の電気配線64は、熱交換室44から仕切り板42を通して電装品ユニット58に接続されている。
 図6に示されるように、ドレンポンプ63は、内蔵されたモータ(アクチュエータ)が作動することによって、ドレンパン33に貯留された結露水を外部へ排出するものである。ドレンポンプ63は、取付台(取付部材)66を介して本体ケース31の上壁部35に取付固定されている。また、取付台66には、フロートセンサ65も取り付けられている。ドレンポンプ63及びフロートセンサ65は、連結枠67によって1ユニットとして組み立てられている。
 取付台66は、前後の脚板69と、両脚板69の下端部同士を接続する台板70とから側面視でコの字形状に形成されている。脚板69の上端部は、上壁部35に固定されている。
 連結枠67には、室内膨張弁28、サーミスタ、フロートセンサ65、ドレンポンプ63等の電気配線64をガイドするガイド爪68が一体に形成されている。このガイド爪68によって、電気配線64がドレンパン33側へ垂れ下がらないように支持されている。
 図7は、室内熱交換器を示す側面説明図である。
 本実施の形態の室内熱交換器(以下、単に「熱交換器」ということがある)13は、左右方向に所定間隔で並べて配置された多数のフィン71と、このフィン71を貫通するように設けられた複数の伝熱管72とを有している。伝熱管72は、高さ方向に複数段で、かつ空気流方向に3列L1~L3に配設されている。複数の伝熱管72には、分流器74によって複数のパスP1~P10に分流して冷媒が供給され、各パスP1~P10の伝熱管72を流れた冷媒は、ヘッダ75によって合流されるようになっている。
 図8は、室内熱交換器の構成を簡略化して示す模式図である。図8に例示する室内熱交換器13は、冷媒が分流器74によって上下方向に複数のパスP1~P4に分流して供給される(各パスP1~P4の境界を点線で区画して示す)。各パスP1~P4においては、複数本(図示例では4本)の伝熱管72の端部同士がU字形状の接続管73で接続されることによって、左右方向に往復(図示例では2往復)する1つの冷媒流路が形成されている。
 図7に戻って、本実施の形態の室内熱交換器13においては、分流器74によって10のパスP1~P10に冷媒が分流される。これらのパスP1~P10は、室内熱交換器13の上部側に配置される上部パスP1~P5と、室内熱交換器13の下部側に配置される下部パスP6~P10とに大別することができる。上部パスP1~P5は、空気流方向に3列に配置された伝熱管72のうち、複数列の伝熱管72を含むパスとされている。
 例えば、最上部に配置された第1パスP1は、1列目L1及び2列目L2に配置された4本の伝熱管72によって左右方向に2往復する冷媒流路を形成している。なお、図7においては、伝熱管72を接続する接続管73のうち手前側のものを実線で示し、奥側のものを点線で示している。第2,第3パスP2,P3は、1列目L1~3列目L3に配置された4本の伝熱管72によって左右方向に2往復する冷媒流路を形成している。また、第4,第5パスP4,P5は、1列目L1~3列目L3に配置された6本の伝熱管72によって左右方向に3往復する冷媒流路を形成している。いずれのパスP1~P5にも、1列目L1に配置された1つの伝熱管72iに冷媒が供給され、2列目L2又は3列目L3に配置された1つの伝熱管72oから冷媒が流出される。
 下部パスP6~P10は、1列目L1及び2列目L2に配置された4本の伝熱管72によって左右方向に2往復する冷媒流路を形成する上流側パスP6~P9と、3列目L3に配置された8本の伝熱管72によって左右方向に4往復する冷媒流路を形成する最下流パスP10とに更に分類することができる。上流側パスP6~P9には、1列目L1に配置された1つの伝熱管72iに冷媒が供給され、2列目L2に配置された1つの伝熱管72oから冷媒が排出される。最下流パスP10では、最下部の伝熱管72iに冷媒が供給され、最上部の伝熱管72oから冷媒が排出される。
 以上の構成において、冷房運転時に、分流器74を介して各パスP1~P10の伝熱管72に供給された冷媒(気液二相冷媒)は、室内熱交換器13を通過する空気との間で熱交換を行い、当該空気の温度を低下させる。室内熱交換器13を流れる空気は、上部側ほど流速が速く、下部側ほど流速が低くなる。これは、室内熱交換器13の下方に配置されたドレンパン33が空気の抵抗になることが一因となっている。また、本実施の形態では、送風ファン19としてシロッコファンが用いられており、このシロッコファン19のケーシング19aの上部側(羽根車19bの回転軸心に直交する略水平な仮想線Xの上側)において吐出口19a2の大部分が開口していることも一因となっている。
 室内熱交換器13を通過する空気の流速が低いと、図11を参照して説明したように、上流側の列の伝熱管において冷媒との熱交換が積極的に行われるが、下流側の列の伝熱管においては既に冷媒の温度が上昇し、空気との熱交換がほとんど行われなくなる場合がある。そのため、本実施の形態においては、空気流速度の低い室内熱交換器13の下部側に、3列目の伝熱管72のみからなる最下流パスP10を設けている。このような最下流パスP10を設けることで、その上流側パスP6~P9を通過した後の空気をより低温の冷媒によって更に冷却することができる。したがって、3列目の伝熱管72における熱交換効率を向上させ、冷房能力を高めることが可能となっている。
 図9は、下部パスP6~P10における空気と冷媒の温度変化を説明するグラフである。
 図9に示されるように、上流側パスP6~P9では、1列目L1及び2列目の伝熱管72を流れる冷媒と空気との間で熱交換が行われ、温度T1まで空気の温度が下げられる。さらに、最下流パスP10では、3列目L3の伝熱管72に低温の冷媒が流れるため、空気の温度がさらにΔtだけ低い温度T2にまで冷却されることになる。
 また、最下流パスP10は、複数の上流側パスP6~P9の下流側に跨って配置されている。そのため、最下流パスP10における伝熱管72の長さを十分に確保することができる。したがって、最下流パスP10を流れる冷媒と空気との間の熱交換を十分に行うことができ、蒸発工程における冷媒の過熱度を適切に得ることができる。
 また、最下流パスP10は、送風ファン19における羽根車19bの回転中心の高さX(図2も参照)よりも下側の領域、すなわち、空気流速度の低い領域に配置されており、当該領域おける熱交換効率を好適に向上させることができる。
 なお、室内熱交換器13の上部側においては、空気流速度が高いため、上記のような最下流パスP10を設けなくても3列目の伝熱管72を流れる冷媒と空気との間の熱交換を適切に行うことができる。ただし、室内熱交換器13の上部側においても、下部側と同様の最下流パスを設けてもよい。
 図10は、本発明の第2の実施の形態に係る熱交換器を示す側面説明図である。
 図7に示される第1の実施の形態の室内熱交換器13は、最下流パスP10が8本の伝熱管72によって構成されていたが、本実施の形態の室内熱交換器13は、4本の伝熱管72によって構成された2つの最下流パスP10,P11を備えている。したがって、本実施の形態においても、室内熱交換器13の最下流パスP10,P11によって好適に冷房能力を高めることができる。ただし、本実施の形態では、各最下流パスP10,P11における伝熱管72の長さが短くなり、蒸発工程において冷媒の過熱度を得難くなっているので、この点においては、第1の実施の形態の方がより有利である。
 本発明は、上記実施の形態に限定されず、請求の範囲に記載された発明の範囲内において適宜変更することができる。
 例えば、上記実施の形態では、室内熱交換器13における伝熱管72の空気流方向の列数が3列とされていたが、4列以上とされていてもよい。この場合、最下流パスは、最も下流側の列の伝熱管72のみによって構成され、上流側パスは、最下流パスよりも上流側に配置された複数列の伝熱管72によって構成される。
 本発明の熱交換器は、天井埋込式の室内機を備えたものに限らず、天井吊り式、壁掛け式等の室内機を備えた空気調和装置にも適用することができる。また、上記実施の形態の室内熱交換器は、空気流方向に対して傾斜して配置されていたが、空気流方向に対して直交して配置されていてもよい。
10   :空気調和装置
11   :室内機
13   :室内熱交換器
19   :室内送風ファン
19a  :ケーシング
19a2 :吐出口
19b  :羽根車
33   :ドレンパン
72   :伝熱管
74   :分流器
75   :ヘッダ
P6~P9:上流側パス
P10  :最下流パス

Claims (5)

  1.  空気流方向に3列以上に配列された複数の伝熱管(72)を有するとともに、当該伝熱管(72)に対して複数のパス(P1~P11)に分流して冷媒が供給され、冷房運転時に蒸発器として用いられる空気調和装置の熱交換器であって、
     前記複数のパス(P1~P11)が、空気流方向の最下流の列の伝熱管(72)のみからなる最下流パス(P10,P11)と、この最下流パス(P10,P11)の上流側に配置された複数列の伝熱管(72)のみからなる上流側パス(P6~P9)と、を含むことを特徴とする空気調和装置の熱交換器。
  2.  前記最下流パス(P10,P11)が、複数の前記上流側パス(P6~P9)の下流側に跨る範囲で設けられている、請求項1に記載の空気調和装置の熱交換器。
  3.  請求項1又は2に記載の熱交換器(13)と、この熱交換器(13)を通過する空気流を生成する送風機(19)とを備え、
     前記熱交換器(13)の最下流パス(P10,P11)が、当該空気調和装置における空気流速度の低い領域に対応して設けられている空気調和装置。
  4.  前記熱交換器(13)の下方にドレンパン(33)が設けられており、前記最下流パス(P10,P11)は、前記熱交換器(13)の下部側に対応して設けられている、請求項3に記載の空気調和装置。
  5.  前記送風機(19)は、羽根車(19b)と、この羽根車(19b)を収容するとともに、空気の吐出口(19a2)が形成されたケーシング(19a)とを備えたシロッコファンであり、前記羽根車(19b)の回転軸心に直交する仮想線(X)を挟んで一方側の領域に前記吐出口(19a2)が開口し、同他方側の領域に対応して前記最下流パス(P10,P11)が設けられている、請求項3又は4に記載の空気調和装置。
PCT/JP2013/054890 2012-03-26 2013-02-26 空気調和装置の熱交換器及び空気調和装置 WO2013146006A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380016507.XA CN104246377B (zh) 2012-03-26 2013-02-26 空调装置的热交换器及空调装置
EP13768496.5A EP2835587B1 (en) 2012-03-26 2013-02-26 Heat exchanger for air-conditioning device and air-conditioning device
US14/387,923 US9328965B2 (en) 2012-03-26 2013-02-26 Heat exchanger of air conditioning device including a refrigerant path arranged downstream of other refrigerant paths relative to airflow direction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012070034A JP5447569B2 (ja) 2012-03-26 2012-03-26 空気調和装置の熱交換器及び空気調和装置
JP2012-070034 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146006A1 true WO2013146006A1 (ja) 2013-10-03

Family

ID=49259284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054890 WO2013146006A1 (ja) 2012-03-26 2013-02-26 空気調和装置の熱交換器及び空気調和装置

Country Status (5)

Country Link
US (1) US9328965B2 (ja)
EP (1) EP2835587B1 (ja)
JP (1) JP5447569B2 (ja)
CN (1) CN104246377B (ja)
WO (1) WO2013146006A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11892178B2 (en) * 2016-12-28 2024-02-06 Daikin Industries, Ltd. Heat exchanger unit and air conditioner using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157339B2 (ja) * 2013-12-13 2017-07-05 三菱電機株式会社 室内機及び空気調和装置
CN105972870A (zh) * 2016-07-22 2016-09-28 美的集团武汉制冷设备有限公司 换热器、空调器室内机及空调器
CN108007019A (zh) * 2016-10-28 2018-05-08 青岛海尔新能源电器有限公司 一种新型蒸发器、热泵系统及热泵热水器
CN108019814A (zh) * 2016-10-28 2018-05-11 青岛海尔新能源电器有限公司 一种蒸发器及太阳能热泵热水器
WO2018078850A1 (ja) * 2016-10-31 2018-05-03 三菱電機株式会社 室内機および空気調和装置
JP6832959B2 (ja) * 2017-01-30 2021-02-24 三菱電機株式会社 天井埋込形空気調和機の室内機、および、それを備えた天井埋込形空気調和機
JP6635275B2 (ja) * 2018-03-30 2020-01-22 株式会社富士通ゼネラル 天井埋込型空気調和機
US20200271351A1 (en) * 2019-02-26 2020-08-27 Johnson Controls Technology Company Diverter baffle for a blower
CN110425903B (zh) * 2019-08-13 2021-03-23 江苏天舒电器有限公司 一种翅片式换热器及其智能调温方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223483A (ja) * 1998-02-09 1999-08-17 Kubota Kucho Kk 熱交換器のコイル構造
JP2001174047A (ja) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd 空気調和機の室内機
US20040089020A1 (en) * 2002-11-09 2004-05-13 Lg Electronics Inc. Indoor unit in air conditioner and air conditioner therewith
JP2007040611A (ja) * 2005-08-03 2007-02-15 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2008121996A (ja) * 2006-11-13 2008-05-29 Fujitsu General Ltd 空気調和機
JP2009030829A (ja) 2007-07-25 2009-02-12 Sanyo Electric Co Ltd 空気調和装置
JP2011163740A (ja) * 2010-02-15 2011-08-25 Daikin Industries Ltd 空気調和機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4995453A (en) * 1989-07-05 1991-02-26 Signet Systems, Inc. Multiple tube diameter heat exchanger circuit
KR100343808B1 (ko) * 1999-12-30 2002-07-20 진금수 히트 펌프식 공기조화기
JP3979118B2 (ja) * 2002-02-20 2007-09-19 ダイキン工業株式会社 熱交換器、熱交換器の製造方法及び空気調和機
US7032411B2 (en) * 2002-08-23 2006-04-25 Global Energy Group, Inc. Integrated dual circuit evaporator
JP2004085031A (ja) * 2002-08-26 2004-03-18 Hitachi Ltd 空冷式熱交換器及び空気調和装置
JP2005133976A (ja) * 2003-10-28 2005-05-26 Hitachi Ltd 空気調和装置
JP2006046695A (ja) * 2004-07-30 2006-02-16 Daikin Ind Ltd 冷凍装置
JP3806883B2 (ja) * 2004-09-28 2006-08-09 ダイキン工業株式会社 空気調和装置
JP3852464B2 (ja) * 2004-11-25 2006-11-29 ダイキン工業株式会社 空気調和機の室内側の熱交換器
KR20060087173A (ko) * 2005-01-28 2006-08-02 엘지전자 주식회사 공기조화장치용 열교환기
KR100656083B1 (ko) * 2005-01-31 2006-12-11 엘지전자 주식회사 공조기의 열교환기
JP4796814B2 (ja) * 2005-10-20 2011-10-19 東芝キヤリア株式会社 熱交換器と、空気調和機の室内機
JP2007240059A (ja) * 2006-03-08 2007-09-20 Daikin Ind Ltd 冷凍装置用熱交換器の冷媒分流装置
JP4749373B2 (ja) * 2007-04-10 2011-08-17 三菱電機株式会社 空気調和機
JP5371364B2 (ja) * 2008-10-20 2013-12-18 東芝キヤリア株式会社 空気調和機の室内機
JP4582244B2 (ja) * 2009-04-17 2010-11-17 ダイキン工業株式会社 空気調和装置の室内機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223483A (ja) * 1998-02-09 1999-08-17 Kubota Kucho Kk 熱交換器のコイル構造
JP2001174047A (ja) * 1999-12-17 2001-06-29 Matsushita Electric Ind Co Ltd 空気調和機の室内機
US20040089020A1 (en) * 2002-11-09 2004-05-13 Lg Electronics Inc. Indoor unit in air conditioner and air conditioner therewith
JP2007040611A (ja) * 2005-08-03 2007-02-15 Denso Corp 蒸気圧縮式冷凍サイクル装置
JP2008121996A (ja) * 2006-11-13 2008-05-29 Fujitsu General Ltd 空気調和機
JP2009030829A (ja) 2007-07-25 2009-02-12 Sanyo Electric Co Ltd 空気調和装置
JP2011163740A (ja) * 2010-02-15 2011-08-25 Daikin Industries Ltd 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2835587A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11892178B2 (en) * 2016-12-28 2024-02-06 Daikin Industries, Ltd. Heat exchanger unit and air conditioner using the same

Also Published As

Publication number Publication date
US20150323218A1 (en) 2015-11-12
JP2013200103A (ja) 2013-10-03
EP2835587B1 (en) 2016-10-05
CN104246377A (zh) 2014-12-24
JP5447569B2 (ja) 2014-03-19
CN104246377B (zh) 2017-08-08
US9328965B2 (en) 2016-05-03
EP2835587A1 (en) 2015-02-11
EP2835587A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5447569B2 (ja) 空気調和装置の熱交換器及び空気調和装置
JP5761097B2 (ja) 空気調和装置の室内機
JPWO2010146852A1 (ja) 天井設置型空気調和装置
JP5354004B2 (ja) 空気調和装置
CN110476026B (zh) 热交换器单元
US11499762B2 (en) Heat exchanger and air conditioner
US20170284682A1 (en) Indoor unit for air-conditioning apparatus
JP2017172869A (ja) 空気調和機
JP6661781B2 (ja) 冷凍サイクル装置
JP7137092B2 (ja) 熱交換器
JP2020063861A (ja) 空気調和装置及び空気調和装置の熱源ユニット
JP2015169358A (ja) 熱交換器
US11732971B2 (en) Heat exchanger and air conditioner having the same
JP5780189B2 (ja) 空気調和機
JP7190579B2 (ja) 熱交換器において使用されるフィン、該フィンを有する熱交換器、及び該熱交換器を有する冷凍サイクル装置
CN110462296B (zh) 空调室内单元
JP5786781B2 (ja) 空気調和装置のグリル
JP2013200106A (ja) 空気調和装置における断熱材の取付構造
JP6566699B2 (ja) 空気調和機
JPWO2019180764A1 (ja) 室内機及び空気調和機
JP2019049402A (ja) 室外ユニット及びそれを備えた冷凍装置
JP2021081080A (ja) 冷媒分流器、及び、空気調和機
JP2003185242A (ja) 天井埋込型空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14387923

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013768496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768496

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE