WO2013145562A1 - リレー溶着診断装置 - Google Patents

リレー溶着診断装置 Download PDF

Info

Publication number
WO2013145562A1
WO2013145562A1 PCT/JP2013/001311 JP2013001311W WO2013145562A1 WO 2013145562 A1 WO2013145562 A1 WO 2013145562A1 JP 2013001311 W JP2013001311 W JP 2013001311W WO 2013145562 A1 WO2013145562 A1 WO 2013145562A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
detection circuit
voltage
diagnosis
unit
Prior art date
Application number
PCT/JP2013/001311
Other languages
English (en)
French (fr)
Inventor
飯阪 篤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/388,449 priority Critical patent/US9551755B2/en
Priority to EP13768402.3A priority patent/EP2833498B1/en
Priority to CN201380013157.1A priority patent/CN104170197B/zh
Publication of WO2013145562A1 publication Critical patent/WO2013145562A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • H01H2047/003Detecting welded contacts and applying weld break pulses to coil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a relay welding diagnostic apparatus for a relay used in a charging circuit for charging a battery of an electric vehicle or the like.
  • a charging circuit of an electric vehicle that can be driven using electric energy stored in a battery such as EV (Electric Vehicle) or PHEV (Plug-in Hybrid Electric Vehicle) has a quick charging facility and a junction for battery connection at the time of charging.
  • a relay circuit for connecting and disconnecting the circuit is used.
  • This relay circuit uses a mechanical relay contact (hereinafter referred to as a relay), and the relay is welded due to on / off at a high voltage and high current.
  • Patent Document 1 discloses a technique for detecting such relay welding.
  • the technique of Patent Document 1 measures the voltage between the positive electrode line and the negative electrode line by a voltage detection circuit, and determines whether or not each relay is welded based on the measurement result.
  • Patent Document 1 has a problem that when the voltage detection circuit fails, it cannot be determined whether or not the relay is welded.
  • An object of the present invention is to provide a relay welding diagnostic apparatus capable of diagnosing whether or not a relay is welded without using a voltage detection circuit.
  • the relay welding diagnostic device of the present invention is a relay welding diagnostic device for diagnosing whether or not the relays respectively provided on the P pole side and the N pole side of the voltage line connecting the charging facility and the battery are welded, A threshold value determination unit for determining a threshold value based on resistance values respectively set for a resistance on the P pole side and a resistance on the N pole side included in the charging facility; and a signal output circuit for supplying a predetermined voltage to the voltage line; A peak value measuring unit that measures the peak value of the voltage supplied to the voltage line by the signal output circuit, and determining the state of the relay by comparing the peak value and the threshold, and the determined relay state And a comparative diagnosis unit that diagnoses whether or not the relay is welded based on the state in which the relay is controlled.
  • the figure which shows the structural example of the power supply system of the electric vehicle which concerns on embodiment of this invention, and a quick-charge facility The block diagram which shows the structural example of the relay welding diagnostic apparatus which concerns on embodiment of this invention
  • movement which the relay welding diagnostic apparatus which concerns on embodiment of this invention performs The flowchart which shows the operation example of the relay welding diagnosis which the relay welding diagnostic apparatus which concerns on embodiment of this invention performs
  • FIG. 1 is a diagram illustrating a configuration example of a power supply system of an electric vehicle and a quick charging facility according to the present embodiment.
  • Vehicle 1 is an electric vehicle.
  • the vehicle 1 includes a control device 10, a leakage detection circuit 11, a notification device 12, a battery 13, a relay 14, a relay 15, a voltage detection circuit 16, a capacitor 17, a communication line 18, and a signal line 19.
  • the rapid charging facility 2 is a facility (including an apparatus and a system) for charging the vehicle 1.
  • the rapid charging facility 2 includes an AC / DC switching device 20, a facility control device 21, an ammeter 22, a resistor 23, and a resistor 24.
  • the vehicle 1 and the quick charging facility 2 are connected via a connector when the battery 13 is charged.
  • the vehicle 1 and the quick charging facility 2 are connected via five connectors 3a, 3b, 3c, 3d, and 3e.
  • the connector 3a connects a plus-side high voltage line (positive electrode line) between the vehicle 1 and the rapid charging facility 2.
  • the AC / DC switching device 20, the resistor 24, and the relay 14 are connected. That is, the resistor 24 is a resistor on the P pole side, and the relay 14 is a relay on the P pole side.
  • the connector 3b connects a negative high voltage line (negative electrode line) between the vehicle 1 and the quick charging facility 2.
  • the AC / DC switching device 20, the resistor 23, and the relay 15 are connected. That is, the resistor 23 is a resistance on the N pole side, and the relay 15 is a relay on the N pole side.
  • the connector 3c connects the communication line 18 between the vehicle 1 and the quick charging facility 2. Thereby, the equipment control apparatus 21 and the control apparatus 10 are connected.
  • the connector 3d connects the signal line 19 between the vehicle 1 and the quick charging facility 2. Thereby, the ground of the quick charging facility 2 and the control device 10 are connected.
  • the connector 3e connects the ground of the rapid charging facility 2 and the vehicle body of the vehicle 1 between the vehicle 1 and the rapid charging facility 2.
  • the five connectors 3a, 3b, 3c, 3d, and 3e are all connected together.
  • control device 10 receives the signal generated by the connection of the connector 3d through the signal line 19 to detect the connection with the quick charging facility 2.
  • the control device 10 is, for example, an ECU (Electronic Control Unit).
  • control device 10 sends a relay control signal to the relays 14 and 15 to turn it on (closed state) or turn it off (open state).
  • relay 14 and relay 15 are controlled to be turned on, AC / DC switching device 20 and battery 13 are connected via the positive electrode line and the negative electrode line. In the example of FIG. 1, both the relay 14 and the relay 15 are controlled to be off.
  • the control device 10 sends a charging start control signal for starting charging to the equipment control device 21 via the communication line 18.
  • the equipment control device 21 instructs the AC / DC switching device 20 to start supplying power. Thereby, electric power is supplied from the AC / DC switching device 20 to the battery 13 and charging of the battery 13 is started.
  • the facility control device 21 When the charging of the battery 13 is started, the facility control device 21 performs a leakage detection on the quick charging facility 2 side based on the current value measured by the ammeter 22.
  • the current value measured by the ammeter 22 is the value of the current flowing through the resistor 23 and the resistor 24 for detecting leakage.
  • a technique disclosed in Japanese Patent Application Laid-Open No. 2010-239827 may be applied to the leakage detection on the quick charging facility 2 side here.
  • the leakage detection circuit 11 when charging of the battery 13 is started, the leakage detection circuit 11 also detects leakage on the vehicle 1 side based on the voltage at the connection point P, which is the connection point between the capacitor 17 and the resistor 113.
  • the leakage detection circuit 11 includes a peak value measurement unit 110, a comparative diagnosis unit 111, and an AC signal output circuit 112. Details of these units will be described later with reference to FIG.
  • the leakage detection circuit 11 enables a relay diagnosis mode for diagnosing the welding of the relays 14 and 15 in addition to the leakage detection mode for detecting leakage on the vehicle 1 side. Details of the relay diagnosis mode will be described later.
  • the leakage detection circuit 11 When the leakage detection circuit 11 detects a leakage in the vehicle 1, the leakage detection circuit 11 notifies the control device 10 to that effect. Upon receiving the notification, the control device 10 causes the notification device 12 to notify the user that a leakage has been detected in the vehicle 1. Examples of the notification device 12 include a display and a speaker.
  • the voltage detection circuit 16 measures the voltage between the positive electrode line and the negative electrode line, and sends the measured voltage value to the control device 10.
  • the control device 10 performs normal relay welding diagnosis based on the voltage value notified from the voltage detection circuit 16. For example, the technique disclosed in Patent Document 1 can be applied to the normal relay welding diagnosis here.
  • control device 10 performs voltage detection circuit diagnosis based on the voltage value measured by the voltage detection circuit 16. This will be described later.
  • FIG. 2 is a block diagram illustrating a configuration example of the relay welding diagnostic apparatus according to the present embodiment.
  • the relay welding diagnostic apparatus includes a control device 10 and a leakage detection circuit 11.
  • the control device 10 includes a connection detection unit 100, a communication control unit 101, a circuit diagnosis unit 102, a relay control unit 103, and a threshold value determination unit 104.
  • the connection detection unit 100 detects the connection between the vehicle 1 and the quick charging facility 2.
  • connection detection unit 100 detects the connection between the vehicle 1 and the quick charging facility 2 when a signal generated by the connection of the connector 3d is input from the signal line 19. Then, the connection detection unit 100 notifies the communication control unit 101 that the connection between the vehicle 1 and the quick charging facility 2 has been detected.
  • the communication control unit 101 transmits and receives information and signals to and from the equipment control device 21 of the quick charging equipment 2 through the communication line 18.
  • the communication control unit 101 when the communication control unit 101 receives a notification from the connection detection unit 100 that the connection between the vehicle 1 and the quick charging facility 2 has been detected, the communication control unit 101 starts communication with the facility control device 21, and the communication To maintain. Thereby, the communication control part 101 and the equipment control apparatus 21 share that the vehicle 1 and the quick-charge equipment 2 are in a connection state.
  • the communication control unit 101 sends the above-described charging start control signal to the equipment control device 21 at the start of charging of the battery 13. At this time, the communication control unit 101 notifies the leakage detection circuit 11 that charging is started.
  • the communication control unit 101 when the communication control unit 101 receives a notification of a diagnosis result by a normal relay welding diagnosis from the circuit diagnosis unit 102 or when a notification of a diagnosis result by the relay diagnosis mode is received from the leakage detection circuit 11, Communication with the equipment control device 21 is terminated.
  • the communication control unit 101 receives a notification of any of the above diagnosis results, the communication control unit 101 transmits the notification to the notification device 12.
  • the notification device 12 notifies the user of the diagnosis result.
  • the circuit diagnosis unit 102 performs voltage detection circuit diagnosis based on the voltage value notified from the voltage detection circuit 16. This diagnosis is a diagnosis of whether or not the voltage detection circuit 16 has failed.
  • the circuit diagnosis unit 102 upon receiving a notification from the communication control unit 101 that communication with the equipment control device 21 has started, performs voltage detection circuit diagnosis.
  • This diagnosis is referred to as “voltage detection circuit diagnosis 1”, and is performed before the relays 14 and 15 are controlled to be turned on, that is, when the relays 14 and 15 are controlled to be turned off.
  • the circuit diagnosis unit 102 diagnoses that the voltage detection circuit 16 has not failed when there is no voltage value notified from the voltage detection circuit 16. In other words, in the voltage detection circuit diagnosis 1, when there is a voltage value notified from the voltage detection circuit 16, the circuit diagnosis unit 102 diagnoses that the voltage detection circuit 16 is out of order. Then, the circuit diagnosis unit 102 notifies the relay control unit 103 that the voltage detection circuit diagnosis 1 has been completed.
  • the circuit diagnosis unit 102 performs the voltage detection circuit diagnosis again.
  • This diagnosis is referred to as “voltage detection circuit diagnosis 2”, and is performed when the relays 14 and 15 are controlled to be on.
  • the circuit diagnosis unit 102 diagnoses that the voltage detection circuit 16 has not failed. In other words, in the voltage detection circuit diagnosis 2, when there is no voltage value notified from the voltage detection circuit 16, the circuit diagnosis unit 102 diagnoses that the voltage detection circuit 16 has failed.
  • the following example is given as a method for the circuit diagnosis unit 102 to detect the end of charging of the battery 13 at the start of the voltage detection circuit diagnosis 2.
  • the circuit diagnosis unit 102 receives information indicating “charge end” from the quick charge facility 2
  • the circuit diagnosis unit 102 detects the end of charge.
  • Information indicating “charge end” is transmitted from the quick charging facility 2 to the control device 10 via the communication line 18 when the user presses a charging stop button (not shown) of the quick charging facility 2.
  • the circuit diagnosis unit 102 receives information indicating “full charge” from an ECU (not shown) that can detect the state of the battery 13, the circuit diagnosis unit 102 detects the end of charging.
  • Information indicating “full charge” is transmitted from the ECU to the control device 10 via a signal line (not shown) when the ECU detects that the battery 13 has been fully charged.
  • the circuit diagnosis unit 102 performs normal relay welding diagnosis when the results of the voltage detection circuit diagnosis 1 and 2 are both “the voltage detection circuit 16 has not failed” (hereinafter referred to as “no failure”).
  • the normal relay welding diagnosis is a relay welding diagnosis performed based on the voltage value notified from the voltage detection circuit 16 as described above, and includes a diagnosis disclosed in Patent Document 1 as an example.
  • the circuit diagnostic part 102 will notify the communication control part 101 of the diagnostic result, after finishing a normal relay welding diagnosis.
  • the circuit diagnosis unit 102 determines that the threshold value determination unit 104 Notify that there is a failure.
  • the relay control unit 103 sends the relay control signal to the relays 14 and 15 to control it to be on or on.
  • the relay control unit 103 when the relay control unit 103 receives a notification from the circuit diagnosis unit 102 that the voltage detection circuit diagnosis 1 has been completed, the relay control unit 103 sends a relay control signal for turning on both of the relays 14 and 15.
  • the relay control unit 103 when the relay control unit 103 receives a request from the leakage detection circuit 11 to send a relay control signal, the relay control unit 103 sends a relay control signal for turning on or off at least one of the relays 14 and 15. Send it out. Thereafter, the relay control unit 103 notifies the leakage detection circuit 11 that the relay control signal has been transmitted.
  • the threshold value determination unit 104 determines a threshold value used by the leakage detection circuit 11 in the relay diagnosis mode, and notifies the leakage detection circuit 11 of the determined threshold value.
  • the leakage detection circuit 11 can operate by switching between the leakage detection mode and the relay diagnosis mode, but the threshold used in each mode is different.
  • the threshold used in the leakage detection mode is referred to as V0.
  • the threshold values used in the relay diagnosis mode are referred to as V1 (an example of a first threshold value) and V2 (an example of a second threshold value).
  • V1 an example of a first threshold value
  • V2 an example of a second threshold value
  • V2 is maximum and V0 is minimum. It is assumed that V0 is set in the leakage detection circuit 11 in advance.
  • the threshold determination unit 104 determines the thresholds V1 and V2 by a predetermined determination method. Then, the threshold determination unit 104 notifies the leakage detection circuit 11 of the determined thresholds V1 and V2. Upon receiving this notification, the leakage detection circuit 11 switches the operation from the leakage detection mode to the relay diagnosis mode. Note that the operation in this relay diagnosis mode can be said to be “relay welding diagnosis of the present embodiment” as to the normal relay welding diagnosis.
  • the threshold value determination unit 104 a method for determining the threshold values V1 and V2 performed by the threshold value determination unit 104 will be described. As an example, there are three determination methods shown in the following (1) to (3).
  • the threshold value determination unit 104 sets the threshold values V1 and V2 based on the resistance value and a constant set in the leakage detection circuit 11. decide.
  • the resistance value here is the value of the resistors 23 and 24 (the same applies hereinafter).
  • the threshold value determination unit 104 acquires a resistance value from the facility control device 21 when it can be acquired by communication with the quick charging facility 2. Then, the threshold determination unit 104 determines thresholds V1 and V2 based on the resistance value and a constant set in the leakage detection circuit 11.
  • the threshold value determination unit 104 calculates the following formula to determine threshold values V1 and V2.
  • a in the following formula is a peak value level when the vehicle 1 is stopped when the vehicle 1 is in the traveling mode (when the vehicle 1 is not rapidly charged and the inverter or the like is not operating).
  • B in the following formula is a peak value level when both relays are on during relay welding diagnosis.
  • V1 B + (A ⁇ B) ⁇ 0.2
  • V2 B + (A ⁇ B) ⁇ 0.7
  • the earth leakage detection circuit 11 includes a peak value measurement unit 110, a comparative diagnosis unit 111, and an AC signal output circuit 112 (an example of a signal output circuit).
  • AC signal output circuit 112 incorporates an oscillation circuit (not shown).
  • the AC signal output circuit 112 supplies a predetermined AC voltage to the high-voltage line, for example, when performing leakage detection (leakage detection mode) or performing relay welding diagnosis (relay diagnosis mode).
  • the output terminal of the AC signal output circuit 112 is connected to a high voltage line through a resistor 113 and a capacitor 17 in this order.
  • the peak value measuring unit 110 measures the peak value of the voltage at the connection point P, which is the connection point between the capacitor 17 and the resistor 113.
  • the voltage at the connection point P is the voltage supplied to the high voltage line by the AC signal output circuit 112.
  • the peak value measurement unit 110 when the peak value measurement unit 110 receives notification of the threshold values V1 and V2 from the threshold value determination unit 104, the peak value measurement unit 110 shifts to the relay diagnosis mode and starts its operation. Thereby, as described above, the AC signal output circuit 112 supplies a predetermined AC current to the high voltage line. Then, the peak value measuring unit 110 first stands by while the peak value of the voltage at the connection point P is stabilized (for example, about 3 seconds). Then, the peak value measuring unit 110 smoothes the peak value at the connection point P and performs analog / digital conversion. In this way, the peak value measuring unit 110 measures the peak value.
  • the peak value measuring unit 110 may repeat the measurement of the peak value after the threshold values V1 and V2 are notified. In this case, when the peak value measurement unit 110 receives a notification from the relay control unit 103 that the relay control signal has been transmitted, the peak value measurement unit 110 measures the peak value again.
  • the peak value measuring unit 110 notifies the comparative diagnostic unit 111 of the peak value 2 measured as described above.
  • the peak value measuring unit 110 also notifies the comparative diagnosis unit 111 of the notified threshold values V1 and V2.
  • the comparison diagnosis unit 111 compares the measured peak value with the notified threshold value, and determines whether the relay 14 and the relay 15 are on or off (hereinafter referred to as a relay state). To do.
  • the comparative diagnosis unit 111 upon receiving notification of the measured peak value and threshold values V1 and V2 from the peak value measuring unit 110, the comparative diagnosis unit 111 compares the peak value with V1 and V2. Based on the result of this comparison, the comparative diagnosis unit 111 determines the relay state. Details of the determination of the relay state will be described later with reference to FIG.
  • the comparison diagnosis unit 111 diagnoses whether each of the relays 14 and 15 is welded based on the determination result of the relay state. Then, the comparison determination unit 111 notifies the communication control unit 101 of the control device 10 of the diagnosis result (diagnosis result in the relay diagnosis mode).
  • the comparative diagnosis unit 111 requests the relay control unit 103 of the control device 10 to transmit a relay control signal when the diagnosis result cannot be obtained.
  • the comparative diagnosis unit 111 may perform both notification of a diagnosis result in the relay diagnosis mode and a transmission request for a relay control signal.
  • FIG. 3 is a flowchart showing an overall operation example of the relay welding diagnostic apparatus according to the present embodiment.
  • the user connects the five connectors and connects the vehicle 1 and the quick charging facility 2.
  • control device 10 When the control device 10 detects the connection between the vehicle 1 and the rapid charging facility 2 (step S310), the control device 10 starts communication with the facility control device 21 of the rapid charging facility 2 (step S320). When (2) is adopted as the threshold value determination method, the control device 10 acquires the resistance value from the equipment control device 21 in this step.
  • control device 10 performs the voltage detection circuit diagnosis 1 and holds the diagnosis result (“failure” or “no failure”) (step S330).
  • control device 10 controls the relays 14 and 15 that are turned off to be on (step S340).
  • control device 10 sends a charge start control signal to the equipment control device 21.
  • the equipment control device 21 that has received this signal controls the AC / DC switching device 20 to start supplying power. In this manner, the control device 10 charges the battery 13 (step S350).
  • control device 10 When the charging of the battery 13 is completed, the control device 10 performs the voltage detection circuit diagnosis 2 and holds the diagnosis result (“failure” or “no failure”) (step S360).
  • control device 10 performs relay welding diagnosis (step S370).
  • the control device 10 performs either the normal relay welding diagnosis or the relay welding diagnosis (relay diagnosis mode) according to the present embodiment, depending on the diagnosis results of the voltage detection circuit diagnosis 1 and 2 held. Select and execute. Details of this step will be described later with reference to FIG.
  • control device 10 ends the communication with the facility control device 21 (step S380).
  • the user removes the five connectors and releases the connection between the vehicle 1 and the quick charging facility 2.
  • FIG. 4 is a flowchart showing an operation example of relay welding diagnosis performed by the relay welding diagnostic apparatus according to the present embodiment.
  • the control device 10 determines whether or not the diagnosis results of the voltage detection circuit diagnosis 1 and 2 are both “no failure” (step S410).
  • control device 10 performs a normal relay welding diagnosis (step S420), and a series of processes Exit.
  • step S410 if both the diagnosis results of the voltage detection circuit diagnosis 1 and 2 are not “no failure” (step S410: NO), the control device 10 proceeds to step S430.
  • the control device 10 determines the threshold values V1 and V2 for the relay diagnosis mode and notifies the leakage detection circuit 11 of them. As a result, the control device 10 controls the leakage detection circuit 11 to operate in the relay diagnosis mode (step S430).
  • the earth leakage detection circuit 11 executes a relay state determination process (step S440).
  • the relay state determination process is a process of determining a relay state indicating whether the relays 14 and 15 are on or off, respectively.
  • FIG. 5 is a flowchart illustrating an operation example of the relay state determination process.
  • FIG. 6 is a diagram illustrating an example of the relationship between the peak value and the threshold value in the relay state determination process.
  • the leakage detection circuit 11 waits until the peak value of the voltage at the connection point P is stabilized (step S710).
  • the leakage detection circuit 11 measures the peak value of the voltage at the connection point P by performing analog / digital conversion (step S720).
  • the leakage detection circuit 11 compares the measured peak value with the threshold values V1 and V2 (step S730).
  • the leakage detection circuit 11 determines that both poles of the relay, that is, the relays 14 and 15 are both off.
  • the leakage detection circuit 11 determines that one of the relays, that is, either the relay 14 or 15 is off.
  • the leakage detection circuit 11 determines that both poles of the relays, that is, the relays 14 and 15 are both on.
  • the leakage detection circuit 11 determines whether or not both relay poles are ON based on the result of the relay state determination process obtained by the comparison (step S450).
  • the leakage detection circuit 11 checks whether there is a clear difference between the peak value levels A and B. The leakage detection circuit 11 proceeds to step S460 when there is no obvious difference, and proceeds to step S480 when there is an obvious difference.
  • step S450 determines that both poles of the relay are not on (step S450: NO)
  • the leakage detection circuit 11 determines that the diagnosis is impossible, and notifies the control device 10 as a diagnosis result in the relay diagnosis mode ( Step S460).
  • the control device 10 causes the notification device 12 to notify the user that the relay welding diagnosis is impossible.
  • leakage detection circuit 11 requests control device 10 to send a relay control signal for controlling both poles of the relays, that is, relays 14 and 15 to be off (step S470). Thereby, control device 10 controls relays 14 and 15 to be turned off. In this way, a series of processing ends.
  • leakage detection circuit 11 requests control device 10 to send a relay control signal for controlling both poles of the relay off (Ste S480). Thereby, control device 10 controls relays 14 and 15 to be turned off. Then, the control device 10 notifies the leakage detection circuit 11 that the relay control signal has been transmitted.
  • the leakage detection circuit 11 performs the relay state determination process again (step S490).
  • the leakage detection circuit 11 determines whether or not both relay poles are off based on the result of the relay state determination process obtained by the comparison (step S500).
  • step S500 if both poles of the relay are off (step S500: YES), the leakage detection circuit 11 diagnoses that the relays of both poles are normal, and notifies the control device 10 as a diagnosis result in the relay diagnosis mode. Notification is made (step S510). As a result, the control device 10 causes the notification device 12 to notify the user that the bipolar relays are normal. In this way, a series of processing ends.
  • step S500 if both poles of the relay are not OFF (step S500: NO), the leakage detection circuit 11 determines whether one of the relays is OFF (step S520).
  • step S520 if one pole of the relay is not off (step S520: NO), the leakage detection circuit 11 diagnoses that the relays of both poles are welded, and that is the control result as a diagnosis result in the relay diagnosis mode. 10 is notified (step S530).
  • the control device 10 causes the notification device 12 to notify the user that the bipolar relays are welded. In this way, a series of processing ends.
  • step S520 if one of the relays is off as a result of the determination (step S520: YES), the leakage detection circuit 11 sends to the control device 10 a relay control signal for controlling the P-pole relay 14 to be on. A request is made (step S540). Thereby, the control apparatus 10 controls the relay 14 to ON. Then, the control device 10 notifies the leakage detection circuit 11 that the relay control signal has been transmitted.
  • the leakage detection circuit 11 performs the relay state determination process again (step S550).
  • the leakage detection circuit 11 determines whether or not both relay poles are on based on the result of the relay state determination process obtained by the comparison (step S560).
  • step S560 YES
  • the leakage detection circuit 11 diagnoses that the N-pole relay 15 is welded, and controls that fact as a diagnosis result in the relay diagnosis mode.
  • the device 10 is notified (step S570).
  • the control device 10 causes the notification device 12 to notify the user that the N-pole relay 15 is welded.
  • the leakage detection circuit 11 requests the control device 10 to transmit a relay control signal for controlling the P-pole relay 14 to be turned off (step S580). Accordingly, the control device 10 controls the P-pole relay 14 to be turned off. In this way, a series of processing ends.
  • step S560 if both the poles of the relay are not ON as a result of the determination (step S560: NO), the leakage detection circuit 11 diagnoses that the P-pole relay 14 is welded, and the diagnosis result in the relay diagnosis mode indicates that fact. Is notified to the control device 10 (step S590). As a result, the control device 10 causes the notification device 12 to notify the user that the P-pole relay 14 is welded.
  • the leakage detection circuit 11 requests the control device 10 to send a relay control signal for controlling the P-pole relay 14 to be turned off (step S600). Accordingly, the control device 10 controls the P-pole relay 14 to be turned off. In this way, a series of processing ends.
  • step S540 the P-pole relay 14 is controlled to be turned on, but the N-pole relay 15 may be controlled to be turned on.
  • step S570 it is diagnosed that the P-pole relay 14 is welded, and in step S580, the P-pole relay 14 is controlled to be turned off.
  • step S590 it is diagnosed that the N-pole relay 15 is welded, and in step S600, the N-pole relay is controlled to be turned off.
  • relay welding diagnosis is performed using a threshold value determined based on a resistance value included in a quick charging facility connected to a vehicle without using a voltage detection circuit. . That is, in this embodiment, relay welding diagnosis can be executed even when the voltage detection circuit fails.
  • the expression “rapid” in the expression “rapid charge” used in the above embodiment is an expression for convenience. Therefore, the “charging” used in the above embodiment may be charging using DC electric energy.
  • the expression “high pressure” in the expression “high pressure line” used in the above embodiment is also an expression for convenience. Therefore, the “voltage” used in the above embodiment may be any voltage that can charge the battery.
  • the relay welding diagnostic apparatus of the present embodiment is configured by the control device 10 and the leakage detection circuit 11, but the present invention is not limited to this configuration.
  • the control device 10 by adding the peak value measuring unit 110 and the comparative diagnosis unit 111 to the control device 10, only the control device 10 may constitute the relay welding diagnosis device of the present embodiment.
  • the relay welding determination device is not limited to a battery-driven pure electric vehicle, and can be applied to a so-called plug-in hybrid vehicle.
  • SYMBOLS 1 Vehicle 2 Rapid charging equipment 3a, 3b, 3c, 3d, 3e Connector 10 Control apparatus 11 Leakage detection circuit 12 Notification apparatus 13 Battery 14 Relay (P pole side) 15 Relay (N pole side) 16 Voltage detection circuit 17 Capacitor 18 Communication line 19 Signal line 20 AC / DC switching device 21 Equipment control device 22 Ammeter 23 Resistance (N pole side) 24 Resistance (P pole side) DESCRIPTION OF SYMBOLS 100 Connection detection part 101 Communication control part 102 Circuit diagnostic part 103 Relay control part 104 Threshold value determination part 110 Crest value measuring part 111 Comparative diagnostic part 112 AC signal output circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電圧検出回路を用いることなく、リレーが溶着しているか否かを診断するリレー溶着診断装置。この装置では、閾値決定部(104)は、充電設備が備えるP極側の抵抗(24)およびN極側の抵抗(23)にそれぞれ設定された抵抗値を基に、閾値を決定する。波高値計測部(110)は、交流信号出力回路(112)が電圧ラインに供給した電圧の波高値を計測する。比較診断部(111)は、波高値と閾値を比較することでP極側のリレー(14)およびN極側のリレー(15)の状態を判定し、判定したリレー(14)、(15)の状態と、リレー(14)、(15)が制御されている状態とを基に、リレー(14)、(15)が溶着しているか否かを診断する。

Description

リレー溶着診断装置
 本発明は、電気自動車等のバッテリに充電するための充電回路に用いられているリレーのリレー溶着診断装置に関する。
 従来、EV(Electric Vehicle)またはPHEV(Plug-in Hybrid Electric Vehicle)等のバッテリに蓄積した電気エネルギを駆動源として走行可能な電気自動車の充電回路には、充電時に急速充電設備とバッテリ接続用ジャンクション回路との接続及び切断を行うためのリレー回路が用いられている。このリレー回路には機械式のリレー接点(以下、リレーという)が用いられ、高電圧高電流時のオンオフによりリレーが溶着してしまうことが起こる。
 このようなリレーの溶着を検出するための技術は、例えば特許文献1に開示されている。特許文献1の技術は、正極ラインと負極ラインとの間の電圧を電圧検出回路により計測し、計測した結果を基にそれぞれのリレーが溶着しているか否かを判定する。
特開2011-015567号公報
 しかしながら、上記特許文献1の技術においては、電圧検出回路が故障した場合、リレーが溶着しているか否かを判定できなくなってしまう、という問題があった。
 本発明の目的は、電圧検出回路を用いることなく、リレーが溶着しているか否かを診断することができるリレー溶着診断装置を提供することである。
 本発明のリレー溶着診断装置は、充電設備とバッテリを接続する電圧ラインのP極側とN極側にそれぞれ設けられたリレーが溶着しているか否かを診断するリレー溶着診断装置であって、前記充電設備が備えるP極側の抵抗およびN極側の抵抗にそれぞれ設定された抵抗値を基に、閾値を決定する閾値決定部と、前記電圧ラインに所定の電圧を供給する信号出力回路と、前記信号出力回路が前記電圧ラインに供給した電圧の波高値を計測する波高値計測部と、前記波高値と前記閾値を比較することで前記リレーの状態を判定し、判定したリレーの状態と、前記リレーが制御されている状態とを基に、前記リレーが溶着しているか否かを診断する比較診断部と、を備える構成を採る。
 本発明によれば、電圧検出回路を用いることなく、リレーが溶着しているか否かを診断することができる。
本発明の実施の形態に係る電気自動車および急速充電設備の電源系統の構成例を示す図 本発明の実施の形態に係るリレー溶着診断装置の構成例を示すブロック図 本発明の実施の形態に係るリレー溶着診断装置が行う全体の動作例を示すフローチャート 本発明の実施の形態に係るリレー溶着診断装置が行うリレー溶着診断の動作例を示すフローチャート 本発明の実施の形態に係るリレー溶着診断装置が行う判定処理の動作例を示すフローチャート 本発明の実施の形態に係る判定処理における、波高値と閾値の関係例をそれぞれ示す図
 次に、本発明の好適な実施形態について図面を参照して説明する。
 まず、本発明の実施の形態に係る電気自動車および急速充電設備の全体の構成について、図1を用いて説明する。図1は、本実施の形態に係る電気自動車および急速充電設備の電源系統の構成例を示す図である。
 車両1は、電気自動車である。車両1は、制御装置10、漏電検出回路11、報知装置12、バッテリ13、リレー14、リレー15、電圧検出回路16、コンデンサ17、通信線18、信号線19を有する。
 急速充電設備2は、車両1を充電するための設備(装置、システムを含む)である。急速充電設備2は、交流/直流交換装置20、設備制御装置21、電流計22、抵抗23、抵抗24を有する。
 車両1と急速充電設備2は、バッテリ13の充電を行う際、コネクタを介して接続される。図1の例では、5つのコネクタ3a、3b、3c、3d、3eを介して、車両1と急速充電設備2が接続されている。
 コネクタ3aは、車両1と急速充電設備2との間においてプラス側の高圧ライン(正極ライン)を接続する。これにより、交流/直流交換装置20および抵抗24と、リレー14とが接続される。すなわち、抵抗24はP極側の抵抗であり、リレー14はP極側のリレーである。
 コネクタ3bは、車両1と急速充電設備2との間においてマイナス側の高圧ライン(負極ライン)を接続する。これにより、交流/直流交換装置20および抵抗23と、リレー15とが接続される。すなわち、抵抗23はN極側の抵抗であり、リレー15はN極側のリレーである。
 コネクタ3cは、車両1と急速充電設備2との間において通信線18を接続する。これにより、設備制御装置21と制御装置10とが接続される。
 コネクタ3dは、車両1と急速充電設備2との間において信号線19を接続する。これにより、急速充電設備2のグランドと制御装置10とが接続される。
 コネクタ3eは、車両1と急速充電設備2との間において急速充電設備2のグランドと車両1の車体とを接続する。
 なお、上記5つのコネクタ3a、3b、3c、3d、3eは、全てまとめて接続される構成とする。
 制御装置10は、上記のように各コネクタが接続されると、コネクタ3dの接続により発生する信号を、信号線19を介して受け取ることで、急速充電設備2との接続を検出する。なお、制御装置10は、例えばECU(Electronic Control Unit)である。
 また、制御装置10は、リレー14およびリレー15にリレー制御信号を送り、オン(閉じた状態)にしたり、オフ(開いた状態)にしたりする。リレー14およびリレー15がオンに制御されると、正極ラインおよび負極ラインを介して、交流/直流交換装置20とバッテリ13とが接続される。なお、図1の例では、リレー14およびリレー15はともに、オフに制御されている。
 また、制御装置10は、バッテリ13の充電を開始する際、通信線18を介して、設備制御装置21に対して、充電を開始させるための充電開始制御信号を送る。この信号を受けた設備制御装置21は、交流/直流交換装置20に対して、電力の供給を開始するよう指示する。これにより、交流/直流交換装置20からバッテリ13に対して電力が供給され、バッテリ13の充電が開始される。
 設備制御装置21は、バッテリ13の充電が開始されると、電流計22が計測する電流値を基に、急速充電設備2側の漏電検出を行う。電流計22が計測する電流値は、漏電検出用の抵抗23および抵抗24をそれぞれ流れる電流の値である。なお、ここでの急速充電設備2側の漏電検出については、例えば、特開2010-239827号公報に開示されている技術を適用してもよい。
 一方、漏電検出回路11も、バッテリ13の充電が開始されると、コンデンサ17と抵抗113との接続点である接続点Pの電圧を基に、車両1側の漏電検出を行う。なお、ここでの車両1側の漏電検出については、例えば、特開平08-70503号公報に開示されている技術を適用してもよい。また、漏電検出回路11は、波高値計測部110、比較診断部111、および交流信号出力回路112を有するが、これら各部の詳細は図2を用いて後述する。
 本実施の形態において、漏電検出回路11は、車両1側の漏電検出を行う漏電検出モードの他に、リレー14、15の溶着を診断するリレー診断モードを可能とする。リレー診断モードの詳細については後述する。
 漏電検出回路11は、車両1内の漏電を検出した場合、その旨を制御装置10へ通知する。制御装置10は、その通知を受けると、報知装置12に対して、車両1内にて漏電を検出した旨をユーザに報知させる。報知装置12は、例えば、ディスプレイやスピーカ等が挙げられる。
 電圧検出回路16は、正極ラインと負極ラインとの間の電圧を計測し、計測した電圧値を制御装置10へ送る。制御装置10は、電圧検出回路16から通知される電圧値を基に、通常のリレー溶着診断を行う。ここでいう通常のリレー溶着診断は、例えば、上記特許文献1に開示されている技術が適用できる。
 また、本実施の形態において、制御装置10は、電圧検出回路16が計測した電圧値を基に、電圧検出回路診断を行う。これについては後述する。
 次に、本実施の形態に係るリレー溶着診断装置の構成について、図2を用いて説明する。図2は、本実施の形態のリレー溶着診断装置の構成例を示すブロック図である。
 本実施の形態のリレー溶着診断装置は、制御装置10と、漏電検出回路11とを有する。
 制御装置10は、接続検出部100、通信制御部101、回路診断部102、リレー制御部103、閾値決定部104を有する。
 接続検出部100は、車両1と急速充電設備2との接続を検出する。
 本実施の形態では、接続検出部100は、上述したように、コネクタ3dの接続により発生する信号を信号線19から入力すると、車両1と急速充電設備2との接続を検出する。そして、接続検出部100は、車両1と急速充電設備2との接続を検出した旨を通信制御部101へ通知する。
 通信制御部101は、急速充電設備2の設備制御装置21との間で、通信線18を介して、情報、信号の送受信を行う。
 例えば、通信制御部101は、接続検出部100から、車両1と急速充電設備2との接続を検出した旨の通知を受けた場合、設備制御装置21との間で通信を開始し、その通信を維持する。これにより、通信制御部101と設備制御装置21は、車両1と急速充電設備2とが接続状態にあることを共有する。
 また、例えば、通信制御部101は、バッテリ13の充電の開始にあたり、設備制御装置21に対して、上述した充電開始制御信号を送る。このとき、通信制御部101は、充電を開始する旨を漏電検出回路11へ通知する。
 また、例えば、通信制御部101は、回路診断部102から通常のリレー溶着診断による診断結果の通知を受けた場合、または、漏電検出回路11からリレー診断モードによる診断結果の通知を受けた場合、設備制御装置21との通信を終了させる。なお、通信制御部101は、上記いずれかの診断結果の通知を受けた場合、その通知を報知装置12へ送出する。報知装置12は、診断結果をユーザへ報知する。
 回路診断部102は、電圧検出回路16から通知される電圧値を基に、電圧検出回路診断を行う。この診断は、電圧検出回路16が故障しているか否かの診断である。
 まず、回路診断部102は、通信制御部101から、設備制御装置21との通信を開始した旨の通知を受けると、電圧検出回路診断を行う。この診断は、「電圧検出回路診断1」といい、リレー14、15がオンに制御される前、すなわちリレー14、15がオフに制御されているときに行われる。電圧検出回路診断1では、回路診断部102は、電圧検出回路16から通知される電圧値が無い場合に、電圧検出回路16が故障していないと診断する。換言すれば、電圧検出回路診断1では、回路診断部102は、電圧検出回路16から通知される電圧値が有る場合、電圧検出回路16が故障していると診断する。そして、回路診断部102は、電圧検出回路診断1が終了した旨を、リレー制御部103へ通知する。
 その後、バッテリ13の充電が終了すると、回路診断部102は再度、電圧検出回路診断を行う。この診断は、「電圧検出回路診断2」といい、リレー14、15がオンに制御されているときに行われる。電圧検出回路診断2では、回路診断部102は、電圧検出回路16から通知される電圧値が有る場合に、電圧検出回路16が故障していないと診断する。換言すれば、電圧検出回路診断2では、回路診断部102は、電圧検出回路16から通知される電圧値が無い場合、電圧検出回路16が故障していると診断する。
 なお、電圧検出回路診断2の開始にあたり、回路診断部102がバッテリ13の充電の終了を検出する方法としては、以下の例が挙げられる。例えば、回路診断部102は、急速充電設備2から「充電終了」を示す情報を受信した場合に、充電の終了を検出する。「充電終了」を示す情報は、ユーザが急速充電設備2の充電停止ボタン(図示せず)を押下した場合に、急速充電設備2から通信線18を介して制御装置10へ送信される。または、例えば、回路診断部102は、バッテリ13の状態を検知可能なECU(図示せず)から「満充電」を示す情報を受信した場合に、充電の終了を検出する。「満充電」を示す情報は、上記ECUがバッテリ13の充電が完了したことを検知した場合に、当該ECUから信号線(図示せず)を介して制御装置10へ送信される。
 回路診断部102は、電圧検出回路診断1、2の結果が共に「電圧検出回路16が故障していない」(以下、「故障なし」という)である場合、通常のリレー溶着診断を行う。通常のリレー溶着診断とは、上述した通り、電圧検出回路16から通知された電圧値を基に行うリレー溶着診断であり、例として上記特許文献1に開示されている診断が挙げられる。そして、回路診断部102は、通常のリレー溶着診断を終えると、その診断結果を通信制御部101へ通知する。
 一方で、回路診断部102は、電圧検出回路診断1、2の少なくとも一方の結果が「電圧検出回路16が故障している」(以下、「故障あり」という)である場合、閾値決定部104に、故障ありの旨を通知する。
 リレー制御部103は、リレー14、15に対して、上記リレー制御信号を送出し、オンまたはオンに制御する。
 例えば、リレー制御部103は、回路診断部102から、電圧検出回路診断1が終了した旨の通知を受けると、リレー14、15の両方に対し、オンにするためのリレー制御信号を送出する。
 また、例えば、リレー制御部103は、漏電検出回路11から、リレー制御信号を送出するように要求を受けると、リレー14、15の少なくとも一方に対し、オンまたはオフにするためのリレー制御信号を送出する。その後、リレー制御部103は、リレー制御信号の送出を行った旨を漏電検出回路11へ通知する。
 閾値決定部104は、漏電検出回路11がリレー診断モードで用いる閾値を決定し、決定した閾値を漏電検出回路11へ通知する。
 上述した通り、漏電検出回路11は、漏電検出モードとリレー診断モードを切り替えて動作可能であるが、それぞれのモードで用いられる閾値は異なる。以下、漏電検出モードで用いられる閾値はV0という。また、リレー診断モードで用いられる閾値はV1(第1閾値の一例)およびV2(第2閾値の一例)という。これら閾値の大小関係は、V2が最大、V0が最小である。なお、V0は、予め漏電検出回路11に設定されているとする。
 閾値決定部104は、回路診断部102から、故障ありの通知を受けると、閾値V1、V2を所定の決定方法により決定する。そして、閾値決定部104は、決定した閾値V1、V2を漏電検出回路11へ通知する。この通知を受けた漏電検出回路11は、漏電検出モードからリレー診断モードへと動作を切り替える。なお、このリレー診断モードでの動作は、上記通常のリレー溶着診断に対するものとして、「本実施の形態のリレー溶着診断」といえる。
 ここで、閾値決定部104が行う閾値V1、V2の決定方法について説明する。例として、以下の(1)~(3)に示す3つの決定方法がある。
 (1)急速充電設備2の規格に抵抗値が指定されている場合、閾値決定部104は、その抵抗値と、漏電検出回路11に設定されている定数とを基に、閾値V1、V2を決定する。ここでいう抵抗値とは、抵抗23、24の値である(以下同じ)。
 (2)急速充電設備2との通信により取得できる場合、閾値決定部104は、設備制御装置21から抵抗値を取得する。そして、閾値決定部104は、その抵抗値と、漏電検出回路11に設定されている定数とを基に、閾値V1、V2を決定する。
 (3)上記(1)および(2)以外の場合、閾値決定部104は、下記の式の計算を行い、閾値V1、V2を決定する。なお、下記式のAは、車両1が走行モードにあるときの停車中など(車両1が急速充電されていない状態で、インバータなどが動作していないとき)の波高値レベルである。また、下記式のBは、リレー溶着診断中に両極のリレーが共にオンであるときの波高値レベルである。
 V1=B+(A-B)×0.2
 V2=B+(A-B)×0.7
 上記(3)の場合、急速充電設備2の抵抗23および24は、予め同じ定数が設定されているとする。また、電流計22の抵抗値は、ほぼ無視できるレベルであるとする。なお、片極のリレーのみがオンのときの波高値レベルは、ほぼAとBの中間値となる。そして、(3)の場合において、波高値レベルAとBに明らかなレベル差がない場合は、漏電検出回路11は、診断不可能と判断する(後述する図4のステップS460)。
 漏電検出回路11は、波高値計測部110、比較診断部111、および交流信号出力回路112(信号出力回路の一例)を有する。
 交流信号出力回路112は、図示しない発振回路を内蔵する。そして、交流信号出力回路112は、例えば、漏電検出(漏電検出モード)を行う際、もしくは、リレー溶着診断(リレー診断モード)を行う際に、高圧ラインに所定の交流電圧を供給する。交流信号出力回路112の出力端子は、図1に示すように、抵抗113、コンデンサ17の順に介して高圧ラインと接続する。
 波高値計測部110は、コンデンサ17と抵抗113との接続点である接続点Pの電圧の波高値を計測する。接続点Pの電圧は、交流信号出力回路112が高圧ラインに供給した電圧である。
 具体的には、波高値計測部110は、閾値決定部104から、閾値V1、V2の通知を受けると、リレー診断モードへ移行し、その動作を開始する。これにより、上述した通り、交流信号出力回路112が、高圧ラインに所定の交流電流を供給する。そして、波高値計測部110は、まず、接続点Pの電圧の波高値が安定する間(例えば、約3秒間)、待機する。そして、波高値計測部110は、接続点Pの波高値を平滑化してアナログ/デジタル変換を行う。このようにして、波高値計測部110は、波高値を計測する。
 なお、波高値計測部110は、閾値V1、V2が通知された後において、波高値の計測を、繰り返す場合がある。その場合、波高値計測部110は、リレー制御部103から、リレー制御信号の送出を行った旨の通知を受けると、再度、上記波高値の計測を行う。
 そして、波高値計測部110は、上述のように計測した波高値2を比較診断部111へ通知する。なお、最初の波高値の計測の際は、波高値計測部110は、通知された閾値V1、V2も比較診断部111へ通知する。
 比較診断部111は、計測された波高値と、通知された閾値とを比較し、リレー14およびリレー15がそれぞれ、オンとなっているかまたはオフとなっているか(以下、リレー状態という)を判定する。
 具体的には、比較診断部111は、波高値計測部110から、計測された波高値および閾値V1、V2の通知を受けると、波高値と、V1およびV2とを比較する。この比較の結果を基に、比較診断部111は、リレー状態を判定する。リレー状態の判定の詳細については、図6を用いて後述する。
 比較診断部111は、リレー状態の判定の結果を基に、各リレー14、15が溶着しているか否かを診断する。そして、比較判定部111は、その診断結果(リレー診断モードによる診断結果)を制御装置10の通信制御部101へ通知する。
 一方、比較診断部111は、診断結果を出せない場合、制御装置10のリレー制御部103へ、リレー制御信号の送出を要求する。
 なお、比較診断部111は、リレー診断モードによる診断結果の通知、および、リレー制御信号の送出要求の両方を行う場合もある。
 次に、上記本実施の形態に係るリレー溶着診断装置の全体の動作について説明する。図3は、本実施の形態に係るリレー溶着診断装置の全体の動作例を示すフローチャートである。
 ユーザは、5つのコネクタを接続し、車両1と急速充電設備2とを接続する。
 制御装置10は、車両1と急速充電設備2との接続を検出すると(ステップS310)、急速充電設備2の設備制御装置21と通信を開始する(ステップS320)。なお、閾値の決定方法として上記(2)を採用する場合、このステップにて、制御装置10は、設備制御装置21から抵抗値を取得する。
 次に、制御装置10は、電圧検出回路診断1を行い、診断結果(「故障あり」または「故障なし」)を保持する(ステップS330)。
 次に、制御装置10は、オフとなっているリレー14およびリレー15を、オンに制御する(ステップS340)。
 次に、制御装置10は、設備制御装置21へ充電開始制御信号を送る。この信号を受信した設備制御装置21は、交流/直流交換装置20に対し、電力の供給を開始するように制御する。このようにして、制御装置10は、バッテリ13の充電を行う(ステップS350)。
 制御装置10は、バッテリ13の充電が終了すると、電圧検出回路診断2を行い、診断結果(「故障あり」または「故障なし」)を保持する(ステップS360)。
 次に、制御装置10は、リレー溶着診断を行う(ステップS370)。ここで、制御装置10は、保持しておいた電圧検出回路診断1、2の診断結果に応じて、通常のリレー溶着診断または本実施の形態のリレー溶着診断(リレー診断モード)のいずれかを選択し、実行する。このステップの詳細は、図4を用いて後述する。
 制御装置10は、リレー溶着診断が終了すると、設備制御装置21との通信を終了する(ステップS380)。
 ユーザは、5つのコネクタを外し、車両1と急速充電設備2との接続を解除する。
 次に、上記本実施の形態に係るリレー溶着診断装置のリレー溶着診断の動作(図3のステップS370)について説明する。図4は、本実施の形態に係るリレー溶着診断装置が行うリレー溶着診断の動作例を示すフローチャートである。
 制御装置10は、電圧検出回路診断1および2の診断結果が共に「故障なし」であるか否かを判定する(ステップS410)。
 判定の結果、電圧検出回路診断1および2の診断結果が共に「故障なし」である場合(ステップS410:YES)、制御装置10は、通常のリレー溶着診断を行い(ステップS420)、一連の処理を終了する。
 一方、判定の結果、電圧検出回路診断1および2の診断結果が共に「故障なし」ではない場合(ステップS410:NO)、制御装置10は、ステップS430へ進む。
 制御装置10は、リレー診断モード用の閾値V1およびV2を決定し、漏電検出回路11へ通知する。これにより、制御装置10は、漏電検出回路11をリレー診断モードで動作するように制御する(ステップS430)。
 漏電検出回路11は、リレー状態判定処理を実行する(ステップS440)。リレー状態判定処理とは、上述した通り、リレー14、15がそれぞれ、オンであるかまたはオフであるかを示すリレー状態を判定する処理である。
 ここで、漏電検出回路11が行う判定処理について、図5および図6を用いて説明する。図5は、リレー状態判定処理の動作例を示すフローチャートである。図6は、リレー状態判定処理における、波高値と閾値の関係例をそれぞれ示す図である。
 まず、漏電検出回路11は、接続点Pの電圧の波高値が安定するまで待機する(ステップS710)。
 次に、漏電検出回路11は、アナログ/デジタル変換を行うことで、接続点Pの電圧の波高値を計測する(ステップS720)。
 次に、漏電検出回路11は、計測した波高値と、閾値V1、V2とを比較する(ステップS730)。
 比較の結果、図6Aに示すように波高値が閾値V2よりも大きい場合、漏電検出回路11は、リレーの両極、すなわちリレー14および15が共にオフであると判定する。
 比較の結果、図6Bに示すように波高値が閾値V1よりも大きくV2より小さい場合、漏電検出回路11は、リレーの片極、すなわちリレー14または15のいずれかがオフであると判定する。
 比較の結果、図6Cに示すように波高値が閾値V1よりも小さい場合、漏電検出回路11は、リレーの両極、すなわちリレー14および15が共にオンであると判定する。
 ここで、漏電検出回路11は、上記比較により得られたリレー状態判定処理の結果が、リレーの両極がオンであるか否かを判断する(ステップS450)。なお、閾値の決定方法として上記(3)を採用した場合、このステップでは、漏電検出回路11は、波高値レベルAとBに明らかな差があるかを確認する。漏電検出回路11は、明らかな差がない場合はステップS460へ進み、明らかな差がある場合はステップS480へ進む。
 判断の結果、リレーの両極がオンではない場合(ステップS450:NO)、漏電検出回路11は、診断が不可能であるとし、その旨をリレー診断モードによる診断結果として制御装置10へ通知する(ステップS460)。これにより、制御装置10は、報知装置12に対し、リレー溶着診断が不可能である旨をユーザへ報知させる。
 次に、漏電検出回路11は、リレーの両極、すなわちリレー14および15をオフに制御するためのリレー制御信号の送出を制御装置10へ要求する(ステップS470)。これにより、制御装置10は、リレー14および15をオフに制御する。このようにして、一連の処理が終了する。
 一方、判断の結果、リレーの両極がオンである場合(ステップS450:YES)、漏電検出回路11は、リレーの両極をオフに制御するためのリレー制御信号の送出を制御装置10へ要求する(ステップS480)。これにより、制御装置10は、リレー14および15をオフに制御する。そして、制御装置10は、リレー制御信号の送出を行った旨を漏電検出回路11へ通知する。
 次に、漏電検出回路11は、再び上記リレー状態判定処理を行う(ステップS490)。
 そして、漏電検出回路11は、上記比較により得られたリレー状態判定処理の結果が、リレーの両極がオフであるか否かを判断する(ステップS500)。
 判断の結果、リレーの両極がオフである場合(ステップS500:YES)、漏電検出回路11は、両極のリレーは正常であると診断し、その旨をリレー診断モードによる診断結果として制御装置10へ通知する(ステップS510)。これにより、制御装置10は、報知装置12に対し、両極のリレーは正常である旨をユーザへ報知させる。このようにして、一連の処理が終了する。
 一方、判断の結果、リレーの両極がオフではない場合(ステップS500:NO)、漏電検出回路11は、リレーの片極がオフであるか否かを判断する(ステップS520)。
 判断の結果、リレーの片極がオフではない場合(ステップS520:NO)、漏電検出回路11は、両極のリレーは溶着していると診断し、その旨をリレー診断モードによる診断結果として制御装置10へ通知する(ステップS530)。これにより、制御装置10は、報知装置12に対し、両極のリレーは溶着している旨をユーザへ報知させる。このようにして、一連の処理を終了する。
 一方、判断の結果、リレーの片極がオフである場合(ステップS520:YES)、漏電検出回路11は、P極のリレー14をオンに制御するためのリレー制御信号の送出を制御装置10へ要求する(ステップS540)。これにより、制御装置10は、リレー14をオンに制御する。そして、制御装置10は、リレー制御信号の送出を行った旨を漏電検出回路11へ通知する。
 次に、漏電検出回路11は、再び上記リレー状態判定処理を行う(ステップS550)。
 そして、漏電検出回路11は、上記比較により得られたリレー状態判定処理の結果が、リレーの両極がオンであるか否かを判断する(ステップS560)。
 判断の結果、リレーの両極がオンである場合(ステップS560:YES)、漏電検出回路11は、N極のリレー15は溶着していると診断し、その旨をリレー診断モードによる診断結果として制御装置10へ通知する(ステップS570)。これにより、制御装置10は、報知装置12に対し、N極のリレー15は溶着している旨をユーザへ報知させる。
 次に、漏電検出回路11は、P極のリレー14をオフに制御するためのリレー制御信号の送出を制御装置10へ要求する(ステップS580)。これにより、制御装置10は、P極のリレー14をオフに制御する。このようにして、一連の処理が終了する。
 一方、判断の結果、リレーの両極がオンではない場合(ステップS560:NO)、漏電検出回路11は、P極のリレー14は溶着していると診断し、その旨をリレー診断モードによる診断結果として制御装置10へ通知する(ステップS590)。これにより、制御装置10は、報知装置12に対し、P極のリレー14は溶着している旨をユーザへ報知させる。
 次に、漏電検出回路11は、P極のリレー14をオフに制御するためのリレー制御信号の送出を制御装置10へ要求する(ステップS600)。これにより、制御装置10は、P極のリレー14をオフに制御する。このようにして、一連の処理が終了する。
 なお、上記説明では、ステップS540において、P極のリレー14をオンに制御する例としたが、N極のリレー15をオンに制御するようにしてもよい。その場合、ステップS570ではP極のリレー14が溶着していると診断され、ステップS580ではP極のリレー14がオフに制御される。同様に、ステップS590ではN極のリレー15が溶着していると診断され、ステップS600ではN極のリレーがオフに制御される。
 以上の説明のように、本実施の形態によれば、電圧検出回路を用いることなく、車両と接続された急速充電設備が備える抵抗値を基に決定された閾値を用いてリレー溶着診断を行う。すなわち、本実施の形態では、電圧検出回路が故障した場合でも、リレー溶着診断を実行することができる。
 なお、上記実施の形態で用いた「急速充電」という表現の中の「急速」という表現は、便宜上の表現である。よって、上記実施の形態で用いる「充電」は、直流の電気エネルギを用いる充電であればよい。また、上記実施の形態で用いた「高圧ライン」という表現の中の「高圧」という表現も、便宜上の表現である。よって、上記実施の形態で用いる「電圧」は、バッテリを充電可能な電圧であればよい。
 以上、本実施の形態について説明してきたが、上記説明は一例であり、本発明は、その要旨を逸脱しない範囲内において種々の変形が可能である。
 例えば、上記実施の形態では、図2に示すように、制御装置10と漏電検出回路11とで本実施の形態のリレー溶着診断装置を構成したが、この構成に限定されない。例えば、制御装置10に波高値計測部110および比較診断部111を加えることで、制御装置10だけ本実施の形態のリレー溶着診断装置を構成するようにしてもよい。
 2012年3月29日出願の特願2012-076075の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るリレーの溶着判定装置は、バッテリ駆動の純粋な電気自動車に限らず、いわゆるプラグインハイブリッド車であっても同様に適用可能である。
 1 車両
 2 急速充電設備
 3a、3b、3c、3d、3e コネクタ
 10 制御装置
 11 漏電検出回路
 12 報知装置
 13 バッテリ
 14 リレー(P極側)
 15 リレー(N極側)
 16 電圧検出回路
 17 コンデンサ
 18 通信線
 19 信号線
 20 交流/直流交換装置
 21 設備制御装置
 22 電流計
 23 抵抗(N極側)
 24 抵抗(P極側)
 100 接続検出部
 101 通信制御部
 102 回路診断部
 103 リレー制御部
 104 閾値決定部
 110 波高値計測部
 111 比較診断部
 112 交流信号出力回路
 

Claims (7)

  1.  充電設備とバッテリを接続する電圧ラインのP極側とN極側にそれぞれ設けられたリレーが溶着しているか否かを診断するリレー溶着診断装置であって、
     前記充電設備が備えるP極側の抵抗およびN極側の抵抗にそれぞれ設定された抵抗値を基に、閾値を決定する閾値決定部と、
     前記電圧ラインに所定の電圧を供給する信号出力回路と、
     前記信号出力回路が前記電圧ラインに供給した電圧の波高値を計測する波高値計測部と、
     前記波高値と前記閾値を比較することで前記リレーの状態を判定し、判定したリレーの状態と、前記リレーが制御されている状態とを基に、前記リレーが溶着しているか否かを診断する比較診断部と、
     を備えるリレー溶着診断装置。
  2.  前記信号出力回路と前記電圧ラインとの間にコンデンサをさらに備え、
     前記信号出力回路は、前記高圧ラインに供給する所定の電圧として、交流の電圧を発生する、
     請求項1記載のリレー溶着診断装置。
  3.  前記閾値決定部は、
     第1閾値と、当該第1閾値よりも大きい第2閾値とを決定し、
     前記比較診断部は、
     前記波高値が前記第2閾値よりも大きい場合は、前記リレーの両極がオフであると判定し、
     前記波高値が前記第1閾値よりも大きく第2閾値よりも小さい場合は、前記リレーの片極がオフであると判定し、
     前記波高値が前記第1閾値よりも小さい場合は、前記リレーの両極がオンであると判定する、
     請求項1記載のリレー溶着診断装置。
  4.  前記比較診断部は、
     前記リレーの両極がオフに制御されている状態のときに、
     前記リレーの両極がオンであると判定した場合、前記リレーの両極が溶着していると診断する、
     請求項3記載のリレー溶着診断装置。
  5.  前記比較診断部は、
     前記リレーの片極がオンに制御されている状態のときに、
     前記リレーの両極がオンであると判定した場合、オンに制御されているリレーとは別のリレーが溶着していると診断する一方、
     前記リレーの両極がオンではないと判定した場合、オンに制御されているリレーが溶着していると診断する、
     請求項3記載のリレー溶着診断装置。
  6.  前記リレーの上流側の電圧を検出する電圧検出回路と、
     前記電圧検出回路が検出した電圧を基に、前記リレーが溶着しているか否かを診断する回路診断部と、をさらに備え、
     前記回路診断部は、
     前記バッテリの充電の開始前で前記リレーがオフに制御されているときに、前記電圧検出回路が電圧を検出した場合に、前記電圧検出回路が故障していると診断し、
     前記バッテリの充電の終了後で前記リレーがオンに制御されているときに、前記電圧検出回路が電圧を検出しなかった場合に、前記電圧検出回路が故障していると診断し、
     前記閾値決定部は、
     前記バッテリの充電の開始前と終了後の少なくとも一方で、前記電圧検出回路が故障していると診断された場合、前記閾値を決定する、
     請求項1記載のリレー溶着診断装置。
  7.  前記バッテリを備える電気自動車の前記バッテリの漏電を検出する漏電検出回路を含んで構成され、
     前記漏電検出回路は、
     前記バッテリの漏電を検出する機能に加え、前記信号出力回路、前記波高値計測部、および前記比較診断部を備える、
     請求項1記載のリレー溶着診断装置。
     
PCT/JP2013/001311 2012-03-29 2013-03-04 リレー溶着診断装置 WO2013145562A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/388,449 US9551755B2 (en) 2012-03-29 2013-03-04 Relay weld diagnostic device
EP13768402.3A EP2833498B1 (en) 2012-03-29 2013-03-04 Relay weld diagnostic device
CN201380013157.1A CN104170197B (zh) 2012-03-29 2013-03-04 继电器熔敷诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012076075A JP5945804B2 (ja) 2012-03-29 2012-03-29 リレー溶着診断装置
JP2012-076075 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145562A1 true WO2013145562A1 (ja) 2013-10-03

Family

ID=49258885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001311 WO2013145562A1 (ja) 2012-03-29 2013-03-04 リレー溶着診断装置

Country Status (5)

Country Link
US (1) US9551755B2 (ja)
EP (1) EP2833498B1 (ja)
JP (1) JP5945804B2 (ja)
CN (1) CN104170197B (ja)
WO (1) WO2013145562A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018108026B3 (de) 2018-04-05 2019-06-27 Te Connectivity Germany Gmbh Vorrichtung zum Prüfen eines Leistungsrelais

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127151B2 (ja) * 2013-11-06 2017-05-10 川崎重工業株式会社 乗物およびそれに用いる電源ユニット
JP6206317B2 (ja) * 2014-05-12 2017-10-04 トヨタ自動車株式会社 蓄電システム
US9702917B2 (en) * 2014-06-17 2017-07-11 Ford Global Technologies, Llc Detection of and response to second leakage detection circuit
JP6160643B2 (ja) * 2015-03-17 2017-07-12 トヨタ自動車株式会社 車両の電源システム
CN104820183B (zh) * 2015-05-15 2018-08-03 阳光电源股份有限公司 升压斩波电路中旁路继电器的开关状态检测方法及装置
KR101918361B1 (ko) 2016-11-28 2018-11-13 현대자동차주식회사 차량의 배터리 관리 시스템
KR102058198B1 (ko) * 2016-12-12 2019-12-20 주식회사 엘지화학 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법
KR102436271B1 (ko) * 2016-12-30 2022-08-24 엘에스일렉트릭(주) 디지털 신호 입력 회로의 진단 기능을 구비한 계전 장치
JP6724811B2 (ja) * 2017-02-07 2020-07-15 トヨタ自動車株式会社 充電システム
EP3589513B1 (en) * 2017-03-03 2022-10-05 ABB Schweiz AG Charging system
JP2018196285A (ja) * 2017-05-19 2018-12-06 パナソニックIpマネジメント株式会社 電源制御装置、溶着検出方法およびリレー溶着検出装置
JP2019049473A (ja) * 2017-09-11 2019-03-28 プライムアースEvエナジー株式会社 充電器
KR102270232B1 (ko) * 2017-12-11 2021-06-25 주식회사 엘지에너지솔루션 배터리 팩의 양극 컨택터 진단 장치 및 방법
KR102270233B1 (ko) * 2017-12-12 2021-06-25 주식회사 엘지에너지솔루션 배터리 팩의 음극 컨택터 진단 장치 및 방법
US10944287B2 (en) * 2018-07-02 2021-03-09 Schneider Electric It Corporation AVR bypass relay welding detection
WO2020111899A1 (ko) * 2018-11-30 2020-06-04 주식회사 엘지화학 스위치 제어 장치 및 방법
JP7431212B2 (ja) 2019-02-19 2024-02-14 三洋電機株式会社 漏電検出装置、車両用電源システム
JP7326775B2 (ja) * 2019-03-07 2023-08-16 三菱自動車工業株式会社 車両
US11821977B2 (en) * 2019-07-10 2023-11-21 Samsung Electronics Co., Ltd. Target detection and tracking for feature extraction
KR20210152637A (ko) * 2020-06-08 2021-12-16 주식회사 엘지에너지솔루션 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템 및 전기 차량
JP7533680B1 (ja) 2023-04-27 2024-08-14 いすゞ自動車株式会社 電気自動車

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870503A (ja) 1994-08-30 1996-03-12 Nippondenso Co Ltd 電気自動車の地絡検出回路
JP2010239827A (ja) 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 電動車両用充電器および地絡検出方法
JP2010238576A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電システム、充電器、およびリレーの閉固着を検出する方法
JP2011160604A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 車両
JP2011185812A (ja) * 2010-03-10 2011-09-22 Denso Corp 電源制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679750B2 (ja) * 2001-11-30 2005-08-03 三洋電機株式会社 漏電検出回路を備える電動車両の電源装置
JP5421000B2 (ja) * 2009-07-03 2014-02-19 トヨタ自動車株式会社 電動車両、溶着判定装置、および溶着判定プログラム
JP5401333B2 (ja) * 2010-01-06 2014-01-29 アズビル株式会社 回路異常検出装置および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870503A (ja) 1994-08-30 1996-03-12 Nippondenso Co Ltd 電気自動車の地絡検出回路
JP2010239827A (ja) 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 電動車両用充電器および地絡検出方法
JP2010238576A (ja) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The 充電システム、充電器、およびリレーの閉固着を検出する方法
JP2011160604A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp 車両
JP2011185812A (ja) * 2010-03-10 2011-09-22 Denso Corp 電源制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833498A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018108026B3 (de) 2018-04-05 2019-06-27 Te Connectivity Germany Gmbh Vorrichtung zum Prüfen eines Leistungsrelais

Also Published As

Publication number Publication date
JP5945804B2 (ja) 2016-07-05
EP2833498B1 (en) 2019-07-03
EP2833498A4 (en) 2015-04-29
US9551755B2 (en) 2017-01-24
EP2833498A1 (en) 2015-02-04
JP2013207961A (ja) 2013-10-07
CN104170197B (zh) 2017-03-08
US20150054516A1 (en) 2015-02-26
CN104170197A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5945804B2 (ja) リレー溶着診断装置
US10144298B2 (en) Power supply device of vehicle
CN108233495B (zh) 充电系统及其控制方法
JP6098011B2 (ja) 車両用電力装置
US9114715B2 (en) Electronic control unit
WO2013190733A1 (ja) リーク検出装置
US20160272070A1 (en) Power supply system for vehicle
JP2011083151A (ja) 電源装置とコンタクタ溶着判定方法
JPWO2013051156A1 (ja) 電池監視装置、電池監視システム
JP2010239845A (ja) 充電システム、電動車両の充電方法、および電動車両
JP2015076959A (ja) 電源システム
JP2014138450A (ja) 変換装置、故障判定方法及び制御プログラム
JP7056599B2 (ja) 車両
KR20130119666A (ko) 릴레이 융착 위치 판단 회로
CN104205593A (zh) 电源装置
JP2016067149A (ja) 非接触送受電システム
KR20130096481A (ko) 릴레이 시퀀스 제어 장치 및 그 제어 방법
JP2019092310A (ja) 車両用充電装置
CN105599624B (zh) 电动车辆以及供电系统
JP2014138451A (ja) 変換装置、故障判定方法及び制御プログラム
JP2014232674A (ja) リレー診断装置
JP2015211547A (ja) 充電システム
JP2017073888A (ja) 車両
JP2020022332A (ja) 車載充電装置
JP6428448B2 (ja) 絶縁抵抗低下検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768402

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2013768402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14388449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE