WO2013145403A1 - 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置 - Google Patents

電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置 Download PDF

Info

Publication number
WO2013145403A1
WO2013145403A1 PCT/JP2012/078389 JP2012078389W WO2013145403A1 WO 2013145403 A1 WO2013145403 A1 WO 2013145403A1 JP 2012078389 W JP2012078389 W JP 2012078389W WO 2013145403 A1 WO2013145403 A1 WO 2013145403A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
power receiving
receiving device
electrodes
Prior art date
Application number
PCT/JP2012/078389
Other languages
English (en)
French (fr)
Inventor
市川 敬一
博宣 高橋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to GB1416991.6A priority Critical patent/GB2515221B/en
Priority to CN201280070182.9A priority patent/CN104126264B/zh
Priority to JP2014507314A priority patent/JP5590268B2/ja
Publication of WO2013145403A1 publication Critical patent/WO2013145403A1/ja
Priority to US14/465,144 priority patent/US9831917B2/en

Links

Images

Classifications

    • H04B5/22
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02J5/005
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction

Definitions

  • the present invention relates to an electric field coupling type wireless power transmission system and a power receiving device used therefor.
  • Patent Document 1 discloses an electromagnetic induction type wireless power transmission system.
  • the electromagnetic induction type wireless power transmission system includes a power transmission device and a power reception device.
  • the power transmission device includes a power transmission coil
  • the power reception device includes a power reception coil, and electric power is transmitted between these coils by electromagnetic induction.
  • Patent Document 2 discloses an electric field coupling type wireless power transmission system.
  • the electric field coupling type wireless power transmission system includes a power transmission device and a power reception device.
  • the power transmission device includes a power transmission electrode
  • the power reception device includes a power reception electrode, and electric power is transmitted between these electrodes by electrostatic induction.
  • FIG. 11 is an equivalent circuit diagram of the electric field coupling type wireless power transmission system of Patent Document 2.
  • This electric field coupling type wireless power transmission system includes a power transmission device 1101 and a power reception device 1201, and power is supplied via a coupling capacitance Cm between a capacity C1 of the power transmission device 1101 and a capacity C2 of the power reception device 1201.
  • the power transmission device 1101 includes an LC resonance circuit including an inductor L1 and a capacitor C1
  • the power reception device 1201 includes an LC resonance circuit including an inductor L2 and a capacitor C2.
  • the operating frequency (power transmission frequency) of the voltage generator 11 of the power transmission system is set to an intermediate frequency between these resonance frequencies.
  • An object of the present invention is to provide an electric field coupling type wireless power transmission system and a power receiving device that can prevent damage to the power receiving device even when the power receiving device is separated from the power transmitting device for some reason during power transmission.
  • the inventors of the present invention have studied the cause of damage to the power receiving device when the power receiving device is separated from the power transmitting device, and obtained the following knowledge.
  • FIG. 12 illustrates a voltage between a power receiving device-side active electrode and a power receiving device-side passive electrode in a process of separating a power receiving device from a power transmitting device in a conventional electric field coupling type wireless power transmission system (hereinafter referred to as “between power receiving electrodes as appropriate”). It is a figure which shows the change of the frequency characteristic of the voltage (henceforth "the voltage between power transmission electrodes" suitably) between a power transmission apparatus side active electrode and a power transmission apparatus side passive electrode.
  • FIG. 12A is a diagram illustrating frequency characteristics in a state where the power receiving device is placed on the power transmission device (normal use state).
  • FIG. 12B is a diagram illustrating frequency characteristics of the voltage between the power transmission electrodes and the voltage between the power reception electrodes in a state where the power reception device starts to be separated from the power transmission device.
  • FIG. 12C is a diagram illustrating the frequency characteristics of the voltage between the power transmission electrodes and the voltage between the power reception electrodes when the power reception device is further separated from the power transmission device than in the case of FIG.
  • solid lines A, A ′, and A ′′ indicate the frequency characteristics of the receiving electrode voltage
  • broken lines B, B ′, and B ′′ indicate the frequency characteristics of the transmitting electrode voltage. Show.
  • Solid lines A, A ′, A ′′ and broken lines B, B ′, B ′′ indicate frequency characteristics when the secondary battery is almost fully charged and the load impedance is high.
  • the alternate long and short dash line C in FIG. 12A shows the frequency characteristics of the voltage between the receiving electrodes when the secondary battery is hardly charged and the load impedance is low.
  • FIG. 12B and FIG. 12C the characteristics corresponding to this are omitted.
  • the power transmission electrode voltage and the power reception electrode voltage each have two peaks at different frequencies. This is due to two resonances occurring on the high frequency side and the low frequency side of this frequency when the resonance frequency of the resonance circuit of the power transmission device and the power reception device is equalized and the power transmission electrode and the power reception electrode are capacitively coupled. Yes, the frequency of each peak corresponds to the resonant frequency. As can be seen from FIGS. 12A, 12B, and 12C, these peaks (resonance frequencies) increase as the power receiving device is separated from the power transmitting device, that is, as the distance between the power receiving device and the power transmitting device increases. Move to the frequency side.
  • each peak moves to the high frequency side because the coupling capacitance Cm between the power transmission electrode of the power transmission device and the power reception electrode of the power reception device decreases as the distance between the power reception device and the power transmission device increases. It is thought that it is to do.
  • f1, f1 ′, and f1 ′′ indicate resonance frequencies on the low frequency side of the voltage between the receiving electrodes
  • f2, f2 ′, and f2 ′′ indicate between the receiving electrodes.
  • the resonance frequency on the high frequency side of the voltage is shown.
  • F3 indicates the operating frequency (power transmission frequency) of the power transmission device.
  • the operating frequency f3 is a power transmission frequency (operating frequency) of the power transmission device, and is set to an intermediate frequency between the resonance frequency f1 on the low frequency side and the resonance frequency f2 on the high frequency side in the state of FIG. .
  • the resonance frequency on the low frequency side of the power receiving electrode voltage is continuous with f1, f1 ′, and f1 ′′ when the power receiving device is separated from the power transmitting device.
  • FIG.12 (c) when the resonant frequency f1 "on the low frequency side and the operating frequency f3 coincide with each other, this occurs in the power receiving device.
  • the voltage that is generated becomes very high, causing damage to the power receiving device.
  • FIG. 13 shows the change in the voltage between the power receiving electrodes with respect to the change in the coupling capacitance Cm with the separation of the power receiving device.
  • the resonance frequencies f1 and f2 change as described above.
  • the voltage between the power receiving electrodes once increases and then decreases. In this way, when the power receiving device is suddenly separated from the power transmitting device during power transmission and the distance between the power receiving device and the power transmitting device increases, a large voltage between the power receiving electrodes (overvoltage) is applied between the power receiving electrodes. May be.
  • the power receiving device may be damaged.
  • the above is considered to be the cause of damage to the power receiving device.
  • the present inventor considered that the generation of a high voltage in the power receiving device due to the change in the coupling capacitance accompanying the separation of the power receiving device is a cause of the damage of the power receiving device. Therefore, the present inventor has devised a power receiving device and a power transmission system having the following configuration, which includes an impedance element connected in parallel to the resonance circuit on the power receiving device side and can shift the resonance frequency. did.
  • a power receiving device of the present invention is connected between a power supply circuit that generates an alternating voltage of a predetermined frequency, at least a pair of power transmission electrodes, and between the power supply circuit and at least a pair of power transmission electrodes, and an AC voltage between at least a pair of power transmission electrodes.
  • the power is wirelessly transmitted from a power transmission device including a resonance circuit that applies power.
  • the power receiving device is provided corresponding to at least a pair of power transmission electrodes of the power transmission device, and includes at least a pair of power reception electrodes that generate a coupling capacity in accordance with a positional relationship with at least the pair of power transmission electrodes, and a load circuit.
  • a resonance circuit that is connected between at least a pair of power reception electrodes and applies an AC voltage to a load circuit; and an overvoltage suppression unit that is connected in parallel to the resonance circuit on the power reception device side.
  • the impedance of the impedance element changes from the value when the power transmission electrode and the power reception electrode are in a predetermined positional relationship during normal power transmission to substantially zero. In the process, it is set to a value that suppresses an increase in voltage between at least a pair of power receiving electrodes as compared with the case where the impedance element is not connected.
  • the power transmission system of the present invention is connected between a power supply circuit that generates an alternating voltage of a predetermined frequency, at least a pair of power transmission electrodes, and between the power supply circuit and at least a pair of power transmission electrodes, and between at least a pair of power transmission electrodes.
  • the power transmission system and the power receiving device of the present invention even when the power receiving device is separated from the power transmitting device during power transmission, a high voltage between the power receiving electrodes at the resonance frequency is not applied to the load circuit. Therefore, it is possible to prevent the power receiving device and the load circuit included therein from being damaged by overvoltage.
  • FIG. 1 is a perspective view of a power transmission device and a power reception device according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a circuit configuration of a wireless power transmission system according to a first embodiment.
  • the wireless power transmission system according to the first embodiment it is a diagram illustrating an example of frequency characteristics of a voltage between a power receiving device side active electrode and a power receiving device side passive electrode in a state where load impedance is high.
  • FIG. 3A is a diagram comparing characteristics when the power transmission device and the power reception device are provided with a capacitor as an overvoltage suppressing unit and when the capacitor is not provided, and FIG. It is the figure which showed the change of the resonant frequency when a receiving device is separated from a power transmission apparatus in the case where it is provided.
  • FIG. 9 is a diagram illustrating an example of frequency characteristics of a voltage between a power receiving device side active electrode and a power receiving device side passive electrode in a state where load impedance is high in the wireless power transmission system according to the second embodiment.
  • FIG. 5A is a diagram comparing characteristics when the power transmission device and the power reception device are provided with an inductor as an overvoltage suppressing unit and when the inductor is not provided, and FIG. It is the figure which showed the change of the resonant frequency when a receiving device is separated from a power transmission apparatus in the case where it is provided.
  • FIG. 10 is a diagram illustrating a characteristic of a load input voltage with respect to a coupling capacity in the wireless power transmission system according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating a circuit configuration of a wireless power transmission system according to a fifth embodiment. 10 is a more specific circuit configuration of a control circuit of a power receiving device of a wireless power transmission system according to a fifth embodiment. It is an equivalent circuit diagram of a conventional wireless power transmission system.
  • FIG. 12A is a diagram illustrating frequency characteristics in a state where the power receiving device is placed on the power transmitting device.
  • FIG. 12B is a diagram illustrating frequency characteristics of the voltage between the power transmission electrodes and the voltage between the power reception electrodes in a state where the power reception device starts to be separated from the power transmission device.
  • 12C is a diagram illustrating the frequency characteristics of the voltage between the power transmission electrodes and the voltage between the power reception electrodes when the power reception device is further separated from the power transmission device than in the case of FIG. It is a figure which shows the characteristic of the voltage between the power receiving apparatus side active electrode with respect to coupling capacitance, and the power receiving apparatus side passive electrode.
  • FIG. 1 is a perspective view of a power transmission device 100 and a power reception device 200 that constitute an electric field coupling type wireless power transmission system according to the first embodiment.
  • the power transmission device 100 includes a power transmission device side passive electrode 31 and a power transmission device side active electrode 32
  • the power reception device 200 includes a power reception device side passive electrode 41 and a power reception device side active electrode 42.
  • the power transmitting apparatus side passive electrode 31 and the power receiving apparatus side passive electrode 41 face each other, and the power transmitting apparatus side active electrode 32 and the power receiving apparatus side active electrode 42 face each other.
  • a coupling capacitance Cm is generated between the power transmission device side passive electrode 31 and the power transmission device side active electrode 32 and the power reception device side passive electrode 41 and the power reception device side active electrode 42.
  • the power transmission device 100 wirelessly transmits power to the power receiving device 200 by electric field coupling via the coupling capacitance Cm.
  • FIG. 2 is a diagram illustrating a circuit configuration of the wireless power transmission system according to the first embodiment.
  • the power transmission device 100 includes a power supply circuit 10, a power transmission device side resonance circuit 20, a power transmission device side passive electrode 31, and a power transmission device side active electrode 32.
  • the power supply circuit 10 generates an AC voltage having a predetermined frequency.
  • the predetermined frequency is set in consideration of the power transmission efficiency from the power transmitting apparatus 100 to the power receiving apparatus 200, the relationship with the resonance frequency in the wireless power transmission system, and the like.
  • the predetermined frequency is set to a high frequency between 100 kHz and several tens of MHz, but is not limited to this.
  • the power transmission device side resonance circuit 20 is connected between the power supply circuit 10 and the power transmission device side passive electrode 31 and the power transmission device side active electrode 32.
  • the step-up transformer TR1 boosts the voltage generated by the power supply circuit 10, and applies the boosted voltage between the power transmission device side passive electrode 31 and the power transmission device side active electrode 32.
  • the step-up transformer TR1 is provided for the purpose of improving the efficiency of power transmission by electric field coupling.
  • the capacitor Cp1 is connected between the power transmission device side passive electrode 31 and the power transmission device side active electrode 32 so as to short-circuit the output terminal of the step-up transformer TR1.
  • Capacitor Cp ⁇ b> 1 may be provided as a component, or may be configured by a parasitic capacitance such as a wiring included in power transmission device 100.
  • the power transmission device-side resonance circuit 20 is configured by an inductance component (leakage inductance) of the step-up transformer TR1 and a capacitance including the capacitor Cp1.
  • the power receiving apparatus 200 includes a power receiving apparatus side passive electrode 41, a power receiving apparatus side active electrode 42, a power receiving apparatus side resonance circuit 50, and a load circuit 60.
  • the power receiving device side passive electrode 41 and the power receiving device side active electrode 42 receive power from the power transmitting device side passive electrode 31 and the power transmitting device side active electrode 32 via the coupling capacitance Cm.
  • the load circuit 60 includes a rectifier circuit 61 including diodes D1 to D4 and a ripple removing capacitor Cr, and a load RL connected to the secondary side of the rectifier circuit 61.
  • the load RL is a secondary battery that is charged with electric power after rectification.
  • the secondary battery has a characteristic that the impedance increases as it approaches a fully charged state.
  • the power receiving device side resonance circuit 50 is connected between the load circuit 60 and the power receiving device side passive electrode 41 and the power receiving device side active electrode 42.
  • the power receiving device side resonance circuit 50 includes a step-down transformer TR2 and a capacitor Cp2.
  • the step-down transformer TR2 steps down the voltage between the power receiving device side passive electrode 41 and the power receiving device side active electrode 42 (hereinafter referred to as “power receiving electrode voltage” as appropriate) and applies it to the load circuit 60.
  • the step-down transformer TR2 is provided for the purpose of improving the efficiency of power transmission by electric field coupling with the step-up transformer TR1.
  • the capacitor Cp2 is connected between the power receiving device side passive electrode 41 and the power receiving device side active electrode.
  • the capacitor Cp2 may be provided as a component, or may be configured by a parasitic capacitance such as a wiring included in the power receiving device 200.
  • the power reception device side resonance circuit 50 is configured by the inductance component of the step-down transformer TR2 and the capacitance including the capacitor Cp2.
  • overvoltage suppression means 70 is provided to suppress an increase in the received voltage due to the separation of the power receiving apparatus 200 from the power transmitting apparatus 100.
  • the overvoltage suppressing means 70 is provided in parallel with the power receiving device side resonance circuit 50, that is, so as to short-circuit the output terminal of the step-down transformer TR2.
  • the overvoltage suppressing means 70 is composed of an impedance element.
  • the impedance of the impedance element is set to a value that suppresses an increase in voltage between the pair of power receiving device side passive electrode 41 and the power receiving device side active electrode 42 as compared with the case where the impedance element is not connected.
  • the overvoltage suppressing means 70 is constituted by a capacitor Cx.
  • the capacitor Cx suppresses the generation of a high voltage in the power receiving device 200 by preventing the low frequency side resonance frequency and the operating frequency from overlapping.
  • Capacitor Cx as overvoltage suppression means The capacitor Cx as the overvoltage suppressing means 70 will be described.
  • the capacitor Cx has a resonance frequency on the low frequency side of the two resonance frequencies generated when the power transmission device resonance circuit 20 and the power reception device side resonance circuit 50 are capacitively coupled by a coupling capacitance by a predetermined shift amount to the low frequency side. Shift.
  • the capacitance of the capacitor Cx is set to a value that shifts the resonance frequency on the low frequency side to the low frequency side by a predetermined shift amount.
  • the predetermined shift amount is such that even if the resonance frequency on the low frequency side moves in the process of sufficiently separating the power receiving device 200 from the state where it is placed on the power transmission device 100, the resonance frequency on the low frequency side is The amount is set so as not to overlap with the operating frequency f3.
  • the capacitance of the capacitor Cx is determined by a coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42, and a predetermined capacity during normal power transmission between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42.
  • the low frequency side and high frequency side resonance frequencies generated by the power receiving device side resonance circuit 50 are set to values that do not overlap with the operating frequency f3. Yes.
  • the resonance frequency on the low frequency side generated when the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 are capacitively coupled is denoted by f1
  • the resonance frequency on the high frequency side is denoted by f2
  • the operating frequency is denoted by f3.
  • the capacitance of the capacitor Cx is such that the coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 is a predetermined positional relationship between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 during normal power transmission. In the process of changing from the value of to approximately 0, the relationship of f1 ⁇ f3 ⁇ f2 is set to be satisfied.
  • the coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 is substantially zero means that the coupling capacitance Cm is an extremely small value.
  • the power receiving apparatus 200 when power is transmitted from the power transmitting apparatus 100 to the power receiving apparatus 200, the power receiving apparatus 200 is placed at a predetermined position on the power transmitting apparatus 100, and the positions of the power transmitting apparatus and the power receiving apparatus at this time
  • the relationship is a predetermined positional relationship during normal power transmission.
  • the predetermined positional relationship is not limited to this. For example, even if the power reception device 200 is not placed at a predetermined position on the power transmission device 100, the power reception device 200 and the power transmission device 100 are in a predetermined positional relationship, so that the power transmission electrodes 41 and 42 of the power transmission device 100
  • the power receiving electrodes 31 and 32 of the power receiving device 200 may be in a predetermined positional relationship during normal power transmission. The same applies to the second to fifth embodiments.
  • the predetermined shift amount is not limited to the above value.
  • the resonance frequency on the low frequency side is shifted by a predetermined shift amount to the low frequency side, the resonance frequency on the low frequency side is reduced in the process of separating the power receiving device 200 sufficiently far from the state of being placed on the power transmission device 100. If the received voltage when it overlaps with the operating frequency f3 is a low voltage that does not cause damage to the power receiving apparatus 200, it may be set to such an amount.
  • FIG. 3 is a diagram illustrating an example of a frequency characteristic of a voltage between the power receiving device side active electrode 42 and the power receiving device side passive electrode 41 in a state where the secondary battery is almost fully charged and the load impedance is high.
  • FIG. 3A is a diagram comparing characteristics when the power transmission device 100 and the power reception device 200 are provided with the capacitor Cx as the overvoltage suppressing unit 70 and when the capacitor Cx is not provided.
  • a solid line indicates a case where the capacitor Cx is provided, and a broken line indicates a case where the capacitor Cx is not provided.
  • the resonance frequencies on the low frequency side and the high frequency side are f1o and f2o when the capacitor Cx is not provided, but are f1c and f2c lower than f1o and f2o when the capacitor Cx is provided. That is, the capacitor Cx moves to the low frequency side.
  • the operating frequency f3 is located in an area between the two resonance frequencies f1c and f2c where the change in the voltage between the receiving electrodes is small. Therefore, even if the coupling capacitance Cm slightly changes due to the displacement of the mounting position of the power receiving device 200 on the power transmitting device 100 and the frequency characteristics of the voltage between the power receiving electrodes slightly change, the variation in the voltage between the power receiving electrodes is small and stable. Power transmission can be performed. In addition, since the voltage between the receiving electrodes in the intermediate region has a certain level or more necessary for efficient power transmission, efficient power transmission can be performed.
  • FIG. 3B is a diagram illustrating changes in the resonance frequency when the power receiving device 200 is separated from the power transmitting device 100 when the capacitor Cx is provided.
  • the solid line indicates the state before the power receiving device 200 is separated from the power transmitting device 100 (when the coupling capacitance Cm is the first predetermined value), and the broken line is the state after the power receiving device 200 is separated from the power transmitting device 100 (the coupling capacitance Cm is the second value). Of a predetermined value).
  • the coupling capacitance Cm decreases.
  • the resonance frequencies on the low frequency side and the high frequency side move from f1c and f2c before being separated to f1c ′ and f2c ′ on the higher frequency side.
  • the resonance frequency on the low frequency side does not move to the high frequency side beyond the operating frequency f3.
  • the resonance frequency on the high frequency side moves to the high frequency side, that is, the side opposite to the operating frequency f3. Therefore, even if each resonance frequency on the high frequency side and the low frequency side changes due to a change (decrease) in the coupling capacitance Cm due to the separation of the power receiving device 200 from the power transmission device 100, the operating frequency f3, the high frequency side, and the low frequency side
  • the resonance frequencies do not match (overlap). Therefore, a high receiving electrode voltage (overvoltage) at the resonance frequency is not applied to the load circuit 60, and damage to the load circuit 60 can be prevented.
  • the power transmission system is a power transmission system that wirelessly transmits power between the power transmission device 100 and the power reception device 200.
  • the power transmission device 100 is provided between the pair of power transmission electrodes 31 and 32, the power supply circuit 10 and the pair of power transmission electrodes 31 and 32, and transmits the alternating voltage between the pair of power transmission electrodes 31 and 32.
  • the power receiving device 200 is provided corresponding to the load circuit 60 and the pair of power transmission electrodes 31 and 32 of the power transmission device 100, and generates a coupling capacitance Cm corresponding to the positional relationship between the pair of power transmission electrodes 31 and 32.
  • a power receiving device-side resonance circuit 50 that is provided between the electrodes 41, 42, the load circuit 60 and the pair of power receiving electrodes 41, 42 and applies an AC voltage to the load circuit 60, and a power receiving device-side resonance circuit 50 in parallel.
  • the overvoltage suppressing means 70 is composed of an impedance element.
  • the impedance of the impedance element is such that the coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 is a predetermined positional relationship during normal power transmission between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42. In the process of changing from a value of 0 to approximately 0, the value is set so as to suppress an increase in the voltage between the pair of power receiving electrodes 41 and 42 as compared with the case where the impedance element is not connected.
  • a fuse is provided between the power receiving coil of the power receiving device and the downstream rectifier circuit as a configuration for protecting the load circuit of the power receiving device from overvoltage. It is disclosed that the fuse is blown when the output voltage of the rectifier circuit becomes excessive. However, since the fuse once blown is not restored, in order to be able to suppress the overvoltage again, troubles such as replacement of the fuse are required.
  • the overvoltage suppressing means 70 is constituted by an impedance element, it is not easily damaged during the protective operation. Therefore, even after the protection operation, no special repair is required, and the protection operation can be repeatedly performed.
  • the impedance element is an element that shifts the resonance frequency on the low frequency side by a predetermined shift amount.
  • the predetermined shift amount is determined by the coupling capacitance Cm by the power transmission electrodes 31 and 32 and the power reception electrode 41. , 42 in the process of changing from the value when the predetermined positional relationship with the normal power transmission to approximately zero, the resonance frequency on the low frequency side does not overlap with the predetermined power transmission frequency (operation frequency f3). Is set to a value.
  • the overvoltage suppressing means 70 does not cause the resonance frequencies generated by the power receiving device side resonance circuit 50 and the operating frequency f3 to overlap. As a result, a high power receiving electrode voltage at the resonance frequency is not applied to the load circuit 60. Therefore, the power receiving apparatus 200 and the load circuit 60 included in the power receiving apparatus 200 can be prevented from being damaged.
  • the overvoltage suppressing means 70 is constituted by the capacitor Cx. According to this configuration, the overvoltage suppressing means 70 can be easily and compactly configured. In addition, in a conventional power receiving device that does not include the capacitor Cx, it is possible to suppress overvoltage only by adding the capacitor Cx, that is, without significantly changing the configuration of the conventional power receiving device.
  • the capacitance of the capacitor Cx is the resonance frequency on the low frequency side generated by the resonance circuit 50 on the power reception device side when the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 are capacitively coupled, f1
  • the coupling capacitance Cm between the power transmission electrodes 31, 32 and the power reception electrodes 41, 42 is such that the power transmission electrodes 31, 32 and the power reception electrodes 41, 42 are It is set so that the relationship of f1 ⁇ f3 ⁇ f2 is satisfied in the process of changing from a value at a predetermined positional relationship during normal power transmission to substantially zero.
  • the coupling capacitance Cm between the power transmitting electrodes 31 and 32 and the power receiving electrodes 41 and 42 is normal, and the power transmitting electrodes 31 and 32 and the power receiving electrodes 41 and 42 are normal.
  • the resonance frequencies on the low frequency side and the high frequency side do not overlap with the operating frequency. That is, the effect of preventing the damage of the load circuit 60 described above can be obtained.
  • the operating frequency exists in the middle region between the low frequency side resonance frequency and the high frequency side resonance frequency, the voltage between the power receiving electrodes necessary for efficient power transmission can be obtained. That is, efficient power transmission can be performed.
  • the step-up transformer TR1 is connected between the power supply circuit 10 and the power transmission electrode
  • the step-down transformer TR2 is connected between the load circuit 60 and the power receiving electrodes 41 and 42.
  • the capacitance of the capacitor Cx is the coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42, and the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 during normal power transmission.
  • the low frequency side and high frequency side resonance frequencies generated by the power receiving device side resonance circuit 50 are set to values that do not overlap with the operating frequency f3.
  • the capacitance of the capacitor Cx is a low frequency generated by the power reception device side resonance circuit 50 in a process of decreasing from a value when the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 are in a predetermined positional relationship during normal power transmission. Even if the resonance frequencies on the high frequency side and the high frequency side overlap with the operating frequency f ⁇ b> 3, the power receiving electrode voltage may be set to a value that does not reach a high voltage that causes damage to the power receiving device 200.
  • FIG. 4 is a diagram illustrating a circuit configuration of the wireless power transmission system according to the second embodiment.
  • the overvoltage suppressing means 70 is constituted by the inductor Lx.
  • Other configurations are the same as those of the first embodiment.
  • the inductor Lx suppresses the generation of a high voltage in the power receiving device 200 by preventing the low-frequency resonance frequency and the operating frequency from overlapping.
  • the inductor Lx as the overvoltage suppressing means 70 will be described.
  • the inductor Lx shifts the low frequency side and high frequency side resonance frequencies generated by the power receiving device side resonance circuit 50 to the high frequency side.
  • the inductance of the inductor Lx is set to a value that shifts the resonance frequency on the low frequency side to the high frequency side by a predetermined shift amount.
  • the predetermined shift amount is such that even if the resonance frequency on the low frequency side moves in the process of sufficiently separating the power receiving device 200 from the state where it is placed on the power transmission device 100, the resonance frequency on the low frequency side is The amount is set so as not to overlap with the operating frequency f3.
  • the inductance of the inductor Lx is such that the coupling capacitance Cm between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 is a predetermined value during normal power transmission between the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42.
  • the low frequency side and high frequency side resonance frequencies generated by the power receiving device side resonance circuit 50 are set to values that do not overlap with the operating frequency f3. Yes.
  • the resonance frequency on the low frequency side due to capacitive coupling between the power transmitting electrodes 31 and 32 and the power receiving electrodes 41 and 42 is f1
  • the resonance frequency on the high frequency side is f2
  • the operating frequency is f3.
  • the inductance of the inductor Lx satisfies the relationship of f3 ⁇ f1 ⁇ f2 in the process of changing from the value when the power transmitting electrodes 31 and 32 and the power receiving electrodes 41 and 42 are in a predetermined positional relationship during normal power transmission to substantially zero. Is set to be.
  • FIG. 5 is a diagram illustrating an example of frequency characteristics of the voltage between the receiving electrodes when the load RL (secondary battery) is almost fully charged and the load impedance is high.
  • FIG. 5A is a diagram comparing characteristics when the inductor Lx as the overvoltage suppressing means 70 is provided and when it is not provided, and the solid line is provided with the inductor Lx. The broken line indicates the case where the inductor Lx is not provided.
  • the resonance frequencies on the low frequency side and the high frequency side are f1o and f2o when the inductor Lx is not provided, but f1i and f2i higher than f1o and f2o when the inductor Lx is provided (FIG. 5A )
  • F2i exists outside the figure on the higher frequency side than f1i). That is, it moves to the high frequency side by providing the inductor Lx.
  • the operating frequency f3 is slightly lower than the resonance frequency f1i on the low frequency side.
  • the voltage between the power receiving electrodes at the resonance frequency f1i on the low frequency side is significantly lower than that in the case where the inductor Lx is not provided, and is larger than a certain level necessary for efficient power transmission. . Therefore, efficient power transmission can be performed. Further, the change in the voltage between the power receiving electrodes at the resonance frequency f1i on the low frequency side is more gradual than in the case where the inductor Lx is not provided. For this reason, even if the frequency characteristics of the voltage between the power receiving electrodes slightly change, the fluctuation of the voltage between the power receiving electrodes is small and stable power transmission can be performed.
  • FIG. 5B is a diagram showing a change in the resonance frequency when the power receiving device 200 is separated from the power transmitting device 100 when the inductor Lx is provided.
  • a solid line indicates before the power receiving device 200 is separated from the power transmitting device 100, and a broken line indicates after the power receiving device 200 is separated from the power transmitting device 100.
  • the resonance frequency on the low frequency side and the high frequency side is separated due to the decrease in the coupling capacitance Cm.
  • F1i and f2i in FIG.
  • f2i exists outside the figure on the high frequency side of f1i) before f1i ', f2i' (f2i 'in FIG. 5 (b) is on the high frequency side of f1i'. It moves to the high frequency side, that is, the side opposite to the operating frequency f3. Therefore, even if the resonance frequency on the high frequency side and the low frequency side changes due to the change (decrease) in the coupling capacitance Cm due to the separation of the power receiving device 200 from the power transmission device 100, the operating frequency f3 and the resonance on the high frequency side and the low frequency side are changed. The frequencies do not overlap. Therefore, a high receiving electrode voltage (overvoltage) at the resonance frequency is not applied to the load circuit 60, and damage to the load circuit 60 can be prevented.
  • the overvoltage suppressing means 70 is constituted by the inductor Lx, it is difficult to be damaged during the protective operation. Therefore, even after the protection operation, no special repair is required, and the protection operation can be repeatedly performed. Further, the overvoltage suppressing means 70 can be easily and compactly configured.
  • the inductance of the inductor Lx is such that the coupling capacitance Cm between the power transmission electrodes 31, 32 and the power reception electrodes 41, 42 is the same as that during normal power transmission between the power transmission electrodes 31, 32 and the power reception electrodes 41, 42.
  • the resonance frequency on the low frequency side and the high frequency side generated by the power receiving device side resonance circuit 50 is set to a value that does not overlap with the operating frequency f3.
  • the inductance of the inductor Lx is a low frequency generated by the power reception device side resonance circuit 50 in a process of decreasing from a value when the power transmission electrodes 31 and 32 and the power reception electrodes 41 and 42 are in a predetermined positional relationship during normal power transmission. Even if the resonance frequencies on the high frequency side and the high frequency side overlap with the operating frequency f ⁇ b> 3, the power receiving electrode voltage may be set to a value that does not reach a high voltage that causes damage to the power receiving device 200.
  • the predetermined shift amount is not limited to the above value. For example, by shifting the resonance frequency on the low frequency side by a predetermined shift amount to the high frequency side, the resonance frequency on the low frequency side operates in the process of separating the power receiving apparatus 200 far enough from the state of being placed on the power transmission apparatus 100. If the received voltage when it overlaps with the frequency f3 is a low voltage that does not cause damage to the power receiving apparatus 200, it may be set to such an amount.
  • FIG. 6 is a diagram illustrating a circuit configuration of the wireless power transmission system according to the third embodiment.
  • the overvoltage suppressing means 70 is configured by a resistor Rx (impedance element).
  • the resistor Rx is an element that lowers the impedance on the load device 60 side as viewed from the power receiving device-side resonance circuit 50 of the power receiving device 200 as compared with the case where the resistor Rx is not connected. Suppresses the occurrence of
  • the resistance value of the resistor Rx does not reach such a high voltage that the voltage between the power receiving electrodes causes an abnormality in the power receiving device 200 even if the low frequency side resonance frequency and the high frequency side resonance frequency change to coincide with the operating frequency.
  • Set the value to The resistance value of the resistor Rx is set to a value smaller than the impedance of the power receiving device side resonance circuit 50, for example, and lowers the impedance of the secondary side of the power receiving device side resonance circuit 50 at the low frequency side resonance frequency and the high frequency side resonance frequency.
  • the resistance value of the resistor Rx is set to 10 to 100 ⁇ .
  • the impedance of the entire system can be made lower than when the resistor Rx is not present.
  • the resistance value of the resistor Rx to 10 to 100 ⁇
  • the impedance on the secondary side of the power receiving device side resonance circuit 50 can be surely lowered as compared with the case where the resistor Rx does not exist. Therefore, even if the resonance frequency on the high frequency side and the low frequency side changes due to the change (decrease) in the coupling capacitance Cm due to the separation of the power reception device 200 from the power transmission device 100, Overvoltage) is not applied to the load circuit 60. Therefore, damage to the load circuit 60 can be prevented.
  • the overvoltage suppressing means 70 is configured by the resistor Rx, it is difficult to be damaged during the protective operation. Therefore, even after the protection operation, no special repair is required, and the protection operation can be repeatedly performed. Further, the overvoltage suppressing means 70 can be easily and compactly configured.
  • FIG. 7 is a diagram illustrating a circuit configuration of the wireless power transmission system according to the fourth embodiment.
  • the overvoltage suppressing means 70 is constituted by a capacitor Cx, and a switching element SW is provided in series with the capacitor Cx.
  • a control for detecting an input voltage to the load RL after rectification in the rectifier circuit 61 (hereinafter, referred to as “load input voltage” as appropriate) and controlling ON / OFF of the switching element SW based on the detected load input voltage.
  • a circuit 80 is provided.
  • Other configurations are the same as those of the first embodiment.
  • the control circuit 80 controls the switching element SW to be ON when the detected load input voltage is higher than a predetermined voltage or higher, and otherwise controls the switching element SW to be OFF.
  • the predetermined voltage may be appropriately set based on the withstand voltage of the load circuit 60 or the like.
  • the capacitance of the capacitor Cx is set as in the first embodiment.
  • the coupling capacitance Cm decreases, the resonance frequency on the low frequency side approaches the operating frequency, and the load input voltage rises above a predetermined voltage.
  • the switching element SW is controlled to be ON, and the capacitor Cx is connected.
  • each resonance frequency of the low frequency side and the high frequency side moves to the low frequency side.
  • a high receiving electrode voltage (overvoltage) at the resonance frequency is not applied to the load circuit 60. 60 damage can be prevented.
  • FIG. 8 is a diagram illustrating the characteristics of the load circuit input voltage with respect to the coupling capacitance Cm in the wireless power transmission system according to the fourth embodiment.
  • a broken line is a characteristic when the capacitor Cx and the switching element SW are not provided. According to this embodiment, when the load circuit input voltage rises to a predetermined voltage or higher, the switching element SW is controlled to be ON, thereby suppressing the jump of the load input voltage and stabilizing the load input voltage.
  • the load input voltage on the secondary side of the rectifier circuit 61 configuring the load circuit 60 is detected, and the detected load input voltage is determined from a predetermined voltage.
  • the control circuit 80 (voltage detection circuit) that outputs a control signal for turning on the switching element SW when it is higher, and the switching element SW that switches on the connection of the capacitor Cx in response to the control signal are further provided. .
  • the switching element SW is controlled to be ON, thereby suppressing the jump of the load input voltage and stabilizing the load input voltage.
  • the capacitor Cx is connected even during normal power transmission, the voltage between the power receiving electrodes is lowered and the power transmission efficiency is lowered.
  • the capacitor Cx is connected only when the load input voltage rises above a predetermined voltage, it is possible to prevent a reduction in transmission efficiency.
  • FIG. 9 is a diagram illustrating a circuit configuration of a wireless power transmission system according to the fifth embodiment.
  • the overvoltage suppressing means 70 is constituted by two capacitors Cx1 and Cx2 provided in series, and a switching element SW is provided between these capacitors Cx1 and Cx2. Further, a control circuit 80 that detects the load input voltage after rectification in the rectifier circuit 61 and controls ON / OFF of the switching element SW based on the detected voltage is provided. Other configurations are the same as those of the first embodiment.
  • the overvoltage suppressing means 70 is configured by one capacitor Cx
  • the overvoltage suppressing means 70 is configured by two capacitors Cx1 and Cx2
  • the overvoltage suppressing means 70 can be constituted by three or more capacitors.
  • FIG. 10 is a diagram showing a more specific configuration of the control circuit 80.
  • the series circuit of the capacitor Cx1 and the switching element SW1 is connected to one output terminal T1 of the step-down transformer TR2, and the series circuit of the capacitor Cx2 and the switching element SW2 is connected to the other output terminal T2.
  • the control circuit 80 includes a comparator COMP, a voltage source Vc, and the like.
  • the comparator COMP compares the reference voltage obtained by dividing the output voltage of the voltage source Vc with the voltage of the ripple removing capacitor Cr of the rectifier circuit 61.
  • the comparator COMP outputs an ON signal to each of the switching elements SW1 and SW2 when the voltage of the ripple removing capacitor Cr becomes equal to or higher than the reference voltage.
  • control circuit 80 can be realized with a simple configuration. In addition to this circuit, the operation can be stabilized by providing hysteresis.
  • the FET is used as the switching element, the present invention is not limited to this, and a switching element such as an electromagnetic relay can also be applied.
  • the structure having the switching element described in the fourth and fifth embodiments can be applied for purposes other than the purpose of suppressing voltage fluctuation at the time of separation.
  • the resonance condition can be changed by controlling the switching element during normal operation. That is, it can also be used as a limiter when it is desired to change the voltage output to the subsequent circuit to narrow the input voltage range of the subsequent circuit.
  • the impedance element as the overvoltage suppressing means is configured by a capacitor.
  • the idea of the fourth to fifth embodiments can be applied to the case where the impedance element as the overvoltage suppressing means is an inductor or a resistor. Applicable.
  • the present invention is not limited to this.
  • the load circuit is not a secondary battery
  • the present invention can be applied to a battery that exhibits characteristics as shown in FIG. 13B because the load impedance is constantly or temporarily increased. It is.
  • the overvoltage suppression means 70 is provided in parallel on the secondary side of the step-down transformer TR2, but may be provided on the primary side of the step-down transformer TR2. When the overvoltage suppressing means 70 is provided on the primary side of the transformer TR2, the capacitor of the overvoltage suppressing means 70 needs to have a high withstand voltage specification.

Abstract

電力伝送システムの受電装置200は、共振回路50と並列に接続された過電圧抑制手段70を備える。過電圧抑制手段70は、インピーダンス素子で構成される。インピーダンス素子のインピーダンスは、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、インピーダンス素子を接続しない場合に比べて少なくとも一対の受電電極41、42間の電圧の上昇を抑制するような値に設定される。

Description

電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置
 本発明は、電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置に関する。
 近年、例えばスマートフォン、ラップトップパソコンなどのポータブル機器に対して、ワイヤレスで電力を供給するワイヤレス電力伝送システムが実用化されている。このようなワイヤレス電力伝送システムとして、例えば特許文献1や特許文献2に記載のものがある。
 特許文献1は、電磁誘導型のワイヤレス電力伝送システムを開示している。電磁誘導型のワイヤレス電力伝送システムは、送電装置と受電装置を有している。送電装置は送電コイルを備え、受電装置は受電コイルを備え、これらのコイル間で電磁誘導により電力が伝送される。
 特許文献2は、電界結合型のワイヤレス電力伝送システムを開示している。電界結合型のワイヤレス電力伝送システムは、送電装置と受電装置を有している。送電装置は送電電極を備え、受電装置は受電電極を備え、これらの電極間で静電誘導により電力が伝送される。
 図11は、特許文献2の電界結合型ワイヤレス電力伝送システムの等価回路図である。この電界結合型ワイヤレス電力伝送システムは、送電装置1101と受電装置1201で構成され、送電装置1101の容量C1と受電装置1201の容量C2との間の結合容量Cmを介して電力を電力する。送電装置1101はインダクタL1と容量C1でなるLC共振回路を備え、受電装置1201はインダクタL2と容量C2でなるLC共振回路を備える。このワイヤレス電力伝送システムでは、送電装置1101と受電装置1201とを結合させて、2つの共振回路を結合させたときに2つの共振周波数が発生する。電力伝送システムの電圧発生器11の動作周波数(送電周波数)はこれらの共振周波数の中間の周波数に設定されている。
特開2009-118587号公報 WO2011/148803号公報
 特許文献2のような電界結合型のワイヤレス電力伝送システムでは、送電装置上に受電装置を載置して送電している途中で受電装置を送電装置から引き離すと、受電装置が破損することがあった。
 本発明は、送電中に何らかの理由により受電装置が送電装置から引き離された場合でも受電装置の損傷を防止可能な電界結合型のワイヤレス電力伝送システム及び受電装置を提供することを目的とする。
 本発明の発明者は、上記の課題を解決するため、受電装置が送電装置から引き離される際に受電装置の破損が発生する原因を検討した結果、以下の知見を得た。
 図12は、従来の電界結合型のワイヤレス電力伝送システムにおいて、受電装置を送電装置から引き離す過程における、受電装置側アクティブ電極と受電装置側パッシブ電極との間の電圧(以下、適宜「受電電極間電圧」という)、及び送電装置側アクティブ電極と送電装置側パッシブ電極との間の電圧(以下、適宜「送電電極間電圧」という)の周波数特性の変化を示す図である。具体的には、図12(a)は、受電装置が送電装置上に載置された状態(通常の使用状態)における周波数特性を示す図である。図12(b)は、受電装置が送電装置から引き離され始めた状態における送電電極間電圧及び受電電極間電圧の周波数特性を示す図である。図12(c)は、受電装置が送電装置から図12(b)の場合よりもさらに引き離された状態における送電電極間電圧及び受電電極間電圧の周波数特性を示す図である。図12(a)、(b)、(c)における実線A、A′、A″は受電電極間電圧の周波数特性を示し、破線B、B′、B″は送電電極間電圧の周波数特性を示す。なお、実線A、A′、A″、及び破線B、B′、B″は、二次電池がほぼ満充電状態となり負荷インピーダンスが高くなっている状態のときにおける周波数特性を示す。これに対し、図12(a)における一点鎖線Cは、二次電池がまだほとんど充電されておらず負荷インピーダンスが低い状態のときにおける受電電極間電圧の周波数特性を示す。図12(b)、(c)では、これに対応する特性は省略している。
 図12(a)から判別できるように、二次電池がほぼ満充電状態となり負荷インピーダンスが高くなっている状態のときは、二次電池が充電されていない状態に比べて、送電電極間電圧及び受電電極間電圧が高くなる。
 また、図12(a)、(b)、(c)に示すように、送電電極間電圧及び受電電極間電圧はそれぞれ、異なる周波数において2つのピークを有する。これは、送電装置及び受電装置の有する共振回路の共振周波数を等しくして送電電極と受電電極を容量結合させたときにこの周波数の高周波側と低周波側に発生する2つの共振に伴うものであり、各ピークの周波数は共振周波数に対応する。これらのピーク(共振周波数)は、図12(a)、(b)、(c)から読み取れるように、受電装置が送電装置から引き離されるほど、つまり受電装置と送電装置の距離が大きくなるほど、高周波数側に移動する。このように、各ピーク(共振周波数)が高周波数側に移動するのは、受電装置と送電装置の距離が大きくなるにつれて、送電装置の送電電極と受電装置の受電電極との結合容量Cmが減少するためであると考えられる。
 図12(a)、(b)、(c)における、f1、f1′、f1″は、受電電極間電圧の低周波側の共振周波数を示し、f2、f2′、f2″は、受電電極間電圧の高周波側の共振周波数を示す。また、f3は、送電装置の動作周波数(送電周波数)を示す。動作周波数f3は、送電装置の送電周波数(動作周波数)であり、図12(a)の状態における低周波側の共振周波数f1と高周波数側の共振周波数f2との中間の周波数に設定されている。
 図12(a)、(b)、(c)から読み取れるように、受電電極間電圧の低周波側の共振周波数は、受電装置が送電装置から引き離されると、f1、f1′、f1″と連続的に高周波側に移動していく。その際、図12(c)に示すように、低周波側の共振周波数f1″と、動作周波数f3が一致するときが発生し、このとき受電装置に発生する電圧が非常に高くなり、受電装置の損傷を引き起こす原因となる。図13は、受電装置の引き離しにともなう、結合容量Cmの変化に対する受電電極間電圧の変化を示したものである。受電装置の引き離しに伴って結合容量Cmが小さくなると、上述のように共振周波数f1、f2が変化する。その結果、低周波側の共振周波数と動作周波数が重なる結合容量の近傍の結合容量Cmにおいて、受電電極間電圧は一旦高くなり、その後、低下する。このように、送電中に急に受電装置の送電装置からの引き離しが発生して、受電装置と送電装置との間の距離が大きくなると、受電電極間に大きな受電電極間電圧(過電圧)が印加される場合がある。例えば、結合容量CmがCm1からCm2に変化し、その際、受電電極間電圧が耐電圧Vsを超えると、受電装置が破損する虞がある。以上が、受電装置が破損する原因と考えられる。このように、本発明者は、受電装置の引き離しに伴う結合容量の変化により、受電装置に高電圧が発生することが、受電装置の破損の原因であると考えた。そこで、本発明者は、受電装置側の共振回路に対して並列に接続されたインピーダンス素子を有し、共振周波数をずらすこと等が可能な、以下の構成を有する受電装置及び電力伝送システムを考案した。
 本発明の受電装置は、所定周波数の交流電圧を発生する電源回路と、少なくとも一対の送電電極と、電源回路と少なくとも一対の送電電極との間に接続され、少なくとも一対の送電電極間に交流電圧を印加する共振回路と、を備えた送電装置からワイヤレスで伝送される電力を受電する。この受電装置は、負荷回路と、送電装置の少なくとも一対の送電電極に対応して設けられ、少なくとも一対の送電電極との位置関係に応じた結合容量を生じる少なくとも一対の受電電極と、負荷回路と少なくとも一対の受電電極との間に接続され、負荷回路に交流電圧を印加する共振回路と、前記受電装置側の共振回路に対して並列に接続された過電圧抑制手段とを備え、過電圧抑制手段は、インピーダンス素子で構成され、インピーダンス素子のインピーダンスは、送電電極と受電電極との結合容量が、送電電極と受電電極とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、前記インピーダンス素子を接続しない場合に比べて少なくとも一対の受電電極間の電圧の上昇を抑制するような値に設定される。
 本発明の電力伝送システムは、所定の周波数の交流電圧を発生する電源回路と、少なくとも一対の送電電極と、電源回路と少なくとも一対の送電電極との間に接続され、少なくとも一対の送電電極間に交流電圧を印加する共振回路と、を備えた送電装置と、前記本発明の受電装置と、を含む。
 本発明の電力伝送システム及び受電装置によれば、送電中に受電装置が送電装置から引き離された場合でも、共振周波数における高い受電電極間電圧が負荷回路に印加されることがない。したがって、受電装置及びそれに含まれる負荷回路が過電圧により破損するのを防止することができる。
実施形態1に係る送電装置と受電装置の斜視図である。 実施形態1に係るワイヤレス電力伝送システムの回路構成を示す図である。 実施形態1に係るワイヤレス電力伝送システムにおいて、負荷インピーダンスが高い状態における受電装置側アクティブ電極と受電装置側パッシブ電極との間の電圧の周波数特性の一例を示す図である。図3(a)は、送電装置と受電装置とが過電圧抑制手段としてのキャパシタが設けられている場合と設けられていない場合の特性を比較した図であり、図3(b)は、キャパシタが設けられている場合において、受電装置が送電装置から引き離される際の共振周波数の変化を示した図である。 実施形態2に係るワイヤレス電力伝送システムの回路構成を示す図である。 実施形態2に係るワイヤレス電力伝送システムにおいて、負荷インピーダンスが高い状態における受電装置側アクティブ電極と受電装置側パッシブ電極との間の電圧の周波数特性の一例を示す図である。図5(a)は、送電装置と受電装置とが過電圧抑制手段としてのインダクタが設けられている場合と設けられていない場合の特性を比較した図であり、図5(b)は、インダクタが設けられている場合において、受電装置が送電装置から引き離される際の共振周波数の変化を示した図である。 実施形態3に係るワイヤレス電力伝送システムの回路構成を示す図である。 実施形態4に係るワイヤレス電力伝送システムの回路構成を示す図である。 実施形態4に係るワイヤレス電力伝送システムにおける、結合容量に対する負荷入力電圧の特性を示す図である。 実施形態5に係るワイヤレス電力伝送システムの回路構成を示す図である。 実施形態5に係るワイヤレス電力伝送システムの受電装置の制御回路のより具体的な回路構成を示すである。 従来のワイヤレス電力伝送システムの等価回路図である。 従来の電界結合型のワイヤレス電力伝送システムにおいて、受電装置を送電装置から引き離す過程における、受電装置側アクティブ電極と受電装置側パッシブ電極との間の電圧、及び送電装置側アクティブ電極と送電装置側パッシブ電極との間の電圧の周波数特性の変化を示す図である。図12(a)は、受電装置が送電装置上に載置された状態における周波数特性を示す図である。図12(b)は、受電装置が送電装置から引き離され始めた状態における送電電極間電圧及び受電電極間電圧の周波数特性を示す図である。図12(c)は、受電装置が送電装置から図12(b)の場合よりもさらに引き離された状態における送電電極間電圧及び受電電極間電圧の周波数特性を示す図である。 結合容量に対する受電装置側アクティブ電極と受電装置側パッシブ電極との間の電圧の特性を示す図である。
(実施形態1)
1.構成
 図1は、実施形態1における、電界結合型のワイヤレス電力伝送システムを構成する送電装置100と受電装置200の斜視図である。
 送電装置100は送電装置側パッシブ電極31と送電装置側アクティブ電極32を備え、受電装置200は受電装置側パッシブ電極41と受電装置側アクティブ電極42を備える。
 送電装置100上に受電装置200を載置することによって、送電装置側パッシブ電極31と受電装置側パッシブ電極41とが対向し、送電装置側アクティブ電極32と受電装置側アクティブ電極42とが対向する。このとき、送電装置側パッシブ電極31及び送電装置側アクティブ電極32と、受電装置側パッシブ電極41及び受電装置側アクティブ電極42との間に結合容量Cmが生じる。送電装置100は、結合容量Cmを介した電界結合により受電装置200へワイヤレスで電力を伝送する。
 図2は、実施形態1のワイヤレス電力伝送システムの回路構成を示す図である。
 送電装置100は、電源回路10、送電装置側共振回路20、送電装置側パッシブ電極31、送電装置側アクティブ電極32を有する。
 電源回路10は、所定の周波数の交流電圧を発生する。所定の周波数は、送電装置100から受電装置200への電力の伝送効率、ワイヤレス電力伝送システムにおける共振周波数との関係等を考慮して設定される。例えば、所定の周波数は100kHz~数10MHzの間の高周波数に設定されるが、これに限定されるものではない。
 送電装置側共振回路20は、電源回路10と、送電装置側パッシブ電極31及び送電装置側アクティブ電極32との間に接続されている。
 昇圧トランスTR1は、電源回路10の発生する電圧を昇圧し、この昇圧した電圧を送電装置側パッシブ電極31と送電装置側アクティブ電極32との間に印加する。昇圧トランスTR1は、電界結合による電力伝送の効率を向上させることを目的として設けられている。
 キャパシタCp1は、昇圧トランスTR1の出力端を短絡するように送電装置側パッシブ電極31と送電装置側アクティブ電極32との間に接続されている。キャパシタCp1は、部品として設けられてもよいし、送電装置100に含まれる配線等の寄生容量により構成してもよい。送電側では、昇圧トランスTR1のインダクタンス成分(リーケージインダクタンス)と、キャパシタCp1を含む容量で送電装置側共振回路20を構成している。
 受電装置200は、受電装置側パッシブ電極41、受電装置側アクティブ電極42、受電装置側共振回路50及び負荷回路60を有する。
 受電装置側パッシブ電極41及び受電装置側アクティブ電極42は、送電装置側パッシブ電極31及び送電装置側アクティブ電極32から結合容量Cmを介して電力を受ける。
 負荷回路60は、ダイオードD1~D4及びリップル除去用キャパシタCrを含む整流回路61と、整流回路61の二次側に接続された負荷RLを有する。負荷RLは、本実施形態では、整流後の電力により充電される二次電池である。二次電池は満充電状態に近づくとインピーダンスが増加する特性を有する。
 受電装置側共振回路50は、負荷回路60と、受電装置側パッシブ電極41及び受電装置側アクティブ電極42との間に接続されている。受電装置側共振回路50は、降圧トランスTR2と、キャパシタCp2とを有する。
 降圧トランスTR2は、受電装置側パッシブ電極41と受電装置側アクティブ電極42との間の電圧(以下、適宜「受電電極間電圧」という)を降圧して負荷回路60に印加する。降圧トランスTR2は、電界結合による電力伝送の効率を、昇圧トランスTR1とで向上させることを目的として設けられている。
 キャパシタCp2は、受電装置側パッシブ電極41及び受電装置側アクティブ電極42との間に接続されている。キャパシタCp2は、部品として設けられてもよいし、受電装置200に含まれる配線等の寄生容量により構成してもよい。受電側では、降圧トランスTR2のインダクタンス成分と、キャパシタCp2を含む容量で受電装置側共振回路50を構成している。
 特に、本実施形態においては、受電装置200の送電装置100からの引き離しに伴う受電電圧の上昇を抑制するため過電圧抑制手段70が設けられている。過電圧抑制手段70は、受電装置側共振回路50と並列に、すなわち降圧トランスTR2の出力端を短絡するように設けられている。過電圧抑制手段70は、インピーダンス素子で構成されている。インピーダンス素子のインピーダンスは、インピーダンス素子を接続しない場合に比べて一対の受電装置側パッシブ電極41と受電装置側アクティブ電極42との間の電圧の上昇を抑制するような値に設定される。
 本実施形態では、過電圧抑制手段70をキャパシタCxにより構成している。キャパシタCxは、低周波側共振周波数と動作周波数の重なりを防止することで、受電装置200での高電圧の発生を抑制する。
2.過電圧抑制手段としてのキャパシタCx
 過電圧抑制手段70としてのキャパシタCxについて説明する。キャパシタCxは、送電装置共振回路20と受電装置側共振回路50が結合容量により容量結合したときに発生する二つの共振周波数の内、低周波側の共振周波数を低周波側に所定のシフト量だけシフトさせる。キャパシタCxの容量は、低周波側の共振周波数を低周波側に所定のシフト量だけシフトさせるような値に設定される。本実施形態では、所定のシフト量は、受電装置200を送電装置100上に載置した状態から十分遠方に引き離す過程において低周波側の共振周波数が移動したとしても、低周波側の共振周波数が動作周波数f3と重なることがないような量に設定される。
 具体的には、キャパシタCxの容量は、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重なることがないような値に設定されている。送電電極31、32と受電電極41、42とを容量結合させたときに生じる低周波側の共振周波数をf1、高周波側の共振周波数をf2、動作周波数をf3とする。キャパシタCxの容量は、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、f1<f3<f2の関係が満たされるように設定されている。ここで、送電電極31、32と受電電極41、42との間の結合容量Cmが略0とは、結合容量Cmが限りなく小さな値であることを意味する。
 なお、本実施形態では、送電装置100から受電装置200への送電の際、受電装置200は送電装置100上の所定位置に載置されているものとし、このときの送電装置と受電装置の位置関係を、通常送電時の所定の位置関係とする。所定の位置関係はこれに限定されない。例えば、受電装置200は送電装置100上の所定位置に載置されていなくても、受電装置200と送電装置100とが所定の位置関係にあることにより、送電装置100の送電電極41、42と受電装置200の受電電極31、32とが、通常送電時における所定の位置関係にあればよい。実施形態2~5において同様である。
 また、所定のシフト量は上記の値に限定されない。例えば、低周波側の共振周波数を低周波側に所定のシフト量だけシフトすることで、受電装置200を送電装置100上に載置した状態から十分遠方に引き離す過程において低周波側の共振周波数が動作周波数f3と重なったときの受電電圧が受電装置200の破損を招かないような低い電圧となるのであれば、そのような量に設定されてもよい。
 キャパシタCxの容量をf1<f3<f2の関係を満たすように設定したときの具体例について図3を参照して説明する。図3は、二次電池がほぼ満充電状態となり負荷インピーダンスが高い状態における受電装置側アクティブ電極42と受電装置側パッシブ電極41との間の電圧の周波数特性の一例を示す図である。具体的には、図3(a)は、送電装置100と受電装置200とが過電圧抑制手段70としてのキャパシタCxが設けられている場合と設けられていない場合の特性を比較した図であり、実線はキャパシタCxが設けられている場合を示し、破線はキャパシタCxが設けられていない場合を示す。低周波側及び高周波側の共振周波数は、キャパシタCxが設けられていないときはf1o、f2oであるが、キャパシタCxが設けられているときはf1o、f2oよりも低いf1c、f2cとなる。つまり、キャパシタCxを設けることにより低周波側に移動する。このとき動作周波数f3は、2つの共振周波数f1c、f2cの中間の、受電電極間電圧の変化が少ない領域に位置する。そのため、受電装置200の送電装置100への載置位置のずれにより結合容量Cmが若干変化して、受電電極間電圧の周波数特性が多少変化したとしても、受電電極間電圧の変動は少なく、安定した電力伝送を行うことができる。また、この中間領域の受電電極間電圧は、効率的な電力伝送に必要な一定以上の大きさを有しているため、効率的な電力伝送を行うことができる。
 図3(b)は、キャパシタCxが設けられている場合において、受電装置200が送電装置100から引き離される際の共振周波数の変化を示した図である。実線は受電装置200が送電装置100から引き離される前(結合容量Cmが第1の所定値のとき)を示し、破線は受電装置200が送電装置100から引き離された後(結合容量Cmが第2の所定値のとき)を示す。受電装置200が送電装置100から引き離されると、結合容量Cmが低下する。その結果、低周波側及び高周波側の共振周波数は、引き離される前のf1c、f2cからより高周波側のf1c′、f2c′に移動する。しかし、低周波側の共振周波数が動作周波数f3を超えて高周波側に移動することはない。また、高周波側の共振周波数は高周波側に、つまり動作周波数f3とは反対側に移動する。したがって、受電装置200の送電装置100からの引き離しによる結合容量Cmの変化(低下)により高周波側及び低周波側の各共振周波数が変化したとしても、動作周波数f3と、高周波側及び低周波側の共振周波数が一致する(重なる)ことはない。よって、共振周波数における高い受電電極間電圧(過電圧)が負荷回路60に印加されることがなく、負荷回路60の破損を防止することができる。
3.まとめ
 本実施形態の電力伝送システムは、送電装置100と受電装置200との間でワイヤレスで電力を伝送する電力伝送システムである。送電装置100は、一対の送電電極31、32と、電源回路10と一対の送電電極31、32との間に設けられ、一対の送電電極31、32間に交流電圧を印加する送電装置側共振回路20と、を備える。受電装置200は、負荷回路60と、送電装置100の一対の送電電極31、32に対応して設けられ、一対の送電電極31、32との位置関係に応じた結合容量Cmを生じる一対の受電電極41、42と、負荷回路60と一対の受電電極41、42との間に設けられ、負荷回路60に交流電圧を印加する受電装置側共振回路50と、受電装置側共振回路50と並列に接続された過電圧抑制手段70とを備える。過電圧抑制手段70は、インピーダンス素子で構成される。インピーダンス素子のインピーダンスは、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、インピーダンス素子を接続しない場合に比べて一対の受電電極41、42間の電圧の上昇を抑制するような値に設定されている。
 この構成によれば、送電中に受電装置が送電装置から引き離されたときの送電装置100と受電装置200との間の距離の変化に伴い、受電装置200側における共振周波数が変化したとしても、共振周波数における高い受電電極間電圧が負荷回路60に印加されることがない。したがって、受電装置200及びそれに含まれる負荷回路60の破損を防止することができる。
 なお、特許文献1の電磁誘導型のワイヤレス電力伝送システムには、過電圧から受電装置の負荷回路を保護するための構成として、受電装置の受電コイルとその下流の整流回路との間にヒューズを設け、整流回路の出力電圧が過大になると、ヒューズを溶断させることが開示されている。しかし、一度溶断したヒューズは復元しないので、過電圧を再度抑制可能とするためには、ヒューズの交換等の手間が生じる。
 これに対して、本実施形態では、過電圧抑制手段70を、インピーダンス素子により構成したので、保護動作の際破損しにくい。よって、保護動作後も、特別な修理が必要なく、繰り返し保護動作を行うことができる。
 また、本実施形態では、インピーダンス素子は、低周波側の共振周波数を所定のシフト量だけシフトさせる素子であり、所定のシフト量は、前記結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の前記所定の位置関係にあるときの値から略ゼロに変化する過程において、低周波側の共振周波数が所定の送電周波数(動作周波数f3)と重なることがないような値に設定されている。
 この構成によれば、過電圧抑制手段70により、受電装置側共振回路50により生じる各共振周波数と動作周波数f3とが重なることがない。これにより、共振周波数における高い受電電極間電圧が負荷回路60に印加されることがない。したがって、受電装置200及びそれに含まれる負荷回路60の破損を防止することができる。
 また、本実施形態では、キャパシタCxにより過電圧抑制手段70を構成している。この構成によれば、過電圧抑制手段70を容易にかつ小型に構成することができる。また、キャパシタCxを備えない従来の受電装置において、キャパシタCxを加えるだけで、つまり、従来の受電装置の構成を大きく変更することなく、過電圧を抑制することが可能となる。
 また、本実施形態では、キャパシタCxの容量は、送電電極31、32と受電電極41、42とを容量結合させたときに受電装置側の共振回路50により生じる低周波側の共振周波数をf1、高周波側の共振周波数をf2、動作周波数をf3としたときにおいて、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、f1<f3<f2の関係が満たされるように設定されている。
 この構成によれば、送電装置100から受電装置200の引き離しにより送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、低周波側及び高周波側の各共振周波数が動作周波数と重ならない。つまり、前述した負荷回路60の破損を防止する効果が得られる。また、低周波側共振周波数と高周波側共振周波数の中間の領域に動作周波数が存在することとなり、効率的な電力伝送に必要な受電電極間電圧を得ることができる。つまり、効率的な電力伝送を行うことができる。
 また、本実施形態では、電源回路10と前記送電電極との間に昇圧トランスTR1が接続され、負荷回路60と受電電極41、42との間に降圧トランスTR2が接続されている。この構成によれば、送電電極31、32から受電電極41、42への電力伝送を高電圧で行うことができる。高電圧を用いることにより、伝送経路に流れる電流が比較的小さくても大きな電力を送ることができる。電流が小さければ、伝送経路における抵抗値による損失が小さくなる。そのため、電力伝送を高効率で行うことができる。
 なお、本実施形態では、キャパシタCxの容量は、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重ならないようにする値に設定したが、これに限らない。例えば、キャパシタCxの容量は、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から減少する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重なったとしても受電電極間電圧が受電装置200に破損を生じさせる程度の高い電圧に到達しないようにする値に、設定してもよい。
(実施形態2)
 実施形態2について説明する。図4は、実施形態2に係るワイヤレス電力伝送システムの回路構成を示す図である。
 本実施形態では、過電圧抑制手段70をインダクタLxにより構成している。その他の構成は実施形態1と同一である。インダクタLxは、低周波側共振周波数と動作周波数の重なりを防止することで、受電装置200での高電圧の発生を抑制する。
 過電圧抑制手段70としてのインダクタLxについて説明する。インダクタLxは、受電装置側共振回路50により生じる低周波側及び高周波側の共振周波数を高周波側にシフトさせる。インダクタLxのインダクタンスは、低周波側の共振周波数を高周波側に所定のシフト量だけシフトさせるような値に設定される。本実施形態では、所定のシフト量は、受電装置200を送電装置100上に載置した状態から十分遠方に引き離す過程において低周波側の共振周波数が移動したとしても、低周波側の共振周波数が動作周波数f3と重なることがないような量に設定される。具体的には、インダクタLxのインダクタンスは、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重なることがないような値に設定されている。送電電極31、32と受電電極41、42との容量結合による低周波側の共振周波数をf1、高周波側の共振周波数をf2、動作周波数をf3とする。インダクタLxのインダクタンスは、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、f3<f1<f2の関係が満たされるように設定されている。
 インダクタLxのインダクタンスをf3<f1<f2の関係を満たすように設定したときの具体例について図5を参照して説明する。図5は、負荷RL(二次電池)がほぼ満充電状態となり負荷インピーダンスが高くなった状態における受電電極間電圧の周波数特性の一例を示す図である。具体的には、図5(a)は、過電圧抑制手段70としてのインダクタLxが設けられている場合と設けられていない場合の特性を比較した図であり、実線はインダクタLxが設けられている場合を示し、破線はインダクタLxが設けられていない場合を示す。低周波側及び高周波側の共振周波数は、インダクタLxが設けられていないときはf1o、f2oであるが、インダクタLxが設けられているときはf1o、f2oよりも高いf1i、f2i(図5(a)においてf2iはf1iよりも高周波側の図外に存在する)である。つまり、インダクタLxを設けることにより高周波側に移動する。このとき動作周波数f3は、低周波側の共振周波数f1iよりも若干低い周波数となっている。インダクタLxを設けることにより低周波側の共振周波数f1iにおける受電電極間電圧は、インダクタLxが設けられていない場合よりも大きく低下し、効率的な電力伝送に必要な一定以上の大きさとなっている。そのため、効率的な電力伝送を行うことができる。また、低周波側の共振周波数f1iにおける受電電極間電圧の変化は、インダクタLxが設けられていない場合よりも緩やかになっている。そのため、受電電極間電圧の周波数特性が多少変化したとしても、受電電極間電圧の変動は少なく、安定した電力伝送を行うことができる。
 図5(b)は、インダクタLxが設けられている場合において、受電装置200が送電装置100から引き離される際の共振周波数の変化を示した図である。実線は受電装置200が送電装置100から引き離される前を示し、破線は受電装置200が送電装置100から引き離された後を示す。受電装置200が送電装置100から引き離されると、結合容量Cmの低下により、低周波側及び高周波側の共振周波数(高周波側の共振周波数は図5(b)において図外に存在する)は、引き離される前のf1i、f2i(図5(b)においてf2iはf1iよりも高周波側の図外に存在する)からf1i′、f2i′(図5(b)においてf2i′はf1i′よりも高周波側の図外に存在する)に高周波側へ、つまり動作周波数f3とは反対側に移動する。したがって、受電装置200の送電装置100からの引き離しによる結合容量Cmの変化(低下)により高周波側及び低周波側の共振周波数が変化したとしても、動作周波数f3と、高周波側及び低周波側の共振周波数が重なることはない。よって、共振周波数における高い受電電極間電圧(過電圧)が負荷回路60に印加されることがなく、負荷回路60の破損を防止することができる。
 また、本実施形態によれば、インダクタLxにより過電圧抑制手段70を構成していることにより、保護動作の際破損しにくい。よって、保護動作後も、特別な修理が必要なく、繰り返し保護動作を行うことができる。また、過電圧抑制手段70を容易にかつ小型に構成することができる。
 なお、本実施形態では、インダクタLxのインダクタンスは、送電電極31、32と受電電極41、42との間の結合容量Cmが、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から略0まで変化する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重ならないようにする値に設定したが、これに限らない。例えば、インダクタLxのインダクタンスは、送電電極31、32と受電電極41、42とが通常送電時の所定の位置関係にあるときの値から減少する過程において、受電装置側共振回路50により生じる低周波側及び高周波側の各共振周波数が動作周波数f3と重なったとしても受電電極間電圧が受電装置200に破損を生じさせる程度の高い電圧に到達しないようにする値に、設定してもよい。
 なお、所定のシフト量は上記の値に限定されない。例えば、低周波側の共振周波数を高周波側に所定のシフト量だけシフトすることで、受電装置200を送電装置100上に載置した状態から十分遠方に引き離す過程において低周波側の共振周波数が動作周波数f3と重なったときの受電電圧が受電装置200の破損を招かないような低い電圧となるのであれば、そのような量に設定されてもよい。
(実施形態3)
 実施形態3について説明する。図6は、実施形態3に係るワイヤレス電力伝送システムの回路構成を示す図である。
 本実施形態では、過電圧抑制手段70を、抵抗Rx(インピーダンス素子)により構成している。その他の構成は実施形態1と同一である。抵抗Rxは、抵抗Rxを接続しない場合に比べて、受電装置200の受電装置側共振回路50から見た負荷装置60側のインピーダンスを低下させる素子である、これにより、受電装置200での高電圧の発生を抑制する。
 抵抗Rxの抵抗値は、低周波側共振周波数及び高低周波側共振周波数が変化して動作周波数と一致したとしても、受電電極間電圧が受電装置200に異常を生じさせる程度の高い電圧に到達しないようする値に設定する。抵抗Rxの抵抗値は、例えば受電装置側共振回路50のインピーダンスよりも小さい値に設定され、低周波側共振周波数及び高低周波側共振周波数における受電装置側共振回路50の二次側のインピーダンスを低下させる。例えば、抵抗Rxの抵抗値は、10~100Ωに設定する。これにより、受電装置側共振回路50の二次側の電圧が低下して、負荷回路60に印加される電圧が低下し、負荷回路60に損傷を生じさせることを防止する。
 このように過電圧抑制手段70を抵抗Rxにより構成することにより、システム全体としてのインピーダンスを抵抗Rxが存在しない場合よりも低くすることができる。特に抵抗Rxの抵抗値を10~100Ωに設定することにより、受電装置側共振回路50の二次側のインピーダンスを、抵抗Rxが存在しない場合よりも確実に低くすることができる。したがって、受電装置200の送電装置100からの引き離しによる結合容量Cmの変化(低下)により高周波側及び低周波側の共振周波数が変化して、動作周波数と一致したとしても、高い受電電極間電圧(過電圧)が負荷回路60に印加されることがない。よって、負荷回路60の破損を防止することができる。
 また、本実施形態によれば、抵抗Rxにより過電圧抑制手段70を構成していることにより、保護動作の際破損しにくい。よって、保護動作後も、特別な修理が必要なく、繰り返し保護動作を行うことができる。また、過電圧抑制手段70を容易にかつ小型に構成することができる。
(実施形態4)
 実施形態4について説明する。図7は、実施形態4に係るワイヤレス電力伝送システムの回路構成を示す図である。
 本実施形態では、過電圧抑制手段70をキャパシタCxにより構成するとともに、キャパシタCxに直列にスイッチング素子SWを設けている。また、整流回路61での整流後の負荷RLへの入力電圧(以下、適宜「負荷入力電圧」という)を検出し、検出した負荷入力電圧に基づいてスイッチング素子SWのON/OFFを制御する制御回路80を設けている。その他の構成は実施形態1と同一である。
 制御回路80は、検出した負荷入力電圧が所定電圧以上より高いときは、スイッチング素子SWをONに制御し、それ以外のときはスイッチング素子SWをOFFに制御する。所定電圧は、負荷回路60の耐電圧等に基づき適宜設定すればよい。
 なお、キャパシタCxの容量は、実施形態1同様に設定されている。
 このような構成によれば、受電装置200を送電装置100から引き離すことにより結合容量Cmが減少して低周波側の共振周波数が動作周波数に接近し、負荷入力電圧が所定電圧以上に上昇すると、スイッチング素子SWがONに制御され、キャパシタCxが接続される。これにより、低周波側及び高周波側の各共振周波数がそれぞれ低周波側に移動する。その結果、低周波側の共振周波数と動作周波数との重なりを防止でき、前記各実施形態同様、共振周波数における高い受電電極間電圧(過電圧)が負荷回路60に印加されることがなく、負荷回路60の破損を防止することができる。
 図8は、実施形態4に係るワイヤレス電力伝送システムにおける、結合容量Cmに対する負荷回路入力電圧の特性を示す図である。破線はキャパシタCx及びスイッチング素子SWが設けられていない場合の特性である。本実施形態によれば、負荷回路入力電圧が所定電圧以上に上昇すると、スイッチング素子SWがONに制御されることにより、負荷入力電圧の跳ね上がりを抑え、負荷入力電圧を安定化できる。
 以上のように本実施形態では、実施形態1の構成に加え、負荷回路60を構成する整流回路61の二次側の負荷入力電圧を検出するとともに、検出された負荷入力電圧が所定の電圧より高かった場合に、スイッチング素子SWをオンにするための制御信号を出力する制御回路80(電圧検出回路)と、制御信号を受けてキャパシタCxの接続をオンに切り替えるスイッチング素子SWと、をさらに備える。
 これにより、負荷入力電圧が所定電圧以上に上昇すると、スイッチング素子SWがONに制御されることにより、負荷入力電圧の跳ね上がりを抑え、負荷入力電圧を安定化できる。
 ここで、通常送電時においてもキャパシタCxが接続されていると、受電電極間電圧が低くなり電力伝送効率が低下する。しかし、本実施形態によれば、負荷入力電圧が所定電圧以上に上昇したときのみ、キャパシタCxを接続するので、伝送効率の低下を防止できる。
(実施形態5)
 実施形態5について説明する。図9は、実施形態5に係るワイヤレス電力伝送システムの回路構成を示す図である。
 本実施形態では、過電圧抑制手段70を、直列に設けた2個のキャパシタCx1、Cx2により構成するとともに、これらのキャパシタCx1、Cx2の間にスイッチング素子SWを設けている。また、整流回路61での整流後の負荷入力電圧を検出するとともに、検出した電圧に基づいてスイッチング素子SWのON/OFFを制御する制御回路80を設けている。その他の構成は実施形態1と同一である。
 このような構成により、実施形態4と同様の効果が得られる。なお、実施形態4では過電圧抑制手段70を1個のキャパシタCxで構成した場合について、実施形態5では過電圧抑制手段70を2個のキャパシタCx1、Cx2で構成した場合について説明した。しかし、過電圧抑制手段70を3個以上の数のキャパシタで構成することも可能である。
 図10は、制御回路80のより具体的な構成を示す図である。
 降圧トランスTR2の一方の出力端T1にキャパシタCx1及びスイッチング素子SW1の直列回路が接続され、他方の出力端T2にキャパシタCx2及びスイッチング素子SW2の直列回路が接続されている。
 制御回路80は、比較器COMP、電圧源Vc等を備えている。比較器COMPは、電圧源Vcの出力電圧を分圧した基準電圧と、整流回路61のリップル除去用コンデンサCrの電圧とを比較する。そして、比較器COMPは、リップル除去用コンデンサCrの電圧が基準電圧以上となると、各スイッチング素子SW1、SW2にON信号を出力する。
 このような構成により、制御回路80を簡単な構成で実現できる。この回路のほか、ヒステリシスを持たせることで動作を安定化させることができる。スイッチング素子としてFETを用いたが、これに限定されるものでなく、電磁リレーなどのスイッチング素子も適用できる。
(その他の実施形態)
 なお、実施形態4、5で説明したスイッチング素子を有する構成は、引き離し時の電圧変動を抑える目的以外にも適用可能である。例えば、正常動作時にスイッチング素子を制御することにより、共振条件を変化させることができる。すなわち、後段の回路に出力する電圧を変化させ後段の回路の入力電圧の範囲を狭くしたい時のリミッタとしても用いることができる。
 実施形態4、5では、過電圧抑制手段としてのインピーダンス素子をキャパシタで構成した場合について説明したが、実施形態4~5の思想は、過電圧抑制手段としてのインピーダンス素子がインダクタや抵抗である場合にも適用可能である。
 上記各実施形態では、負荷回路としての二次電池がほぼ満充電状態となることにより負荷インピーダンスが高くなる場合について説明したが、本発明はこれに限定されない。例えば、負荷回路が二次電池ではないが負荷インピーダンスが定常的にあるいは一時的に高くなるものであることにより、図13(b)のような特性を示すものに対しても本発明は適用可能である。
上記各実施形態では降圧トランスTR2の二次側に並列に過電圧抑制手段70を設けたが、降圧トランスTR2の一次側に設けてもよい。トランスTR2の一次側に過電圧抑制手段70を設ける場合には、過電圧抑制手段70のキャパシタを高耐電圧仕様のものにする必要がある。
  10  電源回路
  20  送電装置側共振回路
  31  送電装置側パッシブ電極
  32  送電装置側アクティブ電極
  41  受電装置側パッシブ電極
  42  受電装置側アクティブ電極
  50  受電装置側共振回路
  60  負荷回路
  61  整流回路
  70  過電圧抑制手段
  80  制御回路
  100  送電装置
  200  受電装置
  Cp1  キャパシタ
  Cp2  キャパシタ
  Cx、Cx1、Cx2  キャパシタ
  Lx  インダクタ
  Rx  抵抗
  RL   負荷
  SW、SW1、SW2  スイッチング素子
  TR1  昇圧トランス
  TR2  降圧トランス

Claims (12)

  1.  所定の送電周波数の交流電圧を発生する電源回路と、少なくとも一対の送電電極と、前記電源回路と前記少なくとも一対の送電電極との間に接続され、前記少なくとも一対の送電電極間に交流電圧を印加する共振回路と、を備えた送電装置からワイヤレスで伝送される電力を受電する受電装置であって、
     負荷回路と、
     前記送電装置の前記少なくとも一対の送電電極に対応して設けられ、前記少なくとも一対の送電電極との位置関係に応じた結合容量を生じる少なくとも一対の受電電極と、
     前記負荷回路と前記少なくとも一対の受電電極との間に接続され、前記負荷回路に交流電圧を印加する共振回路と、
     前記前記受電装置側共振回路に対して並列に接続された過電圧抑制手段とを備え、
     前記過電圧抑制手段は、インピーダンス素子で構成され、
     前記インピーダンス素子のインピーダンスは、前記送電電極と前記受電電極との結合容量が、前記送電電極と前記受電電極とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、前記インピーダンス素子を接続しない場合に比べて前記少なくとも一対の受電電極間の電圧の上昇を抑制するような値に設定される、
     受電装置。
  2.  前記インピーダンス素子は、前記送電装置側共振回路と前記受電装置側共振回路が前記結合容量により容量結合したときに発生する二つの共振周波数の内、低周波側の共振周波数を所定のシフト量だけシフトさせる素子であり、
     前記所定のシフト量は、前記送電電極と前記受電電極との結合容量が、前記送電電極と前記受電電極とが通常送電時の所定の位置関係にあるときの値から略ゼロに変化する過程において、前記低周波側の共振周波数が前記所定の送電周波数と重なることがないような値に設定される、
     請求項1に記載の受電装置。
  3.  前記インピーダンス素子は、前記インピーダンス素子を接続しない場合に比べて、当該受電装置の前記共振回路から見た前記負荷装置側のインピーダンスを低下させる素子である、
     請求項1に記載の受電装置。
  4.  前記過電圧抑制手段はキャパシタである、
     請求項1または2に記載の受電装置。
  5.  前記キャパシタの容量は、
     前記送電電極と前記受電電極とを容量結合させたときに当該受電装置側の前記共振回路により生じる前記低周波側の共振周波数をf1、高周波側の共振周波数をf2、前記所定の送電周波数をf3としたときに、
     前記送電電極と前記受電電極との結合容量が前記送電電極と前記受電電極とが通常送電時の所定の位置関係にあるときの値から略0に変化する過程において、f1<f3<f2の関係が満たされるように設定されている。
     請求項4に記載の受電装置。
  6.  前記過電圧抑制手段はインダクタである、
     請求項1または2に記載の受電装置。
  7.  前記インダクタのインダクタンスは、
     前記送電電極と前記受電電極とを容量結合させたときに当該受電装置側の前記共振回路により生じる前記低周波側の共振周波数をf1、高周波側の共振周波数をf2、前記所定の送電周波数をf3としたときに、前記送電電極と前記受電電極との結合容量が前記送電電極と前記受電電極とが通常送電時の所定の位置関係にあるときの値から略0まで変化する過程において、f3<f1<f2の関係が満たされるように設定されている、
     請求項6に記載の受電装置。
  8.  前記過電圧抑制手段は抵抗である、
     請求項1または3に記載の受電装置。
  9.  前記抵抗の抵抗値は、10~100Ωに設定されている、
     請求項8に記載の受電装置。
  10.  前記過電圧抑制手段に直列にスイッチング素子が設けられているとともに、
     前記負荷回路を構成する整流回路の二次側の電圧を検出し、検出された電圧が所定の電圧より高いときに、前記スイッチング素子をオンに制御する制御回路が設けられている、
     請求項1~9のいずれか1項に記載の受電装置。
  11.  前記送電装置側共振回路は昇圧トランスを含んで構成され、
     前記受電装置側共振回路は降圧トランスを含んで構成される、
     請求項1~10のいずれか1項に記載の受電装置。
  12.  所定の周波数の交流電圧を発生する電源回路と、少なくとも一対の送電電極と、前記電源回路と前記少なくとも一対の送電電極との間に接続され、前記少なくとも一対の送電電極間に交流電圧を印加する共振回路と、を備えた送電装置と、
     請求項1~11のいずれか1項に記載の受電装置と、を含む
     電力伝送システム。
PCT/JP2012/078389 2012-03-26 2012-11-01 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置 WO2013145403A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1416991.6A GB2515221B (en) 2012-03-26 2012-11-01 Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same
CN201280070182.9A CN104126264B (zh) 2012-03-26 2012-11-01 电场耦合型无线电力输送系统以及用于其中的受电装置
JP2014507314A JP5590268B2 (ja) 2012-03-26 2012-11-01 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置
US14/465,144 US9831917B2 (en) 2012-03-26 2014-08-21 Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069819 2012-03-26
JP2012-069819 2012-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/465,144 Continuation US9831917B2 (en) 2012-03-26 2014-08-21 Electric field coupling type wireless electric power transmitting system and electric power receiving apparatus included in the same

Publications (1)

Publication Number Publication Date
WO2013145403A1 true WO2013145403A1 (ja) 2013-10-03

Family

ID=49258742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078389 WO2013145403A1 (ja) 2012-03-26 2012-11-01 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置

Country Status (5)

Country Link
US (1) US9831917B2 (ja)
JP (1) JP5590268B2 (ja)
CN (1) CN104126264B (ja)
GB (1) GB2515221B (ja)
WO (1) WO2013145403A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053246A1 (ja) * 2013-10-09 2015-04-16 株式会社村田製作所 ワイヤレス電力伝送システム
WO2016017750A1 (ja) * 2014-07-30 2016-02-04 株式会社ExH 電力供給システム、及びそのための可動体
US9640976B2 (en) 2015-02-26 2017-05-02 Ut-Battelle, Llc Overvoltage protection system for wireless power transfer systems
JP2017147849A (ja) * 2016-02-17 2017-08-24 富士機械製造株式会社 非接触給電装置
EP3107187A4 (en) * 2014-01-30 2017-10-18 Sony Corporation Power reception apparatus, power reception control method, non-contact power supply system, and electronic apparatus
KR20190137796A (ko) * 2017-03-07 2019-12-11 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
US11848569B2 (en) 2017-03-07 2023-12-19 Powermat Technologies Ltd. System for wireless power charging

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513135B (zh) * 2013-11-18 2015-12-11 Richtek Technology Corp 電源管理單元及其應用之無線電力系統
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
WO2016136567A1 (ja) * 2015-02-26 2016-09-01 株式会社村田製作所 電圧検出回路、送電装置および電力伝送システム
CN104979914B (zh) * 2015-06-11 2018-05-25 昆明理工大学 一种电场耦合式无线电能传输系统
JP6986712B2 (ja) 2016-12-22 2021-12-22 パナソニックIpマネジメント株式会社 移動体および無線電力伝送システム
CN108539871B (zh) * 2017-03-02 2021-10-08 泰达电子股份有限公司 无线电能传输装置
CN108808868A (zh) * 2017-05-05 2018-11-13 国美科技有限公司 具有电压保护的无线充电接收装置
US11139690B2 (en) 2018-09-21 2021-10-05 Solace Power Inc. Wireless power transfer system and method thereof
US20220140637A1 (en) * 2019-02-28 2022-05-05 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system, power transmitting device, power receiving device, and movable unit
TWI794795B (zh) * 2021-04-26 2023-03-01 國立陽明交通大學 感應諧振式無線充電系統、諧振式無線充電發射裝置、無線充電中繼裝置及感應式無線充電接收裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321726A (en) * 1997-01-30 1998-08-05 Motorola Inc Apparatus and method for regulating power on a contactless portable data carrier
JP2001268823A (ja) * 2000-03-16 2001-09-28 Aichi Electric Co Ltd 非接触給電装置
JP2012039800A (ja) * 2010-08-10 2012-02-23 Murata Mfg Co Ltd 電力伝送システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054113B2 (ja) * 2007-09-17 2012-10-24 秀雄 菊地 誘導電力伝送回路
JP2009118587A (ja) 2007-11-02 2009-05-28 Meleagros Corp 電力伝送装置
CN201185355Y (zh) * 2008-04-24 2009-01-21 武汉大学 高压线路感应取电装置
JP4557049B2 (ja) * 2008-06-09 2010-10-06 ソニー株式会社 伝送システム、給電装置、受電装置、及び伝送方法
CN102754306B (zh) 2010-05-28 2014-12-24 株式会社村田制作所 功率传输系统
JP5093386B2 (ja) * 2010-08-25 2012-12-12 株式会社村田製作所 送電装置および電力伝送システム
US8830637B2 (en) * 2010-08-31 2014-09-09 Texas Instruments Incorporated Methods and apparatus to clamp overvoltages for alternating current systems
JP5299578B2 (ja) * 2011-05-13 2013-09-25 株式会社村田製作所 電力送電装置及び電力伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321726A (en) * 1997-01-30 1998-08-05 Motorola Inc Apparatus and method for regulating power on a contactless portable data carrier
JP2001268823A (ja) * 2000-03-16 2001-09-28 Aichi Electric Co Ltd 非接触給電装置
JP2012039800A (ja) * 2010-08-10 2012-02-23 Murata Mfg Co Ltd 電力伝送システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862844B2 (ja) * 2013-10-09 2016-02-16 株式会社村田製作所 ワイヤレス電力伝送システム
WO2015053246A1 (ja) * 2013-10-09 2015-04-16 株式会社村田製作所 ワイヤレス電力伝送システム
US10468915B2 (en) 2014-01-30 2019-11-05 Sony Corporation Power receiving unit, power receiving control method, wireless power transfer system, and electronic apparatus
US11728680B2 (en) 2014-01-30 2023-08-15 Sony Group Corporation Power receiving unit, power receiving control method, wireless power transfer system, and electronic apparatus
EP3107187A4 (en) * 2014-01-30 2017-10-18 Sony Corporation Power reception apparatus, power reception control method, non-contact power supply system, and electronic apparatus
WO2016017750A1 (ja) * 2014-07-30 2016-02-04 株式会社ExH 電力供給システム、及びそのための可動体
US9640976B2 (en) 2015-02-26 2017-05-02 Ut-Battelle, Llc Overvoltage protection system for wireless power transfer systems
JP2017147849A (ja) * 2016-02-17 2017-08-24 富士機械製造株式会社 非接触給電装置
KR20190137796A (ko) * 2017-03-07 2019-12-11 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
JP2020512795A (ja) * 2017-03-07 2020-04-23 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム
KR102561311B1 (ko) * 2017-03-07 2023-07-27 파워매트 테크놀로지스 엘티디. 무선 전력 충전 시스템
US11848569B2 (en) 2017-03-07 2023-12-19 Powermat Technologies Ltd. System for wireless power charging
JP7406376B2 (ja) 2017-03-07 2023-12-27 パワーマット テクノロジーズ リミテッド 無線電力充電用のシステム

Also Published As

Publication number Publication date
GB2515221A (en) 2014-12-17
CN104126264A (zh) 2014-10-29
GB2515221B (en) 2018-01-24
JP5590268B2 (ja) 2014-09-17
US20140361639A1 (en) 2014-12-11
CN104126264B (zh) 2017-05-03
GB201416991D0 (en) 2014-11-12
US9831917B2 (en) 2017-11-28
JPWO2013145403A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5590268B2 (ja) 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置
JP5811292B2 (ja) 電力伝送システム
EP2834910B1 (en) Method and apparatus for transferring electrical power by means of capacitive coupling
JP5375322B2 (ja) 充電装置
US9559527B2 (en) Discharging circuit, image forming apparatus having the discharging circuit, and power supply unit
JP5862844B2 (ja) ワイヤレス電力伝送システム
US9246399B2 (en) Power supply system and control method thereof
WO2013058177A1 (ja) 給電装置および給電システム
CN112542899A (zh) 用于无线电力输送的高级过电压保护策略
WO2014178345A1 (ja) 給電システム及び共振回路
US9343225B2 (en) Power receiving device, power transmitting device and control device
JP5300337B2 (ja) 電源装置及び照明器具
JP2019103386A (ja) ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
JP7401385B2 (ja) スイッチモード電源装置における入力フィルタコンデンサ制御回路および制御方法ならびにそれを用いた電源装置
JP2019216592A (ja) 無線電力受信機を動作させる方法とそれを用いた無線電力受信機
JP2017063526A (ja) 非接触送電装置
JP7205169B2 (ja) 非接触給電装置
US20200365316A1 (en) Wireless Power Transmission with Current-Limiting Coil
WO2018061932A1 (ja) 電源装置
JP6172088B2 (ja) 共振電流制限装置
US11239815B2 (en) Resonance matching circuit
JP2012095446A (ja) 電源装置およびその耐電圧試験方法
JP6782474B2 (ja) 熱電変換素子出力制御装置
WO2016046826A1 (en) Resonant transformers and their applications
JP6496678B2 (ja) 受電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507314

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1416991

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121101

WWE Wipo information: entry into national phase

Ref document number: 1416991.6

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873418

Country of ref document: EP

Kind code of ref document: A1