WO2013058177A1 - 給電装置および給電システム - Google Patents

給電装置および給電システム Download PDF

Info

Publication number
WO2013058177A1
WO2013058177A1 PCT/JP2012/076405 JP2012076405W WO2013058177A1 WO 2013058177 A1 WO2013058177 A1 WO 2013058177A1 JP 2012076405 W JP2012076405 W JP 2012076405W WO 2013058177 A1 WO2013058177 A1 WO 2013058177A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
power transmission
unit
control unit
Prior art date
Application number
PCT/JP2012/076405
Other languages
English (en)
French (fr)
Inventor
慎一 長谷野
浦本 洋一
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/345,565 priority Critical patent/US9847813B2/en
Priority to CN201280050508.1A priority patent/CN103875160B/zh
Publication of WO2013058177A1 publication Critical patent/WO2013058177A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C1/00Amplitude modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L5/00Automatic control of voltage, current, or power
    • H03L5/02Automatic control of voltage, current, or power of power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/143Inductive couplings for signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to a power supply system that performs non-contact power supply (power transmission, power transmission) to a power supply target device such as an electronic device, and a power supply device applied to such a power supply system.
  • the electromagnetic induction method is well known as a method for supplying power without contact in this way. Recently, a non-contact power feeding system using a method called a magnetic field resonance method using an electromagnetic resonance phenomenon has attracted attention. Such a non-contact power supply system is disclosed in Patent Documents 1 to 6, for example.
  • JP 2001-102974 A WO00-27531 JP 2008-206233 A JP 2002-34169 A JP 2005-110399 A JP 2010-63245 A
  • the load state of the power supply apparatus varies depending on the situation, and may be in an overload state, for example. Therefore, even when such a load change occurs, it is required to ensure appropriate control within the power supply apparatus. For this reason, it is desired to propose a method capable of realizing appropriate control regardless of the load state during power transmission (contactless power feeding) using a magnetic field or the like.
  • a power supply device includes a power transmission unit that performs power transmission using a magnetic field or an electric field, a power limiting unit that is disposed on a power supply line from an external power source to the power transmission unit, and a power limiting unit Is also provided on the external power source side and includes a control unit including a power transmission control unit that controls power transmission.
  • the power supply system includes one or a plurality of electronic devices (power supply target devices) and a power supply device that transmits power to the electronic devices.
  • the power supply device includes a power transmission unit that transmits power using a magnetic field or an electric field, a power limiting unit that is disposed on a power supply line from an external power source to the power transmission unit, and is disposed closer to the external power source than the power limiting unit.
  • a control unit including a power transmission control unit that controls power transmission.
  • control unit is arranged on the external power supply side with respect to the power limiting unit, so that, for example, even in an overload state, the external power supply
  • the power supply to the control unit side is not limited. That is, power supply to the control unit side is always ensured, and preferential power distribution to the control unit side is performed.
  • the control unit is arranged on the external power supply side with respect to the power limiting unit, so that power supply from the external power supply to the control unit side is always ensured.
  • preferential power distribution to the control unit side can be performed. Therefore, stable operation of the control unit is ensured, and it is possible to realize appropriate control regardless of the load state when performing power transmission using a magnetic field or an electric field.
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of each block illustrated in FIG. 2.
  • FIG. 11 is a timing chart illustrating an operation example of the power limiting / modulation circuit illustrated in FIG. 10.
  • FIG. 11 is a timing waveform diagram illustrating an example of a communication operation by amplitude modulation using the power limiting / modulation circuit illustrated in FIG. 10.
  • First Embodiment Example of performing communication by pulse width modulation using an AC signal generation circuit
  • Second embodiment example in which communication using amplitude modulation is also performed using a power limiting circuit
  • Modified examples examples of power supply systems that transmit electric power in a contactless manner using electric fields
  • FIG. 1 illustrates an external configuration example of the power feeding system (power feeding system 4) according to the first embodiment of the present disclosure
  • FIG. 2 illustrates a block configuration example of the power feeding system 4.
  • the power feeding system 4 is a system (non-contact type power feeding system) that performs power transmission (power supply, power feeding, power transmission) in a non-contact manner using a magnetic field (using magnetic resonance, electromagnetic induction, etc .; the same applies hereinafter). is there.
  • the power supply system 4 includes a power supply device 1 (primary device) and one or a plurality of electronic devices (here, two electronic devices 2A and 2B; secondary devices) as power supply target devices.
  • the electronic devices 2A and 2B are placed (or close to) on the power supply surface (power transmission surface) S1 of the power supply device 1, so that the power supply device 1 changes to the electronic device.
  • Power transmission is performed for 2A and 2B.
  • the power supply device 1 has an area of the power supply surface S1 that is the power supply target electronic device 2A,
  • the mat shape (tray shape) is larger than 2B.
  • the power feeding device 1 is a device (charging tray) that performs power transmission (power transmission) to the electronic devices 2A and 2B using a magnetic field.
  • the power supply device 1 includes a power transmission unit 110, a current detection circuit 111, a power limiting circuit 112, an AC signal generation circuit (high frequency power generation circuit) 113, and an operation stop circuit 114. And a data transmission unit 13.
  • the power feeding device 1 includes a control unit 10 having a power transmission control unit (modulation processing unit) 10A provided in the power transmission device 11 and a data transmission control unit 10B provided outside the power transmission device 11. .
  • the power limit circuit 112 the AC signal generation circuit 113, the operation stop circuit 114, and the data transmission control unit 10B are respectively “power limit unit”, “AC signal generation unit”, “operation stop unit” in the present disclosure, and This corresponds to a specific example of “a control unit for data transmission”.
  • the power transmission unit 110 includes a power transmission coil (primary coil) L1 and capacitors C1p and C1s (resonance capacitors), which will be described later.
  • the power transmission unit 110 uses the power transmission coil L1 and the capacitors C1p and C1s to perform power transmission (power transmission) using an AC magnetic field to the electronic devices 2A and 2B (specifically, a power reception unit 210 described later). (See arrow P1 in FIG. 2).
  • the power transmission unit 110 has a function of radiating a magnetic field (magnetic flux) from the power feeding surface S1 toward the electronic devices 2A and 2B.
  • the power transmission unit 110 also has a function of mutually performing a predetermined communication operation with a power reception unit 210 described later (see arrow C1 in FIG. 2).
  • the AC signal generation circuit 113 is, for example, a predetermined AC signal Sac (high frequency power) for performing power transmission using power supplied from an external power supply 9 (parent power supply) of the power supply apparatus 1 via a power limiting circuit 112 described later. ). Such an AC signal generation circuit 113 is configured using, for example, a switching amplifier described later.
  • Examples of the external power source 9 include a USB (Universal Serial Bus) 2.0 power source (power supply capability: 500 mA, power supply voltage: about 5 V) provided in a PC (Personal Computer) or the like.
  • the power limiting circuit 112 is on a power supply line (power supply line Lp described later) from the external power supply 9 to the power transmission unit 110, that is, between the power input terminal (not shown) for the external power supply 9 and the power transmission unit 110. It is arranged.
  • the power limiting circuit 112 has a function of limiting the power supplied from the external power supply 9 to the power transmission unit 110 (performing a power limiting operation). Specifically, although details will be described later, it functions as an overcurrent limiting circuit (overcurrent protection circuit) that limits overcurrent in an overload state or the like.
  • the power limiting circuit 112 also has a function of forcibly cutting off the power supply from the external power supply 9 to the power transmission unit 110 in a predetermined case described later.
  • the current detection circuit 111 is a circuit that detects an input current I1 flowing from the external power source 9 into the entire power supply device 1. Specifically, a voltage corresponding to the input current I1 is detected (measured) and output to the power limiting circuit 112.
  • the operation stop circuit 114 forcibly stops power transmission by the power transmission unit 10 or the like without detecting power transmission control by the power transmission control unit 10A (to be described later) when an abnormal state (such as an overload state) of the device to be described later is detected. It is a circuit to make.
  • the data transmission unit 13 performs non-contact data transmission with a data transmission unit 23 in the electronic devices 2A and 2B described later (see arrow D1 in FIG. 2).
  • a method of performing such non-contact data transmission for example, a method using “Transfer Jet” which is one of the short-range wireless transfer technologies can be cited.
  • the control unit 10 includes a power input terminal (not shown) for the external power source 9 and a power limit before the power limiting circuit 112 (on the side of the external power source 9 with respect to the power limiting circuit 112). It is arranged between the circuit 112.
  • the control unit 10 includes a power transmission control unit 10A that controls power transmission by the power transmission unit 110 and a data transmission control unit 10B that controls data transfer by the data transmission unit 13, and includes the entire power supply device 1 (power supply).
  • Various control operations in the entire system 4) are performed. Specifically, in addition to the above-described power transmission control and data transmission control, for example, transmission power optimization control, a function for authenticating the secondary device, and determining that the secondary device is on the primary device. It has a function and a function to detect the mixing of different metals.
  • the power transmission control unit 10A controls the operation of the AC signal generation circuit 113 using a predetermined control signal CTL (control signal for power transmission) described later (in this case, the control is performed via the operation stop unit 114).
  • the power transmission control described above is performed.
  • the power transmission control unit 10 ⁇ / b> A also has a function of performing modulation processing by pulse width modulation (PWM), which will be described later, using the control signal CTL.
  • PWM pulse width modulation
  • the electronic devices 2A and 2B are, for example, a stationary electronic device represented by a television receiver, a portable electronic device including a rechargeable battery (battery) represented by a mobile phone or a digital camera, and the like.
  • these electronic devices 2 ⁇ / b> A and 2 ⁇ / b> B perform a predetermined operation (operation to exert functions as an electronic device) based on the power receiving device 21 and the power supplied from the power receiving device 21.
  • the load 22 to perform and the data transmission part 23 are provided.
  • the power receiving device 21 includes a power receiving unit 210, a rectifier circuit 211, a charging circuit 212, and a battery 213.
  • the power receiving unit 210 includes a power receiving coil (secondary coil) L2 and capacitors C2p and C2s (resonance capacitors), which will be described later.
  • the power reception unit 210 has a function of receiving power transmitted (power transmission) from the power transmission unit 110 in the power supply apparatus 1 using the power reception coil L2, the capacitors C2p, C2s, and the like.
  • the power receiving unit 210 also has a function of mutually performing the predetermined communication operation described above with the power transmitting unit 110 (see arrow C1 in FIG. 2).
  • the rectifier circuit 211 is a circuit that rectifies the power (AC power) supplied from the power receiving unit 210 and generates DC power.
  • the charging circuit 212 is a circuit for charging the battery 213 and a battery (not shown) in the load 22 based on the DC power supplied from the rectifier circuit 211.
  • the battery 213 stores electric power according to charging by the charging circuit 212, and is configured using a rechargeable battery (secondary battery) such as a lithium ion battery. Note that the battery 213 is not necessarily provided when only the battery in the load 22 is used.
  • the data transmission unit 23 performs non-contact data transmission with the data transmission unit 13 in the power supply apparatus 1 (see arrow D1 in FIG. 2).
  • FIG. 3 is a circuit diagram illustrating a detailed configuration example of each block in the power supply device 1 and the electronic devices 2A and 2B illustrated in FIG.
  • the power transmission unit 110 includes a power transmission coil L1 for performing power transmission (generating magnetic flux) using a magnetic field, and capacitors C1p and C1s for forming an LC resonance circuit together with the power transmission coil L1.
  • the capacitor C1s is electrically connected in series with the power transmission coil L1. That is, one end of the capacitor C1s and one end of the power transmission coil L1 are connected to each other. Further, the other end of the capacitor C1s and the other end of the power transmission coil L1 are connected in parallel to the capacitor C1p, and a connection end of the power transmission coil L1 and the capacitor C1p is grounded.
  • the LC resonance circuit composed of the power transmission coil L1 and the capacitors C1p and C1s and the LC resonance circuit composed of the power reception coil L2 and the capacitors C2p and C2s described later are magnetically coupled to each other. As a result, an LC resonance operation is performed at a resonance frequency substantially the same as the high-frequency power (AC signal Sac) generated by the AC signal generation circuit 113 described later.
  • the current detection circuit 111 includes a resistor R1 and an error amplifier (error amplifier) A1.
  • One end of the resistor R1 is connected to a power input terminal (not shown) for the external power source 9, and the other end of the resistor R1 is connected to the connection point P0. That is, the resistor R1 is disposed on the power supply line Lp.
  • the error amplifier A1 the positive side (+ side) input terminal is connected to one end of the resistor R1, the negative side ( ⁇ side) input terminal is connected to the other end of the resistor R1, and the output terminal is power to be described later.
  • the error amplifier A3 in the limit circuit 112 is connected to the positive input terminal. That is, a potential difference (voltage) between both ends of the resistor R1 is input to the positive input terminal of the error amplifier A3.
  • the current detection circuit 111 detects the above-described input current I1 (current flowing on the power supply line Lp) flowing through the resistor R1, and calculates a voltage V1 corresponding to the magnitude of the input current I as an error. Output from the amplifier A1 to the error amplifier A3.
  • the power limiting circuit 112 includes transistors Tr1 and Tr2, a comparator (comparator) A2, an error amplifier A3, and power supplies PS2 and PS3.
  • the transistor Tr1 is composed of a p-type FET (Field Effective Transistor)
  • the transistor Tr2 is composed of an n-type FET.
  • the power source PS2 is a power source that outputs a predetermined threshold voltage Vth2 (> 0 V) (second threshold value) described later
  • the power source PS3 is a power source that outputs a reference voltage (reference voltage) Vref described later.
  • the transistor Tr1 and the error amplifier A3 correspond to specific examples of “transistor” and “error amplifier” in the present disclosure, respectively.
  • the source of the transistor Tr1 is connected to the connection point P0, the drain is connected to one end of each of the capacitors C1p and C1s, and the gate is connected to the output terminal of the error amplifier A3. That is, the transistor Tr1 is disposed on the power supply line Lp.
  • the negative input terminal of the comparator A2 is connected to the output terminal of the comparator A4 in the operation stop circuit 114 described later, the positive input terminal is connected to the power source PS2, and the output terminal is connected to the gate of the transistor Tr2.
  • the source of the transistor Tr2 is grounded, and the drain is connected to the power source PS3 and the negative input terminal of the error amplifier A3.
  • the error amplifier A3 generates an output signal S3 corresponding to the potential difference between the output voltage from the error amplifier A1 (the voltage V1 corresponding to the input current I1) and the reference voltage Vref. And supplied to the gate of the transistor Tr1. Then, according to the output signal S3, the magnitude of the current I2 flowing between the source and drain of the transistor Tr1 (of the input current I1 described above, the current flowing from the connection point P0 to the power transmission unit 110 side) (the magnitude of power). ) Is limited. In this way, the power supplied from the external power source 9 to the power transmission unit 110 is limited (overcurrent in an overload state or the like is limited).
  • the magnitude of the reference voltage Vref input to the error amplifier A3 is controlled by the operation stop circuit 114, so that the power limiting circuit 112 transfers from the external power supply 9 to the power transmission unit 110.
  • the power supply is forcibly cut off.
  • the magnitude of the reference voltage Vref is controlled according to the voltage comparison result in the comparator A2.
  • the control unit 10 includes the power transmission control unit (modulation processing unit) 10A and the data transmission control unit 10B described above, and each input terminal is connected to the connection point P0. That is, the power transmission control unit 10A and the data transmission control unit 10B are arranged so as to be connected in parallel to each other before the power limiting circuit 112 (between the external power supply 9 and the power limiting circuit 112). As will be described in detail later, the current I3 always flows (regardless of the load state) through the path on the control unit 10 side from the connection point P0 among the input current I1 described above.
  • the operation stop circuit 114 includes a comparator A4, a power supply PS1 that outputs a predetermined threshold voltage Vth1 (> Vth2) (first threshold) described later, and an AND circuit (AND circuit) LG1.
  • Vth1 predetermined threshold voltage
  • first threshold first threshold
  • AND circuit AND circuit
  • the comparator A4 and the AND circuit LG1 respectively correspond to specific examples of “voltage detection unit” and “switching unit” in the present disclosure.
  • the positive input terminal is connected to the source of the transistor Tr1, and the negative input terminal is connected to the drain of the transistor Tr1 through the power source PS1.
  • the output terminal of the comparator A4 is connected to the negative input terminal of the comparator A2 described above and one input terminal of the AND circuit LG1.
  • a power transmission control signal CTL is supplied from the power transmission control unit 10A to the other input terminal of the AND circuit LG1.
  • the control signal CTL is composed of a pulse signal having a predetermined duty ratio as shown in FIG.
  • the pulse width modulation described later is performed by controlling the duty ratio in the control signal CTL.
  • the comparator A4 detects the voltage ⁇ V2 between the input and output in the power limiting circuit 112 (potential difference between the source and drain of the transistor Tr1) and compares it with the threshold voltage Vth1 described above. Is made. Then, an abnormal state (overload state or the like) of the device to be described later is detected according to the comparison result of the voltage (the magnitude of the detected voltage ⁇ V2), and via the AND circuit LG1 according to the detection result. The power transmission operation by the AC signal generation circuit 113 and the power transmission unit 110 is forcibly stopped.
  • the AC signal generation circuit 113 is configured using a switching amplifier (a so-called class E amplifier) having one transistor Tr3 as a switching element.
  • the transistor Tr3 is formed of an n-type FET.
  • the source of the transistor Tr3 is grounded, the gate is connected to the output terminal of the AND circuit LG1, and the drain is connected to the drain of the transistor Tr1 and one end of each of the capacitors C1p and C1s.
  • the transistor Tr3 is turned on / off (predetermined frequency and duty ratio) in accordance with the output signal (signal S1) from the AND circuit LG1 based on the control signal CTL for power transmission described above. Switching operation). That is, the on / off operation of the transistor Tr3 as a switching element is controlled using the control signal CTL supplied from the power transmission control unit 10A.
  • an AC signal Sac AC power is generated based on the DC signal Sdc input via the power limiting circuit 112 and supplied to the power transmission unit 110.
  • the power receiving unit 210 includes a power receiving coil L2 for receiving power transmitted from the power transmitting unit 110 (from magnetic flux), and capacitors C2p and C2s for forming an LC resonance circuit together with the power receiving coil L2.
  • the capacitor C2p is electrically connected in parallel to the power receiving coil L2, and the capacitor C2s is electrically connected in series to the power receiving coil L2. That is, one end of the capacitor C2s is connected to one end of the capacitor C2p and one end of the power receiving coil L2.
  • the other end of the capacitor C2s is connected to one input terminal in the rectifier circuit 211, and the other end of the power receiving coil L2 and the other end of the capacitor C2p are each connected to the other input terminal in the rectifier circuit 211.
  • the LC resonance circuit including the power receiving coil L2 and the capacitors C2p and C2s and the LC resonance circuit including the power transmission coil L1 and the capacitors C1p and C1s are magnetically coupled to each other.
  • the LC resonance operation is performed at the resonance frequency substantially the same as the high-frequency power (AC signal Sac) generated by the AC signal generation circuit 113.
  • the electronic devices 2A and 2B as the power supply target devices are placed on (or in close proximity to) the upper surface (power supply surface S1) of the power supply device 1, the power transmission coil L1 and the electrons in the power supply device 1
  • the power receiving coils L2 in the devices 2A and 2B are close to each other in the vicinity of the power feeding surface S1.
  • the electromotive force is induced in the power receiving coil L2 by being induced by the magnetic flux generated from the power transmission coil L1.
  • a magnetic field is generated by interlinking with each of the power transmission coil L1 and the power reception coil L2 by electromagnetic induction or magnetic resonance.
  • power is transmitted from the power transmission coil L1 side (primary side, power feeding device 1 side, power transmission unit 110 side) to the power reception coil L2 side (secondary side, electronic equipment 2A, 2B side, power reception unit 210 side). (See arrow P1 in FIGS. 2 and 3).
  • the power transmission coil L1 on the power feeding device 1 side and the power reception coil L2 on the electronic device 2A, 2B side are magnetically coupled to each other by electromagnetic induction or the like, and LC resonance operation is performed in the LC resonance circuit described above.
  • the AC power received by the power receiving coil L2 is supplied to the rectifying circuit 211 and the charging circuit 212, and the following charging operation is performed. That is, after this AC power is converted into predetermined DC power by the rectifier circuit 211, the charging circuit 212 charges the battery 213 or a battery (not shown) in the load 22 based on this DC power. In this way, in the electronic devices 2A and 2B, the charging operation based on the power received by the power receiving unit 210 is performed.
  • the power feeding period Tp (charging period) and the communication period Tc (non-charging period) are periodically (or aperiodically divided).
  • the power transmission control unit 10A performs control such that the power supply period Tp and the communication period Tc are set periodically (or aperiodically) in a time division manner.
  • the communication period Tc is a mutual communication operation using the power transmission coil L1 and the power reception coil L2 between the primary side device (power feeding device 1) and the secondary side device (electronic devices 2A and 2B). This is a period during which (communication operation for mutual authentication between devices and power supply efficiency control) is performed (see arrow C1 in FIGS. 2 and 3).
  • this communication period Tc for example, as shown in FIGS. 6A to 6D, a communication operation using pulse width modulation in the AC signal generation circuit 113 is performed. Specifically, for example, based on the modulation data Dm as shown in FIG. 6A, the duty ratio of the control signal CTL in the communication period Tc is set (see FIG. 6B), and the pulse width. Communication by modulation is performed. In addition, since it is theoretically difficult to perform frequency modulation during the resonance operation in the power transmission unit 110 and the power reception unit 210 described above, communication operation can be easily realized by using such pulse width modulation.
  • the data transmission unit 23 performs data transmission without contact with each other.
  • data transmission is performed simply by bringing the power supply device 1 and the electronic devices 2A and 2B close to each other without connecting wiring for data transmission or the like between the power supply device 1 and the electronic devices 2A and 2B. be able to. That is, the burden on the user can be reduced also in this respect.
  • the electric power feeder 1 may be in an excessive load state (overload state). Specifically, for example, a case in which excessive power is suddenly consumed in the data transmission unit 13 or a case in which excessive power is required in the secondary side devices (in this case, the electronic devices 2A and 2B) is assumed.
  • the current-voltage characteristic is controlled so as to exhibit a so-called drooping characteristic (characteristic of “F”), and the protection against the overcurrent is performed.
  • the voltage V1 corresponding to the input current I1 from the external power supply 9 is detected by the current detection circuit 111 in the power supply apparatus 1.
  • the error amplifier A3 outputs a signal S3 corresponding to the potential difference between the voltage V1 and the reference voltage Vref, and the magnitude of the current I2 flowing between the source and drain of the transistor Tr1 based on the signal S3. Is controlled.
  • the power limiting operation is performed in the power limiting circuit 112 by limiting the magnitude of the current I2 according to the magnitude of the input current I1 (the power supplied to the drain side of the transistor Tr1 is limited).
  • the external power source 9 is the USB 2.0 power source described above
  • an overcurrent state overload state
  • I1 ⁇ 500 mA when 2.5 W is exceeded.
  • the control unit 10 is arranged in the preceding stage of the power limiting circuit 112 (between the external power supply 9 and the power limiting circuit 112). Yes.
  • the current I3 always flows (regardless of the load state) through the path on the control unit 10 side from the connection point P0 (FIG. 3). reference).
  • power supply from the external power supply 9 to the control unit 10 side is not limited even in an overload state, for example. In this way, power supply to the control unit 10 side is always ensured in the power supply device 1, and preferential power distribution to the control unit 10 side is performed.
  • the input current I1 flowing from the external power supply 9 to the entire power feeding device 1 (power taken out from the external power supply 9) is a predetermined threshold Ith (for example, In the case of the USB 2.0 power source described above, the power is controlled to be 500 mA) or less.
  • Ith for example, In the case of the USB 2.0 power source described above, the power is controlled to be 500 mA or less.
  • the operation stop circuit 114 performs the following forced operation stop action.
  • the voltage ⁇ V2 between the input and output in the power limiting circuit 112 (potential difference between the source and drain of the transistor Tr1) is detected and compared with a predetermined threshold voltage Vth1.
  • the threshold voltage Vth1 is a threshold that defines whether or not the power supply device 1 is in an overload state (overcurrent state) during normal operation, for example, as shown in FIG. That is, according to the voltage comparison result (the magnitude of the detected voltage ⁇ V2), it is detected whether the load is in an appropriate load state or an overload state during normal operation.
  • the magnitude of the voltage ⁇ V2 is equal to or less than the threshold value Vth1, it is detected that the load is appropriate during normal operation.
  • the normal operation is performed. It is detected as an overload condition at the time.
  • the detection sensitivity at this time is set to be somewhat dull due to the time constant in the wiring between the comparator A4 and the AND circuit LG1.
  • the operation stop circuit 114 uses the AND circuit LG1 in accordance with the detection result of the load state described above, and does not perform power transmission control by the power transmission control unit 10A, but transmits power by the AC signal generation circuit 113 and the power transmission unit 110.
  • the output signal S4 from the comparator A4 becomes “L (low)” state.
  • the output signal S1 from the AND circuit LG1 to the transistor Tr3 in the AC signal generation circuit 113 is always in the “L” state (the control signal CTL is controlled to be invalid), and the transistor Tr3 is always in the off state.
  • the transistor Tr3 is in an open state). That is, the AND circuit LG1 plays a role of switching between enabling and disabling the control signal CTL according to the value of the output signal S4 from the comparator A4 (whether or not an overload state is detected).
  • the operation stop circuit 114 by invalidating the control signal CTL for power transmission, the power transmission operation in the AC signal generation circuit 113 and the power transmission unit 110 is forcibly performed regardless of the power transmission control by the power transmission control unit 10A. It is stopped.
  • the operation stop circuit 114 invalidates the control signal CTL when the above-described overload state (overcurrent state) is detected in the communication period Tc in addition to the power supply period Tp. By doing so, the communication operation is also forcibly stopped.
  • the power transmission by the power transmission unit 110 is forcibly stopped regardless of the power transmission control by the power transmission control unit 10A.
  • the power transmission is quickly stopped without waiting for the power transmission control by the power transmission control unit 10A. Short transmission period).
  • the threshold voltage Vth2 is, for example, as shown in FIG. 9, due to a short circuit state of the circuit in the power feeding device 1 or the like. ) Is a threshold value that defines whether or not it has fallen into. In such a state, the voltage ⁇ V2 between both ends of the transistor Tr1 in the current limiting circuit 112 may become excessive and heat may be generated, and the operation stop circuit 114 may be inoperable ( There is a risk that the above-mentioned forced operation stop action will not be performed).
  • the comparator A4 also detects whether or not the power transmission unit 110 is in a failure state or a destruction state in accordance with the detected voltage ⁇ V2. Specifically, here, when the magnitude of the voltage ⁇ V2 is equal to or less than the threshold value Vth2, it is detected that such a failure state or a breakdown state is not occurring, while the magnitude of the voltage ⁇ V2 exceeds the threshold value Vth2 Is detected as falling into such a failure state or destruction state.
  • the current limiting circuit 112 receives an AC signal from the external power supply 9 as follows.
  • the power supply to the generation circuit 113 and the power transmission unit 110 is forcibly cut off. That is, the magnitude of the reference voltage Vref input to the error amplifier A3 is controlled according to the comparison result of the voltage in the comparator A2, and the transistor Tr1 is always turned off, so that the forced power supply is interrupted. Done.
  • control unit 10 since the control unit 10 is arranged on the external power supply 9 side with respect to the power limiting circuit 112, power supply from the external power supply 9 to the control unit 10 side is always ensured, Preferential power distribution to the control unit 10 side can be performed. Therefore, the stable operation of the control unit 10 is ensured, and it is possible to realize appropriate control regardless of the load state when performing power transmission using a magnetic field. Further, by clarifying the roles of power protection and power distribution in the power feeding system 4 (non-contact power feeding system), an effect of ensuring safety can be obtained.
  • the operation stop circuit 114 is forcibly stopped without using the power transmission control by the power transmission control unit 10A.
  • the load state fluctuates and becomes an overload state, an unnecessary power transmission period can be shortened. Therefore, it is possible to reduce power loss (power loss) due to fluctuations in the load state during power transmission using a magnetic field.
  • the operation stop circuit 114 forcibly stops power transmission when the detected voltage (voltage ⁇ V2) exceeds the threshold voltage Vth1, and also when the voltage ⁇ V2 exceeds the threshold voltage Vth2 that is larger than the threshold voltage Vth1.
  • the power supply to the power transmission unit 110 is forcibly cut off. For example, even when the power transmission unit 110 is in a failure state or a breakdown state, the overcurrent is completely eliminated. It can be stopped, and the fear of heat generation in the power feeding device 1 (transistor Tr1) can be avoided. Therefore, it is possible to improve safety during power transmission using a magnetic field.
  • the power transmission unit 110 performs power transmission using the resonance operation (LC resonance operation). That is, since the resonance operation is performed, a configuration that is dull with respect to fluctuations in output power and strong against instantaneous power cut-off can be obtained. In other words, even if there is a sudden fluctuation in electric power, the so-called “pendulum principle” (inertial action) makes it possible to continue to move for a while (continue to send electric power).
  • the resonance operation since the resonance operation is performed, a configuration that is dull with respect to fluctuations in output power and strong against instantaneous power cut-off can be obtained. In other words, even if there is a sudden fluctuation in electric power, the so-called “pendulum principle” (inertial action) makes it possible to continue to move for a while (continue to send electric power).
  • FIG. 10 is a circuit diagram illustrating a configuration example of a main part in the power supply system (power supply system 4A) according to the second embodiment.
  • the power supply system 4A of the present embodiment includes one power supply device 1A and two electronic devices 2A and 2B.
  • This power supply apparatus 1A is the same as the power supply apparatus 1 of the first embodiment except that a power limiting / modulating circuit 112A is provided instead of the power limiting circuit 112, and the other configurations are the same.
  • the power limiting / modulating circuit 112A corresponds to a specific example of “power limiting unit” in the present disclosure.
  • the power limiting / modulation circuit 112A has a configuration in which one OR circuit (OR circuit) LG2 is further added to the power limiting circuit 112 shown in FIG.
  • one input terminal is connected to the output terminal of the error amplifier A3, and the other input terminal receives the modulation data Dm output from the power transmission control unit (modulation processing unit) 10A. It has become.
  • the output terminal of the OR circuit LG2 is connected to the gate of the transistor Tr1.
  • the power limiting operation is performed in the power limiting / modulating circuit 112A by the same technique as that of the power limiting circuit 112 of the first embodiment.
  • the power limiting / modulation circuit 112A performs an amplitude modulation (AM) operation such as ASK (Amplitude Shift Keying) modulation.
  • AM amplitude modulation
  • the power limiting operation is performed in the power feeding period Tc, while the amplitude modulating operation is performed in the communication period Tc.
  • the power limiting operation by the power limiting / modulating circuit 112A is controlled by the power transmission control unit 10A, so that the communication based on the amplitude modulation described above is performed.
  • a communication operation by amplitude modulation such as ASK modulation is realized relatively easily.
  • a communication operation using amplitude modulation in the power limiting / modulation circuit 112A is performed. That is, first, for example, modulation data Dm as shown in FIG. 12A is supplied from the power transmission control unit 10A to the transistor Tr1 via the OR circuit LG2 in the power limiting / modulation circuit 112A.
  • the DC signal Sdc output from the power limiting / modulating circuit 112A onto the power supply line Lp is, for example, a signal subjected to amplitude modulation as shown in FIG.
  • the AC signal generation circuit 113 generates an AC signal Sac based on the DC signal Sdc (see FIG. 12C), and finally a communication operation by amplitude modulation is performed (see FIG. 12D). ).
  • the positive and negative waveforms in the AC signal are different. (That is, in communication by pulse width modulation, for example, as indicated by the broken line in FIG. 6D described above, the positive and negative waveforms in the AC signal (here, the voltage V (L1) across the power transmission coil L1) are different. (That is asymmetric) and has a waveform including so-called even-order harmonic components (including second harmonics).
  • the AC signal is demodulated (envelope detection) in the secondary device, the noise of the even harmonic components distorts the communication waveform, so the C / N ratio (Carrier to Noise ratio) Ratio) may deteriorate and communication quality may deteriorate.
  • the communication by the amplitude modulation is performed by controlling the power limiting operation by the power limiting / modulating circuit 112A in the communication period Tc, so that the effect of the first embodiment is achieved.
  • the communication quality during the communication period Tc can be improved.
  • the power limiting / modulation circuit 112A is responsible for both power limiting operation and modulation operation (amplitude modulation operation) (both functions are shared), the cost of the apparatus, the number of mounted parts, and the small size are reduced. It is also possible to make it easier.
  • each coil may be not only a wound coil made of a conductive wire, but also a conductive pattern coil made of a printed board, a flexible printed board, or the like.
  • the electronic device has been described as an example of the power supply target device.
  • the present invention is not limited thereto, and may be a power supply target device other than the electronic device (for example, a vehicle such as an electric vehicle). Good.
  • each component of the power feeding device and the electronic device has been specifically described. However, it is not necessary to include all the components, and other components may be further included. .
  • a communication function, some control function, a display function, a function for authenticating a secondary side device, a function for discriminating that a secondary side device is on the primary side device, a dissimilar metal A function for detecting contamination such as may be installed.
  • the present invention is not limited to this, and the power feeding system includes Only one electronic device may be provided.
  • a charging tray for a small electronic device such as a mobile phone
  • CE device small electronic device
  • a power feeding device such as a household charging tray is used. Is not limited, and can be applied as a charger for various electronic devices. Further, it is not necessarily a tray, and may be a stand for an electronic device such as a so-called cradle.
  • Example of a power feeding system that uses an electric field to transmit power in a contactless manner Example of a power feeding system that uses an electric field to transmit power in a contactless manner
  • the case of the electric power feeding system which performs non-contact electric power transmission (electric power feeding) using the magnetic field with respect to the electronic device as a secondary side apparatus from the electric power feeder as a primary side apparatus is made into an example.
  • the present disclosure may be applied to a power supply system that performs electric power transmission using an electric field (electric field coupling) from a power supply device as a primary device to an electronic device as a secondary device. It is possible to obtain the same effects as those of the above embodiment.
  • the power supply system illustrated in FIG. 13 includes one power supply device 81 (primary device) and one electronic device 82 (secondary device).
  • the power feeding device 81 mainly includes a power transmission unit 810 including a power transmission electrode E1 (primary side electrode), an AC signal source 811 (oscillator), and a ground electrode Eg1.
  • the electronic device 82 mainly includes a power receiving unit 820 including a power receiving electrode E2 (secondary side electrode), a rectifier circuit 821, a load 822, and a ground electrode Eg2. That is, this power feeding system includes two sets of electrodes, that is, a power transmission electrode E1 and a power reception electrode E2, and ground electrodes Eg1 and Eg2.
  • the power feeding device 81 (primary device) and the electronic device 82 (secondary device) each have an antenna having a pair of asymmetric electrode structures such as a monopole antenna inside the device. .
  • the above-described non-contact antennas are coupled to each other (electric field coupling is performed along the vertical direction of the electrodes). Then, an induction electric field is generated between them, and thereby electric power transmission using the electric field is performed (see electric power P8 shown in FIG. 13).
  • the generated electric field inductive electric field Ei
  • the generated induced electric field Ei propagates toward the electrode Eg1 side. That is, a loop path of the generated induced electric field Ei is formed between the primary device and the secondary device. Even in a non-contact power supply system using such an electric field, it is possible to obtain the same effect by applying the same method as in the above embodiment.
  • this technique can also take the following structures.
  • a power transmission unit that transmits power using a magnetic field or an electric field;
  • a power limiting unit disposed on a power supply line from an external power source to the power transmission unit;
  • a control unit that is disposed closer to the external power source than the power limiting unit and includes a power transmission control unit that controls the power transmission.
  • the power supply apparatus according to (1) wherein the control unit includes the power transmission control unit and a data transmission control unit.
  • the power supply device forcibly stops the power transmission by invalidating the control signal for power transmission.
  • the operation stop unit includes a switching unit that switches between enabling and disabling the control signal according to whether or not the abnormal state is detected.
  • the operation stop unit is A voltage detection unit for detecting a voltage between input and output in the power limiting unit; The power feeding device according to any one of (3) to (5), wherein the power transmission is forcibly stopped according to a magnitude of a voltage detected by the voltage detection unit.
  • the power supply device forcibly stops the power transmission when the detected voltage exceeds a first threshold.
  • the power supply unit When the detection voltage exceeds a second threshold value that is greater than the first threshold value, The power supply unit according to (7), wherein the power restriction unit forcibly cuts off power supply to the power transmission unit.
  • the power limiting unit is An error amplifier that controls a power limiting operation according to a potential difference between a voltage corresponding to an input current from the external power supply and a reference voltage; The power supply apparatus according to (8), wherein when the detected voltage exceeds the second threshold, the power supply to the power transmission unit is forcibly cut off by controlling the magnitude of the reference voltage.
  • the power limiting unit is Having a transistor on the power supply line;
  • the first threshold value defines whether or not the device is in an overload state during normal operation,
  • the power supply device according to any one of (8) to (11), wherein when the detected voltage exceeds the second threshold, the operation stop unit is in an inoperable state.
  • the power transmission control unit performs control so that a power supply period for performing power transmission to a power supply target device and a communication period for performing predetermined communication with the power supply target device are set in a time-sharing manner,
  • the power supply device according to any one of (3) to (12), wherein the operation stop unit forcibly stops the communication when the abnormal state is detected in the communication period.
  • the power transmission control unit While controlling so that the power supply period for performing the power transmission to the power supply target device and the communication period for performing predetermined communication with the power supply target device are set in a time-sharing manner,
  • the power feeding device according to any one of (1) to (13), wherein communication by amplitude modulation is performed by controlling a power limiting operation by the power limiting unit in the communication period.
  • the power supply device (14), wherein the power limiting unit performs a power limiting operation in the power supply period and performs an amplitude modulation operation in the communication period.
  • An AC signal generator for generating an AC signal for performing the power transmission The power transmission device according to any one of (1) to (15), wherein the power transmission control unit controls the power transmission by controlling an operation of the AC signal generation unit.
  • the AC signal generator is configured using a switching amplifier including a switching element, The power transmission control unit according to (16), wherein the power transmission control unit controls an on / off operation of the switching element using the control signal for power transmission.
  • the power transmission control unit While controlling so that the power supply period for performing the power transmission to the power supply target device and the communication period for performing predetermined communication with the power supply target device are set in a time-sharing manner,
  • One or more electronic devices A power supply device for transmitting power to the electronic device,
  • the power supply device A power transmission unit that performs the power transmission using a magnetic field or an electric field;
  • a power limiting unit disposed on a power supply line from an external power source to the power transmission unit;
  • a control unit including a power transmission control unit that is disposed closer to the external power source than the power limiting unit and controls the power transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 給電装置は、磁界または電界を用いて送電を行う送電部と、外部電源から送電部への電力供給ライン上に配設された電力制限部と、電力制限部よりも外部電源側に配設され、送電の制御を行う送電制御部を含む制御部とを備えている。

Description

給電装置および給電システム
 本開示は、電子機器等の給電対象機器に対して非接触に電力供給(送電,電力伝送)を行う給電システム、ならびにそのような給電システムに適用される給電装置に関する。
 近年、例えば携帯電話機や携帯音楽プレーヤー等のCE機器(Consumer Electronics Device:民生用電子機器)に対し、非接触に電力供給(送電,電力伝送)を行う給電システム(非接触給電システム、ワイヤレス充電システム)が注目を集めている。これにより、ACアダプタのような電源装置のコネクタを機器に挿す(接続する)ことによって充電を開始するのはなく、電子機器(2次側機器)を充電トレー(1次側機器)上に置くだけで充電を開始することができる。すなわち、電子機器と充電トレーと間での端子接続が不要となる。
 このようにして非接触で電力供給を行う方式としては、電磁誘導方式が良く知られている。また、最近では、電磁共鳴現象を利用した磁界共鳴方式と呼ばれる方式を用いた非接触給電システムが注目されている。このような非接触による給電システムは、例えば特許文献1~6等に開示されている。
特開2001-102974号公報 WO00-27531号公報 特開2008-206233号公報 特開2002-34169号公報 特開2005-110399号公報 特開2010-63245号公報
 ところで、上記のような非接触による給電システムでは、状況に応じて給電装置の負荷状態が変動し、例えば過負荷状態になってしまう場合もある。したがって、そのような負荷変動が生じた場合であっても、給電装置内での適切な制御を担保することが求められる。これのことから、磁界等を用いた電力伝送(非接触給電)の際に、負荷状態によらずに適切な制御を実現することを可能とする手法の提案が望まれる。
 したがって、磁界または電界を用いて電力伝送(送電)を行う際に、負荷状態によらずに適切な制御を実現することが可能な給電装置および給電システムを提供することが望ましい。
 本開示の一実施の形態の給電装置は、磁界または電界を用いて送電を行う送電部と、外部電源から送電部への電力供給ライン上に配設された電力制限部と、電力制限部よりも外部電源側に配設され、送電の制御を行う送電制御部を含む制御部とを備えたものである。
 本開示の一実施の形態の給電システムは、1または複数の電子機器(給電対象機器)と、この電子機器に対して送電を行う給電装置とを備えたものである。この給電装置は、磁界または電界を用いて送電を行う送電部と、外部電源から送電部への電力供給ライン上に配設された電力制限部と、電力制限部よりも外部電源側に配設され、送電の制御を行う送電制御部を含む制御部とを有している。
 本開示の一実施の形態の給電装置および給電システムでは、制御部が電力制限部よりも外部電源側に配設されていることにより、例えば過負荷状態の場合等であっても、外部電源から制御部側への電力供給が制限されてしまうことがない。すなわち、制御部側への電力供給が常に確保され、制御部側への優先的な電力分配がなされる。
 本開示の一実施の形態の給電装置および給電システムによれば、制御部を電力制限部よりも外部電源側に配設するようにしたので、外部電源から制御部側への電力供給が常に確保され、制御部側への優先的な電力分配を行うことができる。よって、制御部の安定的動作が担保されることになり、磁界または電界を用いて電力伝送を行う際に、負荷状態によらずに適切な制御を実現することが可能となる。
本開示の第1の実施の形態に係る給電システムの外観構成例を表す斜視図である。 図1に示した給電システムの詳細構成例を表すブロック図である。 図2に示した各ブロックの詳細構成例を表す回路図である。 交流信号発生回路に対する制御信号の一例を表すタイミング波形図である。 給電期間および通信期間の一例を表すタイミング図である。 交流信号発生回路を用いたパルス幅変調による通信動作の一例を表すタイミング波形図である。 過負荷状態時における垂下特性の一例を模式的に表す特性図である。 過負荷状態時における電力制限・分配作用について説明するためのタイミング波形図である。 強制的な動作停止作用および電力供給遮断作用について説明するための模式図である。 第2の実施の形態に係る給電システムにおける要部構成例を表す回路図である。 図10に示した電力制限・変調回路の動作例を表すタイミング図である。 図10に示した電力制限・変調回路を用いた振幅変調による通信動作の一例を表すタイミング波形図である。 変形例に係る給電システムの概略構成例を表すブロック図である。 図13に示した給電システムにおける電界の伝播態様例を表す模式図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 
1.第1の実施の形態(交流信号発生回路を用いてパルス幅変調による通信を行う例)
2.第2の実施の形態(電力制限回路を用いて振幅変調による通信をも行う例)
3.変形例(電界を用いて非接触に電力伝送を行う給電システムの例等)
 
<第1の実施の形態>
[給電システム4の全体構成]
 図1は、本開示の第1の実施の形態に係る給電システム(給電システム4)の外観構成例を表したものであり、図2は、この給電システム4のブロック構成例を表したものである。給電システム4は、磁界を用いて(磁気共鳴や電磁誘導等を利用して;以下同様)、非接触に電力伝送(電力供給,給電,送電)を行うシステム(非接触型の給電システム)である。この給電システム4は、給電装置1(1次側機器)と、給電対象機器としての1または複数の電子機器(ここでは2つの電子機器2A,2B;2次側機器)とを備えている。
 この給電システム4では、例えば図1に示したように、給電装置1における給電面(送電面)S1上に電子機器2A,2Bが置かれる(または近接する)ことにより、給電装置1から電子機器2A,2Bに対して電力伝送が行われるようになっている。ここでは、複数の電子機器2A,2Bに対して同時もしくは時分割的(順次)に電力伝送を行う場合を考慮して、給電装置1は、給電面S1の面積が給電対象の電子機器2A,2B等よりも大きなマット形状(トレー状)となっている。
(給電装置1)
 給電装置1は、上記したように、磁界を用いて電子機器2A,2Bに対して電力伝送(送電)を行うもの(充電トレー)である。この給電装置1は、例えば図2に示したように、送電部110、電流検出回路111、電力制限回路112、交流信号発生回路(高周波電力発生回路)113および動作停止回路114を有する送電装置11と、データ伝送部13とを備えている。また、給電装置1は、送電装置11内に設けられた送電制御部(変調処理部)10Aと、送電装置11の外部に設けられたデータ伝送制御部10Bとを有する制御部10を備えている。これらのうち、電力制限回路112、交流信号発生回路113、動作停止回路114およびデータ伝送制御部10Bはそれぞれ、本開示における「電力制限部」、「交流信号発生部」、「動作停止部」および「データ伝送用の制御部」の一具体例に対応する。
 送電部110は、後述する送電コイル(1次側コイル)L1およびコンデンサC1p,C1s(共振用のコンデンサ)等を含んで構成されている。送電部110は、これらの送電コイルL1およびコンデンサC1p,C1sを利用して、電子機器2A,2B(詳細には、後述する受電部210)に対して交流磁界を用いた電力伝送(送電)を行うものである(図2中の矢印P1参照)。具体的には、送電部110は、給電面S1から電子機器2A,2Bへ向けて磁界(磁束)を放射する機能を有している。この送電部110はまた、後述する受電部210との間で所定の通信動作を相互に行う機能を有している(図2中の矢印C1参照)。
 交流信号発生回路113は、例えば給電装置1の外部電源9(親電源)から後述する電力制限回路112を介して供給される電力を用いて、送電を行うための所定の交流信号Sac(高周波電力)を発生する回路である。このような交流信号発生回路113は、例えば、後述するスイッチングアンプを用いて構成されている。なお、外部電源9としては、例えば、PC(Personal Computer)などに設けられているUSB(Universal Serial Bus)2.0の電源(電力供給能力:500mA,電源電圧:5V程度)等が挙げられる。
 電力制限回路112は、外部電源9から送電部110への電力供給ライン(後述する電力供給ラインLp)上、すなわち、外部電源9用の電力入力端子(図示せず)と送電部110との間に配設されている。この電力制限回路112は、外部電源9から送電部110へ供給される電力を制限する(電力制限動作を行う)機能を有している。具体的には、詳細は後述するが、過負荷状態等の際の過電流を制限する過電流制限回路(過電流保護回路)として機能するようになっている。また、この電力制限回路112は、後述する所定の場合には、外部電源9から送電部110への電力供給を強制的に遮断する機能も有している。
 電流検出回路111は、外部電源9から給電装置1全体へ流入する入力電流I1を検出する回路である。具体的には、この入力電流I1に対応する電圧を検知(測定)し、電力制限回路112へ出力するようになっている。
 動作停止回路114は、後述する装置の異常状態(過負荷状態等)が検知されたときに、後述する送電制御部10Aによる送電制御によらずに、強制的に送電部10等による送電を停止させる回路である。
 データ伝送部13は、後述する電子機器2A,2B内のデータ伝送部23との間で、相互に非接触によるデータ伝送を行うものである(図2中の矢印D1参照)。なお、このような非接触によるデータ伝送を行う手法としては、例えば、近距離無線転送技術の1つである「Transfer Jet」を用いたものが挙げられる。
 制御部10は、図2に示したように、電力制限回路112の前段(電力制限回路112よりも外部電源9側)、すなわち、外部電源9用の電力入力端子(図示せず)と電力制限回路112との間に配設されている。この制御部10は、送電部110による送電の制御を行う送電制御部10Aと、データ伝送部13によるデータ転送の制御を行うデータ伝送制御部10Bとを含んで構成され、給電装置1全体(給電システム4全体)における種々の制御動作を行うものである。具体的には、上記した送電制御およびデータ伝送制御の他、例えば、送電電力の最適化制御や2次側機器を認証する機能、2次側機器が1次側機器上にあることを判別する機能、異種金属などの混入を検知する機能などを有している。
 送電制御部10Aは、後述する所定の制御信号CTL(送電用の制御信号)を用いて交流信号発生回路113の動作を制御する(ここでは、動作停止部114を介して制御する)ことにより、上記した送電制御を行うものである。また、この送電制御部10Aは、制御信号CTLを用いて、後述するパルス幅変調(PWM:Pulse Width Modulation)による変調処理を行う機能も有している。
(電子機器2A,2B)
 電子機器2A,2Bは、例えば、テレビ受像機に代表される据え置き型電子機器や、携帯電話やデジタルカメラに代表される、充電池(バッテリー)を含む携帯型の電子機器等からなる。これらの電子機器2A,2Bは、例えば図2に示したように、受電装置21と、この受電装置21から供給される電力に基づいて所定の動作(電子機器としての機能を発揮させる動作)を行う負荷22と、データ伝送部23とを備えている。また、受電装置21は、受電部210、整流回路211、充電回路212およびバッテリー213を有している。
 受電部210は、後述する受電コイル(2次側コイル)L2およびコンデンサC2p,C2s(共振用のコンデンサ)等を含んで構成されている。受電部210は、これらの受電コイルL2およびコンデンサC2p,C2s等を利用して、給電装置1内の送電部110から伝送(送電)された電力を受け取る機能を有している。この受電部210はまた、送電部110との間で前述した所定の通信動作を相互に行う機能を有している(図2中の矢印C1参照)。
 整流回路211は、受電部210から供給された電力(交流電力)を整流し、直流電力を生成する回路である。
 充電回路212は、整流回路211から供給される直流電力に基づいて、バッテリー213や負荷22内のバッテリー(図示せず)に対して充電を行うための回路である。
 バッテリー213は、充電回路212による充電に応じて電力を貯蔵するものであり、例えばリチウムイオン電池等の充電池(2次電池)を用いて構成されている。なお、負荷22内のバッテリーのみを用いる場合等には、このバッテリー213は必ずしも設けられていなくともよい。
 データ伝送部23は、給電装置1内のデータ伝送部13との間で、前述したように、相互に非接触によるデータ伝送を行うものである(図2中の矢印D1参照)。
[給電装置1および電子機器2A,2Bの詳細構成]
 図3は、図2に示した給電装置1および電子機器2A,2B内の各ブロックの詳細構成例を回路図で表したものである。
(送電部110)
 送電部110は、磁界を用いて電力伝送を行う(磁束を発生させる)ための送電コイルL1と、この送電コイルL1とともにLC共振回路を形成するためのコンデンサC1p,C1sとを有している。コンデンサC1sは、送電コイルL1に対して電気的に直列接続されている。つまり、コンデンサC1sの一端と送電コイルL1の一端とが、互いに接続されている。また、このコンデンサC1sの他端と送電コイルL1の他端とがコンデンサC1pに並列接続され、送電コイルL1とコンデンサC1pとの接続端は接地されている。
 これらの送電コイルL1とコンデンサC1p,C1sとからなるLC共振回路と、後述する受電コイルL2とコンデンサC2p,C2sとからなるLC共振回路とは、互いに磁気結合する。これにより、後述する交流信号発生回路113により生成された高周波電力(交流信号Sac)と略同一の共振周波数によるLC共振動作がなされるようになっている。
(電流検出回路111)
 電流検出回路111は、抵抗器R1および誤差アンプ(エラーアンプ)A1を有している。抵抗器R1の一端は、外部電源9用の電力入力端子(図示せず)に接続され、抵抗器R1の他端は接続点P0に接続されている。つまり、この抵抗器R1は電力供給ラインLp上に配置されている。誤差アンプA1における正側(+側)の入力端子は抵抗器R1の一端に接続され、負側(-側)の入力端子は抵抗器R1の他端に接続され、出力端子は、後述する電力制限回路112内の誤差アンプA3における正側の入力端子に接続されている。すなわち、この誤差アンプA3の正側の入力端子には、抵抗器R1の両端間の電位差(電圧)が入力されるようになっている。
 このような構成により電流検出回路111では、抵抗器R1を流れる前述した入力電流I1(電力供給ラインLp上を流れる電流)を検出し、この入力電流Iの大きさに対応する電圧V1を、誤差アンプA1から誤差アンプA3へ出力するようになっている。
(電力制限回路112)
 電力制限回路112は、トランジスタTr1,Tr2、比較器(コンパレータ)A2、誤差アンプA3、電源PS2,PS3を有している。これらのうち、トランジスタTr1はp型のFET(Field Effective Transistor;電界効果型トランジスタ)からなり、トランジスタTr2はn型のFETからなる。また、電源PS2は後述する所定の閾値電圧Vth2(>0V)(第2閾値)を出力する電源であり、電源PS3は後述する参照電圧(リファレンス電圧)Vrefを出力する電源である。なお、トランジスタTr1および誤差アンプA3はそれぞれ、本開示における「トランジスタ」および「誤差アンプ」の一具体例に対応する。
 トランジスタTr1のソースは接続点P0に接続され、ドレインは前述したコンデンサC1p,C1sの各一端に接続され、ゲートは誤差アンプA3の出力端子に接続されている。すなわち、このトランジスタTr1は、電力供給ラインLp上に配置されている。比較器A2における負側の入力端子は、後述する動作停止回路114内の比較器A4の出力端子に接続され、正側の入力端子は電源PS2に接続され、出力端子はトランジスタTr2のゲートに接続されている。トランジスタTr2のソースは接地され、ドレインは、電源PS3と、誤差アンプA3における負側の入力端子とに接続されている。
 このような構成により電力制限回路112では、誤差アンプA3において、前述した誤差アンプA1からの出力電圧(入力電流I1に対応する電圧V1)と参照電圧Vrefとの電位差に応じた出力信号S3が生成され、トランジスタTr1のゲートへ供給される。そして、この出力信号S3に従って、トランジスタTr1のソース・ドレイン間を流れる電流I2(前述した入力電流I1のうち、接続点P0から送電部110側の経路へ流れる電流)の大きさ(電力の大きさ)を制限される。このようにして、外部電源9から送電部110へ供給される電力が制限される(過負荷状態等の際の過電流が制限される)ようになっている。
 また、後述する所定の場合には、上記した誤差アンプA3に入力される参照電圧Vrefの大きさが動作停止回路114によって制御されることにより、電力制限回路112において外部電源9から送電部110への電力供給が強制的に遮断されるようになっている。具体的には、上記した比較器A2における電圧の比較結果に応じて、参照電圧Vrefの大きさが制御されるようになっている。
(制御部10)
 制御部10は、前述した送電制御部(変調処理部)10Aおよびデータ伝送制御部10Bを有しており、各々の入力端子が接続点P0に接続されている。すなわち、これらの送電制御部10Aおよびデータ伝送制御部10Bはそれぞれ、電力制限回路112の前段(外部電源9と電力制限回路112との間)において、互いに並列接続されるように配置されている。これにより詳細は後述するが、前述した入力電流I1のうち、接続点P0から制御部10側の経路に、電流I3が常時(負荷状態によらずに)流れるようになっている。
(動作停止回路114)
 動作停止回路114は、比較器A4と、後述する所定の閾値電圧Vth1(>Vth2)(第1閾値)を出力する電源PS1と、論理積回路(AND回路)LG1とを有している。これらのうち、比較器A4および論理積回路LG1はそれぞれ、本開示における「電圧検出部」および「切換部」の一具体例に対応する。
 比較器A4における正側の入力端子はトランジスタTr1のソースに接続され、負側の入力端子は、電源PS1を介してトランジスタTr1のドレインに接続されている。比較器A4における出力端子は、前述した比較器A2における負側の入力端子と、論理積回路LG1における一方の入力端子とに接続されている。また、論理積回路LG1における他方の入力端子には、送電制御部10Aから送電用の制御信号CTLが供給されるようになっている。
 この制御信号CTLは、図3中に示したように、所定のデューティ比を有するパルス信号からなる。また、例えば図4(A),(B)に示したように、この制御信号CTLにおけるデューティ比を制御することにより、後述するパルス幅変調がなされるようになっている。
 このような構成により動作停止回路114では、比較器A4において、電力制限回路112における入出力間の電圧ΔV2(トランジスタTr1のソース・ドレイン間の電位差)が検出され、上記した閾値電圧Vth1との比較がなされる。そして、この電圧の比較結果(検出された電圧ΔV2の大きさ)に応じて後述する装置の異常状態(過負荷状態等)が検知され、その検知結果に応じて、論理積回路LG1を介して交流信号発生回路113および送電部110による送電動作が強制的に停止されるようになっている。
(交流信号発生回路113)
 交流信号発生回路113は、スイッチング素子としての1つのトランジスタTr3を有するスイッチングアンプ(いわゆるE級アンプ)を用いて構成されている。また、ここではトランジスタTr3は、n型のFETからなる。このトランジスタTr3のソースは接地され、ゲートは前述した論理積回路LG1の出力端子に接続され、ドレインは、前述したトランジスタTr1のドレインおよびコンデンサC1p,C1sの各一端に接続されている。
 このような構成により交流信号発生回路113では、前述した送電用の制御信号CTLに基づく論理積回路LG1からの出力信号(信号S1)に従って、トランジスタTr3がオン・オフ動作(所定の周波数およびデューティ比からなるスイッチング動作)を行う。すなわち、送電制御部10Aから供給される制御信号CTLを用いて、スイッチング素子としてのトランジスタTr3のオン・オフ動作が制御される。これにより、電力制限回路112を介して入力する直流信号Sdcに基づいて交流信号Sac(交流電力)が生成され、送電部110へ供給されるようになっている。
(受電部210)
 受電部210は、送電部110から伝送された(磁束から)電力を受け取るための受電コイルL2と、この受電コイルL2とともにLC共振回路を形成するためのコンデンサC2p,C2sとを有している。コンデンサC2pは、受電コイルL2に対して電気的に並列接続され、コンデンサC2sは、受電コイルL2に対して電気的に直列接続されている。すなわち、コンデンサC2sの一端は、コンデンサC2pの一端および受電コイルL2の一端に接続されている。また、コンデンサC2sの他端は、整流回路211における一方の入力端子に接続され、受電コイルL2の他端およびコンデンサC2pの他端はそれぞれ、整流回路211における他方の入力端子に接続されている。
 これらの受電コイルL2とコンデンサC2p,C2sとからなるLC共振回路と、前述した送電コイルL1とコンデンサC1p,C1sとからなるLC共振回路とは、互いに磁気結合する。これにより、交流信号発生回路113により生成された高周波電力(交流信号Sac)と略同一の共振周波数によるLC共振動作がなされるようになっている。
[給電システム4の作用・効果]
(1.全体動作の概要)
 この給電システム4では、給電装置1内の交流信号発生回路113が、外部電源9から供給される電力に基づいて、送電部110内の送電コイルL1およびコンデンサC1p,C1s(LC共振回路)に対して、電力伝送を行うための所定の高周波電力(交流信号Sac)を供給する。これにより、送電部110内の送電コイルL1において磁界(磁束)が発生する。このとき、給電装置1の上面(給電面S1)に、給電対象機器(充電対象機器)としての電子機器2A,2Bが置かれる(または近接する)と、給電装置1内の送電コイルL1と電子機器2A,2B内の受電コイルL2とが、給電面S1付近にて近接する。
 このように、磁界(磁束)を発生している送電コイルL1に近接して受電コイルL2が配置されると、送電コイルL1から発生されている磁束に誘起されて、受電コイルL2に起電力が生じる。換言すると、電磁誘導または磁気共鳴により、送電コイルL1および受電コイルL2のそれぞれに鎖交して磁界が発生する。これにより、送電コイルL1側(1次側、給電装置1側、送電部110側)から受電コイルL2側(2次側、電子機器2A,2B側、受電部210側)に対して、電力伝送がなされる(図2,図3中の矢印P1参照)。このとき、給電装置1側の送電コイルL1と電子機器2A,2B側の受電コイルL2とが、電磁誘導等により互いに磁気結合し、前述したLC共振回路においてLC共振動作が行われる。
 すると、電子機器2A,2Bでは、受電コイルL2において受け取った交流電力が整流回路211および充電回路212へ供給され、以下の充電動作がなされる。すなわち、この交流電力が整流回路211によって所定の直流電力に変換された後、充電回路212によって、この直流電力に基づくバッテリー213または負荷22内のバッテリー(図示せず)への充電がなされる。このようにして、電子機器2A,2Bにおいて、受電部210において受け取った電力に基づく充電動作がなされる。
 すなわち、本実施の形態では、電子機器2A,2Bの充電に際し、例えばACアダプタ等への端子接続が不要であり、給電装置1の給電面S1上に置く(近接させる)だけで、容易に充電を開始させることができる(非接触給電がなされる)。これは、ユーザにおける負担軽減に繋がる。
 また、例えば図5に示したように、このような給電動作の際には、給電期間Tp(充電期間)と通信期間Tc(非充電期間)とが、時分割で周期的(もしくは非周期的)になされる。換言すると、送電制御部10Aは、このような給電期間Tpと通信期間Tcとが時分割で周期的(もしくは非周期的)に設定されるように制御する。ここで、この通信期間Tcとは、1次側機器(給電装置1)と2次側機器(電子機器2A,2B)との間で、送電コイルL1および受電コイルL2を用いた相互の通信動作(互いの機器間認証や給電効率制御等のための通信動作)を行う期間である(図2,図3中の矢印C1参照)。なお、このときの給電期間Tpと通信期間Tcとの時間の比率は、例えば、給電期間Tp:通信期間Tc=9:1程度である。
 ここで、この通信期間Tcでは、例えば図6(A)~(D)に示したようにして、交流信号発生回路113におけるパルス幅変調を用いた通信動作が行われる。具体的には、例えば図6(A)に示したような変調データDmに基づいて、通信期間Tcにおける制御信号CTLのデューティ比が設定されることにより(図6(B)参照)、パルス幅変調による通信がなされる。なお、前述した送電部110および受電部210における共振動作時に周波数変調を行うことは原理的に難しいため、このようなパルス幅変調を用いることで簡易に通信動作が実現される。
 更に、この給電システム4では、図2,図3中の矢印D1で示したように、1次側機器(給電装置1)内のデータ伝送部13と2次側機器(電子機器2A,2B)内のデータ伝送部23との間で、相互に非接触によるデータ伝送がなされる。これにより、給電装置1と電子機器2A,2Bとの間でデータ伝送用の配線等を接続させることなく、これらの給電装置1と電子機器2A,2Bとを近接させるだけで、データ伝送を行うことができる。つまり、この点でもユーザにおける負担軽減が図られる。
(2.過負荷時における電力制限・分配作用)
 ところで、このような給電システム4では、給電装置1において負荷が過剰な状態(過負荷状態)となってしまうことがある。具体的には、例えば、データ伝送部13において突発的に過剰な電力を消費する場合や、2次側機器(ここでは電子機器2A,2B)において過大な電力を要する場合等が想定される。
 このような過負荷状態となったときには、例えば図7に示したように、電流-電圧特性においていわゆる垂下特性(「フ」の字状の特性)を示すように制御され、過電流に対する保護がなされる。具体的には、ここではまず、給電装置1内の電流検出回路111において、外部電源9からの入力電流I1に対応する電圧V1が検出される。そして、電力制限回路112では、誤差アンプA3においてこの電圧V1と参照電圧Vrefとの電位差に応じた信号S3が出力され、この信号S3に基づいてトランジスタTr1のソース・ドレイン間を流れる電流I2の大きさが制御される。すなわち、入力電流I1の大きさに応じて電流I2の大きさが制限される(トランジスタTr1のドレイン側への供給電力が制限される)ことにより、電力制限回路112において電力制限動作が行われる。例えば、外部電源9が前述したUSB2.0の電源である場合、I1≧500mAとなったとき(2.5Wを超えたとき)に、過電流状態(過負荷状態)であると判断される。
 ただし、このような電力制限動作を給電装置1全体に適用してしまうと(給電装置1内のブロック全体に対して供給電力を制限してしまうと)、以下の問題が生じる。すなわち、上記した過電流状態(過負荷状態)になったときに、給電装置1全体(給電システム4全体)の制御を司る制御部10(特に送電制御部10A)への供給電力をも制限すると、この制御部10の動作が停止してしまい、不都合が生じる。つまり、例えば送電制御部10Aは給電システム4における安全面なども担保する重要な役割を担っていることから、過負荷状態等であっても、正常な動作を行うことが期待される(常に安定的な動作が担保される必要がある)のである。
 そこで本実施の形態の給電装置1では、図2および図3に示したように、制御部10が、電力制限回路112の前段(外部電源9と電力制限回路112との間)に配置されている。これにより、外部電源9から給電装置1へ流入する入力電流I1のうち、接続点P0から制御部10側の経路に、電流I3が常時(負荷状態によらずに)流れるようになる(図3参照)。換言すると、例えば過負荷状態の場合等であっても、外部電源9から制御部10側への電力供給が制限されてしまうことがない。このようにして、給電装置1内では制御部10側への電力供給が常に確保され、制御部10側への優先的な電力分配がなされる。
 具体的には、例えば図8(C)中の矢印で示したように、制御部10で消費される電流I3が急激に増加した場合(過負荷状態となった場合)であっても、この制御部10側へ流れる電流I3(制御部10側への電力供給)が制限されることはない。一方、例えば図8(B)中の矢印で示したように、このような過負荷状態になると、電力制限回路112によって、その後段に位置する送電部110側へ供給される電流I2(送電部110への電力供給)が制限される。このようにして、送電部110側よりも制御部10側への優先的な電力分配が実現される。
 また、このとき例えば図8(A)中の矢印で示したように、外部電源9から給電装置1全体へ流入する入力電流I1(外部電源9から取り出される電力)は、所定の閾値Ith(例えば前述したUSB2.0の電源の場合、500mA)以下となるように制御される。これにより、外部電源9から過剰な(供給能力を超える)電力(閾値Ith以上の入力電流I1)が供給されてしまうのが回避される。したがって、例えばPCに設けられているUSB2.0の電源を外部電源9として用いた場合に、この外部電源9の供給能力を超える電力を給電装置1において取り出そうとして、例えばPCの表示画面上に「警告」などが表示されてしまうのが防止される。
(3.強制的な動作停止作用)
 また、本実施の形態の給電装置1では、動作停止回路114において、以下のような強制的な動作停止作用がなされる。
 すなわち、まず比較器A4において、電力制限回路112における入出力間の電圧ΔV2(トランジスタTr1のソース・ドレイン間の電位差)が検出され、所定の閾値電圧Vth1との大小の比較がなされる。この閾値電圧Vth1は、例えば図9に示したように、給電装置1の通常動作時における過負荷状態(過電流状態)であるか否かを規定する閾値である。すなわち、上記した電圧の比較結果(検出された電圧ΔV2の大きさ)に応じて、通常動作時における適正負荷状態であるのか過負荷状態であるのかが検知される。ここでは、電圧ΔV2の大きさが閾値Vth1以下である場合には、通常動作時における適正負荷状態であると検知される一方、電圧ΔV2の大きさが閾値Vth1を超えた場合には、通常動作時における過負荷状態であると検知される。なお、比較器A4と論理積回路LG1との間の配線における時定数により、このときの検知感度が多少鈍るように設定されている。
 そして、動作停止回路114では、上記した負荷状態の検知結果に応じて、論理積回路LG1を用いて、送電制御部10Aによる送電制御によらずに、交流信号発生回路113および送電部110による送電動作が強制的に停止するようになされる。具体的には、通常動作時における適正負荷状態であると検知されたとき(ΔV2≦Vth1)には、比較器A4からの出力信号S4=「H(ハイ)」状態となる。その結果、論理積回路LG1から交流信号発生回路113内のトランジスタTr3への出力信号S1は、送電制御部10Aから供給される送電用の制御信号CTLと等しくなる(制御信号CTLが有効になるように制御される)。したがって、この制御信号CTLを用いてトランジスタTr3がオン・オフ動作を行うことにより、交流信号発生回路113および送電部110によって通常の送電動作がなされる。
 一方、通常動作時における過負荷状態であると検知されたとき(ΔV2>Vth1)には、比較器A4からの出力信号S4=「L(ロー)」状態となる。その結果、論理積回路LG1から交流信号発生回路113内のトランジスタTr3への出力信号S1も常に「L」状態となり(制御信号CTLが無効になるように制御され)、トランジスタTr3が常にオフ状態となる(トランジスタTr3がオープン状態となる)。つまり、論理積回路LG1は、比較器A4からの出力信号S4の値(過負荷状態の検知の有無)に応じて、制御信号CTLの有効化と無効化とを切り換える役割を果たしている。そして、動作停止回路114では、この送電用の制御信号CTLを無効化することにより、交流信号発生回路113および送電部110における送電動作を、送電制御部10Aによる送電制御によらずに強制的に停止させている。
 また、この動作停止回路114では、このような給電期間Tpに加え、前述した通信期間Tcにおいても、上記した過負荷状態(過電流状態)が検知されたときには、同様に制御信号CTLを無効化することにより、通信動作も強制的に停止するようになされる。
 なお、比較器A4において過負荷状態から適正負荷状態へと回復(復帰)したことが検知されると、上記した原理により制御信号CTLが再び有効となるため、この場合も送電制御部10Aによる送電制御によらず、自動的に送電動作が再稼働することになる。
 このようにして、給電装置1の異常状態(過負荷状態)が検知されると、送電制御部10Aによる送電制御によらずに、送電部110による送電が強制的に停止される。これにより、例えば負荷状態が変動して過負荷状態になった場合等に、送電制御部10Aによる送電制御を待たずして迅速に送電が停止することになり、送電停止まで要する時間(つまり不要な送電期間)が短くなる。
(4.強制的な電力供給遮断作用)
 また、このとき比較器A4において、電圧ΔV2の大きさが所定の閾値Vth2(>Vth1)をも超えたことが検知された場合、電流制限回路112において、送電制御部10Aによる送電制御によらず、以下のような強制的な電力供給の遮断作用がなされる。
 ここで、この閾値電圧Vth2は、例えば図9に示したように、給電装置1内での回路の短絡(ショート)状態等を起因として、送電部110が故障状態あるいは破壊された状態(破壊状態)に陥ってしまったか否かを規定する閾値である。このような状態では、電流制限回路112内のトランジスタTr1の両端間の電圧ΔV2が過大となって発熱してしまうおそれがあり、また、動作停止回路114も動作不可能な状態となってしまう(上記した強制的な動作停止作用がなされなくなってしまう)おそれがある。
 このように比較器A4では、検出された電圧ΔV2の大きさに応じて、上記した送電部110の故障状態または破壊状態であるのか否かも検知される。具体的には、ここでは電圧ΔV2の大きさが閾値Vth2以下である場合には、そのような故障状態または破壊状態ではないと検知される一方、電圧ΔV2の大きさが閾値Vth2を超えた場合には、そのような故障状態または破壊状態に陥っていると検知される。
 そして、電圧ΔV2の大きさが閾値Vth2をも超えたこと(故障状態または破壊状態に陥っていること)が検知された場合、電流制限回路112では以下のようにして、外部電源9から交流信号発生回路113および送電部110の側への電力供給が強制的に遮断される。すなわち、誤差アンプA3に入力される参照電圧Vrefの大きさが、比較器A2における電圧の比較結果に応じて制御され、トランジスタTr1が常時オフ状態となることにより、強制的な電力供給の遮断が行われる。
 具体的には、このとき(ΔV2>Vth2)には、比較器A2からの出力信号S2=「L」状態となるため、トランジスタTr2がオフ状態となる。これにより、誤差アンプA3の負側の入力端子における電位が、電源PS3から供給される元々の参照電圧Vrefからグランド(0V)側に引っ張られて低下する。その結果、誤差アンプA3からの出力信号S3=「H」状態となり、トランジスタTr1が常にオフ状態となる。このようにして、トランジスタTr1がオフ状態になることにより、そのソース・ドレイン間に電流I2が流れなくなり(I2=0A)、送電部110側への電力供給が強制的に遮断される。そして、このような正帰還による電流I2の停止作用(過電流の抑制作用)が働き、動作停止回路114が動作不可能な状態に陥ったとしても、過電流が完全に停止するまで動作し、前述したトランジスタTr1における発熱のおそれが回避される。すなわち、例えば送電部110の故障状態または破壊状態に陥った場合(動作停止回路114が動作不可能な状態に陥った場合等)であっても、給電装置1内での発熱のおそれが回避される。
 以上のように本実施の形態では、制御部10を電力制限回路112よりも外部電源9側に配設するようにしたので、外部電源9から制御部10側への電力供給が常に確保され、制御部10側への優先的な電力分配を行うことができる。よって、制御部10の安定的動作が担保されることになり、磁界を用いて電力伝送を行う際に、負荷状態によらずに適切な制御を実現することが可能となる。また、給電システム4(非接触給電システム)における電源保護および電源分配の役割を明確化することで、安全面を担保する効果も得ることができる。
 また、給電装置1の異常状態(過負荷状態)が検知されたときに、動作停止回路114において、送電制御部10Aによる送電制御によらずに強制的に送電を停止させるようにしたので、例えば負荷状態が変動して過負荷状態になった場合等に、不要な送電期間を短くすることができる。よって、磁界を用いた電力伝送の際に、負荷状態の変動に起因した電力損失(電力ロス)を低減することが可能となる。
 更に、動作停止回路114では、検出電圧(電圧ΔV2)が閾値電圧Vth1を超えた場合に送電を強制的に停止させると共に、この電圧ΔV2が閾値電圧Vth1よりも大きい閾値電圧Vth2をも超えた場合には、電力制限回路112において、送電部110への電力供給を強制的に遮断するようにしたので、例えば送電部110の故障状態または破壊状態に陥った場合であっても過電流を完全に停止させることができ、給電装置1内(トランジスタTr1)での発熱のおそれを回避することができる。よって、磁界を用いた電力伝送の際での安全性を向上させることが可能となる。
 加えて、送電部110において、共振動作(LC共振動作)を利用して送電を行うようにした場合には、特に以下の利点も得られる。すなわち、共振動作をしているため、出力電力の変動に対して鈍く、一瞬の電力遮断等に強い構成とすることができる。換言すると、急な電力の変動があっても、いわゆる「振り子の原理」(慣性の作用)によって、しばらく動き続ける(電力を送り続ける)ことが可能となる。
<第2の実施の形態>
 続いて、本開示の第2の実施の形態について説明する。なお、上記第1の実施の形態と同一の構成要素については同一符号を付し、その説明を適宜省略する。
[給電システム4Aの構成]
 図10は、第2の実施の形態に係る給電システム(給電システム4A)における要部構成例を回路図で表わしたものである。本実施の形態の給電システム4Aは、1つの給電装置1Aと、2つの電子機器2A,2Bとを備えている。この給電装置1Aは、第1の実施の形態の給電装置1において、電力制限回路112の代わりに電力制限・変調回路112Aを設けたものであり、他の構成は同様となっている。なお、この電力制限・変調回路112Aは、本開示における「電力制限部」の一具体例に対応する。
 電力制限・変調回路112Aは、ここでは図10に示したように、図3に示した電力制限回路112において、1つの論理和回路(OR回路)LG2を更に追加した構成となっている。この論理和回路LG2では、一方の入力端子が誤差アンプA3の出力端子に接続され、他方の入力端子には、送電制御部(変調処理部)10Aから出力される変調データDmが入力されるようになっている。また、論理和回路LG2の出力端子は、トランジスタTr1のゲートに接続されている。
[給電システム4Aの作用・効果]
 本実施の形態の給電装置1Aでは、電力制限・変調回路112Aにおいて、第1の実施の形態の電力制限回路112と同様の手法により、電力制限動作がなされる。また、それとともに、この電力制限・変調回路112Aでは、例えばASK(Amplitude Shift Keying;振幅偏移)変調等の振幅変調(AM:Amplitude Modulation)動作がなされる。
 具体的には、例えば図11に示したように、電力制限・変調回路112Aでは、給電期間Tcでは電力制限動作が行われる一方、通信期間Tcでは振幅変調動作が行われる。そして、この通信期間Tc(負荷が軽い状態)では、電力制限・変調回路112Aによる電力制限動作が送電制御部10Aによって制御されることにより、上記した振幅変調による通信が行われる。このようにして本実施の形態では、比較的簡単に、ASK変調等の振幅変調による通信動作が実現されるようになっている。
 この通信期間Tcでは、詳細には例えば図12(A)~(D)に示したようにして、電力制限・変調回路112Aにおける振幅変調を用いた通信動作が行われる。すなわち、まず、例えば図12(A)に示したような変調データDmが、送電制御部10Aから電力制限・変調回路112A内の論理和回路LG2を介して、トランジスタTr1へ供給される。これにより、この電力制限・変調回路112Aから電力供給ラインLp上に出力される直流信号Sdcは、例えば図12(B)に示したような振幅変調がなされた信号となる。そして、このような直流信号Sdcに基づいて交流信号発生回路113により交流信号Sacが生成され(図12(C)参照)、最終的に振幅変調による通信動作がなされる(図12(D)参照)。
 このような電力制限・変調回路112Aによる電力制限動作を利用した振幅変調による通信動作では、例えば第1の実施の形態で説明した交流信号発生回路113におけるパルス幅変調を用いた通信動作と比べ、以下の利点が得られる。
 すなわち、パルス幅変調による通信では、例えば前述の図6(D)中の破線で示したように、交流信号(ここでは送電コイルL1の両端間の電圧V(L1))における正負の波形が異なっており(非対称となっており)、いわゆる偶数次の高調波成分(2倍波を含む)を含んだ波形となる。ここで、2次側機器においてこの交流信号を復調(包絡線検波)する際、偶数次の高調波成分のノイズは通信波形を歪ませるため、C/N比(Carrier to Noise ratio:搬送波対雑音比)が悪化し、通信品質が低下するおそれがある。
 これに対して振幅変調による通信では、例えば図12(D)中の破線で示したように、交流信号(送電コイルL1の両端間の電圧V(L1))における正負の波形が一致し(対称となり)、いわゆる奇数次の高調波成分を含んだ波形となる。これにより、2次側機器においてこの交流信号を復調(包絡線検波)するときのC/N比が向上し、通信品質も向上することになる。
 以上のように本実施の形態では、通信期間Tcにおいて電力制限・変調回路112Aによる電力制限動作を制御することによって、振幅変調による通信が行われるようにしたので、第1の実施の形態における効果に加え、通信期間Tcでの通信品質を向上させることが可能となる。また、電力制限・変調回路112Aにおいて、電力制限動作と変調動作(振幅変調動作)との双方を担う(双方の機能を兼用する)ようにしたので、装置のコスト低減や実装部品の削減、小型化を図ることも可能となる。
<変形例>
 以上、いくつかの実施の形態を挙げて本開示の技術を説明したが、本技術はこれらの実施の形態に限定されず、種々の変形が可能である。
 例えば、上記実施の形態では各種のコイル(送電コイル,受電コイル)を挙げて説明しているが、これらのコイルの構成(形状)としては種々のものを用いることが可能である。すなわち、例えばスパイラル形状やループ形状、磁性体を用いたバー形状、スパイラルコイルを2層で折り返すように配置するα巻き形状、更なる多層のスパイラル形状、厚み方向に巻線が巻回しているヘリカル形状などによって、各コイルを構成することが可能である。また、各コイルは、導電性を有する線材により構成された巻き線コイルだけではなく、プリント基板やフレキシブルプリント基板などにより構成された、導電性を有するパターンコイルであってもよい。
 また、上記実施の形態では、給電対象機器の一例として電子機器を挙げて説明したが、これには限られず、電子機器以外の給電対象機器(例えば、電気自動車等の車両など)であってもよい。
 更に、上記実施の形態では、給電装置および電子機器の各構成要素を具体的に挙げて説明したが、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。例えば、給電装置や電子機器内に、通信機能や何かしらの制御機能、表示機能、2次側機器を認証する機能、2次側機器が1次側機器上にあることを判別する機能、異種金属などの混入を検知する機能などを搭載するようにしてもよい。
 加えて、上記実施の形態では、主に、給電システム内に複数(2つ)の電子機器が設けられている場合を例に挙げて説明したが、この場合には限られず、給電システム内に1つの電子機器のみが設けられているようにしてもよい。
 また、上記実施の形態では、給電装置の一例として、携帯電話機等の小型の電子機器(CE機器)向けの充電トレーを挙げて説明したが、給電装置としてはそのような家庭用の充電トレーには限定されず、様々な電子機器等の充電器として適用可能である。また、必ずしもトレーである必要はなく、例えば、いわゆるクレードル等の電子機器用のスタンドであってもよい。
(電界を用いて非接触に電力伝送を行う給電システムの例)
 また、上記実施の形態では、1次側機器としての給電装置から2次側機器としての電子機器に対して、磁界を用いて非接触に電力伝送(給電)を行う給電システムの場合を例に挙げて説明したが、これには限られない。すなわち、本開示内容は、1次側機器としての給電装置から2次側機器としての電子機器に対して、電界(電界結合)を用いて非接触に電力伝送を行う給電システムにおいても適用することが可能であり、上記実施の形態と同様の効果を得ることが可能である。
 具体的には、例えば図13に示した給電システムは、1つの給電装置81(1次側機器)と、1つの電子機器82(2次側機器)とを備えている。給電装置81は、主に、送電電極E1(1次側電極)を含む送電部810と、交流信号源811(発振器)と、接地電極Eg1とを有している。電子機器82は、主に、受電電極E2(2次側電極)を含む受電部820と、整流回路821と、負荷822と、接地電極Eg2とを有している。すなわち、この給電システムは、送電電極E1および受電電極E2と、接地電極Eg1,Eg2との2組の電極を備えている。換言すると、給電装置81(1次側機器)および電子機器82(2次側機器)はそれぞれ、モノポールアンテナのような非対称性の一対の電極構造からなるアンテナを、機器内部に有している。
 このような構成の給電システムでは、送電電極E1と受電電極E2とが互いに対向すると、上記した非接触性のアンテナ同士が、互いに結合する(電極の垂直方向に沿って互いに電界結合する)。すると、これらの間に誘導電界が発生し、これにより電界を用いた電力伝送が行われる(図13中に示した電力P8参照)。具体的には、例えば図14に模式的に示したように、送電電極E1側から受電電極E2側へと向かって、発生した電界(誘導電界Ei)が伝播すると共に、接地電極Eg2側から接地電極Eg1側へと向かって、発生した誘導電界Eiが伝播する。すなわち、1次側機器と2次側機器との間で、発生した誘導電界Eiのループ経路が形成されることになる。このような電界を用いた非接触による電力供給システムにおいても、上記実施の形態と同様の手法を適用することにより、同様の効果を得ることが可能である。
 なお、本技術は以下のような構成を取ることも可能である。
(1)
 磁界または電界を用いて送電を行う送電部と、
 外部電源から前記送電部への電力供給ライン上に配設された電力制限部と、
 前記電力制限部よりも前記外部電源側に配設され、前記送電の制御を行う送電制御部を含む制御部と
 を備えた給電装置。
(2)
 前記制御部は、前記送電制御部と、データ伝送用の制御部とを有する
 上記(1)に記載の給電装置。
(3)
 装置の異常状態が検知されたときに、前記送電制御部による送電制御によらずに強制的に前記送電を停止させる動作停止部を備えた
 上記(1)または(2)に記載の給電装置。
(4)
 前記動作停止部は、前記送電用の制御信号を無効化することにより、前記送電を強制的に停止させる
 上記(3)に記載の給電装置。
(5)
 前記動作停止部は、前記異常状態の検知の有無に応じて前記制御信号の有効化と無効化とを切り換える切換部を有する
 上記(4)に記載の給電装置。
(6)
 前記動作停止部は、
 前記電力制限部における入出力間の電圧を検出する電圧検出部を有し、
 前記電圧検出部による検出電圧の大きさに応じて、前記送電を強制的に停止させる
 上記(3)ないし(5)のいずれかに記載の給電装置。
(7)
 前記動作停止部は、前記検出電圧が第1閾値を超えた場合に、前記送電を強制的に停止させる
 上記(6)に記載の給電装置。
(8)
 前記検出電圧が、前記第1閾値よりも大きい第2閾値をも超えた場合、
 前記電力制限部は、前記送電部への電力供給を強制的に遮断する
 上記(7)に記載の給電装置。
(9)
 前記電力制限部は、
 前記外部電源からの入力電流に対応する電圧と参照電圧との電位差に応じて電力制限動作を制御する誤差アンプを有し、
 前記検出電圧が前記第2閾値を超えた場合には、前記参照電圧の大きさを制御することにより、前記送電部への電力供給を強制的に遮断する
 上記(8)に記載の給電装置。
(10)
 前記電力制限部は、
 前記電力供給ライン上にトランジスタを有し、
 前記参照電圧の大きさを制御して前記トランジスタをオフ状態に設定することにより、前記送電部への電力供給を強制的に遮断する
 上記(9)に記載の給電装置。
(11)
 前記第1閾値は、装置の通常動作時における過負荷状態であるか否かを規定するものであり、
 前記第2閾値は、前記送電部が破壊された状態であるか否かを規定するものである
 上記(8)ないし(10)のいずれかに記載の給電装置。
(12)
 前記検出電圧が前記第2閾値を超えたときは、前記動作停止部が動作不可能な状態となっている
 上記(8)ないし(11)のいずれかに記載の給電装置。
(13)
 前記送電制御部は、給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御し、
 前記動作停止部は、前記通信期間において前記異常状態が検知されたときには、前記通信を強制的に停止させる
 上記(3)ないし(12)のいずれかに記載の給電装置。
(14)
 前記送電制御部は、
 給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御すると共に、
 前記通信期間において前記電力制限部による電力制限動作を制御することにより、振幅変調による通信が行われるようにする
 上記(1)ないし(13)のいずれかに記載の給電装置。
(15)
 前記電力制限部は、前記給電期間では電力制限動作を行い、前記通信期間では振幅変調動作を行う
 上記(14)に記載の給電装置。
(16)
 前記送電を行うための交流信号を発生する交流信号発生部を備え、
 前記送電制御部は、前記交流信号発生部の動作を制御することによって前記送電の制御を行う
 上記(1)ないし(15)のいずれかに記載の給電装置。
(17)
 前記交流信号発生部は、スイッチング素子を含むスイッチングアンプを用いて構成され、
 前記送電制御部は、前記送電用の制御信号を用いて、前記スイッチング素子のオン・オフ動作を制御する
 上記(16)に記載の給電装置。
(18)
 前記送電制御部は、
 給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御すると共に、
 前記通信期間において前記制御信号のデューティ比を制御することにより、パルス幅変調による通信が行われるようにする
 上記(17)に記載の給電装置。
(19)
 前記送電部は、共振動作を利用して前記送電を行う
 上記(1)ないし(18)のいずれかに記載の給電装置。
(20)
 1または複数の電子機器と、
 前記電子機器に対して送電を行う給電装置と
 を備え、
 前記給電装置は、
 磁界または電界を用いて前記送電を行う送電部と、
 外部電源から前記送電部への電力供給ライン上に配設された電力制限部と、
 前記電力制限部よりも前記外部電源側に配設され、前記送電の制御を行う送電制御部を含む制御部と
 を有する給電システム。
 本出願は、日本国特許庁において2011年10月21日に出願された日本特許出願番号2011-231767号および2012年4月16日に出願された日本特許出願番号2012-92846号を基礎として優先権を主張するものであり、これらの出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (20)

  1.  磁界または電界を用いて送電を行う送電部と、
     外部電源から前記送電部への電力供給ライン上に配設された電力制限部と、
     前記電力制限部よりも前記外部電源側に配設され、前記送電の制御を行う送電制御部を含む制御部と
     を備えた給電装置。
  2.  前記制御部は、前記送電制御部と、データ伝送用の制御部とを有する
     請求項1に記載の給電装置。
  3.  装置の異常状態が検知されたときに、前記送電制御部による送電制御によらずに強制的に前記送電を停止させる動作停止部を備えた
     請求項1に記載の給電装置。
  4.  前記動作停止部は、前記送電用の制御信号を無効化することにより、前記送電を強制的に停止させる
     請求項3に記載の給電装置。
  5.  前記動作停止部は、前記異常状態の検知の有無に応じて前記制御信号の有効化と無効化とを切り換える切換部を有する
     請求項4に記載の給電装置。
  6.  前記動作停止部は、
     前記電力制限部における入出力間の電圧を検出する電圧検出部を有し、
     前記電圧検出部による検出電圧の大きさに応じて、前記送電を強制的に停止させる
     請求項3に記載の給電装置。
  7.  前記動作停止部は、前記検出電圧が第1閾値を超えた場合に、前記送電を強制的に停止させる
     請求項6に記載の給電装置。
  8.  前記検出電圧が、前記第1閾値よりも大きい第2閾値をも超えた場合、
     前記電力制限部は、前記送電部への電力供給を強制的に遮断する
     請求項7に記載の給電装置。
  9.  前記電力制限部は、
     前記外部電源からの入力電流に対応する電圧と参照電圧との電位差に応じて電力制限動作を制御する誤差アンプを有し、
     前記検出電圧が前記第2閾値を超えた場合には、前記参照電圧の大きさを制御することにより、前記送電部への電力供給を強制的に遮断する
     請求項8に記載の給電装置。
  10.  前記電力制限部は、
     前記電力供給ライン上にトランジスタを有し、
     前記参照電圧の大きさを制御して前記トランジスタをオフ状態に設定することにより、前記送電部への電力供給を強制的に遮断する
     請求項9に記載の給電装置。
  11.  前記第1閾値は、装置の通常動作時における過負荷状態であるか否かを規定するものであり、
     前記第2閾値は、前記送電部が故障状態または破壊状態であるか否かを規定するものである
     請求項8に記載の給電装置。
  12.  前記検出電圧が前記第2閾値を超えたときは、前記動作停止部が動作不可能な状態となっている
     請求項8に記載の給電装置。
  13.  前記送電制御部は、給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御し、
     前記動作停止部は、前記通信期間において前記異常状態が検知されたときには、前記通信を強制的に停止させる
     請求項3に記載の給電装置。
  14.  前記送電制御部は、
     給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御すると共に、
     前記通信期間において前記電力制限部による電力制限動作を制御することにより、振幅変調による通信が行われるようにする
     請求項1に記載の給電装置。
  15.  前記電力制限部は、前記給電期間では電力制限動作を行い、前記通信期間では振幅変調動作を行う
     請求項14に記載の給電装置。
  16.  前記送電を行うための交流信号を発生する交流信号発生部を備え、
     前記送電制御部は、前記交流信号発生部の動作を制御することによって前記送電の制御を行う
     請求項1に記載の給電装置。
  17.  前記交流信号発生部は、スイッチング素子を含むスイッチングアンプを用いて構成され、
     前記送電制御部は、前記送電用の制御信号を用いて、前記スイッチング素子のオン・オフ動作を制御する
     請求項16に記載の給電装置。
  18.  前記送電制御部は、
     給電対象機器に対して前記送電を行う給電期間と、前記給電対象機器との間で所定の通信を行う通信期間とが時分割に設定されるように制御すると共に、
     前記通信期間において前記制御信号のデューティ比を制御することにより、パルス幅変調による通信が行われるようにする
     請求項17に記載の給電装置。
  19.  前記送電部は、共振動作を利用して前記送電を行う
     請求項1に記載の給電装置。
  20.  1または複数の電子機器と、
     前記電子機器に対して送電を行う給電装置と
     を備え、
     前記給電装置は、
     磁界または電界を用いて前記送電を行う送電部と、
     外部電源から前記送電部への電力供給ライン上に配設された電力制限部と、
     前記電力制限部よりも前記外部電源側に配設され、前記送電の制御を行う送電制御部を含む制御部と
     を有する給電システム。
PCT/JP2012/076405 2011-10-21 2012-10-12 給電装置および給電システム WO2013058177A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/345,565 US9847813B2 (en) 2011-10-21 2012-10-12 Feed unit and feed system for non-contact power transmission
CN201280050508.1A CN103875160B (zh) 2011-10-21 2012-10-12 馈电单元和馈电系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-231767 2011-10-21
JP2011231767 2011-10-21
JP2012092846A JP6007561B2 (ja) 2011-10-21 2012-04-16 給電装置および給電システム
JP2012-092846 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013058177A1 true WO2013058177A1 (ja) 2013-04-25

Family

ID=48140825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076405 WO2013058177A1 (ja) 2011-10-21 2012-10-12 給電装置および給電システム

Country Status (4)

Country Link
US (1) US9847813B2 (ja)
JP (1) JP6007561B2 (ja)
CN (1) CN103875160B (ja)
WO (1) WO2013058177A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659923B (zh) * 2013-11-18 2017-09-22 立锜科技股份有限公司 电源管理单元及其应用的无线电力系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6003172B2 (ja) 2011-10-21 2016-10-05 ソニー株式会社 給電装置および給電システム
WO2014108785A1 (en) * 2013-01-11 2014-07-17 Koninklijke Philips N.V. Wireless inductive power transfer.
JP6070503B2 (ja) 2013-10-15 2017-02-01 ソニー株式会社 受電装置、受電制御方法、給電システム、および電子機器
CN105334420B (zh) * 2014-06-27 2020-02-04 联想(北京)有限公司 一种信息处理方法及电子设备
US10164600B2 (en) * 2015-10-12 2018-12-25 Nxp B.V. NFC or RFID device RF detuning detection and driver output power regulation
US10218114B2 (en) 2016-10-12 2019-02-26 Snap Inc. Circuits and methods for wearable device charging and wired control
DE102017112755B4 (de) * 2017-06-09 2019-02-07 Sick Engineering Gmbh Messumformerspeisegerät
US10763841B2 (en) 2018-08-09 2020-09-01 Texas Instruments Incorporated Loss of signal detection circuit
EP3847761A4 (en) * 2018-09-06 2022-06-15 Auckland Uniservices Limited INDUCTIVE ENERGY AND DATA TRANSMISSION VIA ENERGY FEED
EP4040639A1 (en) * 2021-02-08 2022-08-10 MEGAHERTZ s.r.o. Apparatus, in particular for wireless supplying and charging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073350A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Works Ltd 電動工具
JP2008312434A (ja) * 2007-05-11 2008-12-25 Seiko Epson Corp コイル装置、それを用いた受電装置及び送電装置並びに電子機器
JP2010016985A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP2011035964A (ja) * 2009-07-30 2011-02-17 Olympus Imaging Corp 充電装置及び充電システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777908B2 (ja) 1999-09-30 2006-05-24 セイコーエプソン株式会社 電子機器および電子機器の制御方法
JP3631112B2 (ja) 2000-07-14 2005-03-23 三洋電機株式会社 非接触型充電装置及び携帯電話機
JP4036813B2 (ja) 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
EP1751834B1 (en) * 2004-05-11 2009-12-02 Access Business Group International LLC Controlling inductive power transfer systems
JP4308858B2 (ja) 2007-02-16 2009-08-05 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
JP2009189229A (ja) * 2008-01-07 2009-08-20 Seiko Epson Corp 送電制御装置、無接点電力伝送システム、送電装置、電子機器および波形モニタ回路
JP4911148B2 (ja) 2008-09-02 2012-04-04 ソニー株式会社 非接触給電装置
JP2011078267A (ja) * 2009-10-01 2011-04-14 Sharp Corp 直流給電システム
JP5361824B2 (ja) * 2010-08-04 2013-12-04 三洋電機株式会社 パック電池及び過電流検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073350A (ja) * 2003-08-22 2005-03-17 Matsushita Electric Works Ltd 電動工具
JP2008312434A (ja) * 2007-05-11 2008-12-25 Seiko Epson Corp コイル装置、それを用いた受電装置及び送電装置並びに電子機器
JP2010016985A (ja) * 2008-07-03 2010-01-21 Sanyo Electric Co Ltd 電力搬送における情報伝送方法とこの情報伝送方法を使用する充電台と電池内蔵機器
JP2011035964A (ja) * 2009-07-30 2011-02-17 Olympus Imaging Corp 充電装置及び充電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659923B (zh) * 2013-11-18 2017-09-22 立锜科技股份有限公司 电源管理单元及其应用的无线电力系统

Also Published As

Publication number Publication date
CN103875160A (zh) 2014-06-18
US9847813B2 (en) 2017-12-19
JP2013102664A (ja) 2013-05-23
CN103875160B (zh) 2017-02-22
JP6007561B2 (ja) 2016-10-12
US20140346890A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6003172B2 (ja) 給電装置および給電システム
JP6007561B2 (ja) 給電装置および給電システム
US20230178817A1 (en) Feed unit, feed system, and electronic device for increasing power supplied to a battery based on a device state and/or a control of a charging current
US10938238B2 (en) Electronic apparatus and feed system
JP6047911B2 (ja) 電子機器および給電システム
US9577475B2 (en) Electronic device, feed unit, and feed system for reliably informing user of electronic device state during wireless electric power transmission
JP5857861B2 (ja) 給電装置、給電システムおよび電子機器
US10224755B2 (en) Electronic unit for notifying user of charging state in non-contact power feeding system
JP2013102665A (ja) 給電装置および給電システム
JP5975043B2 (ja) 電子機器および給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841025

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345565

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841025

Country of ref document: EP

Kind code of ref document: A1