JP2017063526A - 非接触送電装置 - Google Patents

非接触送電装置 Download PDF

Info

Publication number
JP2017063526A
JP2017063526A JP2015186660A JP2015186660A JP2017063526A JP 2017063526 A JP2017063526 A JP 2017063526A JP 2015186660 A JP2015186660 A JP 2015186660A JP 2015186660 A JP2015186660 A JP 2015186660A JP 2017063526 A JP2017063526 A JP 2017063526A
Authority
JP
Japan
Prior art keywords
power
inverter
power transmission
common mode
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015186660A
Other languages
English (en)
Inventor
達 中村
Toru Nakamura
達 中村
宜久 山口
Yoshihisa Yamaguchi
宜久 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015186660A priority Critical patent/JP2017063526A/ja
Publication of JP2017063526A publication Critical patent/JP2017063526A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】送電部に磁界を発生させることなく、平滑コンデンサの残留電荷を迅速に放電可能な非接触送電装置を提供する。【解決手段】平滑コンデンサ135は、直流電力線125に設けられる。コモンモードフィルタ150は、送電部160とインバータ130との間の電力線に設けられる。コモンモードフィルタ150を流れるコモンモード電流は、筐体180及びACラインフィルタ110を通じて直流電力線125へ還流される。電源ECU190は、インバータ130の各相アームが互いに同位相でスイッチング動作を行なうようにインバータ130を駆動することによって、コモンモードフィルタ150を通じて平滑コンデンサ135の残留電荷を消費させる。【選択図】図1

Description

この発明は、非接触送電装置に関し、特に、受電装置へ磁界を通じて非接触で送電する非接触送電装置に関する。
送電装置から受電装置へ磁界を通じて非接触で電力を伝送する電力伝送システムが知られている(たとえば特許文献1〜5参照)。このような電力伝送システムの送電装置においては、送電部(送電コイル)に送電電力を供給するインバータの入力側に、電圧変動を平滑化するための平滑コンデンサが一般的に設けられている。
特開2010−119175号公報(特許文献6)は、非接触で電力を伝送する電力伝送システムに向けられたものではないが、上記のような平滑コンデンサの残留電荷を迅速に放電させる電源システムを開示する。この電源システムは、バッテリとインバータとの間にDC/DCコンバータを備える。そして、システムの停止時に、DC/DCコンバータの上下スイッチング素子をスイッチングさせ、平滑コンデンサの残留電荷をスイッチング素子に通流させることによって平滑コンデンサの残留電荷を放電させている(特許文献6参照)。
特開2013−154815号公報 特開2013−146154号公報 特開2013−146148号公報 特開2013−110822号公報 特開2013−126327号公報 特開2010−119175号公報
上記のような電力伝送システムに用いられる非接触送電装置において、インバータの入力側に設けられる平滑コンデンサの残留電荷を迅速に放電させることが課題である。ここで、平滑コンデンサの残留電荷を送電部(送電コイル)で消費させるためにインバータを駆動すると、送電部(送電コイル)から意図しない磁界が発生してしまう。
それゆえに、この発明の目的は、送電部に磁界を発生させることなく、平滑コンデンサの残留電荷を迅速に放電可能な非接触送電装置を提供することである。
この発明による非接触送電装置は、送電部と、インバータと、平滑コンデンサと、コモンモードフィルタと、機器と、制御装置とを備える。送電部は、受電装置へ磁界を通じて非接触で送電するように構成される。インバータは、直流電力線から受ける直流電力を交流電力に変換して送電部へ供給する。平滑コンデンサは、直流電力線に設けられる。コモンモードフィルタは、送電部とインバータとの間の電力線に設けられる。機器は、コモンモードフィルタを流れるコモンモード電流が直流電力線へ還流するように構成される。制御装置は、インバータを制御する。そして、制御装置は、インバータの各相アームが互いに同位相でスイッチング動作を行なうようにインバータを駆動することによって、コモンモードフィルタを通じて平滑コンデンサの残留電荷を消費させる。
この非接触送電装置においては、送電部とインバータとの間の電力線にコモンモードフィルタが設けられる。そして、インバータの各相アームが互いに同位相でスイッチング動作を行なうようにインバータが駆動され、平滑コンデンサの残留電荷がコモンモードフィルタを通じて迅速に消費される。ここで、インバータの各相アームは同位相でスイッチング動作を行なうので、送電部に電流は流れず、送電部に磁界は発生しない。
したがって、この非接触送電装置によれば、送電部に磁界を発生させることなく、平滑コンデンサの残留電荷を迅速に放電させることができる。
この発明の実施の形態1による送電装置の回路構成を示した図である。 図1に示すインバータの回路構成を示した図である。 平滑コンデンサの放電処理の実行時におけるインバータのスイッチング波形及び電圧波形を示した図である。 平滑コンデンサの放電処理の実行時に発生するコモンモード電流の経路を示した図である。 図1に示す電源ECUにより実行される平滑コンデンサの放電処理の手順を説明するフローチャートである。 実施の形態2による送電装置の回路構成を示した図である。 実施の形態2において、平滑コンデンサの放電処理の実行時に発生するコモンモード電流の経路を示した図である。 実施の形態3による送電装置の回路構成を示した図である。 実施の形態3において、平滑コンデンサの放電処理の実行時に発生するコモンモード電流の経路を示した図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による送電装置の回路構成を示した図である。図1を参照して、送電装置100は、ACラインフィルタ110と、力率改善(PFC(Power Factor Correction))回路120と、インバータ130と、平滑コンデンサ135と、ノーマルモードフィルタ140と、コモンモードフィルタ150と、送電部160とを備える。また、送電装置100は、筐体180と、電源ECU190と、電圧センサ192とをさらに備える。
ACラインフィルタ110は、交流電源200(たとえば系統電源)から電力を受ける交流電力線115に設けられ、交流電源200に含まれるノイズ及び送電装置100が生じるノイズを除去する。ACラインフィルタ110は、グラウンドとして機能する導電性の筐体180に接続されており、交流電源200に含まれるノイズを筐体180へ流す。ACラインフィルタ110には、公知の種々のACラインフィルタを採用し得る。
PFC回路120は、交流電力線115から受ける交流電力を整流して直流電力線125を通じてインバータ130へ供給するとともに、入力電流を正弦波に近づけることで力率を改善することができる。このPFC回路120にも、公知の種々のPFC回路を採用し得る。なお、PFC回路120に代えて、力率改善機能を有しない整流器を採用することも可能である。
インバータ130は、直流電力線125から受ける直流電力を、所定の伝送周波数を有する送電電力(交流)に変換する。インバータ130によって生成された送電電力は、後述のノーマルモードフィルタ140及びコモンモードフィルタ150を通じて送電部160へ供給される。
PFC回路120とインバータ130との間の直流電力線125には、平滑コンデンサ135が設けられる。平滑コンデンサ135は、直流電力線125の電力線対間に接続され、直流電力線125に生じる電圧変動を平滑化する。送電装置100の動作が停止した後、平滑コンデンサ135には電荷が残留するが、後述のように、平滑コンデンサ135の残留電荷は、インバータ130を駆動することによって放電され、コモンモードフィルタ150を通じて消費される。平滑コンデンサ135の残留電荷の放電処理については、後ほど詳しく説明する。
電圧センサ192は、インバータ130の入力電圧(直流電力線125の線間電圧)を示す電圧Vc、すなわち平滑コンデンサ135の端子間電圧を検出し、その検出値を電源ECU190へ出力する。
ノーマルモードフィルタ140は、インバータ130と送電部160との間に設けられ、インバータ130において発生するノーマルモードノイズを除去する。ノーマルモードフィルタ140は、たとえば、電力線対の一方又は双方に設けられるコイルと、電力線対間に設けられるキャパシタとを含むLCフィルタによって構成される。
コモンモードフィルタ150も、インバータ130と送電部160との間に設けられ、インバータ130において発生するコモンモードノイズを除去する。この図1では、コモンモードフィルタ150は、ノーマルモードフィルタ140と送電部160との間に設けられているが、インバータ130とノーマルモードフィルタ140との間にコモンモードフィルタ150を設けてもよい。
コモンモードフィルタ150は、チョークコイル151,152と、Yコンデンサ153,154とを含む。チョークコイル151,152は、たとえばリング状のフェライトコアに互いに逆向きに巻回される。Yコンデンサ153,154は、それぞれ電力線対158の一方及び他方に接続され、電力線対158との接続端と反対側の端子が筐体180に接続される。
送電部160は、コイル162と、キャパシタ164とを含む。コイル162及びキャパシタ164は、共振回路を形成する。送電部160は、伝送周波数を有する交流電力をインバータ130から受け、コイル162の周囲に生成される磁界を通じて、図示しない受電装置の受電部へ非接触で送電する。なお、この図1では、キャパシタ164は、コイル162に直列に接続されているが、コイル162に並列に接続されてもよい。
筐体180は、導電性の部材によって構成され、たとえばアルミ等の金属製の筐体である。筐体180は、送電装置100のグラウンドとして機能し、上述のように、ACラインフィルタ110及びコモンモードフィルタ150のYコンデンサ153,154は、グラウンドとしての筐体180に接続される。
電源ECU190は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含み(いずれも図示せず)、各種センサや機器からの信号を受けるとともに、送電装置100における各種機器の制御を行なう。一例として、電源ECU190は、インバータ130が送電電力(交流)を生成するようにインバータ130のスイッチング制御を行なう。各種制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
図2は、図1に示したインバータ130の回路構成を示した図である。図2を参照して、インバータ130は、X相アーム132と、Y相アーム134とを含む。X相アーム132及びY相アーム134の各々は、直流電力線125の電力線対間に直列に接続される上アーム及び下アームを含む。上アーム及び下アームの各々は、スイッチング素子と、スイッチング素子に逆並列に接続されるダイオードとを含む。
再び図1を参照して、電源ECU190により実行される主要な制御として、電源ECU190は、送電装置100から受電装置(図示せず)への電力伝送の終了後、平滑コンデンサ135の残留電荷を放電させる放電処理を実行する。なお、特に図示していないが、交流電源200とACラインフィルタ110との間には、遮断器やリレー等が設けられており、平滑コンデンサ135の放電処理の実行時に、送電装置100は、交流電源200と電気的に切り離される。以下、平滑コンデンサ135の残留電荷を放電させる放電処理について詳しく説明する。
一般的に、コンデンサの残留電荷を放電させるために、放電抵抗をコンデンサに並列に接続することが知られているが、この送電装置100には、平滑コンデンサ135の残留電荷を放電させるためのそのような放電抵抗は設けられていない。このような放電抵抗は、送電装置100から受電装置への電力伝送時に電力ロスを発生させ、残留電荷の放電時間を短くしようとすると、抵抗値を小さくする必要があるので電力ロスが大きくなる。このような電力ロスを防止するために、放電抵抗に直列に接続されるスイッチ(例えば半導体素子)を設けて、コンデンサの放電処理時に限りスイッチを導通させることも可能であるが、スイッチやスイッチを駆動するための駆動回路等を追加する必要があり、コストが増加する。
一方、平滑コンデンサ135の残留電荷を送電部160で消費させるためにインバータ130を駆動することが考えられる。しかしながら、平滑コンデンサ135の残留電荷が送電部160へ流れるようにインバータ130を駆動すると、送電部160から意図しない磁界が発生してしまう。
そこで、この実施の形態1に従う送電装置100では、平滑コンデンサ135の残留電荷を放電させる放電処理の実行時、電源ECU190は、インバータ130のX相アーム132及びY相アーム134が互いに同位相でスイッチング動作を行なうようにインバータ130を駆動する。
図3は、平滑コンデンサ135の放電処理の実行時におけるインバータ130のスイッチング波形及び電圧波形を示した図である。図3を参照して、X相(Y相)ONは、X相アーム132(Y相アーム134)の上アーム及び下アームがそれぞれON,OFFであることを示し、X相(Y相)OFFは、X相アーム132(Y相アーム134)の上アーム及び下アームがそれぞれOFF,ONであることを示す。Vxyは、インバータ130の出力の相間電圧を示す。Vcomは、インバータ130から発生するコモンモード電圧(グラウンド(筐体180)に対するインバータ130の出力の平均電位変動)を示す。
送電装置100を交流電源200から電気的に切り離した状態でX相アーム132及びY相アーム134がスイッチング動作を行なうことにより、平滑コンデンサ135の残留電荷がインバータ130を通じて放電される。そして、X相アーム132及びY相アーム134は互いに同位相でスイッチング動作を行なうので、インバータ130の出力線(X相アーム132の中間点に接続されるX相ライン、及びY相アーム134の中間点に接続されるY相ライン)には、X相アーム132及びY相アーム134のスイッチング動作に同期したコモンモード電圧Vcomが発生する一方、相間電圧Vxyは発生しない。
このようなインバータ130の動作により、平滑コンデンサ135の残留電荷は、インバータ130を通じてコモンモード電流となってコモンモードフィルタ150へ流れ、コモンモードフィルタ150において鉄損や銅損等の損失が発生することにより速やかに消費される。一方、コモンモード電流は、送電部160へは流れないので、送電部160に磁界は発生しない。したがって、この送電装置100によれば、送電部160に磁界を発生させることなく、平滑コンデンサ135の残留電荷を迅速に放電させることができる。
図4は、平滑コンデンサ135の放電処理の実行時に発生するコモンモード電流の経路を示した図である。なお、この図4及び対比説明される以降の図7,9では、ノーマルモードフィルタ140の図示は省略されている。
図4を参照して、コモンモードフィルタ150は、Yコンデンサ153,154(図1)を通じて筐体180に接続されており、また、ACラインフィルタ110も筐体180に接続されている。したがって、インバータ130のX相アーム132及びY相アーム134を互いに同位相でスイッチング駆動すると、インバータ130、コモンモードフィルタ150、筐体180、ACラインフィルタ110及びPFC回路120を経路とするコモンモード電流のループLP1が形成される。これにより、送電部160に電流を流すことなく、コモンモードフィルタ150のチョークコイル151,152(図1)による抵抗損失や、インバータ130のスイッチング損失等によって、平滑コンデンサ135の残留電荷を迅速に放電させることができる。
なお、この実施の形態1では、筐体180、ACラインフィルタ110及びPFC回路120が、コモンモードフィルタ150を流れるコモンモード電流を直流電力線125へ還流させる機器を形成する。
図5は、図1に示した電源ECU190により実行される平滑コンデンサ135の放電処理の手順を説明するフローチャートである。なお、このフローチャートに示される処理は、たとえば、送電装置100から受電装置への電力伝送が終了し、送電装置100が交流電源200から電気的に切り離された後に実行される。
図5を参照して、電源ECU190は、インバータ130の入力電圧を示す電圧Vcを電圧センサ192(図1)から取得する(ステップS10)。そして、電源ECU190は、取得された電圧Vcが規定値よりも高いか否かを判定する(ステップS20)。この規定値は、送電装置100から受電装置への送電が実行されるときのインバータ入力電圧のレベル(たとえば数百V)よりも十分に低いレベルに設定され、たとえば12Vの低電圧に設定される。
ステップS20において電圧Vcは規定値以下であると判定されると(ステップS20においてNO)、電源ECU190は、以降の処理を実行することなくステップS50へ処理を移行する。
ステップS20において電圧Vcが規定値よりも高いと判定されると(ステップS20においてYES)、電源ECU190は、インバータ130の各相アーム(X相アーム132及びY相アーム134)が同位相でスイッチング動作を行なうようにインバータ130を制御する(ステップS30)。これにより、平滑コンデンサ135の残留電荷は、コモンモード電流となって図4に示した電流ループLP1を流れ、送電部160へ流れることなく、コモンモードフィルタ150(チョークコイル151,152)による抵抗損失やインバータ130のスイッチング損失等によって消費される。
次いで、電源ECU190は、電圧Vcが上記の規定値以下であるか否かを判定する(ステップS40)。電圧Vcがまだ規定値よりも高いと判定されると(ステップS40においてNO)、電源ECU190は、ステップS30へ処理を戻す。これにより、ステップS30においてインバータ130の駆動が継続される。ステップS40において電圧Vcが規定値以下であると判定されると(ステップS40においてYES)、電源ECU190は、インバータ130を停止してステップS50へ処理を移行する。
以上のように、この実施の形態1においては、送電部160とインバータ130との間の電力線にコモンモードフィルタ150が設けられる。そして、インバータ130の各相アーム(X相アーム132及びY相アーム134)が互いに同位相でスイッチング動作を行なうようにインバータ130が駆動され、平滑コンデンサ135の残留電荷がコモンモードフィルタ150を通じて迅速に消費される。ここで、インバータ130の各相アームは同位相でスイッチング動作を行なうので、送電部160に電流は流れず、送電部160に磁界は発生しない。したがって、この実施の形態1によれば、送電部160に磁界を発生させることなく、平滑コンデンサ135の残留電荷を迅速に放電させることができる。
[実施の形態2]
図6は、実施の形態2による送電装置の回路構成を示した図である。図6を参照して、この送電装置100Aは、図1に示した実施の形態1による送電装置100の構成において、回路170をさらに備える。
回路170は、PFC回路120とインバータ130との間の直流電力線125に設けられ、Yコンデンサ171,172を含む。Yコンデンサ171,172は、それぞれ直流電力線125の一方及び他方に接続され、直流電力線125との接続端と反対側の端子が筐体180に接続される。Yコンデンサ171,172は、グラウンドの筐体180に接続されるので、Yコンデンサ171,172には、高い電気安全性能が要求される。
このように、PFC回路120とインバータ130との間の直流電力線125にYコンデンサ171,172が設けられることにより、PFC回路120において発生する高周波ノイズがインバータ130以降の回路に伝播するのを抑制することができる。
送電装置100Aのその他の構成は、図1に示した送電装置100と同じである。すなわち、この実施の形態2においても、電源ECU190は、平滑コンデンサ135の残留電荷を放電させる放電処理の実行時、インバータ130のX相アーム132及びY相アーム134が互いに同位相でスイッチング動作を行なうようにインバータ130を駆動する。そして、この実施の形態2に従う送電装置100Aでは、回路170は、平滑コンデンサ135の放電処理の実行時に発生するコモンモード電流の経路の一部を構成する。
図7は、実施の形態2において、平滑コンデンサ135の放電処理の実行時に発生するコモンモード電流の経路を示した図である。図7を参照して、コモンモードフィルタ150は、Yコンデンサ153,154(図6)を通じて筐体180に接続されており、また、回路170も、Yコンデンサ171,172(図6)を通じて筐体180に接続されている。したがって、インバータ130のX相アーム132及びY相アーム134を互いに同位相でスイッチング駆動すると、インバータ130、コモンモードフィルタ150、筐体180及び回路170を経路とするコモンモード電流のループLP2が形成される。
したがって、この実施の形態2によっても、送電部160に電流を流すことなく、すなわち送電部160に磁界を発生させることなく、コモンモードフィルタ150(チョークコイル151,152)による抵抗損失やインバータ130のスイッチング損失等によって、平滑コンデンサ135の残留電荷を迅速に放電させることができる。
なお、この実施の形態2では、筐体180及び回路170が、コモンモードフィルタ150を流れるコモンモード電流を直流電力線125へ還流させる機器を形成する。
[実施の形態3]
上記の実施の形態1,2では、平滑コンデンサ135の放電処理時に、筐体180を用いてコモンモード電流の経路を形成するものとしたが、筐体180を用いずにコモンモード電流の経路を形成するための専用線を設けてもよい。
図8は、実施の形態3による送電装置の回路構成を示した図である。図8を参照して、この送電装置100Bは、図6に示した送電装置100Aの構成において、回路175と、電力線156とをさらに備える。
回路175は、PFC回路120とインバータ130との間の直流電力線125に設けられ、Yコンデンサ176,177を含む。Yコンデンサ176,177は、それぞれ直流電力線125の一方及び他方に接続される。直流電力線125との接続端と反対側の端子は、電力線156を通じてコモンモードフィルタ150のYコンデンサ153,154同士の接続端と接続される。
すなわち、この実施の形態3に従う送電装置100Bでは、コモンモードフィルタ150のYコンデンサ153,154は、筐体180(グラウンド)には接続されず、電力線156及び回路175を通じてインバータ130の入力側の直流電力線125に接続される。
送電装置100Bのその他の構成は、図6に示した送電装置100Aと同じである。すなわち、この実施の形態3においても、電源ECU190は、平滑コンデンサ135の残留電荷を放電させる放電処理の実行時、インバータ130のX相アーム132及びY相アーム134が互いに同位相でスイッチング動作を行なうようにインバータ130を駆動する。そして、この実施の形態3に従う送電装置100Bでは、電力線156及び回路175は、平滑コンデンサ135の放電処理の実行時に発生するコモンモード電流の経路の一部を構成する。
図9は、実施の形態3において、平滑コンデンサ135の放電処理の実行時に発生するコモンモード電流の経路を示した図である。図9を参照して、コモンモードフィルタ150(Yコンデンサ153,154)は、筐体180には接続されず、電力線156及び回路175によって、PFC回路120とインバータ130との間の直流電力線125に接続される。この回路構成によって、インバータ130、コモンモードフィルタ150、電力線156及び回路175を経路とするコモンモード電流のループLP3が形成される。
したがって、この実施の形態3によっても、送電部160に電流を流すことなく、すなわち送電部160に磁界を発生させることなく、コモンモードフィルタ150(チョークコイル151,152)による抵抗損失やインバータ130のスイッチング損失等によって、平滑コンデンサ135の残留電荷を迅速に放電させることができる。
さらに、この実施の形態3によれば、コモンモード電流の経路を構成する専用の電力線156が設けられるので、平滑コンデンサ135の残留電荷を放電させる際に、コモンモード電流の経路を確実に設計することができ、また、コモンモードノイズをより効果的に抑制することができる。
なお、この実施の形態3では、電力線156及び回路175が、コモンモードフィルタ150を流れるコモンモード電流を直流電力線125へ還流させる機器を形成する。
なお、上記の実施の形態3では、実施の形態2で説明した回路170が設けられるものとしたが、この実施の形態3において回路170は必須のものではない。
また、上記の各実施の形態において、Yコンデンサには、直列又は並列に抵抗素子を接続してもよい。上記では、一例として、実施の形態3において、コモンモードフィルタ150のYコンデンサ153,154に直列接続される抵抗素子が示されている(図8)。このような抵抗素子を設けることにより、Yコンデンサによるノイズ減衰特性にダンピング効果を付与することができ、特定の周波数で減衰効果が低下するのを防ぐことができる。さらに、平滑コンデンサ135の残留電荷の放電時に、この抵抗素子によって残留電荷をさらに速やかに消費させることができる。
今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
100,100A,100B 送電装置、110 ACラインフィルタ、115 交流電力線、120 PFC回路、125 直流電力線、130 インバータ、135 平滑コンデンサ、140 ノーマルモードフィルタ、150 コモンモードフィルタ、151,152 チョークコイル、153,154,171,172,176,177 Yコンデンサ、156 電力線、160 送電部、162 コイル、164 キャパシタ、180 筐体、190 電源ECU、192 電圧センサ、200 交流電源。

Claims (1)

  1. 受電装置へ磁界を通じて非接触で送電するように構成された送電部と、
    直流電力線から受ける直流電力を交流電力に変換して前記送電部へ供給するインバータと、
    前記直流電力線に設けられる平滑コンデンサと、
    前記送電部と前記インバータとの間の電力線に設けられるコモンモードフィルタと、
    前記コモンモードフィルタを流れるコモンモード電流が前記直流電力線へ還流するように構成された機器と、
    前記インバータを制御する制御装置とを備え、
    前記制御装置は、前記インバータの各相アームが互いに同位相でスイッチング動作を行なうように前記インバータを駆動することによって、前記コモンモードフィルタを通じて前記平滑コンデンサの残留電荷を消費させる、非接触送電装置。
JP2015186660A 2015-09-24 2015-09-24 非接触送電装置 Pending JP2017063526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015186660A JP2017063526A (ja) 2015-09-24 2015-09-24 非接触送電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015186660A JP2017063526A (ja) 2015-09-24 2015-09-24 非接触送電装置

Publications (1)

Publication Number Publication Date
JP2017063526A true JP2017063526A (ja) 2017-03-30

Family

ID=58430311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015186660A Pending JP2017063526A (ja) 2015-09-24 2015-09-24 非接触送電装置

Country Status (1)

Country Link
JP (1) JP2017063526A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338808B1 (ja) * 2017-04-12 2018-06-06 三菱電機株式会社 電力変換装置および非接触給電システム
WO2018189953A1 (ja) * 2017-04-12 2018-10-18 三菱電機株式会社 電力変換装置および非接触給電システム
JPWO2021171453A1 (ja) * 2020-02-27 2021-09-02
CN113794364A (zh) * 2021-08-28 2021-12-14 华为数字能源技术有限公司 供电系统及其控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338808B1 (ja) * 2017-04-12 2018-06-06 三菱電機株式会社 電力変換装置および非接触給電システム
WO2018189953A1 (ja) * 2017-04-12 2018-10-18 三菱電機株式会社 電力変換装置および非接触給電システム
JPWO2021171453A1 (ja) * 2020-02-27 2021-09-02
WO2021171453A1 (ja) * 2020-02-27 2021-09-02 株式会社Fuji 電源遮断装置および電源遮断方法
JP7357140B2 (ja) 2020-02-27 2023-10-05 株式会社Fuji 電源遮断装置および電源遮断方法
US12007822B2 (en) 2020-02-27 2024-06-11 Fuji Corporation Power supply shutoff device and power supply shutoff method
CN113794364A (zh) * 2021-08-28 2021-12-14 华为数字能源技术有限公司 供电系统及其控制方法

Similar Documents

Publication Publication Date Title
US10305327B2 (en) Power transmitting device and wireless power transmission system
CN101335470B (zh) 送电控制装置、送电装置、无触点电力传输系统及电子设备
JP5590268B2 (ja) 電界結合型ワイヤレス電力伝送システム及びそれに用いる受電装置
JP6260578B2 (ja) 送電装置及び受電装置
JP6632308B2 (ja) ワイヤレス送電装置、その制御回路および制御方法、充電器
JP6127668B2 (ja) 電子機器および給電システム
JP2017063526A (ja) 非接触送電装置
TW201351836A (zh) 無線供電裝置
JP6559778B2 (ja) 充電回路及び携帯端末
JP2017038456A (ja) Dc−dcコンバータ
JPWO2015053246A1 (ja) ワイヤレス電力伝送システム
CN112534678A (zh) 无线电力传输系统中的安全运行
JP5047829B2 (ja) 電源システム
KR20160030241A (ko) 노이즈 제어를 갖는 전력 공급기의 스위칭
JP2012210028A (ja) スイッチング電源装置
EP4145159A1 (en) Trans-inductance multi-phase power converters, monitoring and management
US11594918B2 (en) Wireless charging transmitter system and method for controlling same
CN103155391A (zh) 具有启用/禁用电路的开环直流到直流转换器
JP6565809B2 (ja) 送電装置及び電力伝送システム
JP2016017763A (ja) 電流検出装置および電流検出方法
CN113422440A (zh) 无线电源系统的动态谐振
JP2009273335A (ja) 電源装置
JP2017135981A (ja) 電子機器および給電システム
JP2008131756A (ja) 電力変換装置
JP2016197931A (ja) 無線電力伝送装置、無線電力伝送装置の受電装置および送電装置