WO2013145394A1 - 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 - Google Patents
情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 Download PDFInfo
- Publication number
- WO2013145394A1 WO2013145394A1 PCT/JP2012/076617 JP2012076617W WO2013145394A1 WO 2013145394 A1 WO2013145394 A1 WO 2013145394A1 JP 2012076617 W JP2012076617 W JP 2012076617W WO 2013145394 A1 WO2013145394 A1 WO 2013145394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- size
- product
- user
- evaluation
- purchased
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
- G06Q30/0623—Item investigation
- G06Q30/0625—Directed, with specific intent or strategy
- G06Q30/0627—Directed, with specific intent or strategy using item specifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/06—Buying, selling or leasing transactions
- G06Q30/0601—Electronic shopping [e-shopping]
Definitions
- the present invention relates to a technical field of an information processing apparatus and an information processing method for assisting a user to select a size of a product to be worn.
- Patent Document 1 discloses a technology in which a purchaser performs virtual fitting on a browser based on product image data, detailed product size data, and purchaser's body size data. As a result of virtual fitting, the purchaser places an order when he / she wishes to purchase the product.
- Patent Document 1 requires a user to try on even if it is virtual. In this case, in order to perform virtual fitting enough for the user to determine the size, it is necessary to input the dimensions of each part of the user's body and clothes in detail. For this reason, in order for the user to select a size, troubles due to try-on occur.
- the present invention has been made in view of the above points, and an information processing apparatus, an information processing method, an information processing program, and an information processing apparatus capable of presenting a size suitable for the user's body without the user trying on a product.
- An object is to provide a recording medium.
- the invention according to claim 1 is directed to a specific product specified according to a request of a requesting user from a purchase history storage unit that stores a purchase history of a product to be worn having a plurality of sizes.
- Size acquisition means for acquiring the size of the specific product purchased by another purchased user
- body size information acquisition for acquiring body size information regarding the body size of the requesting user and body size information regarding the body size of the other user Means
- an evaluation specifying means for specifying an evaluation by the other user with respect to the size acquired by the size acquiring means, a magnitude relationship between the body size information of the requesting user and the body size information of the other user, Based on the size of a specific product purchased by another user and the evaluation for the size, the special feature that matches the requesting user.
- estimating means for estimating the size of the product, characterized in that and an output means for outputting the size estimated by the estimating means.
- the evaluation from the user who purchased the specific product may reflect whether the size purchased by the user for the specific product matches the user. Moreover, the size suitable for a user changes with user's body sizes. According to this invention, the size of the specific product purchased by another user, the target relationship between the body size information of the requesting user and the body size information of the other user, and the evaluation of the specific product from the other user are used. Therefore, since the size suitable for the requesting user is estimated, the size suitable for the user's body can be presented without the user trying on the product.
- the product information may differ depending on the size.
- the user may request various information in order to find a size that suits him / her. Then, since the request which an information processing apparatus processes increases, the processing load of an information processing apparatus increases.
- it is possible to present a size suitable for the user so that it is possible to reduce a request for the user to search for a size suitable for the user. Therefore, the processing load on the information processing apparatus can be reduced.
- the evaluation specifying unit includes a plurality of different sizes based on the return history of the product stored in the return history storage unit.
- the evaluation of the size that has not been returned is the value of the returned size. The evaluation is specified so as to be higher than the evaluation.
- the size that the user did not return is more suitable for the user than the size that the user returned There is a high probability of being. According to this invention, since the evaluation for the size that the other user did not return is higher than the evaluation for the size that the other user returned, the estimation accuracy of the size that matches the body of the requesting user can be increased.
- the invention according to claim 3 is the information processing apparatus according to claim 1 or 2, wherein the evaluation specifying means acquires the evaluation input by the other user.
- the estimation is performed based on the evaluation input by another user, it is possible to improve the estimation accuracy of the size that matches the body of the requesting user.
- the evaluation specifying unit stores the non-purchase history storage unit and the other user tries to purchase the product. Based on the non-purchase history of quitting the purchase after deciding, after the other user has selected a size for the specific product, if it is determined that the other user has stopped and purchased another size, evaluation of the purchased size However, the evaluation is specified so as to be higher than the evaluation of the quit size.
- the size purchased by the user is greater than the size that the user stopped purchasing. There is a high probability that it suits. According to this invention, since the evaluation with respect to the size purchased by another user is higher than the evaluation with respect to the size for which the other user has stopped purchasing, the estimation accuracy of the size suitable for the requesting user can be increased.
- the evaluation specifying unit is based on the return history of the product stored in the return history storage unit.
- the evaluation is specified so as to be higher than the evaluation of the returned size, and when the evaluation is input from the other user, the input is acquired, and the estimation means includes: The size is estimated by giving more importance to the evaluation specified based on the return history than the evaluation input from the other user.
- the act of a user returning a specific product of a certain size from among a plurality of identical specific products having different sizes is highly likely to represent an evaluation from the user for each size.
- the evaluation input by the user may include an evaluation for matters other than the size.
- the evaluation based on the return history is more important than the evaluation input by other users. Therefore, since the evaluation with higher reliability is emphasized as the evaluation with respect to the size of the specific product, the estimation accuracy of the size suitable for the body of the requesting user can be increased.
- the evaluation specifying unit is input when the evaluation is input from the other user.
- the evaluation is acquired, and the evaluation specifying unit stores the other user based on the non-purchase history stored in the non-purchase history storage unit and stopped purchase after the other user decided to purchase the product.
- the estimation means estimates the size by giving more importance to the evaluation input from the other user than the evaluation specified based on the non-purchase history.
- the user can input the evaluation after wearing the purchased specific product.
- the user cannot wear the specific product after deciding to purchase and before stopping the purchase.
- the evaluation based on the non-purchase history is more important than the evaluation input by other users. Therefore, since the evaluation with higher reliability is emphasized as the evaluation with respect to the size of the specific product, the estimation accuracy of the size suitable for the body of the requesting user can be increased.
- the invention according to claim 7 is the information processing apparatus according to any one of claims 1 to 6, wherein the body size information acquisition unit stores the body size registered by the user for each user. The body size of at least one of the requesting user and the other user is acquired from the storage means as the body size information.
- the estimation since the estimation is performed based on the body size registered by the user, the estimation can be performed based on information that has a high probability of reflecting the user's body size.
- the estimation unit is configured so that, based on the purchase history, as the time when the other user purchases the specific product is newer, The size is estimated with emphasis on the evaluation from the user.
- the probability that the evaluation from the user is not based on the registered body size is higher as the purchase time of the specific product is older. According to the present invention, since the purchase time of a specific product is more important as the evaluation is from a new user, it is possible to improve the estimation accuracy of the size that matches the body of the requesting user.
- the body size information acquisition means is purchased by the requesting user based on the purchase history. At least one of a size of a certain first product and a size of a second product that the other user has purchased is acquired as the body size information.
- the size of the product that the user has purchased has a probability of corresponding to the user's body size. According to this invention, since the size of the product that the user has purchased is acquired as information related to the user's body size, the size that matches the body of the requesting user can be obtained without registration of the body size from the user. Can be estimated.
- the estimation means includes the second user belonging to the same category as the first product among the other users who have purchased the specific product.
- the size is estimated using the evaluation from the other user who has purchased two products, and the time when the requesting user purchases the first product is newer, the first belonging to the same category as the first product.
- the size is estimated with an emphasis on the evaluation from the other user who has purchased two products.
- the size purchased by the requesting user in the first product and the size purchased by the other user in the second product for example, whether the body size of the requesting user and the body size of the other user are comparable. It is possible to determine, or to determine the magnitude relationship between the body size of the requesting user and the body size of other users. According to this invention, since the 1st goods and the 2nd goods belong to the same category, the judgment accuracy of the body size mentioned above can be raised. Here, the older the time when the requesting user purchased the first product, the higher the probability that the current requesting user's body size has changed from the requesting user's body size at the purchase time of the first product.
- the newer the purchase time of the first product of the requesting user the more important is the evaluation from other users who have purchased the second product belonging to the same category as the first product. Accuracy can be increased. For this reason, it is possible to increase the estimation accuracy of the size suitable for the requesting user.
- the estimation means includes the purchase time of the second product of the other user and the specific product of the other user.
- the size is estimated with an emphasis on the evaluation from the other user as the purchase date of the user is closer.
- the invention according to claim 12 is the information processing apparatus according to any one of claims 1 to 11, wherein the estimation unit is purchased by the user from the product for women and the product for men. Information acquired on the basis of the purchase history of the product whose ratio contained in the product is less than or equal to a preset ratio of less than 50% is not used for the estimation of the size.
- the purchase history of a product that is likely to be purchased by the user for the opposite sex is not used for estimating the size suitable for the requesting user. For this reason, it is possible to improve the estimation accuracy of the size that matches the body of the requesting user.
- the estimation means indicates that the purchase means that an adult user has purchased the product for children. Information acquired based on the history is not used for the estimation of the size.
- the purchase history of a product purchased for a child by an adult is not used for estimating a size suitable for the requesting user. For this reason, it is possible to improve the estimation accuracy of the size that matches the body of the requesting user.
- the output means is configured such that the requesting user is an adult and the specific product is for a child. In the case of a product, the size is not output.
- the present invention when it is not necessary to estimate the size suitable for the requesting user, it is possible to prevent the estimation. Therefore, it is possible to reduce the processing load for estimating the size suitable for the body of the requesting user.
- the estimation unit determines whether the body size of the requesting user is based on the magnitude relationship of the body size information.
- the specific product that matches the requesting user based on the size of the specific product purchased by the specified other user, and the evaluation for the size, specifying the other user included in the same body size range as the body size It is characterized by estimating the size of.
- the estimation accuracy of the size that matches the body of the requesting user can be increased.
- the estimating means determines that the body size is greater than the requesting user based on the magnitude relationship of the body size information. Identifying the other user who is also smaller and the other user whose body size is larger than the requesting user, based on the size of the specific product purchased by the identified other user and the evaluation for the size, Estimating a first size of the specific product suitable for the other user whose size is smaller than the requesting user and a second size of the specific product suitable for the other user whose body size is larger than the requesting user; The size between the first size and the second size is estimated to be the size suitable for the requesting user.
- a size between a size suitable for a user whose body size is smaller than the body size of the requesting user and a size suitable for a user whose body size is larger than the body size of the requesting user suits the requesting user. Estimated as size. Therefore, even if there is no user whose body size is comparable to the body size of the requesting user, a size that fits the body of the requesting user can be estimated.
- the estimation means includes the body size information of the other user and the purchase made by the other user.
- An approximate expression of the distribution of the set with the size of the specific product is obtained by weighting the set based on the evaluation from the other user, and calculated based on the approximate expression and the body size information of the requesting user
- the estimated size is estimated to be the size that fits the requesting user.
- the size suitable for the requesting user can be estimated.
- the invention according to claim 18 is an information processing method executed by a computer, and is specified in response to a request from a requesting user from a purchase history storage means for storing a purchase history of products to be worn having a plurality of sizes.
- a size acquisition step of acquiring the size of the specific product purchased by another user who purchased the specific product, and acquiring body size information regarding the body size of the requesting user and body size information regarding the body size of the other user A body size information acquisition step, an evaluation specifying step for specifying an evaluation by the other user with respect to the size acquired by the size acquisition step, a body size information of the requesting user, and a body size information of the other user
- the size relationship, the size of the specific product purchased by the other user, and the size for the size Based on the value, to the estimating step of estimating the size of the specific items that meet the requesting user, and an output step of outputting the size estimated by the estimating step, characterized in that it comprises a.
- a purchase history storage means for storing a purchase history of a product to be worn by a computer having a plurality of sizes.
- Size acquisition means for acquiring the size of the specific product purchased by the user
- body size information acquisition means for acquiring body size information regarding the body size of the requesting user and body size of the other user
- Evaluation specifying means for specifying an evaluation by the other user with respect to the size acquired by the method, a magnitude relationship between the body size information of the requesting user and the body size information of the other user, and a specific product purchased by the other user
- the size of the specific product that fits the requesting user based on the evaluation of the size Estimating estimates means, and characterized in that to function as output means, for outputting the size estimated by the estimating means.
- another user who has purchased a specific product specified in response to a request of a requesting user from a purchase history storage means for storing a purchase history of a product to be worn by a computer having a plurality of sizes.
- Size acquisition means for acquiring the size of the specific product purchased by the user
- body size information acquisition means for acquiring body size information regarding the body size of the requesting user and body size of the other user
- Evaluation specifying means for specifying an evaluation by the other user with respect to the size acquired by the method, a magnitude relationship between the body size information of the requesting user and the body size information of the other user, and a specific product purchased by the other user
- the size of the specific product that fits the requesting user based on the evaluation of the size Estimating estimates means, and characterized in that the information processing program is recorded in a computer-readable to be made to function as an output means for outputting the size estimated by the estimating means.
- the size of a specific product purchased by another user the target relationship between the body size information of the requesting user and the body size information of the other user, and the evaluation of the specific product from the other user are used. Therefore, since the size suitable for the requesting user is estimated, the size suitable for the user's body can be presented without the user trying on the product.
- FIG. 1 It is a figure showing an example of outline composition of information processing system S concerning one embodiment. It is a figure which shows the example of a display of a goods page.
- A is a figure which shows the example of the relationship between the content of evaluation, and a score
- (b) is a figure which shows an example of the relationship between purchase time and the weighting coefficient W1
- (c) is the number of evaluation persons
- (A) is a figure which shows an example of the content registered into member information DB12a
- (b) is a figure which shows an example of the content registered into genre information DB12b
- (c) is goods information DB12c.
- (D) is a figure which shows an example of the content registered into shopping basket deletion log
- (e) is a figure of the content registered into purchase log
- (f) is a figure which shows an example of the content registered into review information DB12f.
- It is a flowchart which shows the process example in the goods page transmission process of the system control part 14 of the online shopping mall server 1 which concerns on one Embodiment.
- FIG. 1 It is a flowchart which shows the process example in the suitable size estimation process of the system control part 14 of the online shopping mall server 1 which concerns on one Embodiment. It is a flowchart which shows the process example in the suitable size estimation process of the system control part 14 of the online shopping mall server 1 which concerns on one Embodiment.
- (A) is a figure which shows the distribution of the set of height and goods size, and an approximate line, (b) thru
- FIG. It is a flowchart which shows the process example in the suitable size estimation process of the system control part 14 of the online shopping mall server 1 which concerns on one Embodiment.
- FIG. 1 is a diagram illustrating an example of a schematic configuration of an information processing system S according to the present embodiment.
- the information processing system S includes an online shopping mall server 1, a plurality of store terminals 2, and a plurality of user terminals 3.
- the online shopping mall server 1 and each store terminal 2 and each user terminal 3 can transmit and receive data to and from each other using, for example, TCP / IP as a communication protocol via the network NW.
- the network NW is constructed by, for example, the Internet, a dedicated communication line (for example, a CATV (CommunityCommunAntenna Television) line), a mobile communication network (including a base station, etc.), a gateway, and the like.
- the online shopping mall server 1 is a server device that executes various types of processing related to an online shopping mall where clothes can be purchased.
- the online shopping mall server 1 is an example of an information processing apparatus according to the present invention.
- a user can purchase a desired product from a desired store by using the online shopping mall.
- the online shopping mall server 1 transmits, for example, a web page of the online shopping mall, or performs processing related to product search, purchase, and the like.
- the online shopping mall may be a site where products other than clothes can be purchased.
- the store terminal 2 is a terminal device used by an employee of a store opening a store in an online shopping mall.
- the store terminal 2 accesses a server device such as the online shopping mall server 1 based on an operation from an employee or the like. Thereby, store terminal 2 receives and displays a web page from a server device.
- Software such as a browser and an e-mail client is incorporated in the store terminal 2.
- the employee registers, for example, information on products to be sold in the online shopping mall and confirms the order contents of the products.
- the user terminal 3 is a terminal device of a user who uses the online shopping mall.
- the user terminal 3 receives the web page from the online shopping mall server 1 and displays it by accessing the online shopping mall server 1 based on an operation from the user.
- Software such as a browser and an e-mail client is incorporated in the user terminal 3.
- the online shopping mall server 1 transmits the search result page to the user terminal 3.
- the search result page is a web page on which a list of searched products is displayed.
- the product page of the specified product is displayed on the screen.
- the product page is a web page on which detailed information regarding one product is displayed.
- the online shopping mall server 1 estimates a product size that matches the size of the designated user's body among a plurality of product sizes of the product designated by the user. Then, the online shopping mall server 1 outputs information indicating the estimated product size. Specifically, the online shopping mall server 1 displays information on the estimated product size on the product page of the designated product.
- the designated product is referred to as “designated product”.
- the designated user is called “designated person”.
- the designated product is an example of a specific product in the present invention.
- the designated person is an example of the requesting user in the present invention.
- FIG. 2 is a diagram showing a display example of a product page.
- the product page for example, the product name, product image, product price, store name, product size, product description, purchase price payment method, product delivery method, and the like are displayed.
- recommended size information 110 is information indicating a product size suitable for the designated person in the designated product.
- information such as “Many people close to your body are buying M size” is displayed. Note that any information may be displayed as long as the information indicates a product size suitable for the designated person.
- the product size selection check box group 120 is a check box group for selecting a product size to be purchased by the user from a plurality of product sizes of the designated product. Specifically, a check box is displayed for each product size.
- the user can select one or more product sizes.
- the store ships products of multiple product sizes to the purchaser, and the purchaser who receives the product has one product size except for one product size that he / she likes. Services are available that allow merchandise to be returned to the store. This service is called “size selection return service”. With the size selection return service, the user can actually wear the product and finally select the product of the product size that best fits his body.
- a radio button group is displayed in place of the product size selection check box group 120 on the product page of the product that does not support the size selection return service. In this case, the user can select only one product size. Moreover, even if it is the same goods, when a goods page differs for every goods size, a user cannot select goods size.
- the shopping cart registration button 130 is a button for putting products into the shopping cart.
- the shopping basket is a virtual container into which products decided to be purchased by the user are put.
- the designated product of the product size selected in the product size selection check box group 120 is put into the shopping cart.
- a shopping cart page is displayed on the screen.
- the shopping cart page is a web page that displays a list of products that the user has put in the shopping cart.
- the user can delete the item in the shopping cart from the shopping cart. As a result, the user can stop purchasing the product that the user has decided to purchase.
- a purchase procedure button is displayed on the shopping cart page.
- the purchase procedure button is a button for performing a purchase procedure for a product in the shopping cart. When the user selects the purchase procedure button and then inputs information necessary for the purchase procedure, the order of the product is completed. Thereby, the user can purchase goods.
- the user can browse the purchase history page in the online shopping mall.
- the purchase history page is a web page on which the purchase history of products is displayed.
- the user can cancel an order of a product that has not been shipped out of products for which the order has been completed.
- the user can stop purchasing the product that the user has decided to purchase.
- the user can select registration of a product review.
- the product review is information such as evaluation, impression, criticism, and comment from the user with respect to the product purchased by the user.
- the product review includes a recommendation level, a product review title, and a text.
- the degree of recommendation indicates, for example, the degree that the user likes the product, the degree that the user thinks that the product may be recommended to others, and the like.
- a web page for inputting a product review is displayed. Therefore, the user inputs a recommendation level, a product review title, a body text, and the like.
- the input information is transmitted from the user terminal 3 to the online shopping mall server 1. Then, the online shopping mall server 1 registers the received information. The user can check the product review input by the user and the product review input by others in the online shopping mall.
- the online shopping mall server 1 has a product size of a designated product purchased by a user who has purchased the designated product, a size relationship between the body size of the designated person and the body size of the user who has purchased the designated product, and Based on the evaluation of the designated product from a user who has purchased the designated product, the designated size of the designated person is estimated. Evaluation for a designated product is classified in units of product size. A user who has purchased a designated product is referred to as an “existing purchaser”. The already purchased person is a user different from the designated person. There is a high probability that an already purchased person has actually worn the purchased designated product. Therefore, there is a probability that the evaluation from the already purchased person with respect to the designated product includes the result of the already purchased person wearing the designated product.
- a product size highly evaluated by a certain existing purchaser has a high probability of matching the body size of the existing purchaser, and a product size low evaluated by a certain existing purchaser The probability of matching the body size is low. Therefore, the online shopping mall server 1 determines the magnitude relationship between the body size of the designated person and the body size of the user who has purchased the designated product, and evaluates from existing purchasers who have the same body size as the designated person. The higher the product size is, the higher the probability that it is estimated that the size is suitable for the designated person. The designated person can know the product size estimated to fit the designated person even if the designated person does not try on the goods.
- the product page may differ for each product size.
- the user may request various product pages in order to find a size that suits him / her. Then, since the request which the online shopping mall server 1 processes increases, the processing load of the online shopping mall server 1 increases. However, since the product size estimated to fit the user is displayed on the product page, it is possible to reduce the demand for the user to search for a size that fits the user. Therefore, the processing load of the online shopping mall server 1 can be reduced.
- the online shopping mall server 1 estimates the appropriate size in consideration of the fact that the purchaser has actually purchased. Specifically, the probability that a product size with higher evaluation is estimated to be an appropriate size increases, and the probability that the product size with a large number of purchases is estimated to be an appropriate size increases.
- the user purchases a product the user selects a product size that is estimated to fit the user's body size based on, for example, a rule of thumb. Therefore, there is a possibility that the product size purchased by the user is the user's compatible size. However, the user cannot wear the product until the purchased product is received. Therefore, the product size purchased by the user may not actually match the user's body size.
- the online shopping mall server 1 may estimate the fit size based on the evaluation from the purchaser without considering the fact that the purchase has been made.
- FIG. 3A is a diagram illustrating an example of the relationship between the contents of evaluation and the score.
- the score indicates the height of evaluation with respect to the product size. The higher the score, the higher the evaluation.
- the first type of evaluation is the presence or absence of returns.
- the purchaser can receive a plurality of the same products having different product sizes, and can return a part of the products of the same product size among the plurality of the same products. . At this time, the user can decide whether or not to return each product size by actually wearing the products of a plurality of product sizes.
- the product size that the purchaser did not return is a product size that matches the body size of the purchaser, and the product size that the purchaser returned is considered to be a product size that does not match the purchaser's body size. Therefore, the presence or absence of returned goods is considered to be an evaluation with respect to the product size. In this case, the merchandise size that has not been returned has a higher evaluation than the merchandise size that has been returned. As shown in FIG. 3A, the product size score that has not been returned is set to, for example, +3.0, and the returned product size score is set to, for example, -3.0.
- the second type of evaluation is the content of product reviews.
- the purchaser actually wears a purchased product of a certain product size.
- the purchaser may register a product review after determining whether the product size matches his body size. Therefore, the higher the recommendation level of the product review, the more likely that the purchased product size matches the purchaser's body size.
- the scores are set to, for example, -2.0, -1.0, +1.0, +1.5, and +2.0. Yes.
- the maximum absolute value of the score according to the recommendation level is smaller than the absolute value of the score according to the presence / absence of return. That is, the weight of whether or not there is a return is heavier than the weight of the product review.
- the online shopping mall server 1 estimates the fit size by placing more importance on the presence / absence of returned goods than the contents of the product review. The reason is that the presence or absence of return is considered to be a direct evaluation of the product size, while the content of the product review may include an evaluation of matters other than the product size.
- the online shopping mall server 1 may determine the score according to the evaluation for the product size. Moreover, the online shopping mall server 1 may determine a score based on the title and text of the product review. The reason is that when the content of the title or the text is affirmative, the purchased product size is likely to match the body size of the purchaser. Moreover, when the content of the title or the text is negative, the purchased product size may not match the purchaser's body size. For example, the online shopping mall server 1 may extract a positive word or a negative word from the title or the text. Examples of positive words include “good”, “fit”, “perfect”, and the like.
- Examples of negative words include “bad”, “does not fit”, “does not fit”, and the like.
- the online shopping mall server 1 sets, for example, a score of +2.0, and when only negative words are extracted, the score may be set to, for example, -2.0. Good.
- the online shopping mall server 1 may set the score to +1.0, for example, when neither a positive word nor a negative word can be extracted.
- the online shopping mall server 1 may determine the score based on the ratio of the positive word and the negative word, for example. Good.
- the third type of evaluation is when the user is at a loss about the product size to be purchased from a plurality of product sizes. Specifically, there are deletion of a product from the shopping basket and cancellation after completion of the order. For example, it is assumed that the user decides to purchase a certain product X and registers the M-size product X in the shopping cart. Thereafter, the user deletes the M-size product X from the shopping basket without performing a purchase procedure. Next, it is assumed that the user has registered the L-size product X in the shopping cart, performed a purchase procedure, and purchased the L-size product X. In this case, with respect to the product X, there is a sign that the user is wondering whether to purchase the M size or the L size.
- the fact that the user has finally purchased the L size without purchasing the M size has a probability that the user has considered the M size and the L size. In this case, the L size finally purchased has a higher evaluation than the M size not finally purchased.
- cancellation after order completion It is assumed that the user cancels the order before shipping the product X after completing the purchase of the M-size product X.
- the L size product X is delivered to the user by performing a purchase procedure for the L size product X. In this case as well, there is a trace that the user is wondering whether to purchase the M size or the L size for the product X.
- the L size finally purchased has a higher evaluation than the M size that was not finally purchased.
- the user who purchased the S size after hesitating the purchase between the S size and the M size finally decided the size with more consideration than the user who simply purchased the S size. .
- the final product size score is set to +1.5, for example, and the final product size score is set to ⁇ 1.5, for example. Is done.
- the absolute value of the score is smaller than the maximum absolute value of the score according to the recommendation level. That is, the weight of the product review is heavier than when the product size is lost.
- the online shopping mall server 1 estimates the matching size by placing more emphasis on the content of the product review than when the product size is lost. The reason is that, when the user purchases a product while wondering about the product size, the user cannot wear the product before determining the final product size to be purchased. Therefore, the evaluation when the product size is lost is used supplementarily.
- the online shopping mall server 1 is a product purchased by a purchaser from among a plurality of product sizes based on only one of whether or not the product is deleted from the shopping cart and whether or not the product is canceled after the order is completed. It may be determined whether the user has lost the size.
- the score is set to, for example, +1.0.
- the case where there is no evaluation is a case where the user has purchased the product but did not return the product, did not register the product review, and did not hesitate about the product size. That is, a score of +1.0 is set for the fact that it has been purchased.
- the maximum absolute value of the score when there is no evaluation and only purchase is smaller than the absolute value of the score when the product size is lost. That is, the weight when the product size is lost is heavier than when there is no evaluation. The reason is that if there is a doubt about the product size, there is a probability that a plurality of product sizes are being considered.
- the online shopping mall server 1 may estimate the fit size using only one of the presence / absence of returned goods and the content of the product review. Further, the online shopping mall server 1 may use either the presence / absence of return or the content of the product review and the case where the product size is lost.
- each user registers information related to his / her body size in the online shopping mall in advance.
- Information on the body size is referred to as “body information”.
- the body type information is an example of body size information in the present invention.
- the body type information includes, for example, height and weight.
- the online shopping mall server 1 identifies an already-purchased person having a body size included in the same body size range as that of the designated person based on the body shape information.
- the range of body size is called “body type classification”.
- FIG. 4 is a diagram showing an example of the relationship between height and weight and body type division. As shown in FIG. 4, height is classified into five categories, for example, low, slightly low, medium, slightly high, and high.
- the vertical broken line is the boundary of the height division.
- the weight is classified into five categories, for example, light, slightly light, medium, slightly heavy, and heavy.
- the horizontal broken line is the boundary of the height division.
- region of the rectangle enclosed by the broken line is equivalent to a body type division.
- the female body type division and the male body type division may be defined separately.
- the online shopping mall server 1 determines that the purchaser has the same body size as that of the designated person when the difference between the designated person's body size and the already purchased person's body size is equal to or less than a preset difference. It may be determined that the body size falls within the range.
- the body shape information may include only at least one of height and weight.
- the online shopping mall server 1 may specify a body type division based on only one information.
- the body type information may include detailed information. For example, upper body length, lower body length, bust size, waist size, hip size, and the like may be included.
- the online shopping mall server 1 may specify a body type division based on detailed information.
- the online shopping mall server 1 may change the information to be used according to the type of the designated product. For example, the online shopping mall server 1 may use the upper body length for the tops and the lower body length for the bottoms.
- the online shopping mall server 1 identifies a purchaser who belongs to the same body type classification as the designated person. Then, a score is determined as shown in FIG. 3A for each purchased person who belongs to the same body type classification as the designated person.
- the online shopping mall server 1 may determine the score based only on the evaluation having the highest weight among the plurality of evaluations.
- the weight of the content of the product review is heavier than the weight when the product size is lost, so the L size score is -1.0. That is, the online shopping mall server 1 ignores the evaluation with the lighter weight as a result of emphasizing the evaluation with the higher weight.
- the online shopping mall server 1 adds the scores of each already purchased person for each product size, and determines an overall score for each product size. Then, the online shopping mall server 1 identifies the product size having the highest overall score as the matching size. Note that the score in the case of no evaluation may be zero. Thereby, it can be made not to reflect in the estimation of an adaptation size the case where it is only purchased and there is no evaluation in the estimation of an adaptation size.
- the number of purchasers who have already made evaluations is called “number of evaluations”.
- the number of existing purchasers is referred to as “number of purchasers”.
- the number of evaluation people tends to increase.
- the estimation precision of a suitable size becomes so high that there are many evaluation persons. Therefore, when the user purchases a suitable size indicated by the recommended size information 110 displayed on the product page by designating a product with a small number of people, the purchased product size may not match the user's body size. .
- the result that the product size does not match the user's body size is reflected in the evaluation.
- the user may not use the size selection return service. Or even if the user uses the size selection return service, the number of product sizes to be selected can be reduced. In addition, the user is less confused about selecting the product size, the content of the product review is improved, and the recommendation level is increased.
- the evaluation from the purchaser with respect to the product size of the designated product is an evaluation at the purchase time of the designated product. That is, the evaluation from the purchaser is based on the body size of the purchaser at the purchase time of the designated product.
- the body type information registered by the user is considered to reflect the current body size of the user.
- the body size of the purchaser has changed from the time when the purchaser purchased the designated product to the present. Therefore, when the body size of the already purchased person is specified based on the body shape information, the reliability of the evaluation from the already purchased person may be low when the purchase time of the designated product of the already purchased person is old.
- the online shopping mall server 1 may weight each purchaser's score according to the purchase time of the designated product. Specifically, the online shopping mall server 1 increases the weight as the purchase time is newer. In other words, the online shopping mall server 1 places more emphasis on the evaluation of purchasers who have a new purchase time.
- FIG. 3B is a diagram illustrating an example of the relationship between the purchase time and the weighting factor W1.
- the weight coefficient W1 is a coefficient indicating a weight according to the purchase time of the designated product. As shown in FIG. 3B, when the purchase time is five years or more before the present time, the weighting factor W1 is, for example, 0.5. Further, when the purchase time is two years or more and less than five years ago, the weighting factor W1 is, for example, 0.8.
- the weighting factor W1 is, for example, 1.0.
- the weighting factor W1 is 1.2, for example.
- the online shopping mall server 1 multiplies the score obtained on the basis of FIG. 3A by the weighting factor W1 obtained on the basis of FIG. Calculate the final score.
- the online shopping mall server 1 may estimate the compatible size without using an evaluation from a purchaser whose purchase time is older than a preset time.
- the online shopping mall server 1 estimates the fit size using both the score with evaluation and the score without evaluation. As described above, it cannot be determined that the product size purchased by the user matches the user's body size. Therefore, the absolute value of the score when there is an evaluation is larger than the absolute value of the score when there is no evaluation. However, in order to improve the estimation accuracy of the adaptation size, it is better to estimate the adaptation size based only on the evaluation. On the other hand, if the fit size is estimated based only on the evaluation when the number of people to be evaluated is small, the accuracy of the fit size estimation may be lowered. In addition, the number of evaluations may be considerably smaller than the number of purchasers.
- the online shopping mall server 1 may change the weight of the score when there is an evaluation and the weight of the score when there is no evaluation according to the number of people who are evaluated. Specifically, the online shopping mall server 1 increases the weight of the score when there is an evaluation and the weight of the score when there is no evaluation as the number of evaluation persons increases.
- FIG. 3C is a diagram illustrating an example of the relationship between the number of persons evaluated and the weighting factor W2.
- the weight coefficient W2 is a coefficient indicating the weight of the score when there is an evaluation. Note that the score weight in the case of no evaluation is 1-W2. As shown in FIG. 3C, when the number of persons evaluated is less than 5, the weighting factor W2 is, for example, 0.5.
- the online shopping mall server 1 may determine the weight according to the ratio of the evaluation number of persons to the number of purchasers. Specifically, the online shopping mall server 1 increases the weight of the score when there is an evaluation as the ratio of the evaluation number is larger.
- the user may purchase products for others.
- the probability that the degree of conformity of the purchased product size to the user's own body size is reflected in the evaluation from the user who purchased the product for another person is low.
- the online shopping mall server 1 may not use the evaluation from the already purchased person who is determined to have purchased the designated product for another person for the estimation of the suitable size.
- the evaluation from the purchaser is not used, when the purchaser is an adult, the purchaser purchases a designated product for children. It is up to the operator of the online shopping mall to decide how old an adult is.
- the online shopping mall server 1 calculates the ratio of the product for women and the ratio of the product for men among the products that have already been purchased by the purchaser. Then, the online shopping mall server 1 determines that the product of the gender whose ratio is equal to or less than a preset threshold is a product purchased by the already purchased person for the opposite sex. The threshold is set to a value less than 50%. In other words, the gender corresponding to the product with the higher ratio is the gender of the purchased user.
- the online shopping mall server 1 may acquire the registered gender when the user has registered his / her gender in the online shopping mall.
- the online shopping mall server 1 may not display the recommended size information 110 when it is determined that the designated person has designated as the designated product a product that is not a product worn by the designated person. Examples of cases where the recommended size information 110 is not displayed include a case where the designated product is a product for children when the designated person is an adult, a case where the designated product is a product for a gender different from the sex of the designated person, etc. There is.
- the online shopping mall server 1 does not need to display the recommended size information 110 even when the designated product is a product for pregnant women. This is because the product for pregnant women is a product that matches the physique of the pregnant woman.
- the user may be able to register in the online shopping mall whether or not the user is pregnant. Then, the online shopping mall server 1 may not display the recommended size information 110 when the designated person is pregnant.
- the genre of the product is a product category, category, or the like in which the product is divided based on a predetermined standard.
- FIG. 5 is a block diagram showing an example of a schematic configuration of the online shopping mall server 1 according to the present embodiment.
- the online shopping mall server 1 includes a communication unit 11, a storage unit 12, an input / output interface 13, and a system control unit 14.
- the system control unit 14 and the input / output interface 13 are connected via a system bus 15.
- the communication unit 11 is connected to the network NW and controls the communication state with the store terminal 2, the user terminal 3, and the like.
- the storage unit 12 is composed of, for example, a hard disk drive.
- the storage unit 12 is an example of a history storage unit, a return history storage unit, and a non-purchase history storage unit in the present invention.
- databases such as a member information DB 12a, a genre information DB 12b, a product information DB 12c, a shopping cart deletion history DB 12d, a purchase history DB 12e, and a review information DB 12f are constructed.
- “DB” is an abbreviation for database.
- FIG. 6A shows an example of contents registered in the member information DB 12a.
- member information related to users who are registered as members in the information processing system S is registered.
- user attributes such as user ID, password, nickname, name, date of birth, gender, postal code, address, telephone number, e-mail address, and body type information correspond to each user. Attached and registered.
- FIG. 6B is a diagram showing an example of contents registered in the genre information DB 12b.
- Genre information relating to the genre of the product is registered in the genre information DB 12b.
- genre attributes such as a genre ID, a genre name, a genre level, a parent genre ID, and a child genre ID list are registered in the genre information DB 12b in association with each genre.
- the genre information is set by, for example, an online shopping mall operator.
- the product genre is hierarchically defined with a tree structure. Specifically, each node of the tree structure corresponds to a genre.
- the depth of the node corresponds to the level (hierarchy) of the genre corresponding to the node.
- the depth of the node is a distance from a node located at the root (hereinafter referred to as “root node”). The larger the level value, the deeper the depth as the level, and the smaller the level value, the shallower the depth as the level.
- the genre corresponding to the child node of the root node is the level 1 genre.
- the genre of level 1 is the highest genre. For each level 1 genre, a genre corresponding to a child node is defined as a level 2 genre.
- the genre J2 corresponding to a child node of a certain genre J1 is referred to as a “child genre” of the genre J1.
- the genre J1 at this time is referred to as “parent genre” of the genre J2.
- the child genre is a range to which similar products belong when the parent genre is further divided into a plurality of categories. Therefore, the child genre belongs to the parent genre.
- a genre corresponding to an ancestor node of a certain genre is referred to as an “ancestor genre”.
- the genre J3 is a child genre of the genre J2.
- the genres J1 and J2 are ancestor genres of the genre J3.
- the product of the genre J3 belongs to the genre J3 and also belongs to the ancestor genre of the genre J3. Accordingly, products of genre J3 belong to any of genres J1 to J3.
- Level 1 genres include, for example, “Ladies Fashion”, “Men's Fashion”, “Kids / Baby / Maternity”, and the like.
- Examples of child genres of “Ladies Fashion” include “One Piece”, “Tops”, “Bottoms”, and the like.
- Examples of child genres of “Tops” include “T-shirt”, “Polo shirt”, and “Blouse”. How to categorize is up to the operator.
- Genre ID is genre identification information defined by genre information.
- the parent genre ID is the genre ID of the parent genre of the genre defined by the genre information.
- the child genre ID list is a list of genre IDs of child genres of a genre defined by genre information. The child genre ID list is set when the genre defined by the genre information has a child genre.
- FIG. 6C is a diagram showing an example of contents registered in the product information DB 12c.
- product information related to products sold in the online shopping mall is registered.
- the product information is information registered by the store.
- the product information DB 12c includes a store ID, product ID, product code, genre ID, brand ID, product name, product image URL, product description, product price, product size list, size selection return service flag, and the like.
- the attribute value of the product is registered in association with each product sold by the store.
- the store ID is identification information of a store from which the product is sold.
- the product ID is product identification information for managing the products sold by the store.
- the combination of the store ID and the product ID corresponds to the product page on a one-to-one basis.
- the product code is a code number for identifying a product. When the same product is sold at a plurality of stores, the same product code is assigned to each product.
- the product code for example, there is a JAN (Japanese Article Number Code) code.
- the genre ID indicates the genre to which the product belongs.
- the brand ID is product brand identification information.
- the genre ID set in the product information is basically the genre ID of the genre with the highest level number. That is, the genre ID of the most subdivided genre is set.
- the product name is the name of the product given by the store.
- the product size list indicates a list of product sizes.
- the size selection return service flag indicates whether or not the size selection return service is applied.
- FIG. 6D is a diagram showing an example of contents registered in the shopping cart deletion history DB 12d.
- a shopping cart deletion history indicating a history of deleting products from the shopping cart is registered.
- the shopping cart deletion history is an example of a non-purchase history in the present invention.
- a user ID, a deletion date, a store ID, a product ID, and a product size list are registered in the shopping cart deletion history DB 12d every time a product is deleted from the shopping cart.
- the user ID indicates the user who deleted the product from the shopping basket.
- the deletion date and time indicates the date and time when the item is deleted from the shopping basket.
- the store ID indicates the seller of the product deleted from the shopping cart.
- the product ID indicates a product deleted from the shopping cart.
- the product size list is a list of product sizes of products whose products have been deleted from the shopping cart.
- FIG. 6E is a diagram illustrating an example of contents registered in the purchase history DB 12e.
- the purchase history DB 12e the purchase history of products by the user is registered.
- the purchase history is an example of a purchase history, a return history, and a non-purchase history in the present invention.
- the purchase history DB 12e includes an order code, purchase date / time, user ID, store ID, product ID, product code, genre ID, brand ID, purchase size list, purchase price, cancel flag, cancel date / time, return flag, A return date and time, a return size list, and the like are registered in association with each purchase of a product.
- the order code is order identification information given each time a product is ordered.
- the user ID indicates a purchaser.
- the store ID indicates the store of purchase.
- the product ID and the product code indicate the purchased product.
- the genre ID indicates the brand of the purchased product.
- the purchase size list is a list of product sizes of purchased products.
- the cancel flag is information indicating whether or not the order has been canceled.
- the cancel flag is set to ON or OFF. ON indicates that the order has been canceled. OFF indicates that the order has not been canceled.
- the cancel date / time indicates the date / time when the cancel operation was performed.
- the return flag is information indicating whether or not a product of a part of the product size has been returned.
- the return flag is set to ON or OFF. ON indicates that the product has been returned. OFF indicates that the product has not been returned.
- the return date and time indicates the date and time when the return operation was performed.
- the return size list is a list of product sizes of returned products.
- FIG. 6 (f) is a diagram showing an example of contents registered in the review information DB 12f.
- Review information about product reviews is registered in the review information DB 12f.
- a user ID indicates the user who registered the product review.
- the registration date / time indicates the date / time when the product review was registered.
- the store ID indicates the seller of the product that is the subject of the product review.
- the product ID indicates a product that is a product review target.
- the product size list is a list of product sizes that are subject to product review. However, when a return is made, only the product size of the product that has not been returned is set in the product size list.
- the storage unit 12 stores various types of data such as HTML (HyperText Markup Language) documents, XML (Extensible Markup Language) documents, image data, text data, and electronic documents for displaying web pages.
- the storage unit 12 stores various setting values.
- the storage unit 12 stores a score corresponding to each evaluation.
- the storage unit 12 stores various programs such as an operating system, a WWW (World Wide Web) server program, a DBMS (Database Management System), and an electronic commerce management program.
- the electronic commerce management program is a program for executing various processes related to electronic commerce.
- the electronic commerce management program is an example of an information processing program in the present invention.
- the various programs may be acquired from other server devices or the like via the network NW, or may be recorded on a recording medium such as a DVD (Digital Versatile Disc) and read via the drive device. You may do it.
- the input / output interface 13 performs interface processing between the communication unit 11 and the storage unit 12 and the system control unit 14.
- the system control unit 14 includes a CPU 14a, a ROM (Read Only Memory) 14b, a RAM (Random Access Memory) 14c, and the like.
- the system control unit 14 functions as a size acquisition unit, body size information acquisition unit, evaluation identification unit, estimation unit, and output unit in the present invention by the CPU 14a reading and executing various programs. .
- the online shopping mall server 1 may be composed of a plurality of server devices.
- a server device that performs processing such as product search and ordering in an online shopping mall a server device that estimates an appropriate size, a server device that transmits a web page in response to a request from the user terminal 3, and a database are managed.
- Server devices or the like may be connected to each other via a LAN or the like.
- FIG. 7 is a flowchart showing a processing example in the product page transmission processing of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- the product page transmission process is executed each time the online shopping mall server 1 receives a request for a product page from the user terminal 3.
- the request transmitted from the user terminal 3 to the online shopping mall server 1 is a message indicating a request from a designated person.
- the store ID and product ID of the designated product and the user ID of the designated person are set.
- the system control unit 14 specifies the designated product based on the received request. Specifically, the system control unit 14 acquires a store ID, a product ID, and a user ID from the request. Then, the system control unit 14 acquires product information including the acquired store ID and product ID from the product information DB 12c. Further, the system control unit 14 acquires member information including the acquired user ID from the member information DB 12a.
- the system control unit 14 acquires the HTML document of the product page of the designated product from the storage unit 12 (step S1). Next, the system control unit 14 determines whether the designated product is a product for children based on the genre ID included in the product information of the designated product (step S2). At this time, if the system control unit 14 determines that the designated product is not a product for children (step S2: NO), the system control unit 14 proceeds to step S4. On the other hand, if the system control unit 14 determines that the designated product is a product for children (step S2: YES), whether the designated person is an adult based on the age included in the member information of the designated person. It is determined whether or not (step S3).
- step S3 determines that the designated person is an adult (step S3: YES)
- step S7 the system control unit 14 does not estimate the compatible size.
- step S3: NO the system control unit 14 proceeds to step S4.
- the system control unit 14 may not estimate the fit size when the attribute of the designated person does not correspond to the attribute of the designated product. For example, the system control unit 14 determines whether the designated person is an adult or a child, and determines whether the designated product is for an adult or a child. Then, the system control unit 14 does not estimate the fit size when the designated person is an adult and the designated product is for a child. Further, the system control unit 14 does not estimate the fit size when the designated person is a child and the designated product is for adults. Further, the system control unit 14 determines whether the designated person is a woman or a man and determines whether the designated product is for a woman or a man. And the system control part 14 does not estimate a suitable size, when a designated person is a woman and a designated goods is for men. Further, the system control unit 14 does not estimate the fit size when the designated person is a male and the designated product is for a female.
- the system control unit 14 can determine the attribute of the designated person based on the information set in the member information of the designated person. On the other hand, the system control unit 14 can determine the attribute of the designated product based on the genre ID included in the product information of the designated product. Alternatively, the system control unit 14 may determine the attribute of the designated product based on the purchase history of the designated product. For example, the system control unit 14 calculates the ratio of the number of purchasers of the designated product for each attribute of the purchaser based on the purchase history. Then, the system control unit 14 sets the attribute corresponding to the attribute of the already purchased person with the highest ratio as the attribute of the designated product. For example, the system control unit 14 determines that the designated product is a product for women when the proportion of women is greater than the proportion of men among the already purchased people.
- step S4 the system control unit 14 executes an adaptive size estimation process.
- the fit size estimation process the fit size is estimated. Details of the adaptive size estimation process will be described later.
- the system control unit 14 After completing the adaptation size estimation process, the system control unit 14 generates recommended size information 110 based on the estimated adaptation size (step S5).
- the system control unit 14 adds the generated recommended size information 110 to the HTML document of the product page of the designated product (step S6).
- step S7 the system control unit 14 transmits the HTML document of the product page of the designated product to the user terminal 3 that is the transmission source of the request (step S7). As a result, the system control unit 14 serving as the output unit outputs the compatible size.
- the system control unit 14 ends the product page transmission process.
- the user terminal 3 that has received the HTML document displays the product page on the screen.
- recommended size information 110 is displayed on the product page, for example, as shown in FIG.
- the system control unit 14 causes the user terminal 3 to present the compatible size to the user.
- the system control unit 14 may transmit the HTML document of the product page and the recommended size information 110 separately. For example, a script for acquiring recommended size information 110 from the online shopping mall server 1 is described in the HTML document of the product page.
- the system control unit 14 In response to a product page request from the user terminal 3, the system control unit 14 first transmits an HTML document of the product page to the user terminal 3. After that, the system control unit 14 estimates an appropriate size.
- the user terminal 3 that has received the HTML document displays a product page based on the HTML document, and transmits a request for the recommended size information 110 to the online shopping mall server 1 based on a script included in the HTML document.
- the system control unit 14 transmits the recommended size information 110 to the user terminal 3 in response to the received request.
- the user terminal 3 that has received the recommended size information 110 displays the recommended size information 110 in the already displayed product page. Thereby, even if the online shopping mall server 1 takes time to estimate the suitable size, the user terminal 3 can display the product page at a speed as usual.
- FIGS. 8 and 9 are flowcharts showing a processing example in the adaptive size estimation process of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- the system control unit 14 as body size information acquisition means acquires body type information from member information of a designated person (step S21).
- the system control unit 14 initializes the evaluation number, the score with evaluation and the score without evaluation for each product size to 0 (step S22).
- the score with evaluation is a total value of scores when there is evaluation.
- the score without evaluation is a total value of scores when there is no evaluation.
- the system control unit 14 acquires the product size from the product size list included in the product information of the designated product. Then, the system control unit 14 initializes a score corresponding to the acquired product size.
- the product page is different for each product size, only one product size is set in the product size list among a plurality of product sizes prepared for the designated product.
- the system control unit 14 acquires the product size from the product information of the same product as the designated product.
- the system control unit 14 searches the product information DB 12c for product information that includes the same product code as the product code of the designated product and product information that includes the same product name as the product name of the designated product. Then, the system control unit 14 acquires the product size from the product size list included in the searched product information.
- the system control unit 14 searches the purchase history of the designated product (step S23). Specifically, the system control unit 14 searches the purchase history DB 12e for a purchase history including the store ID and the product ID of the designated product. Note that the system control unit 14 may include a product whose product code is the same as the designated product in the designated product. In this case, the system control unit 14 acquires a product code from the product information of the designated product. Then, the system control unit 14 searches for a purchase history including the acquired product code. In addition, the system control unit 14 may search only the purchase history of a purchaser who has the same gender as the gender of the designated person. Further, the system control unit 14 may or may not exclude the purchase history including the designated user ID from the search target. The fact that the designated person is included in the already purchased person is not particularly a problem. It is important that one or more users other than the designated person are included in the already purchased person.
- the system control unit 14 selects a purchase history for one purchaser from the purchase histories searched in step S23 (step S24). That is, the system control unit 14 selects a purchase history including a certain user ID. At this time, when a plurality of purchase histories include the same user ID, the system control unit 14 selects a plurality of purchase histories including the same user ID.
- the existing purchaser indicated by the selected purchase history is referred to as “selected purchaser”.
- step S25 the system control unit 14 executes purchase purpose determination processing (step S25).
- the purchase purpose determination process it is determined whether or not the purpose of purchasing the designated product by the selected purchaser is for others. Details of the purchase purpose determination process will be described later.
- the system control unit 14 determines whether or not the return value of the purchase purpose determination process is “for another person” (step S26). When the return value is “for another person”, the purpose of the selected purchaser purchasing the designated product is for another person. At this time, if the system control unit 14 determines that the return value is “for another person” (step S26: YES), the system control unit 14 proceeds to step S35. In this case, the system control unit 14 does not calculate the score of the selected purchaser.
- step S26 the system control unit 14 does not use the purchase history of the designated product of the selected purchaser to estimate the compatible size.
- the system control unit 14 determines that the return value is not “for others” (step S26: NO)
- the system control unit 14 proceeds to step S27.
- step S27 the system control unit 14 as body size information acquisition means acquires the body information of the selected purchaser. Specifically, the system control unit 14 acquires the user ID of the selected purchaser from the purchase history. Next, the system control unit 14 acquires member information including the acquired user ID from the member information DB 12a. Next, the system control unit 14 acquires body shape information from the acquired member information.
- the system control unit 14 determines whether or not the body type classification of the designated person matches the body type classification of the selected purchaser (step S28).
- the body type classification is specified based on the body type information. At this time, if the system control unit 14 determines that the body type classification of the designated person and the body type classification of the selected purchaser do not match (step S28: NO), the system control unit 14 proceeds to step S35.
- step S28 if it is determined that the body type classification of the designated person and the body type classification of the selected purchaser match (step S28: YES), the system control unit 14 executes score calculation processing (step S29). In the score calculation process, the score of the selected purchaser for each product size of the designated product is calculated. Details of the score calculation process will be described later.
- the system control unit 14 weights the scores of each product size according to the purchase time of the specified product of the selected purchaser (step S30). Specifically, the system control unit 14 acquires the weighting factor W1 corresponding to the purchase date and time included in the purchase history of the selected purchaser from the storage unit 12. When there are a plurality of purchase histories, the system control unit 14 acquires, for example, a weighting factor W1 corresponding to the average purchase date and time. The system control unit 14 calculates the final score for each product size of the selected purchaser by multiplying the score of each product size by the weighting factor W1.
- step S31 determines whether or not there is an evaluation from the selected purchaser as shown in FIG. 9 (step S31). At this time, if the system control unit 14 determines that there is an evaluation from the selected purchaser (step S31: YES), the system control unit 14 proceeds to step S32. On the other hand, if the system control unit 14 determines that there is no evaluation from the selected purchaser (step S31: NO), the system control unit 14 proceeds to step S34.
- step S32 the system control unit 14 adds 1 to the evaluation number.
- step S33 the system control unit 14 adds the score of each product size of the selected purchaser to the score with evaluation of each product size (step S33).
- step S35 the system control unit 14 adds the score of each product size of the selected purchaser to the score without evaluation of each product size.
- step S35 the system control unit 14 adds the score of each product size of the selected purchaser to the score without evaluation of each product size.
- step S35 the system control unit 14 determines whether or not there is a purchase history that has not been selected in the purchase history searched in step S23. At this time, if the system control unit 14 determines that there is a purchase history that has not yet been selected (step S35: YES), the purchase history for one purchaser of the purchase history that has not yet been selected. Select (step S36). Next, the system control unit 14 proceeds to step S25. The system control unit 14 repeats steps S25 to S36 to calculate the total score for each product size of the already purchased buyer with evaluation and the total score for each product size of the already purchased buyer without evaluation. To do.
- the system control unit 14 as the estimation unit specifies the product size having the highest overall score as the matching size (step S39). After completing this process, the system control unit 14 ends the product size estimation process.
- FIG. 10 is a flowchart illustrating a processing example in the purchase purpose determination process of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- the system control unit 14 searches the purchase history DB 12e for a purchase history including the user ID of the selected purchaser (step S41). Next, the system control unit 14 calculates the ratio of female products and the ratio of male products to all products purchased by the selected purchaser. The system control unit 14 can determine whether it is for women or for men based on the genre ID included in the purchase history.
- the system control unit 14 determines whether or not the designated product is a product for men based on the genre ID included in the product information of the designated product (step S42). At this time, if the system control unit 14 determines that the designated product is not a product for men (step S42: NO), the system control unit 14 proceeds to step S44. On the other hand, when the system control unit 14 determines that the designated product is a product for men (step S42: YES), the ratio of the product for men is equal to or less than the threshold stored in the storage unit 12. Is determined (step S43).
- step S43: YES if the system control unit 14 determines that the ratio of the male product is equal to or less than the threshold value (step S43: YES), the system control unit 14 sets “for another person” as the return value (step S48). After completing this process, the system control unit 14 ends the purchase purpose determination process. On the other hand, when the system control unit 14 determines that the ratio of the male product is larger than the threshold (step S43: NO), the system control unit 14 proceeds to step S45.
- step S44 the system control unit 14 determines whether or not the ratio of products for women is equal to or less than a threshold value. At this time, if the system control unit 14 determines that the ratio of the commodity for women is equal to or less than the threshold (step S44: YES), the system control unit 14 proceeds to step S48. On the other hand, if the system control unit 14 determines that the ratio of the commodity for women is larger than the threshold (step S44: NO), the system control unit 14 proceeds to step S45. In addition, when the gender is set in the member information of the designated person, the system control unit 14 may perform the determination based on the gender set in the member information.
- step S45 the system control unit 14 determines whether or not the designated product is a product for children. At this time, if the system control unit 14 determines that the designated product is not a product for children (step S45: NO), the system control unit 14 sets “for yourself” as the return value (step S47). After completing this process, the system control unit 14 ends the purchase purpose determination process. On the other hand, when the system control unit 14 determines that the designated product is a product for children (step S45: YES), the selected purchaser is an adult based on the age included in the member information of the selected purchaser. It is determined whether or not there is (step S46).
- step S46: YES if the system control unit 14 determines that the selected purchaser is an adult (step S46: YES), the system control unit 14 proceeds to step S48. On the other hand, if the system control unit 14 determines that the selected purchaser is not an adult (step S46: NO), the system control unit 14 proceeds to step S47.
- FIG. 11 is a flowchart showing a processing example in the score calculation processing of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- the system control unit 14 initializes the score of each product size of the selected purchaser to 0 (step S60).
- the system control unit 14 determines whether or not the designated product has been returned from the selected purchaser (step S61). Specifically, when the return flag included in the purchase history of the selected purchaser is ON, the system control unit 14 determines that the designated product has been returned from the selected purchaser (step S61: YES). In this case, the system control unit 14 proceeds to step S62. On the other hand, when the return flag is OFF, the system control unit 14 determines that the designated product has not been returned from the selected purchaser (step S61: NO). In this case, the system control unit 14 proceeds to step S64.
- step S62 the system control unit 14 as the evaluation specifying unit adds the score A1 to the score of the product size that has not been returned.
- the score A1 is a score of the product size that has not been returned (for example, +3.0).
- the system control unit 14 as a size acquisition unit acquires a purchase size list and a return size list from the purchase history of the selected purchaser. Then, the system control unit 14 identifies a product size that is not included in the return size list among the product sizes included in the purchase size list as a product size that has not been returned.
- the system control unit 14 as the evaluation specifying unit adds the score A2 to the returned product size score (step S63).
- the score A2 is a returned product size score (for example, -3.0).
- the product size included in the return size list is the returned product size.
- step S64 the system control unit 14 determines whether or not a product review of the designated product from the selected purchaser is registered. Specifically, the system control unit 14 searches the review information DB 12f for review information including the user ID of the selected purchaser, the store ID of the designated product, and the product ID. At this time, if there is corresponding review information, the system control unit 14 determines that a product review is registered (step S64: YES). In this case, the system control unit 14 proceeds to step S65. On the other hand, when there is no corresponding review information, the system control unit 14 determines that the product review is not registered (step S64: NO). In this case, the system control unit 14 proceeds to step S66.
- step S65 the system control unit 14 as an evaluation specifying unit acquires a recommendation degree from the searched review information. And the system control part 14 adds score Bn according to the recommendation degree contained in review information to the score of the product size made into the object of product review.
- the score Bn is a score (for example, any one of ⁇ 2.0, ⁇ 1.0, +1.0, +1.5, or +2.0) corresponding to the recommendation value n.
- the system control unit 14 proceeds to step S66.
- step S66 the system control unit 14 determines whether or not the selected purchaser has deleted the designated product from the shopping basket. Specifically, the system control unit 14 searches the shopping cart deletion history DB 12d for a shopping cart deletion history including the user ID of the selected purchaser, the store ID of the designated product, and the product ID. At this time, if there is a corresponding shopping cart deletion history, the system control unit 14 determines that the selected purchaser has deleted the designated product from the shopping cart (step S66: YES). In this case, the system control unit 14 proceeds to step S67. On the other hand, if there is no corresponding shopping cart deletion history, the system control unit 14 determines that the selected purchaser has not deleted the designated product from the shopping cart (step S66: NO). In this case, the system control unit 14 proceeds to step S69.
- step S67 the system control unit 14 determines whether or not a product size different from the product size purchased by the selected purchaser has been deleted from the shopping cart. Specifically, the system control unit 14 is set in the purchase size list included in the purchase history of the designated product of the selected purchaser among the product sizes set in the product size list included in the searched shopping cart deletion history. It is determined whether there is a product size that does not match the current product size. At this time, if there is a product size that does not match the product size set in the purchase size list among the product sizes set in the product size list, the system control unit 14 purchases the product size purchased by the selected purchaser. It is determined that a different product size from the shopping basket has been deleted (step S67: YES).
- step S68 the system control unit 14 sets ON to the shopping cart deletion evaluation flag
- step S70 the system control unit 14 selects a product size different from the product size purchased by the selected purchaser. It is determined that it has not been deleted from the shopping basket (step S67: NO). In this case, the system control unit 14 sets OFF to the shopping cart deletion evaluation flag (step S69). Next, the system control unit 14 proceeds to step S70.
- step S70 the system control unit 14 determines whether or not the selected purchaser has canceled the order for only the specified products of some product sizes among the specified products of the plurality of product sizes ordered by the selected purchaser. Specifically, the system control unit 14 has a plurality of purchase histories of the selected purchaser, only the cancellation flag included in some purchase histories out of the plurality of purchase histories is ON, and the cancellation flag is ON. If the product size set in the purchase size list included in the purchase history is different from the product size set in the purchase size list included in the purchase history with the cancel flag OFF, multiple items ordered by the selected buyer It is determined that the selected purchaser has canceled the order only for the specified products of some product sizes among the specified products of the product size (step S70: YES).
- the system control unit 14 sets ON to the cancel evaluation flag (step S71).
- the system control unit 14 proceeds to step S73.
- the system control unit 14 determines that the purchase history of the selected purchaser is only one, the cancellation flags included in the plurality of purchase histories are all the same, or the purchase history in which the cancellation flag is ON. If the product size set in the included purchase size list matches the product size set in the purchase size list included in the purchase history for which the cancellation flag is OFF, multiple items ordered by the selected buyer It is determined that the selected purchaser has not canceled the order for only some of the designated products of size among the designated products (step S70: NO). In this case, the system control unit 14 sets the cancellation evaluation flag to OFF (step S72). Next, the system control unit 14 proceeds to step S73.
- step S73 the system control unit 14 determines whether at least one of the shopping cart deletion evaluation flag and the cancellation evaluation flag is ON. At this time, if the system control unit 14 determines that both the shopping cart deletion evaluation flag and the cancellation evaluation flag are OFF (step S73: NO), the system control unit 14 proceeds to step S76. On the other hand, if the system control unit 14 determines that at least one of the shopping cart deletion evaluation flag and the cancellation evaluation flag is ON (step S73: YES), the system control unit 14 proceeds to step S74.
- step S74 the system control unit 14 as the evaluation specifying unit adds the score C1 to the score of the finally purchased product size.
- the score C1 is a score of the product size finally purchased (for example, +1.5).
- the system control unit 14 determines that the product size set in the purchase size list included in the purchase history of the selected purchaser is the final Specific product size. If at least the cancel evaluation flag is ON, the system control unit 14 specifies that the product size set in the purchase size list included in the purchase history whose cancel flag is OFF is the final purchased product size. To do.
- the system control unit 14 as the evaluation specifying means adds the score C2 to the score of the product size that has not been purchased (step S75).
- the score C2 is a score (for example, ⁇ 1.5) of a product size that is not finally purchased.
- the system control unit 14 selects the product size set in the product size list included in the shopping cart deletion history.
- the product size other than the product size purchased in is specified as the product size that was not finally purchased.
- the cancel evaluation flag is ON, the system control unit 14 determines that the product size set in the purchase size list included in the purchase history whose cancel flag is ON is the product size that was not finally purchased. Identify.
- step S75 the system control unit 14 proceeds to step S76.
- step S76 the system control unit 14 determines whether or not the designated purchaser has not evaluated the designated product.
- the case where there is no evaluation is a case where addition to the score has never been performed in steps S60 to S75.
- step S76: NO the score calculation process is terminated.
- step S76: YES the system control unit 14 adds the score D to the score of the purchased product size (step S77).
- the score D is a score of the product size without evaluation (for example, +1.0).
- the system control unit 14 ends the score calculation process.
- the system purchaser who has purchased the designated product specified in response to the request of the designated person based on the purchase history stored in the storage unit 12.
- Obtains the product size of the designated product purchased by the purchaser obtains the body shape information about the body size of the designated person and the body type information about the body size of the already purchased person, obtains the product review for the designated product from the already purchased person, Specify the score according to the evaluation for the specified product from the purchaser, based on the product size purchased by the existing purchaser, the size relationship between the specified user's body size and the purchaser's body size, and the score,
- the matching size is estimated, and recommended size information including the estimated matching size is output. Therefore, the product size suitable for the user's body can be presented without the user trying on the product.
- the system control unit 14 determines that an already purchased person who has purchased a plurality of designated products having different product sizes returns some of the designated products.
- the score of the product size that has not been returned is specified so as to be higher than the score of the returned product size. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 acquires the product review information input by the purchaser, and specifies a score according to the content of the acquired product review information. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 stops the selected size after the purchaser selects the size for the designated product based on at least one of the shopping cart deletion history and the purchase history stored in the storage unit 12. If it is determined that the product size has been purchased, the score is specified so that the score of the purchased product size is higher than the score of the product size for which purchase is stopped. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- the system control unit 14 estimates the fit size by placing importance on the presence / absence of returned goods rather than the contents of the product review information input from the already-purchased user. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- the system control unit 14 estimates the size of the product review information input from the already-purchased user with more importance than whether or not the purchase is stopped after deciding to purchase. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 acquires the physique information from the storage unit 12 that stores the body type information registered by the user for each user. Therefore, estimation can be performed based on highly accurate information.
- system control unit 14 estimates the product size based on the purchase history, with an emphasis on the evaluation from the purchaser as the purchaser purchases the designated product more recently. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 includes a designated product as a product of which the ratio included in the product purchased by the existing purchaser is less than or equal to the threshold set to less than 50% among the product for women and the product for men. If it is included, the purchase history of the existing purchaser is not used to estimate the matching size. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- the system control unit 14 does not use the purchase history of the purchaser to estimate the compatible size. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- the system control unit 14 does not output recommended size information when the designated person is an adult and the designated product is a product for children. Therefore, when it is not necessary to estimate the matching size, it is possible to prevent the estimation. Therefore, it is possible to reduce the processing load for estimating the matching size.
- system control unit 14 identifies, based on the body type information, a pre-purchased person who is included in the same body type as the body size of the designated person, and the product size of the designated product purchased by the identified pre-purchaser Based on the evaluation of, the product size suitable for the identified existing purchaser is estimated, and the estimated product size is estimated to be the fit size. Accordingly, since the estimation is performed based on the product size purchased by the user whose body size is comparable to the body size of the designated person and the evaluation from the user, the accuracy of estimating the matching size can be improved.
- the online shopping mall server 1 is adapted based on an evaluation from an already purchased person in which the range including the body size is different from the range including the body size of the designated person. Estimate the size.
- description about the same point as 1st Embodiment is abbreviate
- the online shopping mall server 1 estimates an appropriate size based on an evaluation of a purchaser who includes a body size in the same range as the body size of the designated person. However, there may be no pre-purchased person having a body size comparable to that of the designated person, or there may be a small number of existing purchasers having a body size comparable to the designated person's body size. In this case, the matching size cannot be estimated or the estimation accuracy is reduced. On the other hand, there is a probability that the number of purchasers having a body size different from the body size of the designated person is larger than the number of already purchased persons having a body size comparable to the body size of the designated person. Therefore, the online shopping mall server 1 estimates a suitable size based on an evaluation from a purchaser who has a body size different from the body size of the designated person.
- the product size suitable for the user whose body size is smaller than the body size of the designated person has a probability of being smaller than the product size suitable for the designated person.
- a product size suitable for a user whose body size is larger than that of the designated person has a probability of being larger than a product size suitable for the designated person. Therefore, the online shopping mall server 1 estimates the product size suitable for the purchaser whose body size is smaller than the designated person's body size based on the evaluation from the purchaser whose body size is smaller than the designated person's body size. To do.
- the online shopping mall server 1 estimates the product size suitable for the purchaser whose body size is larger than the designated person's body size based on the evaluation from the purchaser whose body size is larger than the designated person's body size. To do. Then, the online shopping mall server 1 determines between the product size suitable for the purchaser whose body size is smaller than the body size of the designated person and the product size suitable for the purchaser whose body size is larger than the body size of the designated person. The product size in is estimated as the designated size of the designated person.
- the product size suitable for the already purchased person whose body size is smaller than that of the designated person is an example of the first size in the present invention.
- the product size suitable for the already purchased person whose body size is larger than that of the designated person is an example of the second size in the present invention.
- the product size suitable for the purchaser whose body size is smaller than the body size of the designated person is the XS size
- the product size suitable for the purchaser whose body size is larger than the body size of the designated person is the LL size.
- the online shopping mall server 1 sets the M size, which is an intermediate product size between the XS size and the LL size, as the compatible size.
- the product size suitable for the purchaser whose body size is smaller than that of the designated person is the XS size
- the product size suitable for the purchaser whose body size is larger than that of the designated person is the L size.
- the online shopping mall server 1 may specify, for example, both the S size and the M size as compatible sizes.
- the online shopping mall server 1 may generate, as the recommended size information 110, for example, “Many people close to your body are buying S size or M size”.
- FIG.12 and FIG.13 is a flowchart which shows the process example in the suitable size estimation process of the system control part 14 of the online shopping mall server 1 which concerns on this embodiment. 12 and 13, the same reference numerals are given to the same processes as those in FIG. 8 or FIG. 9. The contents of the purchase purpose determination process, the product page transmission process, and the score calculation process in the second and subsequent embodiments are the same as those in the first embodiment.
- the system control unit 14 initializes the evaluation number, the small score and the large score of each product to 0 (step S81).
- the small score is a total value of the scores of the purchasers whose body size is smaller than the body size of the designated person.
- the large score is a total value of the scores of the purchasers whose body size is larger than that of the designated person.
- the system control unit 14 executes Steps S23 to S27.
- the system control unit 14 determines whether or not the body type division of the designated person is a division having a body size larger than that of the selected purchaser (step S82).
- the category to which the designated person's height belongs is a height category that is higher than the category to which the selected purchaser's height belongs, and the category to which the designated person's weight belongs is a category to which the selected purchaser's weight belongs or more, and
- the body type classification of the designated person and the body type classification of the selected purchaser are not the same, the body type classification of the designated person is a classification having a body size larger than that of the selected purchaser.
- step S82 determines that the body type division of the designated person is a division having a body size larger than that of the selected purchaser (step S82: YES)
- the system control unit 14 proceeds to step S83.
- the system control unit 14 determines that the body type category of the designated person is not a category having a body size larger than that of the selected purchaser (step S82: NO)
- the system control unit 14 proceeds to step S86.
- step S83 the system control unit 14 executes score calculation processing.
- the score calculation process in step S83 is the same as the process in step S29 shown in FIG.
- the system control unit 14 weights each product size score according to the purchase time of the designated product of the selected purchaser (step S84). The contents of this process are the same as step S30 in FIG.
- the system control unit 14 adds the score of each product size of the selected purchaser to the small score of each product size (step S85).
- step S35 the system control unit 14 proceeds to step S35.
- step S86 the system control unit 14 determines whether or not the body type division of the designated person is a division whose body size is smaller than the body type division of the selected purchaser.
- the category to which the designated person's height belongs is a height category below the category to which the selected purchaser's height belongs
- the category to which the designated person's weight belongs is a category below the category to which the selected purchaser's weight belongs, and
- the body type classification of the designated person and the body type classification of the selected purchaser are not the same, the body type classification of the designated person is a classification having a body size smaller than that of the selected purchaser.
- step S86: YES If the system control unit 14 determines that the body type division of the designated person is a division having a body size smaller than the body type division of the selected purchaser (step S86: YES), the system control unit 14 proceeds to step S87. On the other hand, if the system control unit 14 determines that the body type category of the designated person is not a category having a body size smaller than that of the selected purchaser (step S86: NO), the system control unit 14 proceeds to step S35. In this case, it cannot be said that the body type division of the designated person is a division having a body size larger or smaller than that of the selected purchaser.
- step S87 the system control unit 14 executes score calculation processing.
- step S88 weights each product size score according to the purchase time of the designated product of the selected purchaser (step S88). The contents of this process are the same as step S30 in FIG.
- step S89 the system control unit 14 adds the score of each product size of the selected purchaser to the large score of each product size (step S89).
- step S35 the system control unit 14 proceeds to step S35.
- step S35 when it is determined that all purchase histories have been selected (step S35: NO), the system control unit 14 specifies the product size having the highest small score (step S90). Next, the system control unit 14 specifies the product size having the highest large score (step S91). Next, the system control unit 14 as the estimation unit specifies a product size between the product size having the highest small score and the product size having the highest large score as the matching size (step S92). After completing this process, the system control unit 14 ends the product size estimation process.
- the already purchased person whose body size is smaller than the designated person and the already purchased person whose body size is larger than the designated person are specified.
- the product size of the specified product that matches the purchaser whose body size is smaller than that of the designator and the product size that is larger than that of the designator is estimated, and the product size that is between the estimated product sizes is estimated to be the fit size. Therefore, even if there is no user whose body size is comparable to that of the designated person, the matching size can be estimated.
- the online shopping mall server 1 determines that the body size of the already purchased person is larger than the body size of the designated person when the body size of the already purchased person is larger than the body size of the designated person in advance. When the body size of the already purchased person is smaller than the body size of the designated person by a predetermined size or more, it may be determined that the body size of the already purchased person is smaller than the body size of the designated person.
- the online shopping mall server 1 determines the score weight in the case of evaluation and the score in the case of no evaluation for each of the small score and the large score based on the number of evaluation persons.
- the weight may be changed.
- the online shopping mall server 1 may be configured so that the first and second embodiments are combined. For example, the number of already purchased people whose body size is included in the same range as the body size of the designated person is set to the same body size. For example, if the same number of people with the same body size is greater than or equal to the number of people set in advance, the online shopping mall server 1 conforms based on an evaluation from a purchaser who is included in the same range as the body size of the designated person. The size may be estimated. On the other hand, the online shopping mall server 1 is based on an evaluation from a purchaser who is not included in the same range as the designated person's body size when the same body size is less than the preset number of people. The fit size may be estimated.
- the online shopping mall server 1 evaluates an approximation formula that approximates the distribution of a set of the body size of the already purchased person and the product size of the designated product purchased by the already purchased person from the already purchased person. And the fit size is estimated based on the approximate expression.
- description about the same point as 1st Embodiment is abbreviate
- the matching size cannot be estimated unless there is an already purchased person whose body size is included in the same range as the body size of the designated person.
- the online shopping mall server 1 performs processing so that the suitable size can be estimated if there are two or more purchased customers whose body sizes and purchased product sizes are different from each other.
- the online shopping mall server 1 obtains an approximate expression that approximates the relationship between the body size and the product size, based on the distribution of the set of the body size of the purchaser and the product size purchased by the purchaser. . At this time, the online shopping mall server 1 weights a set of the body size and the product size of the already purchased person based on the evaluation from the already purchased person. In addition, the set of the body size and the product size of the already purchased person is simply referred to as “set”.
- the height is used as the body size of the already purchased person.
- the product size of the designated product includes S, M, and L sizes.
- the height be x and the product size be y.
- a function indicating an approximate expression to be obtained is f
- the S, M, and L sizes are converted into 1, 2, and 3, for example.
- x i and y i be the actual body size and product size of the purchaser. i is a number given to each set. There may be a difference between f (x i ) and actual y i .
- the variance J of the difference between f (x i ) and y i is obtained by the following equation.
- Equation 1 m is the total number of sets actually obtained. That is, m is the number of data.
- ⁇ i is a weighting coefficient for the set i.
- ⁇ i is a value of 0 or more.
- the online shopping mall server 1 obtains the function f so that J is minimized.
- the online shopping mall server 1 sets ⁇ i to a value according to the evaluation from the already purchased person corresponding to the set i. Specifically, the online shopping mall server 1 increases ⁇ i as the evaluation is higher. That is, ⁇ i increases as the score increases.
- the function f is determined such that the higher the evaluation for the set i, the smaller the difference between y i and f (x i ) compared to the case where ⁇ i is not used.
- the online shopping mall server 1 may obtain the approximate expression by a method other than the method described above.
- the product size calculated when the height of the designated person is substituted into the obtained approximate expression is the fit size of the designated person.
- the approximate expression reflects the body size of the purchaser. Therefore, calculating the fit size based on the approximate expression and the body size of the designated person estimates the fit size of the designated person based on the magnitude relationship between the body size of the designated person and the body size of the purchaser. It is an example.
- FIG. 14 (a) is a diagram showing a distribution of pairs of height and product size and an approximate line.
- the horizontal axis is the height
- the vertical axis is the product size.
- the circle in Fig.14 (a) shows a group.
- the size of the circle is proportional to the score height.
- the score indicated by the size of the circle is the sum of the scores of the plurality of purchasers with the same set.
- Reference numeral 200 in FIG. 14A is an approximate curve.
- the approximate expression may be a curve expression or a straight line expression.
- FIG. 14B to FIG. 14D are diagrams showing display examples of the recommended size information 110.
- characters “S”, “M”, and “L” are displayed as the position of each size, and the position of the appropriate size for each product size is indicated by a graphic or the like. Also good.
- the product size with the closest fitting size may be displayed as a final fitting size.
- the product size with the closest matching size and the probability that the product size with the closest matching size is the matching size may be displayed. For example, assuming that the difference between the S size and the M size is 100%, the difference between the fit size and the M size is 25%. Therefore, the probability that the M size is the matching size is set to 75%. In this case, as shown in FIG. 14D, for example, “the possibility that the size that suits you is M size is 75%” is displayed.
- FIG. 15 is a flowchart illustrating a processing example in the adaptive size estimation processing of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- processes similar to those in FIG. 8 or 9 are denoted by the same reference numerals.
- the system control unit 14 executes steps S21, S23 to S27, S29, and S30.
- the system control unit 14 stores the height of the selected purchaser, the product size purchased by the selected purchaser, and the product size score purchased by the selected purchaser in the RAM 14c (step S101).
- the system control unit 14 proceeds to step S35.
- step S35 if the system control unit 14 determines that all purchase histories have been selected (step S35: NO), the height of each selected purchaser stored in the RAM 14c, and the purchase purchaser has purchased. Based on the product size and the score, each set is weighted based on the score to obtain an approximate expression (step S102). For example, the coefficient of each term of the approximate expression is obtained so that J in Expression 1 is minimized.
- the system control unit 14 as an estimation unit calculates a matching size based on the obtained approximate expression (step S103). Specifically, the system control unit 14 calculates the product size when the height of the designated person is substituted into the approximate expression. Then, the system control unit 14 specifies the calculated product size as an appropriate size. After completing this process, the system control unit 14 ends the adaptive size estimation process.
- the system control unit 14 uses an approximate expression of the distribution of the set of the body size of the already purchased person and the product size of the designated product purchased by the already purchased person.
- the product size calculated based on the approximate expression and the designated person's body size is estimated to be a suitable size. Therefore, if there are a plurality of users having different body sizes and / or product sizes of purchased designated products, the appropriate size can be estimated.
- the online shopping mall server 1 obtains an approximate expression based on the height.
- an approximate expression may be obtained based on body size other than height.
- the online shopping mall server 1 may change the body size used according to the kind of designated goods.
- the online shopping mall server 1 determines the score weight when there is an evaluation and the score when there is no evaluation, for each combination of expansion and product size, based on the number of people evaluated.
- the weight may be changed.
- the online shopping mall server 1 determines the body size of the designated person based on the commodity size of the commodity purchased by the designated person in the past and the commodity size of the commodity previously purchased by the purchaser. It is determined whether or not the already purchased person's body size is included in the same range. In addition, description about the same point as 1st Embodiment is abbreviate
- the online shopping mall server 1 performs processing based on body shape information registered in advance by a user.
- the user may not register body shape information. Therefore, the online shopping mall server 1 sets the body size of the designated person and the body size of the already purchased person within the same range based on the product sizes of the products that the designated person and the already purchased person have purchased in the past. It is determined whether or not it is included.
- the products used for determining whether the body size is included in the same range are referred to as “reference products”.
- the product that the designated person has purchased is an example of the first product in the present invention.
- the product that has already been purchased by the purchaser is an example of the second product in the present invention.
- the product size of the product that the designated person and the already purchased person have purchased in the past is an example of the body shape information in the present invention.
- the body information may not be included in the member information due to the format of the member information.
- the product size of the reference product that the designated person has purchased is the same as the product size of the reference product that the already purchased person has purchased, the body size of the designated person and the body size of the already purchased person are It can be estimated that it is comparable.
- the product size in the present embodiment is an example of body size information in the present invention.
- the reference product of the designated person and the reference product of the already purchased person may be completely different. However, even if the product size written on the product is the same, the actual size may differ depending on the product brand, country, etc., for example. Therefore, the determination accuracy of whether the body size is included in the same range may be reduced. Therefore, a product that may be a reference product may be limited under a predetermined condition. For example, the reference product may be determined to be the same product purchased by both the designated person and the already purchased person. Further, for example, the reference product may be defined as a product purchased by both the designated person and the already purchased person within the same brand. This is because if the brand is the same, the standard of the product size is likely to be the same.
- the reference product may be determined to be a product purchased by the designated person and the already purchased person within the same type of range. For example, you may divide goods into two types, tops and bottoms. This is because tops and bottoms may have different product size standards. Further, it may be determined that both the designated person and the already purchased person are the products purchased within the range of the same brand and type.
- a product belonging to the same category as a certain product refers to a product determined by the conditions of the reference product. That is, a product belonging to the same category as a certain product is, for example, the same product as a certain product, a product having the same brand as a certain product, or the same type as a certain product. It may be a product.
- the online shopping mall server 1 may convert the product size of each product into a body size that actually matches the product.
- the converted size is referred to as “reference size”.
- the reference size may be, for example, height, weight, upper body length, lower body length, bust size, waist size, hip size, and the like.
- the reference size may be, for example, a product size symbol, number, number of inches, or the like.
- a size conversion DB is constructed in the storage unit 12. In the size conversion DB, for example, a brand ID, a product size, and a reference size are registered for each set of brand and product size.
- the online shopping mall server 1 can acquire a suitable reference size based on the brand ID and the product size included in the product information.
- the online shopping mall server 1 specifies, for example, the body type classification to which the reference size belongs. Then, the online shopping mall server 1 determines whether the body type classification of the designated person matches the body classification of the already purchased person.
- the reference size is an example of body size information in the present invention.
- the body size of the designated person may change from the time when the designated person purchased the reference product to the present. Therefore, even if the product size of the reference product purchased by the designated person matches the body size of the designated person at the time when the designated product purchased the reference product, it may not fit the current designated person's body size. is there. Therefore, if the purchase time of the designated product of the designated person is old, whether the body size of the designated person and the body size of the purchaser who has purchased a reference product belonging to the same category as the designated product of the designated person belong to the same category The determination accuracy may be reduced. When the determination accuracy decreases, the reliability of evaluation from the already purchased person decreases.
- the online shopping mall server 1 may weight the score of the purchaser who has purchased the reference product belonging to the same category as the reference product according to the purchase time of the reference product of the designated person. Specifically, the online shopping mall server 1 increases the weight as the purchase time is newer. For example, the online shopping mall server 1 may determine the weighting factor W3 as shown in FIG.
- the weight coefficient W3 is a coefficient indicating a weight according to a difference in purchase time of the reference product.
- the product size of the reference product purchased by the purchaser matches the body size of the purchaser at the time when the purchaser purchased the reference product
- the product size of the designated product purchased by the purchaser is Assume that the purchaser matches the body size of the purchaser at the time of purchase of the designated product.
- the online shopping mall server 1 may weight the score of the already purchased person according to the difference between the purchase time of the reference product of the already purchased person and the purchase time of the designated product of the already purchased person. Specifically, the online shopping mall server 1 increases the weight as the difference is shorter. For example, the online shopping mall server 1 may determine the weighting factor W4 as shown in FIG.
- the weight coefficient W4 is a coefficient indicating a weight according to a difference in purchase time.
- the online shopping mall server 1 may weight the score of the already purchased person who has purchased the reference product belonging to the same category as the reference product based on the evaluation of the reference product by the designated person. Further, the online shopping mall server 1 may weight the score of the already purchased person based on the evaluation of the reference product from the already purchased person. This is because the higher the evaluation for the reference product, the higher the probability that the product size of the reference product purchased by the user matches the body size of the user. Specifically, the online shopping mall server 1 increases the weight as the evaluation is higher. The contents of the evaluation are the same as the contents shown in FIG. The online shopping mall server 1 determines a weighting factor according to the score corresponding to the content of the evaluation. Then, the online shopping mall server 1 multiplies the determined weight coefficient by the score of each product size.
- the online shopping mall server 1 may limit the reference product to only the same type of product as the designated product type. Further, the online shopping mall server 1 may limit the reference product to only products of the same brand as the brand of the designated product.
- the online shopping mall server 1 does not have to use the purchase history of the reference product purchased by the designated person for another person to estimate the compatible size. Specifically, the online shopping mall server 1 does not use the product size acquired from the purchase history of the reference product purchased by the designated person for another person for estimation. Further, the online shopping mall server 1 does not have to use the purchase history of the designated product or the reference product purchased by the already purchased person for another person to estimate the compatible size. Specifically, the online shopping mall server 1 determines the product size acquired from the purchase history of the product purchased by the existing purchaser for others, and the specified product from the existing purchaser specified based on the purchase history. The evaluation of is not used for estimation. Examples of products that the user purchases for others include products for children when the user is an adult, products for gender different from the user's gender, and the like.
- FIG. 16 is a flowchart illustrating a processing example in the adaptive size estimation processing of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- steps S31 to S39 are the same as those in FIG.
- the system control unit 14 searches the purchase history DB 12e for a purchase history including the user ID of the designated person (step S121).
- the system control unit 14 executes a purchase history exclusion process (step S122).
- the system control unit 14 designates the purchase history of the designated person searched in step S121.
- the purchase history exclusion process a purchase history in which a user has purchased a product for another person is excluded from the designated purchase history. The excluded purchase history is not used to estimate the fit size.
- FIG. 17 is a flowchart showing a processing example in the purchase history exclusion process of the system control unit 14 of the online shopping mall server 1 according to the present embodiment.
- the system control unit 14 calculates the ratio of the female product and the male product to all the products purchased by the user based on the genre ID included in each searched purchase history. calculate. And the system control part 14 determines whether the ratio of the goods for women is larger than the ratio of the goods for men (step S141). At this time, when the system control unit 14 determines that the ratio of the product for women is larger than the ratio of the product for men (step S141: YES), the system control unit 14 proceeds to step S142. On the other hand, if the system control unit 14 determines that the ratio of the product for women is not larger than the ratio of the product for men (step S141: NO), the system control unit 14 proceeds to step S144.
- step S142 the system control unit 14 determines whether the ratio of male products is equal to or less than a threshold value. At this time, if the system control unit 14 determines that the ratio of the male product is equal to or less than the threshold (step S142: YES), the system control unit 14 displays the purchase history of the male product from the designated purchase history. Exclude (step S143). Next, the system control unit 14 proceeds to step S146. On the other hand, if the system control unit 14 determines that the ratio of the male product is larger than the threshold (step S142: NO), the system control unit 14 proceeds to step S146.
- step S144 the system control unit 14 determines whether or not the ratio of products for women is equal to or less than a threshold value. At this time, if the system control unit 14 determines that the ratio of the product for women is equal to or less than the threshold (step S144: YES), the purchase history of the product for women is selected from the designated purchase history. Exclude (step S145). Next, the system control unit 14 proceeds to step S146. On the other hand, if the system control unit 14 determines that the ratio of the product for women is larger than the threshold (step S144: NO), the system control unit 14 proceeds to step S146.
- step S146 the system control unit 14 acquires the user ID from the designated purchase history.
- the system control unit 14 acquires member information including the acquired user ID from the member information DB 12a.
- the system control part 14 determines whether a user is an adult based on the age contained in the acquired member information. At this time, if the system control unit 14 determines that the user is an adult (step S146: YES), the system control unit 14 excludes the purchase history of children's products from the specified purchase history (step S147). . After completing this process, the system control unit 14 ends the purchase history exclusion process. On the other hand, if the system control unit 14 determines that the user is not an adult (step S146: NO), the purchase history exclusion process is terminated.
- step S26 when the system control unit 14 determines that the return value of the purchase purpose determination process is not “for others” (step S26: NO), the purchase history including the user ID of the selected purchaser is The purchase history DB 12e is searched (step S123). The system control unit 14 may exclude the purchase history of the designated product from the search target.
- step S124 the system control unit 14 executes a purchase history exclusion process (step S124). At this time, the system control unit 14 designates the purchase history of the selected purchaser searched in step S123.
- the system control unit 14 has made a purchase by the designated person based on the purchase history included in the search result of the purchase history of the designated person and the purchase history included in the search result of the purchase history of the selected purchaser. It is determined whether or not the selected purchaser has purchased a product that belongs to the same category as the product (step S125). For example, whether or not the products are the same can be determined based on the product ID or the product code. Moreover, it can be determined based on brand ID whether a brand is the same. Also, whether the types are the same can be determined based on the genre ID.
- step S125: NO the system control unit 14 determines that the selected purchaser has not purchased a product that belongs to the same category as the product that the designated person has purchased.
- step S125: YES the system control unit 14 proceeds to step S126. Transition.
- step S126 the system control unit 14 specifies the purchase history of the reference product determined to belong to the same category as the product purchased by the selected purchaser among the products purchased by the designated person. Further, the system control unit 14 specifies the purchase history of the reference product determined to belong to the same category as the product purchased by the designated person among the products purchased by the selected purchaser.
- the system control unit 14 as body size information acquisition means acquires the product size of the reference product purchased by the designated person and the reference product size purchased by the selected purchaser from each purchase history. Then, the system control unit 14 determines whether the product size of the reference product purchased by the designated person is the same as the product size of the reference product purchased by the selected purchaser.
- step S126 determines that the product size of the reference product purchased by the designated person is not the same as the product size of the reference product purchased by the selected purchaser (step S126: NO).
- step S126: NO determines that the product size of the reference product purchased by the designated person is not the same as the product size of the reference product purchased by the selected purchaser.
- step S126: YES determines that the product size of the reference product purchased by the designated person and the product size of the reference product purchased by the selected purchaser are the same.
- the score Calculation processing is executed (step S29).
- the selected purchaser may purchase a product that belongs to the same category as the product that the designated person has purchased. In this case, the product size may differ depending on the purchase.
- the system control unit 14 may calculate a ratio in which the product size of the reference product purchased by the designated person is the same as the product size of the reference product purchased by the selected purchaser. And the system control part 14 may perform a score calculation process, when the calculated ratio is more than the preset ratio.
- the system control unit 14 weights the scores of each product size according to the purchase time of the designated product of the designated person (step S127). Specifically, the system control unit 14 acquires a weighting factor W3 corresponding to the purchase date and time included in the purchase history of the reference product of the designated person from the storage unit 12. When there are a plurality of purchase histories, for example, the system control unit 14 acquires a weighting factor W3 corresponding to the average purchase date and time. The system control unit 14 multiplies the score of each product size by the weighting factor W3.
- the system control unit 14 weights each product size score according to the difference between the purchase date and time of the reference product of the selected purchaser and the purchase date and time of the designated product of the selected purchaser (step S128). Specifically, the system control unit 14 acquires a weighting factor W4 corresponding to the difference in purchase date and time from the storage unit 12. The purchase date and time can be acquired from the purchase history. When there are a plurality of reference products, for example, the system control unit 14 acquires a weighting factor W4 corresponding to the average difference in purchase date and time. The system control unit 14 calculates the final score for each product size of the selected purchaser by multiplying the score of each product size by the weighting factor W4. After completing this process, the system control unit 14 proceeds to step S31.
- the system control unit 14 determines, based on the purchase history, the product size of the product that has been purchased by the designated person and the product that has already been purchased by the purchaser. Get the product size.
- the product of the product that the system control unit 14 has purchased based on the size relationship between the product size of the product that has been purchased by the designated person and the product size of the product that has been purchased by the purchaser.
- the size is the same as the product size of the product that the designated user has purchased. Estimate fit size. Therefore, the matching size can be estimated without registration of body size information from the user.
- the system control unit 14 estimates the product size using the evaluation from the existing purchaser who has purchased the product belonging to the same category as the product purchased by the designated user among the purchasers who have purchased the designated product, The newer the purchase time of the reference product by the designated person, the product size is estimated with an emphasis on the evaluation from the purchaser who has purchased the product belonging to the same category as the reference product. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 estimates the product size with an emphasis on the evaluation from the existing purchaser as the purchase time of the reference product of the existing purchaser and the purchase time of the designated product of the existing purchaser are closer. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 excludes, from the reference products, products for which the ratio included in the products purchased by the user is equal to or less than a threshold value set to less than 50% among the products for women and men. , The purchase history of the product is not used to estimate the fit size. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- system control unit 14 excludes a product purchased by an adult user for a child from a reference product, and does not use the purchase history of the product for estimation of an appropriate size. Accordingly, it is possible to improve the estimation accuracy of the matching size.
- the fifth embodiment is an embodiment in which the second embodiment and the fourth embodiment are combined.
- the online shopping mall server 1 determines the body size of the designated person and the existing purchaser based on the product size of the product previously purchased by the designated person and the product size of the product previously purchased by the already purchased person. Determine the size relationship with the body size.
- the description about the same point as 2nd Embodiment or 4th Embodiment is abbreviate
- the body size of the designated person is larger than the body size of the already purchased person Can be estimated.
- the product size of the reference product that the designated person has purchased is smaller than the product size of the reference product that the already purchased person has purchased, the designated person's body size is smaller than the body size of the already purchased person. It can be estimated that it is small.
- the product size in the present embodiment is an example of body size information in the present invention.
- FIGS. 18 and 19 are flowcharts showing a processing example in the adaptive size estimation process of the system control unit 14 of the online shopping mall server 1 according to the present embodiment. 18 and 19, the same reference numerals are given to the same processes as those in FIG. 8, FIG. 9, or FIG.
- step S125 if the system control unit 14 determines that the selected purchaser has purchased a product that belongs to the same category as the product that has been purchased by the designated person (step S125: YES), step S125 is performed. The process proceeds to S161.
- step S161 the system control unit 14 determines whether the product size of the reference product purchased by the designated person is larger than the product size of the reference product purchased by the selected purchaser. At this time, if the system control unit 14 determines that the product size of the reference product purchased by the designated person is not larger than the product size of the reference product purchased by the selected purchaser (step S161: NO), The process proceeds to step S164. On the other hand, if the system control unit 14 determines that the product size of the reference product purchased by the designated person is larger than the product size of the reference product purchased by the selected purchaser (step S161: YES), the score calculation process Is executed (step S83).
- the system control unit 14 weights the scores of the respective product sizes (Steps S162 and S163).
- the processing contents of steps S162 and S163 are the same as the processing contents of steps S127 and S128.
- the system control unit 14 proceeds to step S85.
- step S164 the system control unit 14 determines whether or not the product size of the reference product purchased by the designated person is smaller than the product size of the reference product purchased by the selected purchaser. At this time, if the system control unit 14 determines that the product size of the reference product purchased by the designated person is not smaller than the product size of the reference product purchased by the selected purchaser (step S164: NO), Control goes to step S35. On the other hand, if the system control unit 14 determines that the product size of the reference product purchased by the designated person is smaller than the product size of the reference product purchased by the selected purchaser (step S164: YES), the score calculation process Is executed (step S87). Next, the system control unit 14 weights the scores of the respective product sizes (Steps S165 and S166). The processing contents of steps S165 and S166 are the same as the processing contents of steps S127 and S128. Next, the system control unit 14 proceeds to step S89.
- step S85 or S89 the system control unit 14 executes steps S35, S36, and S90 to S92 in the same manner as in the second embodiment.
- the system control unit 14 determines, based on the purchase history, the product size of the product that has been purchased by the designated person and the product that has already been purchased by the purchaser. Get the product size.
- the system control unit 14 determines that the purchased product size is based on the size relationship between the product size of the product that has been purchased by the designated person and the product size of the product that has already been purchased by the designated purchaser. Identifies pre-purchasers that are smaller than the product size purchased by and those who purchased the product size larger than the product size purchased by the designated person.
- the specified product size purchased and the purchased product size that suits the existing purchaser is smaller than the product size purchased by the specified user.
- a purchaser who is larger than the product size is estimated, and a product size between the estimated product sizes is estimated to be an appropriate size. Therefore, the matching size can be estimated without registration of body size information from the user.
- the online shopping mall server 1 may acquire body type information from member information for a user who has registered body type information.
- the reference size in this case is represented by, for example, height.
- the online shopping mall server 1 performs the same processing as that of the first or second embodiment for the already purchased person in which the body type information is registered.
- the online shopping mall server 1 specifies the designated product of the designated person and the reference product of the already purchased person for the already purchased person for whom the body type information is not registered. To do. At this time, the online shopping mall server 1 converts the product size of the product that has been purchased by the designated person into the height as the reference size. Then, the online shopping mall server 1 determines the purchase history of the product in which the difference between the converted height and the registered designated person's height is greater than or equal to the preset length from the retrieval result of the designated person's purchase history. exclude. This is because such a product is a product that does not match the body size of the designated person. Here, the online shopping mall server 1 may exclude only the purchase history of products whose converted height is lower than the height of the designated person from the search result of the designated person's purchase history.
- the online shopping mall server 1 identifies the reference product of the designated person and the reference product of the already purchased person for the already-purchased person in which the figure information is registered when the designated person's figure information is not registered. To do. At this time, the online shopping mall server 1 converts the product size of the product that has already been purchased by the purchaser into the height as the reference size. Then, the online shopping mall server 1 searches the purchase history of the purchaser for the purchase history of the product in which the difference between the converted height and the height of the registered purchaser is greater than or equal to the preset length. Exclude from results. Here, the online shopping mall server 1 may exclude only the purchase history of products whose converted height is lower than the height of the purchaser from the search result of the purchase history of the purchaser.
- the sixth embodiment is an embodiment in which the third embodiment and the fourth embodiment are combined. Specifically, the online shopping mall server 1 estimates the body size of the purchaser based on the product size of the product purchased by the purchaser in the past. And the online shopping mall server 1 calculates
- the reference size converted from the product size of the product that the user has purchased has a probability corresponding to the body size of the user. Therefore, the online shopping mall server 1 obtains an approximate expression that approximates the distribution of a set of the reference size of the already purchased person and the product size of the designated product purchased by the already purchased person, using the reference size of the already purchased person. Can do. Then, the online shopping mall server 1 can estimate the suitable size using the designated size of the designated person.
- the reference size in the present embodiment is an example of body size information in the present invention.
- FIG. 20 is a flowchart illustrating a processing example in the adaptive size estimation processing of the system control unit 14 of the online shopping mall server 1 according to the present embodiment. 20 and 21, the same reference numerals are given to the same processes as those in FIG. 8, FIG. 9, or FIG.
- the system control unit 14 executes steps S121 and S122.
- the system control unit 14 acquires the brand ID and the product size from the purchase history included in the search result of the purchase history of the designated person.
- the system control unit 14 acquires a reference size corresponding to the acquired brand ID and product size from the size conversion DB (step S181).
- the system control unit 14 may acquire a plurality of reference sizes. In this case, for example, the system control unit 14 sets the average value of the reference sizes as the final reference size of the designated person.
- the system control unit 14 executes steps S23 to S26, S123, and S124.
- the system control unit 14 acquires the brand ID and the product size from the purchase history included in the purchase history search result of the selected purchaser.
- the system control unit 14 acquires a reference size corresponding to the acquired brand ID and product size from the size conversion DB (step S182).
- the system control unit 14 executes Steps S29 and S127.
- the system control unit 14 stores the reference size of the selected purchaser, the product size of the designated product purchased by the selected purchaser, and the product size score of the designated product purchased by the selected purchaser in the RAM 14c (step S183).
- the system control unit 14 proceeds to step S35.
- step S35 when the system control unit 14 determines that all purchase histories have been selected (step S35: NO), the criterion of each selected purchaser stored in the RAM 14c. Based on the size and the product size and the score of the designated product purchased by the selected purchaser, each set is weighted based on the score to obtain an approximate expression (step S184). Next, the system control unit 14 calculates a matching size based on the obtained approximate expression and the designated size of the designated person (step S185). After completing this process, the system control unit 14 ends the adaptive size estimation process.
- the system control unit 14 determines, based on the purchase history, the product size of the product that has been purchased by the designated person and the product that has already been purchased by the purchaser.
- the product size is acquired, and the acquired product size is converted into a reference size.
- the system control unit 14 weights the set of approximate expressions of the set distribution of the reference size of the already purchased person and the product size of the designated product purchased by the already purchased person based on the evaluation from the already purchased person.
- the product size calculated based on the approximate expression and the standard size of the designated person is estimated to be an appropriate size. Therefore, the matching size can be estimated without registration of body size information from the user.
- the online shopping mall server 1 may acquire body type information for a user who has registered body type information.
- the online shopping mall server 1 converts the product size of the designated product into a height or the like as a reference size, and the converted height and If the difference from the height of the designated person is greater than or equal to a preset difference, the recommended size information 110 need not be displayed.
- the online shopping mall server 1 does not need to display the recommended size information 110 only when the converted height is lower than the height of the designated person.
- the web page on which the recommended size information 110 may be displayed is not limited to the product page.
- the recommended size information 110 may be displayed on the search result page.
- recommended size information 110 is displayed for each searched product.
- the product specified based on the user's request is each searched product.
- the present invention is applied to an online shopping mall where products are sold from a plurality of stores.
- the present invention may be applied to an electronic commerce website where merchandise is sold from a single vendor.
- the product in the present invention is applied to clothes.
- the product in the present invention may be applied to a product to be worn such as clothing other than clothes, shoes, a hat, and accessories.
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Marketing (AREA)
- Development Economics (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
ユーザが商品の試着を行わなくてもユーザの体に合うサイズを提示させる。情報処理装置は、サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した特定商品のサイズを取得する。また、情報処理装置は、要求ユーザの身体サイズに関する身体サイズ情報及び他のユーザの身体サイズに関する身体サイズ情報を取得する。また、情報処理装置は、取得されたサイズに対する他のユーザによる評価を特定する。そして、情報処理装置は、要求ユーザの身体サイズ情報と他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する評価に基づいて、要求ユーザに合う特定商品のサイズを推定し、出力する。
Description
本発明は、身につける商品のサイズをユーザが選択するための支援を行う情報処理装置及び情報処理方法の技術分野に関する。
近年、インターネット上で商品が売買される電子商取引が盛んに行われている。ユーザは、電子商取引を利用することにより、衣類、靴、帽子、装身具等の身につける商品を購入することも可能である。このような商品については、用意されているサイズが様々ある。そのため、ユーザは、電子商取引のサイトに掲載されている商品のサイズに基づいて、自分の体に合うと思われるサイズを選択する。しかしながら、サイズの情報が対応する実際の身体のサイズは、例えば、商品のブランドや国によって異なる。従って、ユーザが選択したサイズの商品が、実際にはユーザの体に合わない場合がある。電子商取引においては、購入前にユーザが商品を実際に試着することができないため、商品の購入前にユーザの体に合うサイズを選択することは容易ではない。
そこで、例えば、特許文献1には、商品のイメージデータ、商品の詳細サイズデータ、及び購入者の身体サイズデータに基づいて、購入者がブラウザで仮想試着を行う技術が開示されている。仮想試着の結果、購入者は、その商品の購入を希望した場合には、発注を行う。
しかしながら、特許文献1に記載の技術では、仮想ではあってもユーザが試着をする必要がある。この場合、ユーザがサイズを判断するのに十分な仮想試着をするためには、ユーザの体及び服の各部位の寸法を細かく入力する必要がある。そのため、ユーザがサイズを選択するために、試着による手間が発生する。
本発明は、以上の点に鑑みてなされたものであり、ユーザが商品の試着を行わなくてもユーザの体に合うサイズを提示させることができる情報処理装置、情報処理方法、情報処理プログラム及び記録媒体を提供することを目的とする。
上記課題を解決するために、請求項1に記載の発明は、サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段と、前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段と、前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段と、前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段と、前記推定手段により推定された前記サイズを出力する出力手段と、を備えることを特徴とする。
特定商品を購入したユーザからの評価は、ユーザが特定商品において購入したサイズがユーザに合っているかどうかを反映している蓋然性がある。また、ユーザに合うサイズは、ユーザの身体サイズによって異なる。この発明によれば、他のユーザが購入した特定商品のサイズと、要求ユーザの身体サイズ情報と他のユーザの身体サイズ情報との対象関係と、他のユーザからの特定商品に対する評価とを用いて、要求ユーザに合うサイズが推定されるので、ユーザが商品の試着を行わなくてもユーザの体に合うサイズを提示させることができる。
また、同一の商品ではあっても商品の情報がサイズごとに異なる場合があるとする。この場合、ユーザが自分に合うサイズを探すために様々な情報を要求することがある。すると、情報処理装置が処理する要求が増加するので、情報処理装置の処理負荷が増大する。しかしながら、この発明によれば、ユーザに合うサイズを提示させることができるので、ユーザが自分に合うサイズを探すための要求を減らすことができる。そのため、情報処理装置の処理負荷を軽減することができる。
請求項2に記載の発明は、請求項1に記載の情報処理装置において、前記評価特定手段は、返品履歴記憶手段に記憶された前記商品の返品履歴に基づいて、前記サイズが互いに異なる複数の前記特定商品を購入した前記他のユーザが該複数の特定商品のうち一部の前記特定商品を返品したと判定される場合、返品されていない前記サイズの前記評価が、返品された前記サイズの前記評価よりも高くなるように、前記評価を特定することを特徴とする。
ユーザが、サイズが互いに異なる複数の同一の特定商品の中から一部のサイズの特定商品を返品した場合、ユーザが返品しなかったサイズの方が、ユーザが返品したサイズよりもユーザに合っている蓋然性が高い。この発明によれば、他のユーザが返品しなかったサイズに対する評価が、他のユーザが返品したサイズに対する評価よりも高くなるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項3に記載の発明は、請求項1または請求項2に記載の情報処理装置において、前記評価特定手段は、前記他のユーザにより入力された前記評価を取得することを特徴とする。
この発明によれば、他のユーザにより入力された評価に基づいて推定が行われるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項4に記載の発明は、請求項2または請求項3に記載の情報処理装置において、前記評価特定手段は、非購入履歴記憶手段に記憶された、前記他のユーザが前記商品を購入しようと決めた後に購入をやめた非購入履歴に基づいて、前記他のユーザが前記特定商品についてサイズを選択した後に、該サイズをやめて他のサイズを購入したと判定される場合、購入したサイズの評価が、やめたサイズの前記評価よりも高くなるように、前記評価を特定することを特徴とする。
ユーザが或るサイズの特定商品を購入しようと決めた後に購入をやめて、ユーザが別のサイズの特定商品を購入した場合、ユーザが購入したサイズの方が、ユーザが購入をやめたサイズよりもユーザに合っている蓋然性が高い。この発明によれば、他のユーザが購入したサイズに対する評価が、他のユーザが購入をやめたサイズに対する評価よりも高くなるので、要求ユーザに合うサイズの推定精度を高めることができる。
請求項5に記載の発明は、請求項1乃至4の何れか1項に記載の情報処理装置において、前記評価特定手段は、返品履歴記憶手段に記憶された前記商品の返品履歴に基づいて、前記サイズが互いに異なる複数の前記特定商品を購入した前記他のユーザが該複数の特定商品のうち一部の前記特定商品を返品したと判定される場合、返品されていない前記サイズの前記評価が、返品された前記サイズの前記評価よりも高くなるように、前記評価を特定し、前記他のユーザから前記評価が入力されている場合、入力された前記評価を取得し、前記推定手段は、前記返品履歴に基づいて特定される前記評価を、前記他のユーザから入力される前記評価よりも重視して前記サイズを推定することを特徴とする。
ユーザがサイズが互いに異なる複数の同一の特定商品の中から一部のサイズの特定商品を返品するという行為は、各サイズに対するユーザからの評価を表している蓋然性が高い。一方、ユーザにより入力された評価は、サイズ以外の事柄に対する評価が含まれている場合がある。この発明によれば、返品履歴に基づく評価が他のユーザにより入力される評価よりも重視される。そのため、特定商品のサイズに対する評価として信頼性が高い方の評価が重視されるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項6に記載の発明は、請求項1乃至5の何れか1項に記載の情報処理装置において、前記評価特定手段は、前記他のユーザから前記評価が入力されている場合、入力された前記評価を取得し、前記評価特定手段は、非購入履歴記憶手段に記憶された、前記他のユーザが前記商品を購入しようと決めた後に購入をやめた非購入履歴に基づいて、前記他のユーザが前記特定商品についてサイズを選択した後に、該サイズをやめて他のサイズを購入したと判定される場合、購入したサイズの評価が、やめたサイズの前記評価よりも高くなるように、前記評価を特定し、前記推定手段は、前記他のユーザから入力される前記評価を、前記非購入履歴に基づいて特定される前記評価よりも重視して前記サイズを推定することを特徴とする。
ユーザは、購入した特定商品を着た後に評価を入力することができる。一方、ユーザは、購入しようと決めてから購入をやめる前に特定商品を着ることができない。この発明によれば、他のユーザにより入力される評価が、非購入履歴に基づく評価がよりも重視される。そのため、特定商品のサイズに対する評価として信頼性が高い方の評価が重視されるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項7に記載の発明は、請求項1乃至6の何れか1項に記載の情報処理装置において、前記身体サイズ情報取得手段は、ユーザから登録された身体サイズをユーザごとに記憶する身体サイズ記憶手段から、前記要求ユーザ及び前記他のユーザのうち少なくとも何れか一方の身体サイズを、前記身体サイズ情報として取得する。
この発明によれば、ユーザから登録された身体サイズに基づいて推定が行われるので、ユーザの身体サイズを反映している蓋然性が高い情報に基づいて、推定を行うことができる。
請求項8に記載の発明は、請求項7に記載の情報処理装置において、前記推定手段は、前記購入履歴に基づいて、前記他のユーザが前記特定商品を購入した時期が新しいほど、該他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする。
ユーザが特定商品を購入した時期が古いほど、現在のユーザの身体サイズが特定商品の購入時期におけるユーザの身体サイズから変わっている蓋然性が高い。ユーザから登録された身体サイズが現時点での身体サイズを表しているとする場合、特定商品の購入時期が古いほど、ユーザからの評価が、登録された身体サイズに基づく評価ではない蓋然性が高い。この発明によれば、特定商品の購入時期が新しいユーザからの評価であるほど重視されるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項9に記載の発明は、請求項1乃至8の何れか1項に記載の情報処理装置において、前記身体サイズ情報取得手段は、前記購入履歴に基づいて、前記要求ユーザが購入したことがある第1商品のサイズと、前記他のユーザが購入したことがある第2商品のサイズと、の少なくとも何れか一方を、前記身体サイズ情報として取得することを特徴とする。
ユーザが購入したことがある商品のサイズは、ユーザの身体サイズに対応している蓋然性がある。この発明によれば、ユーザが購入したことがある商品のサイズがそのユーザの身体サイズに関する情報として取得されるので、ユーザからの身体サイズの登録がなくても、要求ユーザの体に合うサイズを推定することができる。
請求項10に記載の発明は、請求項9に記載の情報処理装置において、前記推定手段は、前記特定商品を購入した前記他のユーザのうち、前記第1商品と同一の範疇に属する前記第2商品を購入した前記他のユーザからの前記評価を用いて前記サイズを推定し、前記要求ユーザが前記第1商品を購入した時期が新しいほど、該第1商品と同一の範疇に属する前記第2商品を購入した前記他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする。
第1商品において要求ユーザが購入したサイズと、第2商品において他のユーザが購入したサイズとに基づいて、例えば、要求ユーザの身体サイズと他のユーザの身体サイズとが同程度であるかを判定したり、要求ユーザの身体サイズと他のユーザの身体サイズとの大小関係を判定したりすることができる。この発明によれば、第1商品と第2商品とが同一の範疇に属するので、上述した身体サイズの判定精度を高めることができる。ここで、要求ユーザが第1商品を購入した時期が古いほど、現在の要求ユーザの身体サイズが第1商品の購入時期における要求ユーザの身体サイズから変わっている蓋然性が高い。そのため、第1商品の購入時期が古いほど、商品のサイズに基づく身体サイズの判定精度が低くなる蓋然性が高い。この発明によれば、要求ユーザの第1商品の購入時期が新しいほど、第1商品と同一の範疇に属する第2商品を購入した他のユーザからの評価が重視されるので、身体サイズの判定精度を高めることができる。そのため、要求ユーザに合うサイズの推定精度を高めることができる。
請求項11に記載の発明は、請求項9または請求項10に記載の情報処理装置において、前記推定手段は、前記他のユーザの前記第2商品の購入時期と該他のユーザの前記特定商品の購入時期とが近いほど、該他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする。
ユーザの第2商品の購入時期と特定商品の購入時期とが離れているほど、第2商品の購入時期におけるユーザの身体サイズと、特定商品の購入時期におけるユーザの身体サイズとが異なっている蓋然性が高い。そのため、購入時期が離れているほど、特定商品に対する評価が、ユーザが第2商品において購入したサイズに対応するユーザの身体サイズに基づく評価ではない蓋然性が高い。この発明によれば、第2商品の購入時期と特定商品の購入時期が近いユーザからの評価であるほど重視されるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項12に記載の発明は、請求項1乃至11の何れか1項に記載の情報処理装置において、前記推定手段は、女性用の前記商品及び男性用の前記商品のうち、ユーザが購入した前記商品に含まれる割合が5割未満の予め設定された割合以下である方の前記商品の前記購入履歴に基づいて取得される情報を、前記サイズの推定に用いないことを特徴とする。
この発明によれば、ユーザが異性のために購入した蓋然性がある商品の購入履歴は、要求ユーザに合うサイズの推定に用いられない。そのため、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項13に記載の発明は、請求項1乃至12の何れか1項に記載の情報処理装置において、前記推定手段は、大人であるユーザが子供用の前記商品を購入したことを示す前記購入履歴に基づいて取得される情報を、前記サイズの推定に用いないことを特徴とする。
この発明によれば、大人が子供のために購入した商品の購入履歴は、要求ユーザに合うサイズの推定に用いられない。そのため、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項14に記載の発明は、請求項1乃至13の何れか1項に記載の情報処理装置において、前記出力手段は、前記要求ユーザが大人であり、且つ、前記特定商品が子供用の前記商品である場合、前記サイズを出力しないことを特徴とする。
この発明によれば、要求ユーザに合うサイズの推定を行う必要がない場合に、推定を行わないようにすることができる。そのため、要求ユーザの体に合うサイズの推定するための処理負荷を軽減することができる。
請求項15に記載の発明は、請求項1乃至14の何れか1項に記載の情報処理装置において、前記推定手段は、前記身体サイズ情報の大小関係に基づいて、身体サイズが前記要求ユーザの身体サイズと同じ身体サイズの範囲に含まれる前記他のユーザを特定し、特定した他のユーザが購入した特定商品のサイズ、及び該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定することを特徴とする。
この発明によれば、身体サイズが要求ユーザの身体サイズと同程度であるユーザが購入したサイズ及びそのユーザからの評価に基づいて、推定が行われるので、要求ユーザの体に合うサイズの推定精度を高めることができる。
請求項16に記載の発明は、請求項1乃至15の何れか1項に記載の情報処理装置において、前記推定手段は、前記身体サイズ情報の大小関係に基づいて、身体サイズが前記要求ユーザよりも小さい前記他のユーザと、身体サイズが前記要求ユーザよりも大きい前記他のユーザとを特定し、特定した他のユーザが購入した特定商品のサイズ、及び該サイズに対する前記評価に基づいて、身体サイズが前記要求ユーザよりも小さい前記他のユーザに合う前記特定商品の第1サイズと、身体サイズが前記要求ユーザよりも大きい前記他のユーザに合う前記特定商品の第2サイズとを推定し、前記第1サイズと前記第2サイズとの間にある前記サイズを、前記要求ユーザに合う前記サイズであると推定することを特徴とする。
この発明によれば、身体サイズが要求ユーザの身体サイズよりも小さいユーザに合うサイズと、身体サイズが要求ユーザの身体サイズよりも大きいユーザに合うサイズとの間にあるサイズが、要求ユーザに合うサイズとして推定される。そのため、身体サイズが要求ユーザの身体サイズと同程度であるユーザが存在しなくても、要求ユーザの体に合うサイズを推定することができる。
請求項17に記載の発明は、請求項1乃至14の何れか1項に記載の情報処理装置において、前記推定手段は、前記他のユーザの前記身体サイズ情報と該他のユーザが購入した前記特定商品のサイズとの組の分布の近似式を、前記他のユーザからの前記評価に基づいて前記組を重み付けして求め、前記近似式と前記要求ユーザの前記身体サイズ情報とに基づいて算出される前記サイズを、前記要求ユーザに合う前記サイズであると推定する。
この発明によれば、身体サイズ及び購入した特定商品のサイズの少なくとも何れか一方が互いに異なるユーザが複数存在すれば、要求ユーザに合うサイズを推定することができる。
請求項18に記載の発明は、コンピュータにより実行される情報処理方法であって、サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得ステップと、前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得ステップと、前記サイズ取得ステップにより取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定ステップと、前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定ステップと、前記推定ステップにより推定された前記サイズを出力する出力ステップと、を含むことを特徴とする。
請求項19に記載の発明は、コンピュータを、サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段、前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段、前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段、前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段、及び、前記推定手段により推定された前記サイズを出力する出力手段、として機能させることを特徴とする。
請求項20に記載の発明は、コンピュータを、サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段、前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段、前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段、前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段、及び、前記推定手段により推定された前記サイズを出力する出力手段、として機能させることを情報処理プログラムがコンピュータ読み取り可能に記録されていることを特徴とする。
本発明によれば、他のユーザが購入した特定商品のサイズと、要求ユーザの身体サイズ情報と他のユーザの身体サイズ情報との対象関係と、他のユーザからの特定商品に対する評価とを用いて、要求ユーザに合うサイズが推定されるので、ユーザが商品の試着を行わなくてもユーザの体に合うサイズを提示させることができる。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下に説明する実施の形態は、情報処理システムに対して本発明を適用した場合の実施形態である。
[1.第1実施形態]
[1-1.情報処理システムの構成及び機能概要]
先ず、本実施形態に係る情報処理システムSの構成について、図1を用いて説明する。図1は、本実施形態に係る情報処理システムSの概要構成の一例を示す図である。
[1-1.情報処理システムの構成及び機能概要]
先ず、本実施形態に係る情報処理システムSの構成について、図1を用いて説明する。図1は、本実施形態に係る情報処理システムSの概要構成の一例を示す図である。
図1に示すように、情報処理システムSは、電子商店街サーバ1と、複数の店舗端末2と、複数のユーザ端末3と、を含んで構成されている。そして、電子商店街サーバ1と各店舗端末2及び各ユーザ端末3とは、ネットワークNWを介して、例えば、通信プロトコルにTCP/IP等を用いて相互にデータの送受信が可能になっている。なお、ネットワークNWは、例えば、インターネット、専用通信回線(例えば、CATV(Community Antenna Television)回線)、移動体通信網(基地局等を含む)、及びゲートウェイ等により構築されている。
電子商店街サーバ1は、洋服の商品の購入が可能な電子商店街に関する各種処理を実行するサーバ装置である。電子商店街サーバ1は、本発明における情報処理装置の一例である。ユーザは、電子商店街を利用することにより、所望の店舗から所望の商品を購入することができる。電子商店街サーバ1は、ユーザ端末3からのリクエストに応じて、例えば、電子商店街のウェブページを送信したり、商品の検索や購入等に関する処理を行ったりする。なお、電子商店街は、洋服以外の商品も購入可能なサイトであってもよい。
店舗端末2は、電子商店街に出店している店舗の従業員等により利用される端末装置である。店舗端末2は、従業員等からの操作に基づいて電子商店街サーバ1等のサーバ装置にアクセスする。これにより、店舗端末2は、サーバ装置からウェブページを受信して表示する。店舗端末2には、ブラウザや電子メールクライアント等のソフトウェアが組み込まれている。従業員は、店舗端末2を利用することにより、例えば、販売する商品の情報を電子商店街に登録したり、商品の注文内容を確認したりする。
ユーザ端末3は、電子商店街を利用するユーザの端末装置である。ユーザ端末3は、ユーザからの操作に基づいて電子商店街サーバ1にアクセスすることにより、電子商店街サーバ1からウェブページを受信して表示する。ユーザ端末3には、ブラウザや電子メールクライアント等のソフトウェアが組み込まれている。ユーザ端末3としては、例えば、パーソナルコンピュータ、PDA(Personal Digital Assistant)、スマートフォン等の携帯情報端末、携帯電話機等が用いられる。
[1-2.商品購入の手順]
次に、電子商店街における商品購入の手順について、図2を用いて説明する。電子商店街で購入可能な洋服の商品には、複数のサイズがある。このサイズを、「商品サイズ」という。商品サイズの表示としては、例えば、S、M、L等の記号表示、号数表示、インチ数表示等がある。また、以降では、洋服の商品を、単に「商品」という。ユーザは、所望の商品を検索するため、電子商店街のウェブページにおいて検索条件を指定する。そして、ユーザが、検索するためのボタンを選択すると、ユーザ端末3は検索条件を含むリクエストを電子商店街サーバ1へ送信する。電子商店街サーバ1は、リクエストに含まれる検索条件に基づいて商品を検索する。そして、電子商店街サーバ1は、検索結果ページをユーザ端末3へ送信する。検索結果ページは、検索された商品の一覧が表示されるウェブページである。検索結果ページにおいてユーザが任意の商品を指定すると、画面には、指定された商品の商品ページが表示される。商品ページは、1つの商品に関する詳細な情報が表示されるウェブページである。
次に、電子商店街における商品購入の手順について、図2を用いて説明する。電子商店街で購入可能な洋服の商品には、複数のサイズがある。このサイズを、「商品サイズ」という。商品サイズの表示としては、例えば、S、M、L等の記号表示、号数表示、インチ数表示等がある。また、以降では、洋服の商品を、単に「商品」という。ユーザは、所望の商品を検索するため、電子商店街のウェブページにおいて検索条件を指定する。そして、ユーザが、検索するためのボタンを選択すると、ユーザ端末3は検索条件を含むリクエストを電子商店街サーバ1へ送信する。電子商店街サーバ1は、リクエストに含まれる検索条件に基づいて商品を検索する。そして、電子商店街サーバ1は、検索結果ページをユーザ端末3へ送信する。検索結果ページは、検索された商品の一覧が表示されるウェブページである。検索結果ページにおいてユーザが任意の商品を指定すると、画面には、指定された商品の商品ページが表示される。商品ページは、1つの商品に関する詳細な情報が表示されるウェブページである。
電子商店街サーバ1は、ユーザにより指定された商品の複数の商品サイズのうち、指定したユーザの身体のサイズに合う商品サイズを推定する。そして、電子商店街サーバ1は、推定した商品サイズを示す情報を出力する。具体的に、電子商店街サーバ1は、推定した商品サイズの情報を、指定された商品の商品ページに表示させる。指定された商品を、「指定商品」という。指定したユーザを、「指定者」という。指定商品は、本発明における特定商品の一例である。指定者は、本発明における要求ユーザの一例である。
図2は、商品ページの表示例を示す図である。商品ページには、例えば、商品名、商品の画像、商品価格、店舗名、商品サイズ、商品の説明、購入代金の支払い方法、商品の配送方法等が表示される。また、図2に示すように、商品ページには、推薦サイズ情報110、商品サイズ選択チェックボックス群120、買い物かご登録ボタン130等が表示される。推薦サイズ情報110は、指定商品において、指定者に合う商品サイズを示す情報である。推薦サイズ情報110として、例えば、「あなたの体型に近い人の多くは、Mサイズを買っています。」等の情報が表示される。なお、指定者に合う商品サイズを示す情報であれば、如何なる情報が表示されてもよい。
商品サイズ選択チェックボックス群120は、指定商品の複数の商品サイズの中からユーザが購入する商品サイズを選択するためのチェックボックス群である。具体的には、商品サイズごとにチェックボックスが表示される。商品サイズ選択チェックボックス群120を操作することにより、ユーザは、1つ以上の商品サイズを選択することができる。電子商店街においては、同一の商品について、店舗が複数の商品サイズの商品を購入者へ発送し、商品を受け取った購入者が、自分が気に入った1つの商品サイズを除き、他の商品サイズの商品を店舗へ返品することができるサービスが提供されている。このサービスを、「サイズ選択返品サービス」という。サイズ選択返品サービスにより、ユーザは、実際に商品を着てみて、自分の体に最も合う商品サイズの商品を最終的に選択することができる。なお、サイズ選択返品サービスに対応していない商品の商品ページには、商品サイズ選択チェックボックス群120の代わりにラジオボタン群が表示される。この場合、ユーザは、商品サイズを1つのみ選択することができる。また、同一の商品であっても商品サイズごとに商品ページが異なる場合、ユーザは商品サイズを選択することはできない。
買い物かご登録ボタン130は、商品を買い物かごに入れるためのボタンである。買い物かごは、ユーザが購入しようと決めた商品が入れられる仮想的な入れ物である。ユーザが買い物かご登録ボタン130を選択すると、商品サイズ選択チェックボックス群120で選択状態にされている商品サイズの指定商品が買い物かごに入れられる。そして、画面には、買い物かごページが表示される。買い物かごページは、ユーザが買い物かごに入れている商品の一覧を表示するウェブページである。買い物かごページにおいて、ユーザは、買い物かごに入れられている商品を買い物かごから削除することができる。これにより、ユーザは、ユーザが購入しようと決めた商品の購入をやめることができる。また、買い物かごページには、購入手続ボタンが表示される。購入手続ボタンは、買い物かごに入れられている商品の購入手続を行うためのボタンである。ユーザは、購入手続ボタンを選択し、その後購入手続に必要な情報を入力すると、商品の注文が完了する。これにより、ユーザは商品を購入することができる。
ユーザは、電子商店街において、購入履歴ページを閲覧することができる。購入履歴ページは、商品の購入履歴が表示されるウェブページである。購入履歴ページにおいて、ユーザは、注文が完了した商品のうち、まだ発送されていない商品の注文をキャンセルすることができる。これにより、ユーザは、ユーザが購入しようと決めた商品の購入をやめることができる。また、購入履歴ページにおいて、ユーザは、商品レビューの登録を選択することができる。商品レビューは、ユーザが購入した商品に対するユーザからの評価、感想、批評、コメント等の情報である。具体的に、商品レビューは、おすすめ度、商品レビューのタイトル及び本文を含む。おすすめ度は、例えば、ユーザが商品を気に入った度合い、ユーザが商品を他人にすすめてもよいと考えている度合い等を示す。おすすめ度は、例えば、1~5の5段階ある。そして、おすすめ度が高いほど、商品に対する評価が高いことを示す。ユーザが商品レビューの登録を選択すると、商品レビューを入力するためのウェブページが表示される。そこで、ユーザは、おすすめ度、商品レビューのタイトル及び本文等を入力する。入力された情報は、ユーザ端末3から電子商店街サーバ1に送信される。そして、電子商店街サーバ1は、受信した情報を登録する。ユーザは、自分が入力した商品レビューや他人が入力した商品レビューを電子商店街において確認することができる。
[1-3.ユーザに合う商品サイズの推定方法]
次に、指定商品において、指定者に合う商品サイズの推定方法について、図3及び図4を用いて説明する。指定者に合う商品サイズを、「適合サイズ」という。
次に、指定商品において、指定者に合う商品サイズの推定方法について、図3及び図4を用いて説明する。指定者に合う商品サイズを、「適合サイズ」という。
電子商店街サーバ1は、指定商品を購入したことがあるユーザが購入した指定商品の商品サイズ、指定者の身体サイズと指定商品を購入したことがあるユーザの身体サイズとの大小関係、及び、指定商品を購入したことがあるユーザからの指定商品に対する評価に基づいて、指定者の適合サイズを推定する。指定商品に対する評価は、商品サイズ単位で分類される。指定商品を購入したことがあるユーザを、「既購入者」という。既購入者は、指定者とは異なるユーザである。既購入者が、購入した指定商品を実際に着たことがある蓋然性は高い。そのため、指定商品に対する既購入者からの評価には、既購入者が指定商品を着た結果が含まれている蓋然性がある。従って、或る既購入者からの評価が高い商品サイズは、その既購入者の身体サイズに合っている蓋然性が高く、或る既購入者からの評価が低い商品サイズは、その既購入者の身体サイズに合っている蓋然性が低い。そこで、電子商店街サーバ1は、指定者の身体サイズと指定商品を購入したことがあるユーザの身体サイズとの大小関係を判定し、身体サイズが指定者と同程度の既購入者からの評価が高い商品サイズであるほど、指定者の適合サイズであると推定する蓋然性を高くする。指定者は、指定者が商品の試着を行わなくても指定者に合うと推定される商品サイズを知ることができる。
また、同一の商品ではあっても商品サイズごとに商品ページが異なる場合がある。この場合、ユーザが自分に合うサイズを探すために様々な商品ページを要求することがある。すると、電子商店街サーバ1が処理する要求が増加するので、電子商店街サーバ1の処理負荷が増大する。しかしながら、商品ページに、ユーザに合うと推定される商品サイズが表示されるので、ユーザが自分に合うサイズを探すための要求を減らすことができる。そのため、電子商店街サーバ1の処理負荷を軽減することができる。
電子商店街サーバ1は、実際には、既購入者が購入したという事実も考慮して、適合サイズを推定する。具体的には、評価が高い商品サイズであるほど適合サイズであると推定される蓋然性が高くなり、購入数が多い商品サイズであるほど適合サイズであると推定される蓋然性が高くなる。ユーザが商品を購入するとき、ユーザは、例えば経験則等に基づいて、ユーザの身体サイズに合うと推測した商品サイズを選択する。従って、ユーザが購入した商品サイズは、ユーザの適合サイズである可能性がある。しかしながら、ユーザは、購入した商品を受け取るまでは、商品を着ることはできない。そのため、ユーザが購入した商品サイズが、実際にはユーザの身体サイズに合わない場合がある。従って、身体サイズが指定者と同程度のユーザが購入したという事実のみに基づいて適合サイズを推定すると、推定精度が低くなる場合がある。そこで、電子商店街サーバ1が既購入者からの評価を考慮することにより、指定者の適合サイズの推定精度を高めることができる。なお、電子商店街サーバ1は、購入したという事実は考慮せず、既購入者からの評価に基づいて、適合サイズを推定してもよい。
次に、商品サイズに対する評価について説明する。図3(a)は、評価の内容とスコアとの関係の例を示す図である。スコアは、商品サイズに対する評価の高さを示す。スコアが高いほど、評価が高い。評価の種類は、大別して3種類ある。評価の第1の種類は、返品の有無である。上述したようにサイズ選択返品サービスに対応した商品の場合、購入者は、商品サイズが互いに異なる複数の同一商品を受け取り、複数の同一商品のうち一部の商品サイズの商品を返品することができる。このとき、ユーザは、複数の商品サイズの商品を実際に着てみることにより、各商品サイズについて返品するか否かを決めることができる。そのため、購入者が返品しなかった商品サイズは購入者の身体サイズに合う商品サイズであり、購入者が返品した商品サイズは購入者の身体サイズに合わない商品サイズであると考えられる。従って、返品の有無は、商品サイズに対する評価であると考えられる。この場合、返品されなかった商品サイズは返品された商品サイズよりも評価が高い。図3(a)に示すように、返品されなかった商品サイズのスコアは、例えば+3.0に設定され、返品された商品サイズのスコアは、例えば-3.0に設定される。
評価の第2の種類は、商品レビューの内容である。購入者は、例えば、購入した或る商品サイズの商品を実際に着てみる。その結果、購入者は、商品サイズが自分の身体サイズに合うかどうかを判断した上で、商品レビューを登録する場合がある。そのため、商品レビューのおすすめ度が高いほど、購入された商品サイズは購入者の身体サイズに合っている蓋然性がある。図3(a)に示すように、おすすめ度の1~5に対して、スコアは、例えば、-2.0、-1.0、+1.0、+1.5、+2.0に設定されている。おすすめ度に応じたスコアの絶対値の最大値は、返品の有無に応じたスコアの絶対値よりも小さくなっている。つまり、返品の有無の重みは、商品レビューの重みよりも重くなっている。換言すると、電子商店街サーバ1は、返品の有無を、商品レビューの内容よりも重視して、適合サイズを推定する。その理由は、返品の有無は商品サイズに対する直接的な評価であると考えられる一方で、商品レビューの内容は、商品サイズ以外の事柄に対する評価が含まれていることがあるからである。
なお、複数段階の評価が可能な項目が複数あってもよい。項目としては、例えば、商品サイズ、デザイン、値段等がある。この場合、電子商店街サーバ1は、商品サイズに対する評価に応じてスコアを決定してもよい。また、電子商店街サーバ1は、商品レビューのタイトルや本文に基づいて、スコアを決定してもよい。その理由は、タイトルや本文の内容が肯定的な内容である場合、購入された商品サイズは購入者の身体サイズに合っている蓋然性があるからである。また、タイトルや本文の内容が否定的な内容である場合、購入された商品サイズは購入者の身体サイズに合っていない蓋然性があるからである。例えば、電子商店街サーバ1は、タイトルや本文から肯定的な語や否定的な語を抽出してもよい。肯定的な語としては、例えば、「良い」、「合う」、「ぴったり」等がある。否定的な語としては、例えば、「悪い」、「合わない」、「フィットしない」等がある。電子商店街サーバ1は、例えば、肯定的な語のみを抽出した場合には、例えばスコアを+2.0とし、否定的な語のみを抽出した場合には、例えばスコアを-2.0としてもよい。また、電子商店街サーバ1は、肯定的な語も否定的な語も抽出することができなかった場合には、例えばスコアを+1.0としてもよい。また、電子商店街サーバ1は、肯定的な語及び否定的な語の両方を抽出した場合には、例えば、肯定的な語と否定的な語との比率に基づいてスコアを決定してもよい。
評価の第3の種類は、複数の商品サイズの中から購入する商品サイズをユーザが迷った場合である。具体的には、買い物かごからの商品の削除と、注文完了後のキャンセルとがある。例えば、ユーザは、或る商品Xを購入しようと決めて、Mサイズの商品Xを買い物かごに登録したとする。その後、ユーザは、購入手続をせずに、Mサイズの商品Xを買い物かごから削除する。次に、ユーザは、Lサイズの商品Xを買い物かごに登録し、購入手続を行って、Lサイズの商品Xを購入したとする。この場合、商品Xについて、Mサイズを購入するかLサイズを購入するかをユーザが迷った形跡がある。そして、ユーザが、Mサイズを購入せず、最終的にLサイズを購入したということは、MサイズとLサイズとをユーザが検討した蓋然性がある。この場合、最終的に購入されたLサイズは、最終的に購入されなかったMサイズよりも評価が高い。注文完了後のキャンセルについても同様である。ユーザは、Mサイズの商品Xの購入続を完了した後、商品Xの発送前に注文をキャンセルしたとする。次に、ユーザは、Lサイズの商品Xの購入手続をすることにより、Lサイズの商品Xがユーザに配達されたとする。この場合も、商品Xについて、Mサイズを購入するかLサイズを購入するかをユーザが迷った形跡がある。そして、最終的に購入されたLサイズは、最終的に購入されなかったMサイズよりも評価が高い。また、単にSサイズを購入したユーザよりも、SサイズとMサイズとの間で購入を迷った後にSサイズを購入したユーザの方が、より熟慮してサイズを最終的に決定したと考えられる。
図3(a)に示すように、最終的に購入された商品サイズのスコアは、例えば+1.5に設定され、最終的に購入されなかった商品サイズのスコアは、例えば-1.5に設定される。商品サイズを迷った場合のスコアの絶対値は、おすすめ度に応じたスコアの絶対値の最大値よりも小さくなっている。つまり、商品レビューの重みは、商品サイズを迷った場合よりも重くなっている。換言すると、電子商店街サーバ1は、商品レビューの内容を、商品サイズを迷った場合よりも重視して、適合サイズを推定する。その理由は、商品サイズを迷ってユーザが商品を購入する場合、ユーザは、最終的に購入する商品サイズを決定する前に、商品を着ることができないからである。従って、商品サイズを迷った場合の評価は補足的に用いられる。なお、電子商店街サーバ1は、買い物かごからの商品の削除の有無と、注文完了後のキャンセルの有無と何れか一方のみに基づいて、既購入者が複数の商品サイズの中から購入する商品サイズをユーザが迷ったか否かを判定してもよい。
図3(a)に示すように、評価がない場合、スコアは、例えば+1.0に設定される。評価がない場合とは、ユーザは商品を購入したが、返品を行わず、商品レビューの登録もせず、且つ、商品サイズを迷わなかった場合である。つまり、購入したという事実に対して+1.0のスコアが設定される。評価がなく購入のみの場合のスコアの絶対値の最大値は、商品サイズを迷った場合のスコアの絶対値よりも小さくなっている。つまり、商品サイズを迷った場合の重みは、評価がない場合よりも重くなっている。その理由は、商品サイズを迷った場合は、複数の商品サイズの検討が行われている蓋然性がある からである。
なお、電子商店街サーバ1は、返品の有無または商品レビューの内容の何れか一方のみを用いて、適合サイズを推定してもよい。また、電子商店街サーバ1は、返品の有無または商品レビューの内容の何れか一方と、商品サイズを迷った場合とを用いてもよい。
次に、各ユーザの身体サイズの特定方法について説明する。本実施形態においては、各ユーザは、予め自分の身体サイズに関する情報を電子商店街に登録する。身体サイズに関する情報を、「体型情報」という。体型情報は、本発明における身体サイズ情報の一例である。体型情報は、例えば、身長及び体重を含む。電子商店街サーバ1は、体型情報に基づいて、指定者の身体サイズと同じ身体サイズの範囲に含まれる身体サイズを有する既購入者を特定する。身体サイズの範囲を、「体型区分」という。図4は、身長及び体重と、体型区分との関係の例を示す図である。図4に示すように、身長は、例えば、低い、やや低い、中、やや高い、高い、の5区分に分類される。図4において、縦の破線が身長の区分の境界である。また、体重は、例えば、軽い、やや軽い、中、やや重い、重い、の5区分に分類される。図4において、横の破線が身長の区分の境界である。そして、破線に囲まれた矩形の各領域が、体型区分に相当する。なお、女性用の体型区分と男性用の体型区分とが別々に定義されてもよい。また、電子商店街サーバ1は、指定者の身体サイズと既購入者の身体サイズとの差が予め設定された差以下である場合、既購入者は、指定者の身体サイズと同じ身体サイズの範囲に含まれる身体サイズを有すると判定してもよい。
なお、体型情報は、身長または体重の少なくとも何れか一方のみが含まれていてもよい。そして、電子商店街サーバ1は、一方の情報のみに基づいて、体型区分を特定してもよい。また、体型情報には、詳細な情報が含まれていてもよい。例えば、上半身の長さ、下半身の長さ、バストサイズ、ウエストサイズ、ヒップサイズ等が含まれていてもよい。そして、電子商店街サーバ1は、詳細な情報に基づいて、体型区分を特定してもよい。また、電子商店街サーバ1は、指定商品の種類に応じて、用いる情報を変えてもよい。例えば、電子商店街サーバ1は、トップスに対しては上半身の長さを用い、ボトムスに対しては下半身の長さを用いてもよい。
本実施形態において、電子商店街サーバ1は、指定者と同一の体型区分に属する既購入者を特定する。そして、指定者と同一の体型区分に属する既購入者ごとに、図3(a)に示すようにスコアを決定する。既購入者が複数の評価を行った場合、電子商店街サーバ1は、それぞれの評価に対応するスコアを足し合わせてもよい。例えば、ユーザがMサイズとLサイズとの間で購入する商品サイズを迷い、その結果、ユーザは、Lサイズを購入したとする。その後、ユーザは、商品レビューを登録し、お気に入り度を2に設定したとする。この場合、Mサイズのスコアは、-1.5である。一方、Lサイズのスコアは、+1.5-1.0=+0.5である。なお、電子商店街サーバ1は、複数の評価のうち最も重みの高い評価のみに基づいて、スコアを決定してもよい。前述の例では、商品レビューの内容の重みの方が商品サイズを迷った場合の重みよりも重いので、Lサイズのスコアは、-1.0である。つまり、電子商店街サーバ1は、重みが重い方の評価を重視した結果、重みが軽い方の評価を無視する。
電子商店街サーバ1は、各既購入者のスコアを商品サイズごとに足し合わせて、商品サイズごとに総合スコアを決定する。そして、電子商店街サーバ1は、総合スコアが最も高い商品サイズを、適合サイズとして特定する。なお、評価なしの場合のスコアが0であってもよい。これにより、適合サイズの推定に、購入したのみで評価がない場合を、適合サイズの推定に反映させないようにすることができる。
評価を行った既購入者の数を、「評価人数」という。既購入者の数を、「購入者数」という。購入者数が多いほど評価人数が多くなる傾向にある。そして、評価人数が多いほど、適合サイズの推定精度は高くなると考えられる。従って、評価人数が少ない商品をユーザが指定することによって商品ページに表示された推薦サイズ情報110が示す適合サイズをユーザが購入した場合、購入した商品サイズがユーザの身体サイズに合わないこともある。商品サイズがユーザの身体サイズに合わなかったという結果は、評価に反映される。評価人数が多くなるにつれて適合サイズの推定精度が高くなれば、ユーザは、サイズ選択返品サービスを利用しなくてもよい。または、ユーザは、サイズ選択返品サービスを利用したとしても、選択する商品サイズの数を減らすことができる。また、商品サイズの選択にユーザが迷うことが少なくなり、商品レビューの内容が良くなり、おすすめ度が高くなる。
ところで、各既購入者が指定商品を購入した時期は様々である。指定商品の商品サイズに対する既購入者からの評価は、指定商品の購入時期における評価である。つまり、既購入者からの評価は、指定商品の購入時期における既購入者の身体サイズに基づいている。一方、ユーザが登録した体型情報は、現在のユーザの身体サイズを反映していると考えられる。既購入者が指定商品を購入した当時から現在までに、既購入者の身体サイズが変わっている可能性がある。そのため、体型情報に基づいて既購入者の身体サイズを特定すると、既購入者の指定商品の購入時期が古い場合、既購入者からの評価の信頼性が低い場合がある。そこで、電子商店街サーバ1は、指定商品の購入時期によって、各既購入者のスコアに重み付けをしてもよい。具体的に、電子商店街サーバ1は、購入時期が新しいほど重みを重くする。つまり、電子商店街サーバ1は、購入時期が新しい既購入者の評価ほど重視する。図3(b)は、購入時期と重み係数W1との関係の一例を示す図である。重み係数W1は、指定商品の購入時期に応じた重みを示す係数である。図3(b)に示すように、購入時期が現在から5年以上前である場合、重み係数W1は、例えば0.5である。また、購入時期が2年以上前から5年未満前の場合、重み係数W1は、例えば0.8である。また、購入時期が半年以上前から2年未満前の場合、重み係数W1は、例えば1.0である。また、購入時期が半年未満前の場合、重み係数W1は、例えば1.2である。電子商店街サーバ1は、既購入者ごとに、図3(a)に基づいて得られたスコアに、図3(b)に基づいて得られた重み係数W1を掛けて、既購入者ごとの最終的なスコアを計算する。なお、電子商店街サーバ1は、購入時期が予め設定された時期よりも古い既購入者からの評価を用いずに、適合サイズを推定してもよい。
また、電子商店街サーバ1は、評価ありの場合のスコアと評価なしの場合のスコアとの両方を用いて、適合サイズを推定する。上述したように、ユーザが購入した商品サイズがユーザの身体サイズに合っていると断定することはできない。そのため、評価ありの場合のスコアの絶対値は、評価なしの場合のスコアの絶対値よりも大きくなっている。しかしながら、適合サイズの推定精度を高めるためには、評価のみに基づいて適合サイズを推定した方がよい。その一方で、評価人数が少ない場合に評価のみに基づいて適合サイズを推定すると、適合サイズの推定精度が低くなる場合がある。また、評価人数は購入者数と比較して相当に少ない場合がある。そこで、電子商店街サーバ1は、評価人数に応じて、評価ありの場合のスコアの重みと評価なしの場合のスコアの重みとをそれぞれ変えてもよい。具体的に、電子商店街サーバ1は、評価人数が多いほど、評価ありの場合のスコアの重みを重くし、評価なしの場合のスコアの重みを軽くする。図3(c)は、評価人数と重み係数W2との関係の一例を示す図である。重み係数W2は、評価ありの場合のスコアの重みを示す係数である。なお、評価なしの場合のスコアの重みは、1-W2である。図3(c)に示すように、評価人数が5未満である場合、重み係数W2は、例えば0.5である。また、評価人数が5以上であり10未満である場合は0.6、評価人数が10以上であり20未満である場合は0.7、評価人数が20以上であり40未満である場合は0.8、評価人数が40以上であり100未満である場合は0.9、評価人数が100以上である場合は1.0である。なお、電子商店街サーバ1は、購入者数に対する評価人数の割合に応じて重みを決定してもよい。具体的に、電子商店街サーバ1は、評価人数の割合が大きいほど、評価ありの場合のスコアの重みを重くする。
また、ユーザは、他人のために商品を購入することがある。この場合、他人のために商品を購入したユーザからの評価に、購入した商品サイズのユーザ自身の身体サイズに対する適合程度が反映されている蓋然性は低い。その理由は、ユーザは、他人のために商品を購入するとき、自分の身体サイズとは無関係に商品サイズを選択するからである。そこで、電子商店街サーバ1は、他人のために指定商品を購入したと判定される既購入者からの評価を、適合サイズの推定に用いなくてもよい。既購入者からの評価を用いない場合の例としては、既購入者が大人である場合に、既購入者が子供用の指定商品を購入した場合がある。何歳以上を大人と定めるかは、電子商店街の運営者の任意である。また、既購入者からの評価を用いない場合の例としては、既購入者が、既購入者の性別とは異なる性別用の商品を購入した場合がある。つまり、既購入者が異性のために商品を購入した場合である。例えば、電子商店街サーバ1は、既購入者がこれまで購入した商品のうち、女性用の商品の割合と男性用の商品の割合とを計算する。そして、電子商店街サーバ1は、割合が、予め設定された閾値以下である方の性別の商品は、既購入者が異性のために購入した商品であると判定する。閾値は5割未満の値に設定される。つまり、割合が多い方の商品が対応する性別が、購入したユーザの性別である。なお、電子商店街サーバ1は、ユーザが電子商店街に自分の性別を登録している場合には、登録された性別を取得してもよい。
また、電子商店街サーバ1は、指定者自身が着用する商品ではないものを指定者が指定商品として指定したと判定した場合、推薦サイズ情報110を表示させなくてもよい。推薦サイズ情報110を表示させない場合の例としては、指定者が大人である場合に指定商品が子供用の商品である場合、指定商品が指定者の性別とは異なる性別用の商品である場合等がある。また、電子商店街サーバ1は、指定商品が妊婦用の商品である場合も、推薦サイズ情報110を表示させなくてもよい。妊婦用の商品は、妊婦の体格に合わせた商品であるからである。また、ユーザが妊娠中であるか否かをユーザが電子商店街に登録することができるようになっていてもよい。そして、電子商店街サーバ1は、指定者が妊娠中である場合、推薦サイズ情報110を表示させなくてもよい。
商品が子供用であるか否か、商品が女性用であるか男性用であるか、商品が妊婦用であるか否か等は、商品のジャンルによって特定することができる。商品のジャンルは、予め定められた基準に基づいて商品が分けられた商品の区分、範疇等である。
[1-4.電子商店街サーバの構成]
次に、電子商店街サーバ1の構成について、図5及び図6を用いて説明する。
次に、電子商店街サーバ1の構成について、図5及び図6を用いて説明する。
図5は、本実施形態に係る電子商店街サーバ1の概要構成の一例を示すブロック図である。図5に示すように、電子商店街サーバ1は、通信部11と、記憶部12と、入出力インターフェース13と、システム制御部14と、を備えている。そして、システム制御部14と入出力インターフェース13とは、システムバス15を介して接続されている。
通信部11は、ネットワークNWに接続して、店舗端末2やユーザ端末3等との通信状態を制御するようになっている。
記憶部12は、例えば、ハードディスクドライブ等により構成されている。記憶部12は、本発明における履歴記憶手段、返品履歴記憶手段及び非購入履歴記憶手段の一例である。この記憶部12には、会員情報DB12a、ジャンル情報DB12b、商品情報DB12c、買い物かご削除履歴DB12d、購入履歴DB12e、レビュー情報DB12f等のデータベースが構築されている。「DB」は、データベースの略語である。
図6(a)は、会員情報DB12aに登録される内容の一例を示す図である。会員情報DB12aには、情報処理システムSに会員登録しているユーザに関する会員情報が登録される。具体的に、会員情報DB12aには、ユーザID、パスワード、ニックネーム、氏名、生年月日、性別、郵便番号、住所、電話番号、電子メールアドレス、体型情報等のユーザの属性が、ユーザごとに対応付けて登録される。
図6(b)は、ジャンル情報DB12bに登録される内容の一例を示す図である。ジャンル情報DB12bには、商品のジャンルに関するジャンル情報が登録されている。具体的に、ジャンル情報DB12bには、ジャンルID、ジャンル名、ジャンルのレベル、親ジャンルID、子ジャンルIDリスト等のジャンルの属性が、ジャンルごとに対応付けて登録される。ジャンル情報は、例えば、電子商店街の運営者により設定される。
商品のジャンルは、木構造で階層的に定義されている。具体的に、木構造の各ノードが、ジャンルに相当する。ノードの深さが、そのノードに相当するジャンルのレベル(階層)に相当する。ノードの深さは、根に位置するノード(以下、「根ノード」という)からの距離である。レベルの値が大きいほど、レベルとしての深さが深く、レベルの値が小さいほど、レベルとしての深さが浅い。根ノードが有する子ノードに相当するジャンルがレベル1のジャンルである。レベル1のジャンルが最上位のジャンルである。レベル1の各ジャンルに対しては、子ノードに相当するジャンルが、レベル2のジャンルとして定義されている。ここで、或るジャンルJ1の子ノードに相当するジャンルJ2を、ジャンルJ1の「子ジャンル」という。また、このときのジャンルJ1を、ジャンルJ2の「親ジャンル」という。子ジャンルは、親ジャンルを更に複数に区分したときに、同じような商品が属する範囲である。従って、子ジャンルは親ジャンルに属する。或るジャンルの祖先ノードに相当するジャンルを、「祖先ジャンル」という。例えば、ジャンルJ3がジャンルJ2の子ジャンルであるとする。この場合、ジャンルJ1及びJ2は、それぞれジャンルJ3の先祖ジャンルである。ジャンルJ3の商品は、ジャンルJ3に属するとともに、ジャンルJ3の祖先ジャンルにも属する。従って、ジャンルJ3の商品は、ジャンルJ1~J3の何れにも属する。
ジャンル分けの例を説明する。レベル1のジャンルとして、例えば、「レディースファッション」、「メンズファッション」、「キッズ・ベビー・マタニティ」等がある。「レディースファッション」の子ジャンルとして、例えば、「ワンピース」、「トップス」、「ボトムス」等がある。「トップス」の子ジャンルとして、例えば、「Tシャツ」、「ポロシャツ」、「ブラウス」等がある。どのようにジャンル分けをするかは運営者の任意である。
ジャンルIDは、ジャンル情報によって定義されるジャンルの識別情報である。親ジャンルIDは、ジャンル情報によって定義されるジャンルの親ジャンルのジャンルIDである。子ジャンルIDリストは、ジャンル情報によって定義されるジャンルの子ジャンルのジャンルIDのリストである。子ジャンルIDリストは、ジャンル情報によって定義されるジャンルが子ジャンルを有する場合に設定される。
図6(c)は、商品情報DB12cに登録される内容の一例を示す図である。商品情報DB12cには、電子商店街で販売されている商品に関する商品情報が登録される。商品情報は、店舗により登録される情報である。具体的に、商品情報DB12cには、店舗ID、商品ID、商品コード、ジャンルID、ブランドID、商品名、商品画像のURL、商品説明、商品価格、商品サイズリスト、サイズ選択返品サービスフラグ等の商品の属性値が、店舗が販売する商品ごとに対応付けて登録される。店舗IDは、商品の販売元の店舗の識別情報である。商品IDは、店舗が、販売する商品を管理するための商品の識別情報である。店舗IDと商品IDとの組み合わせは、商品ページと一対一で対応する。商品コードは、商品を識別するコード番号である。複数の店舗で同一の商品が販売される場合、同一の商品コードがそれぞれの商品に対して付与される。商品コードとしては、例えば、JAN(Japanese Article Number Code)コードがある。ジャンルIDは、商品が属するジャンルを示す。ブランドIDは、商品のブランドの識別情報である。商品情報に設定されるジャンルIDは、基本的に、レベル番号が最も高いジャンルのジャンルIDである。つまり、最も細分化されたジャンルのジャンルIDが設定される。商品名は、店舗が付けた商品の名称である。商品サイズリストは、商品サイズのリストを示す。サイズ選択返品サービスフラグは、サイズ選択返品サービスが適用されるか否かを示す。
図6(d)は、買い物かご削除履歴DB12dに登録される内容の一例を示す図である。買い物かご削除履歴DB12dには、買い物かごからの商品の削除の履歴を示す買い物かご削除履歴が登録される。買い物かご削除履歴は、本発明における非購入履歴の一例である。具体的に、買い物かご削除履歴DB12dには、ユーザID、削除日時、店舗ID、商品ID及び商品サイズリストが、買い物かごから商品が削除されるごとに登録される。ユーザIDは、買い物かごから商品を削除したユーザを示す。削除日時は、買い物かごから商品が削除された日時を示す。店舗IDは、買い物かごから削除された商品の販売元を示す。商品IDは、買い物かごから削除された商品を示す。商品サイズリストは、買い物かごから商品が削除された商品の商品サイズのリストである。
図6(e)は、購入履歴DB12eに登録される内容の一例を示す図である。購入履歴DB12eには、ユーザによる商品の購入履歴が登録される。購入履歴は、本発明における購入履歴、返品履歴及び非購入履歴の一例である。具体的に、購入履歴DB12eには、注文コード、購入日時、ユーザID、店舗ID、商品ID、商品コード、ジャンルID、ブランドID、購入サイズリスト、購入価格、キャンセルフラグ、キャンセル日時、返品フラグ、返品日時、返品サイズリスト等が、商品の購入ごとに対応付けて登録される。注文コードは、商品の注文が行われるたびに付与される注文の識別情報である。ユーザIDは、購入者を示す。店舗IDは、購入先の店舗を示す。商品ID及び商品コードは、購入された商品を示す。ジャンルIDは、購入された商品のブランドを示す。購入サイズリストは、購入された商品の商品サイズのリストである。キャンセルフラグは、注文がキャンセルされたか否かを示す情報である。キャンセルフラグには、ONまたはOFFが設定される。ONは、注文がキャンセルされたことを示す。OFFは、注文がキャンセルされていないことを示す。キャンセル日時は、キャンセルの操作が行われた日時を示す。返品フラグは、一部の商品サイズの商品が返品されたか否かを示す情報である。返品フラグには、ONまたはOFFが設定される。ONは、商品が返品されたことを示す。OFFは、商品が返品されていないことを示す。返品日時は、返品の操作が行われた日時を示す。返品サイズリストは、返品された商品の商品サイズのリストである。
図6(f)は、レビュー情報DB12fに登録される内容の一例を示す図である。レビュー情報DB12fには、商品レビューに関するレビュー情報が登録される。具体的に、レビュー情報DB12fには、ユーザID、登録日時、店舗ID、商品ID及び商品サイズリスト、おすすめ度、商品レビューのタイトル及び本文が、商品レビューが登録されるごとに登録される。ユーザIDは、商品レビューを登録したユーザを示す。登録日時は、商品レビューが登録された日時を示す。店舗IDは、商品レビューの対象とされた商品の販売元を示す。商品IDは、商品レビューの対象とされた商品を示す。商品サイズリストは、商品レビューの対象とされた商品サイズのリストである。ただし、返品が行われた場合、商品サイズリストには、返品されなかった商品の商品サイズのみが設定される。
次に、記憶部12に記憶されるその他の情報について説明する。記憶部12には、ウェブページを表示するためのHTML(HyperText Markup Language)文書、XML(Extensible Markup Language)文書、画像データ、テキストデータ、電子文書等の各種データが記憶されている。また、記憶部12には、各種の設定値が記憶されている。また、記憶部12には、各評価に対応するスコアが記憶されている。
また、記憶部12には、オペレーティングシステム、WWW(World Wide Web)サーバプログラム、DBMS(Database Management System)、電子商取引管理プログラム等の各種プログラムが記憶されている。電子商取引管理プログラムは、電子商取引に関する各種の処理を実行するためのプログラムである。電子商取引管理プログラムは、本発明における情報処理プログラムの一例である。なお、各種プログラムは、例えば、他のサーバ装置等からネットワークNWを介して取得されるようにしてもよいし、DVD(Digital Versatile Disc)等の記録媒体に記録されてドライブ装置を介して読み込まれるようにしてもよい。
入出力インターフェース13は、通信部11及び記憶部12とシステム制御部14との間のインターフェース処理を行うようになっている。
システム制御部14は、CPU14a、ROM(Read Only Memory)14b、RAM(Random Access Memory)14c等により構成されている。そして、システム制御部14は、CPU14aが、各種プログラムを読み出し実行することにより、本発明におけるサイズ取得手段、身体サイズ情報取得手段、評価特定手段、推定手段及び出力手段として機能するようになっている。
なお、電子商店街サーバ1が、複数のサーバ装置で構成されてもよい。例えば、電子商店街において商品の検索や注文等の処理を行うサーバ装置、適合サイズの推定を行うサーバ装置、ユーザ端末3からのリクエストに応じてウェブページを送信するサーバ装置、及びデータベースを管理するサーバ装置等が、互いにLAN等で接続されてもよい。
[1-5.情報処理システムの動作]
次に、情報処理システムSの動作について、図7乃至図11を用いて説明する。
次に、情報処理システムSの動作について、図7乃至図11を用いて説明する。
図7は、本実施形態に係る電子商店街サーバ1のシステム制御部14の商品ページ送信処理における処理例を示すフローチャートである。商品ページ送信処理は、電子商店街サーバ1がユーザ端末3から商品ページのリクエストを受信するごとに実行される。ユーザ端末3から電子商店街サーバ1へ送信されるリクエストは、指定者の要求を示すメッセージである。商品ページのリクエストには、指定商品の店舗ID及び商品IDと、指定者のユーザIDとが設定されている。システム制御部14は、受信したリクエストに基づいて指定商品を特定する。具体的に、システム制御部14は、リクエストから店舗ID、商品ID及びユーザIDを取得する。そして、システム制御部14は、取得した店舗ID及び商品IDを含む商品情報を商品情報DB12cから取得する。また、システム制御部14は、取得したユーザIDを含む会員情報を会員情報DB12aから取得する。
図7に示すように、システム制御部14は、指定商品の商品ページのHTML文書を記憶部12から取得する(ステップS1)。次いで、システム制御部14は、指定商品の商品情報に含まれるジャンルIDに基づいて、指定商品が子供用の商品であるか否かを判定する(ステップS2)。このとき、システム制御部14は、指定商品が子供用の商品ではないと判定した場合には(ステップS2:NO)、ステップS4に移行する。一方、システム制御部14は、指定商品が子供用の商品であると判定した場合には(ステップS2:YES)、指定者の会員情報に含まれる年齢に基づいて、指定者が大人であるか否かを判定する(ステップS3)。このとき、システム制御部14は、指定者が大人であると判定した場合には(ステップS3:YES)、ステップS7に移行する。この場合、システム制御部14は、適合サイズの推定を行わない。一方、システム制御部14は、指定者が大人ではないと判定した場合には(ステップS3:NO)、ステップS4に移行する。
なお、システム制御部14は、指定者の属性と指定商品の属性とが対応しない場合には、適合サイズを推定しないようにしてもよい。例えば、システム制御部14は、指定者が大人であるか子供であるかを判定するとともに、指定商品が大人用であるか子供用であるかを判定する。そして、システム制御部14は、指定者が大人であり且つ指定商品が子供用である場合、適合サイズを推定しない。また、システム制御部14は、指定者が子供であり且つ指定商品が大人用である場合、適合サイズを推定しない。また、システム制御部14は、指定者が女性であるか男性であるかを判定するとともに、指定商品が女性用であるか男性用であるかを判定する。そして、システム制御部14は、指定者が女性であり且つ指定商品が男性用である場合、適合サイズを推定しない。また、システム制御部14は、指定者が男性であり且つ指定商品が女性用である場合、適合サイズを推定しない。
システム制御部14は、指定者の属性を、指定者の会員情報に設定されている情報に基づいて判定することができる。一方、システム制御部14は、指定商品の属性を、指定商品の商品情報に含まれるジャンルIDに基づいて判定することができる。あるいは、システム制御部14は、指定商品の属性を、指定商品の購入履歴に基づいて判定してもよい。例えば、システム制御部14は、購入履歴に基づいて、既購入者の属性ごとに、指定商品の購入者数の割合を算出する。そして、システム制御部14は、割合が最も多い既購入者の属性に対応する属性を、指定商品の属性とする。例えば、システム制御部14は、既購入者の中で、女性の割合が男性の割合よりも多い場合、指定商品は女性用の商品であると判定する。
ステップS4において、システム制御部14は、適合サイズ推定処理を実行する。適合サイズ推定処理では、適合サイズが推定される。適合サイズ推定処理の詳細な内容については後述する。システム制御部14は、適合サイズ推定処理を終えると、推定した適合サイズに基づいて、推薦サイズ情報110を生成する(ステップS5)。次いで、システム制御部14は、生成した推薦サイズ情報110を、指定商品の商品ページのHTML文書に追加する(ステップS6)。次いで、システム制御部14は、指定商品の商品ページのHTML文書を、リクエストの送信元のユーザ端末3へ送信する(ステップS7)。これにより、出力手段としてのシステム制御部14は、適合サイズを出力する。システム制御部14は、この処理を終えると、商品ページ送信処理を終了させる。
HTML文書を受信したユーザ端末3は、商品ページを画面に表示する。電子商店街サーバ1が適合サイズ推定処理を実行した場合には、商品ページには、例えば図2に示すように推薦サイズ情報110が表示される。このように、システム制御部14は、適合サイズをユーザ端末3によりユーザへ提示させる。
なお、システム制御部14は、商品ページのHTML文書と推薦サイズ情報110とを別々に送信してもよい。例えば、商品ページのHTML文書には、推薦サイズ情報110を電子商店街サーバ1から取得するためのスクリプトが記述されている。システム制御部14は、ユーザ端末3からの商品ページのリクエストに応じて、先ず商品ページのHTML文書をユーザ端末3へ送信する。その後、システム制御部14は、適合サイズの推定を行う。HTML文書を受信したユーザ端末3は、HTML文書に基づいて商品ページを表示するとともに、HTML文書に含まれるスクリプトに基づいて、推薦サイズ情報110のリクエストを電子商店街サーバ1へ送信する。システム制御部14は、受信したリクエストに応じて、推薦サイズ情報110をユーザ端末3へ送信する。推薦サイズ情報110を受信したユーザ端末3は、既に表示している商品ページ内に、推薦サイズ情報110を表示する。これにより、電子商店街サーバ1が適合サイズの推定に時間を要しても、ユーザ端末3は、商品ページを従来通りの早さで表示することができる。
図8及び図9は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。
図8に示すように、身体サイズ情報取得手段としてのシステム制御部14は、指定者の会員情報から体型情報を取得する(ステップS21)。次いで、システム制御部14は、評価人数、各商品サイズの評価ありスコア及び評価なしスコアを、それぞれ0に初期化する(ステップS22)。評価ありスコアは、評価ありの場合のスコアの合計値である。評価なしスコアは、評価なしの場合のスコアの合計値である。このとき、システム制御部14は、指定商品の商品情報に含まれる商品サイズリストから商品サイズを取得する。そして、システム制御部14は、取得した商品サイズに対応するスコアを初期化する。なお、商品サイズごとに商品ページが異なる場合、商品サイズリストは、指定商品に用意されている複数の商品サイズのうち1つの商品サイズのみが設定されている。この場合、システム制御部14は、指定商品と同一の商品の商品情報からも、商品サイズを取得する。例えば、システム制御部14は、指定商品の商品コードと同一の商品コードを含む商品情報や、指定商品の商品名と同一の商品名を含む商品情報を、商品情報DB12cから検索する。そして、システム制御部14は、検索した商品情報に含まれる商品サイズリストから商品サイズを取得する。
次いで、システム制御部14は、指定商品の購入履歴を検索する(ステップS23)。具体的に、システム制御部14は、指定商品の店舗ID及び商品IDを含む購入履歴を、購入履歴DB12eから検索する。なお、システム制御部14は、商品コードが指定商品と同一である商品を、指定商品に含めてもよい。この場合、システム制御部14は、指定商品の商品情報から商品コードを取得する。そして、システム制御部14は、取得した商品コードを含む購入履歴を検索する。また、システム制御部14は、指定者の性別と同じ性別の既購入者の購入履歴のみを検索してもよい。また、システム制御部14は、指定者のユーザIDを含む購入履歴を、検索対象から除外してもよいし除外しなくてもよい。既購入者の中に指定者自身が含まれていること自体は、特に問題ではない。既購入者の中に、指定者以外のユーザが1人以上含まれていることが重要である。
次いで、システム制御部14は、ステップS23で検索された購入履歴のうち、購入者1人分の購入履歴を選択する(ステップS24)。つまり、システム制御部14は、或るユーザIDを含む購入履歴を選択する。このとき、システム制御部14は、複数の購入履歴が同一のユーザIDを含む場合、同一のユーザIDを含む複数の購入履歴を選択する。ここで、選択された購入履歴が示す既購入者を、「選択購入者」という。
次いで、システム制御部14は、購入目的判定処理を実行する(ステップS25)。購入目的判定処理では、選択購入者が指定商品を購入した目的が他人のためであるか否かが判定される。購入目的判定処理の詳細な内容については後述する。次いで、システム制御部14は、購入目的判定処理の戻り値が、「他人のため」であるか否かを判定する(ステップS26)。戻り値が「他人のため」である場合、選択購入者が指定商品を購入した目的は他人のためである。このとき、システム制御部14は、戻り値が「他人のため」であると判定した場合には(ステップS26:YES)、ステップS35に移行する。この場合、システム制御部14は、選択購入者のスコアを計算しない。換言すると、システム制御部14は、選択購入者の指定商品の購入履歴を、適合サイズの推定に用いない。一方、システム制御部14は、戻り値が「他人のため」ではないと判定した場合には(ステップS26:NO)、ステップS27に移行する。
ステップS27において、身体サイズ情報取得手段としてのシステム制御部14は、選択購入者の体型情報を取得する。具体的に、システム制御部14は、購入履歴から選択購入者のユーザIDを取得する。次いで、システム制御部14は、取得したユーザIDを含む会員情報を会員情報DB12aから取得する。次いで、システム制御部14は、取得した会員情報から体型情報を取得する。
システム制御部14は、体型情報を取得すると、指定者の体型区分と選択購入者の体型区分とが一致するか否かを判定する(ステップS28)。体型区分は、体型情報に基づいて特定される。このとき、システム制御部14は、指定者の体型区分と選択購入者の体型区分とが一致しないと判定した場合には(ステップS28:NO)、ステップS35に移行する。
一方、システム制御部14は、指定者の体型区分と選択購入者の体型区分とが一致すると判定した場合には(ステップS28:YES)、スコア計算処理を実行する(ステップS29)。スコア計算処理では、指定商品の各商品サイズに対する選択購入者のスコアが計算される。スコア計算処理の詳細な内容については後述する。
次いで、システム制御部14は、選択購入者の指定商品の購入時期に応じて各商品サイズのスコアに重み付けを行う(ステップS30)。具体的に、システム制御部14は、選択購入者の購入履歴に含まれる購入日時に対応する重み係数W1を記憶部12から取得する。購入履歴が複数ある場合、システム制御部14は、例えば、購入日時の平均に対応する重み係数W1を取得する。システム制御部14は、各商品サイズのスコアに重み係数W1を掛け合わせて、選択購入者の商品サイズごとの最終的なスコアを計算する。
次いで、システム制御部14は、図9に示すように、選択購入者からの評価があったか否かを判定する(ステップS31)。このとき、システム制御部14は、選択購入者からの評価があったと判定した場合には(ステップS31:YES)、ステップS32に移行する。一方、システム制御部14は、選択購入者からの評価がなかったと判定した場合には(ステップS31:NO)、ステップS34に移行する。
ステップS32において、システム制御部14は、評価人数に1を加算する。次いで、システム制御部14は、選択購入者の各商品サイズのスコアを、各商品サイズの評価ありスコアにそれぞれ加算する(ステップS33)。次いで、システム制御部14は、ステップS35に移行する。ステップS34において、システム制御部14は、選択購入者の各商品サイズのスコアを、各商品サイズの評価なしスコアにそれぞれ加算する。次いで、システム制御部14は、ステップS35に移行する。
ステップS35において、システム制御部14は、ステップS23において検索した購入履歴の中にまだ選択していない購入履歴があるか否かを判定する。このとき、システム制御部14は、まだ選択していない購入履歴があると判定した場合には(ステップS35:YES)、まだ選択していない購入履歴のうち、購入者1人分の購入履歴を選択する(ステップS36)。次いで、システム制御部14は、ステップS25に移行する。システム制御部14は、ステップS25~S36を繰り返すことにより、評価ありの既購入者の商品サイズごとのスコアの合計値と、評価なしの既購入者の商品サイズごとのスコアの合計値とを計算する。
システム制御部14は、全ての購入履歴を選択したと判定した場合には(ステップS35:NO)、評価人数に応じた重み係数W2を記憶部12から取得する(ステップS37)。次いで、システム制御部14は、商品サイズごとの総合スコアを計算する(ステップS38)。具体的に、システム制御部14は、商品サイズごとに、下記の式を計算する。
総合スコア=W2×評価ありスコア+(1-W2)×評価なしスコア
総合スコア=W2×評価ありスコア+(1-W2)×評価なしスコア
次いで、推定手段としてのシステム制御部14は、総合スコアが最も高い商品サイズを、適合サイズとして特定する(ステップS39)。システム制御部14は、この処理を終えると、商品サイズ推定処理を終了させる。
図10は、本実施形態に係る電子商店街サーバ1のシステム制御部14の購入目的判定処理における処理例を示すフローチャートである。
図10に示すように、システム制御部14は、選択購入者のユーザIDを含む購入履歴を、購入履歴DB12eから検索する(ステップS41)。次いで、システム制御部14は、選択購入者が購入した全商品に対する女性用の商品の割合と男性用の商品の割合とを計算する。システム制御部14は、購入履歴に含まれるジャンルIDに基づいて、女性用であるか男性用であるかを判定することができる。
次いで、システム制御部14は、指定商品の商品情報に含まれるジャンルIDに基づいて、指定商品は男性用の商品であるか否かを判定する(ステップS42)。このとき、システム制御部14は、指定商品は男性用の商品ではないと判定した場合には(ステップS42:NO)、ステップS44に移行する。一方、システム制御部14は、指定商品は男性用の商品であると判定した場合には(ステップS42:YES)、男性用の商品の割合が、記憶部12に記憶されている閾値以下であるか否かを判定する(ステップS43)。このとき、システム制御部14は、男性用の商品の割合が閾値以下であると判定した場合には(ステップS43:YES)、戻り値に「他人のため」を設定する(ステップS48)。システム制御部14は、この処理を終えると、購入目的判定処理を終了させる。一方、システム制御部14は、男性用の商品の割合が閾値よりも大きいと判定した場合には(ステップS43:NO)、ステップS45に移行する。
ステップS44において、システム制御部14は、女性用の商品の割合が閾値以下であるか否かを判定する。このとき、システム制御部14は、女性用の商品の割合が閾値以下であると判定した場合には(ステップS44:YES)、ステップS48に移行する。一方、システム制御部14は、女性用の商品の割合が閾値よりも大きいと判定した場合には(ステップS44:NO)、ステップS45に移行する。なお、システム制御部14は、指定者の会員情報に性別が設定されている場合には、会員情報に設定されている性別に基づいて、判定を行ってもよい。
ステップS45において、システム制御部14は、指定商品は子供用の商品であるか否かを判定する。このとき、システム制御部14は、指定商品は子供用の商品ではないと判定した場合には(ステップS45:NO)、戻り値に「自分のため」を設定する(ステップS47)。システム制御部14は、この処理を終えると、購入目的判定処理を終了させる。一方、システム制御部14は、指定商品は子供用の商品であると判定した場合には(ステップS45:YES)、選択購入者の会員情報に含まれる年齢に基づいて、選択購入者が大人であるか否かを判定する(ステップS46)。このとき、システム制御部14は、選択購入者が大人であると判定した場合には(ステップS46:YES)、ステップS48に移行する。一方、システム制御部14は、選択購入者が大人ではないと判定した場合には(ステップS46:NO)、ステップS47に移行する。
図11は、本実施形態に係る電子商店街サーバ1のシステム制御部14のスコア計算処理における処理例を示すフローチャートである。
図11に示すように、システム制御部14は、選択購入者の各商品サイズのスコアを0に初期化する(ステップS60)。次いで、システム制御部14は、選択購入者からの指定商品の返品があったか否かを判定する(ステップS61)。具体的に、システム制御部14は、選択購入者の購入履歴に含まれる返品フラグがONである場合、選択購入者からの指定商品の返品があったと判定する(ステップS61:YES)。この場合、システム制御部14は、ステップS62に移行する。一方、システム制御部14は、返品フラグがOFFである場合、選択購入者からの指定商品の返品がなかったと判定する(ステップS61:NO)。この場合、システム制御部14は、ステップS64に移行する。
ステップS62において、評価特定手段としてのシステム制御部14は、返品されなかった商品サイズのスコアにスコアA1を加算する。スコアA1は、返品されなかった商品サイズのスコア(例えば、+3.0)である。サイズ取得手段としてのシステム制御部14は、選択購入者の購入履歴から、購入サイズリスト及び返品サイズリストを取得する。そして、システム制御部14は、購入サイズリストに含まれる商品サイズのうち、返品サイズリストに含まれていない商品サイズを、返品されなかった商品サイズとして特定する。
次いで、評価特定手段としてのシステム制御部14は、返品された商品サイズのスコアにスコアA2を加算する(ステップS63)。スコアA2は、返品された商品サイズのスコア(例えば、-3.0)である。返品サイズリストに含まれる商品サイズが、返品された商品サイズである。システム制御部14は、この処理を終えると、ステップS64に移行する。
ステップS64において、システム制御部14は、選択購入者からの指定商品の商品レビューが登録されているか否かを判定する。具体的に、システム制御部14は、選択購入者のユーザID、指定商品の店舗ID及び商品IDを含むレビュー情報を、レビュー情報DB12fから検索する。このとき、システム制御部14は、該当するレビュー情報があった場合には、商品レビューが登録されていると判定する(ステップS64:YES)。この場合、システム制御部14は、ステップS65に移行する。一方、システム制御部14は、該当するレビュー情報がなかった場合には、商品レビューが登録されていないと判定する(ステップS64:NO)。この場合、システム制御部14は、ステップS66に移行する。
ステップS65において、評価特定手段としてのシステム制御部14は、検索されたレビュー情報からおすすめ度を取得する。そして、システム制御部14は、商品レビューの対象とされた商品サイズのスコアに、レビュー情報に含まれるおすすめ度に応じたスコアBnを加算する。スコアBnは、おすすめ度の値nに対応するスコア(例えば、-2.0、-1.0、+1.0、+1.5、または+2.0の何れか)である。次いで、システム制御部14は、ステップS66に移行する。
ステップS66において、システム制御部14は、選択購入者が指定商品を買い物かごから削除したことがあるか否かを判定する。具体的に、システム制御部14は、選択購入者のユーザID、指定商品の店舗ID及び商品IDを含む買い物かご削除履歴を、買い物かご削除履歴DB12dから検索する。このとき、システム制御部14は、該当する買い物かご削除履歴がある場合には、選択購入者が指定商品を買い物かごから削除したことがあると判定する(ステップS66:YES)。この場合、システム制御部14は、ステップS67に移行する。一方、システム制御部14は、該当する買い物かご削除履歴がない場合には、選択購入者が指定商品を買い物かごから削除したことがないと判定する(ステップS66:NO)。この場合、システム制御部14は、ステップS69に移行する。
ステップS67において、システム制御部14は、選択購入者が購入した商品サイズと異なる商品サイズが買い物かごから削除されたか否かを判定する。具体的に、システム制御部14は、検索した買い物かご削除履歴に含まれる商品サイズリストに設定された商品サイズの中に、選択購入者の指定商品の購入履歴に含まれる購入サイズリストに設定されている商品サイズと一致しない商品サイズがあるか否かを判定する。このとき、システム制御部14は、商品サイズリストに設定された商品サイズの中に購入サイズリストに設定されている商品サイズと一致しない商品サイズがある場合には、選択購入者が購入した商品サイズと異なる商品サイズが買い物かごから削除されたと判定する(ステップS67:YES)。この場合、システム制御部14は、買い物かご削除評価フラグにONを設定する(ステップS68)。次いで、システム制御部14は、ステップS70に移行する。一方、システム制御部14は、商品サイズリストに設定された全ての商品サイズが購入サイズリストに設定されている商品サイズと一致する場合には、選択購入者が購入した商品サイズと異なる商品サイズが買い物かごから削除されていないと判定する(ステップS67:NO)。この場合、システム制御部14は、買い物かご削除評価フラグにOFFを設定する(ステップS69)。次いで、システム制御部14は、ステップS70に移行する。
ステップS70において、システム制御部14は、選択購入者が注文した複数の商品サイズの指定商品のうち一部の商品サイズの指定商品のみ選択購入者が注文をキャンセルしたか否かを判定する。具体的に、システム制御部14は、選択購入者の購入履歴が複数あり、複数の購入履歴のうち一部の購入履歴に含まれるキャンセルフラグのみがONであり、且つ、キャンセルフラグがONである購入履歴に含まれる購入サイズリストに設定されている商品サイズと、キャンセルフラグがOFFである購入履歴に含まれる購入サイズリストに設定されている商品サイズとが異なる場合、選択購入者が注文した複数の商品サイズの指定商品のうち一部の商品サイズの指定商品のみ選択購入者が注文をキャンセルしたと判定する(ステップS70:YES)。この場合、システム制御部14は、キャンセル評価フラグにONを設定する(ステップS71)。次いで、システム制御部14は、ステップS73に移行する。一方、システム制御部14は、選択購入者の購入履歴が1つのみである場合、複数の購入履歴に含まれるキャンセルフラグが全て互いに同一である場合、または、キャンセルフラグがONである購入履歴に含まれる購入サイズリストに設定されている商品サイズと、キャンセルフラグがOFFである購入履歴に含まれる購入サイズリストに設定されている商品サイズとが一致する場合、選択購入者が注文した複数の商品サイズの指定商品のうち一部の商品サイズの指定商品のみ選択購入者が注文をキャンセルしていないと判定する(ステップS70:NO)。この場合、システム制御部14は、キャンセル評価フラグにOFFを設定する(ステップS72)。次いで、システム制御部14は、ステップS73に移行する。
ステップS73において、システム制御部14は、買い物かご削除評価フラグ及びキャンセル評価フラグのうち少なくとも何れか一方がONであるか否かを判定する。このとき、システム制御部14は、買い物かご削除評価フラグ及びキャンセル評価フラグの何れもOFFであると判定した場合には(ステップS73:NO)、ステップS76に移行する。一方、システム制御部14は、買い物かご削除評価フラグ及びキャンセル評価フラグのうち少なくとも何れか一方がONであると判定した場合には(ステップS73:YES)、ステップS74に移行する。
ステップS74において、評価特定手段としてのシステム制御部14は、最終的に購入された商品サイズのスコアにスコアC1を加算する。スコアC1は、最終的に購入された商品サイズのスコア(例えば、+1.5)である。買い物かご削除評価フラグ及びキャンセル評価フラグのうち買い物かご削除評価フラグのみがONである場合、システム制御部14は、選択購入者の購入履歴に含まれる購入サイズリストに設定された商品サイズが、最終的に購入された商品サイズであると特定する。少なくともキャンセル評価フラグがONである場合、システム制御部14は、キャンセルフラグがOFFである購入履歴に含まれる購入サイズリストに設定された商品サイズが、最終的に購入された商品サイズであると特定する。
次いで、評価特定手段としてのシステム制御部14は、最終的に購入されなかった商品サイズのスコアにスコアC2を加算する(ステップS75)。スコアC2は、最終的に購入されなかった商品サイズのスコア(例えば、-1.5)である。買い物かご削除評価フラグ及びキャンセル評価フラグのうち買い物かご削除評価フラグのみがONである場合、システム制御部14は、買い物かご削除履歴に含まれる商品サイズリストに設定された商品サイズのうち、最終的に購入された商品サイズ以外の商品サイズが、最終的に購入されなかった商品サイズであると特定する。キャンセル評価フラグのみがONである場合、システム制御部14は、キャンセルフラグがONである購入履歴に含まれる購入サイズリストに設定された商品サイズが、最終的に購入されなかった商品サイズであると特定する。買い物かご削除評価フラグ及びキャンセル評価フラグの何れもがONである場合、システム制御部14は、買い物かご削除履歴に含まれる商品サイズリストに設定された商品サイズのうち、最終的に購入された商品サイズ以外の商品サイズと、キャンセルフラグがOFFである購入履歴に含まれる購入サイズリストに設定された商品サイズとが、それぞれ最終的に購入されなかった商品サイズであると特定する。システム制御部14は、ステップS75の処理を終えると、ステップS76に移行する。
ステップS76において、システム制御部14は、選択購入者から指定商品に対して評価がなかったか否かを判定する。評価がない場合とは、ステップS60~S75においてスコアに対する加算が一度も行われなかった場合である。このとき、システム制御部14は、評価があったと判定した場合には(ステップS76:NO)、スコア計算処理を終了させる。一方、システム制御部14は、評価がなかったと判定した場合には(ステップS76:YES)、購入された商品サイズのスコアにスコアDを加算する(ステップS77)。スコアDは、評価なしの商品サイズのスコア(例えば、+1.0)である。次いで、システム制御部14は、スコア計算処理を終了させる。
以上説明したように、本実施形態によれば、システム制御部14が、記憶部12に記憶された購入履歴に基づいて、指定者の要求に応じて特定される指定商品を購入した既購入者が購入した指定商品の商品サイズを取得し、指定者の身体サイズに関する体型情報及び既購入者の身体サイズに関する体型情報を取得し、既購入者からの指定商品に対する商品レビューを取得したり、既購入者からの指定商品に対する評価に応じたスコアを特定したりし、既購入者が購入した商品サイズ、指定者の身体サイズと既購入者の身体サイズとの大小関係、及びスコアに基づいて、適合サイズを推定し、推定された適合サイズを含む推薦サイズ情報を出力する。従って、ユーザが商品の試着を行わなくてもユーザの体に合う商品サイズを提示させることができる。
また、システム制御部14が、記憶部12に記憶された商品の購入履歴に基づいて、商品サイズが互いに異なる複数の指定商品を購入した既購入者が一部の指定商品を返品したと判定される場合、返品されていない商品サイズのスコアを、返品された商品サイズのスコアよりも高くなるように、スコアを特定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、既購入者により入力された商品レビュー情報を取得し、取得した商品レビュー情報の内容に応じたスコアを特定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、記憶部12に記憶された買い物かご削除履歴及び購入履歴の少なくとも何れか一方に基づいて、既購入者が指定商品についてサイズを選択した後に、選択したサイズをやめて他のサイズを購入したと判定される場合、購入された商品サイズのスコアを、購入がやめられた商品サイズのスコアよりも高くなるように、スコアを特定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、返品の有無を、既購入者ユーザから入力された商品レビュー情報の内容よりも重視して適合サイズを推定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、既購入者ユーザから入力された商品レビュー情報の内容を、購入しようと決めた後に購入をやめたか否かよりも重視して適合サイズを推定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、ユーザから登録された体型情報をユーザごとに記憶する記憶部12から体格情報を取得する。従って、精度が高い情報に基づいて、推定を行うことができる。
また、システム制御部14が、購入履歴に基づいて、既購入者が指定商品を購入した時期が新しいほど、その既購入者からの評価を重視して商品サイズを推定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、女性用の商品及び男性用の商品のうち、既購入者が購入した商品に含まれる割合が5割未満に設定された閾値以下である方の商品に指定商品が含まれる場合、その既購入者の購入履歴を適合サイズの推定に用いない。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、既購入者が大人であり、且つ、指定商品が子供である場合、その既購入者の購入履歴を適合サイズの推定に用いない。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、指定者が大人であり、且つ、指定商品が子供用の商品である場合、推薦サイズ情報を出力しない。従って、適合サイズの推定を行う必要がない場合に、推定を行わないようにすることができる。そのため、適合サイズの推定するための処理負荷を軽減することができる。
また、システム制御部14が、体型情報に基づいて、身体サイズが指定者の身体サイズと同じ体型区分に含まれる既購入者を特定し、特定された既購入者が購入した指定商品の商品サイズに対する評価に基づいて、特定された既購入者に合う商品サイズを推定し、推定された商品サイズを適合サイズであると推定する。従って、身体サイズが指定者の身体サイズと同程度であるユーザが購入した商品サイズ及びそのユーザからの評価に基づいて、推定が行われるので、適合サイズの推定精度を高めることができる。
[2.第2実施形態]
次に、第2実施形態の概要を説明する。第2実施形態においては、電子商店街サーバ1が、既購入者のうち、身体サイズが含まれる範囲が、指定者の身体サイズが含まれる範囲と異なる既購入者からの評価に基づいて、適合サイズを推定する。なお、第1実施形態と同様の点についての説明は省略する。
次に、第2実施形態の概要を説明する。第2実施形態においては、電子商店街サーバ1が、既購入者のうち、身体サイズが含まれる範囲が、指定者の身体サイズが含まれる範囲と異なる既購入者からの評価に基づいて、適合サイズを推定する。なお、第1実施形態と同様の点についての説明は省略する。
第1実施形態において、電子商店街サーバ1は、指定者の身体サイズと同じ範囲に身体サイズが含まれる既購入者の評価に基づいて適合サイズを推定していた。しかしながら、指定者の身体サイズと同程度の身体サイズを有する既購入者が存在しなかったり、指定者の身体サイズと同程度の身体サイズを有する既購入者の人数が少なかったりする場合がある。この場合、適合サイズを推定することができなかったり、推定精度が低下したりする。一方、指定者の身体サイズと同程度の身体サイズを有する既購入者の人数よりも、指定者の身体サイズと異なる身体サイズを有する既購入者の人数の方が多い蓋然性がある。そこで、電子商店街サーバ1は、指定者の身体サイズと異なる身体サイズを有する既購入者からの評価に基づいて、適合サイズを推定する。
具体的に、指定者の身体サイズよりも身体サイズが小さいユーザに合う商品サイズは、指定者に合う商品サイズよりも小さい蓋然性がある。一方、指定者の身体サイズよりも身体サイズが大きいユーザに合う商品サイズは、指定者に合う商品サイズよりも大きい蓋然性がある。そこで、電子商店街サーバ1は、指定者の身体サイズよりも身体サイズが小さい既購入者に合う商品サイズを、指定者の身体サイズよりも身体サイズが小さい既購入者からの評価に基づいて推定する。また、電子商店街サーバ1は、指定者の身体サイズよりも身体サイズが大きい既購入者に合う商品サイズを、指定者の身体サイズよりも身体サイズが大きい既購入者からの評価に基づいて推定する。そして、電子商店街サーバ1は、指定者の身体サイズよりも身体サイズが小さい既購入者に合う商品サイズと、指定者の身体サイズよりも身体サイズが大きい既購入者に合う商品サイズとの間にある商品サイズを、指定者の適合サイズと推定する。なお、指定者の身体サイズよりも身体サイズが小さい既購入者に合う商品サイズは、本発明における第1サイズの一例である。また、指定者の身体サイズよりも身体サイズが大きい既購入者に合う商品サイズは、本発明における第2サイズの一例である。
例えば、指定者の身体サイズよりも身体サイズが小さい既購入者に合う商品サイズがXSサイズであり、指定者の身体サイズよりも身体サイズが大きい既購入者に合う商品サイズがLLサイズであるとする。この場合、電子商店街サーバ1は、XSサイズとLLサイズとの丁度中間の商品サイズであるMサイズを、適合サイズとする。なお、指定者の身体サイズよりも身体サイズが小さい既購入者に合う商品サイズがXSサイズである一方、指定者の身体サイズよりも身体サイズが大きい既購入者に合う商品サイズがLサイズであるとする。この場合、XSサイズとLサイズとの丁度中間の商品サイズが存在しない。その場合、電子商店街サーバ1は、例えば、SサイズとMサイズとの両方を、適合サイズとして特定してもよい。この場合、電子商店街サーバ1は、推薦サイズ情報110として、例えば、「あなたの体型に近い人の多くは、SサイズかMサイズを買っています。」を生成してもよい。
次に、情報処理システムSの動作について、図12及び図13を用いて説明する。図12及び図13は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。図12及び図13において、図8または図9と同様の処理については同様の符号が付されている。なお、第2実施形態以降の実施形態における購入目的判定処理、商品ページ送信処理及びスコア計算処理の内容は、第1実施形態の場合と同様である。
図12に示すように、システム制御部14は、ステップS21の処理を終えると、評価人数、各商品の小スコア及び大スコアを、それぞれ0に初期化する(ステップS81)。小スコアは、身体サイズが指定者の身体サイズよりも小さい既購入者のスコアの合計値である。大スコアは、身体サイズが指定者の身体サイズよりも大きい既購入者のスコアの合計値である。次いで、システム制御部14は、ステップS23~S27を実行する。
次いで、システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが大きい区分であるか否かを判定する(ステップS82)。指定者の身長が属する区分が選択購入者の身長が属する区分以上の身長の区分であり、且つ、指定者の体重が属する区分が選択購入者の体重が属する区分以上の区分であり、なお且つ、指定者の体型区分と選択購入者の体型区分とが同一でない場合、指定者の体型区分は選択購入者の体型区分よりも身体サイズが大きい区分である。システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが大きい区分であると判定した場合には(ステップS82:YES)、ステップS83に移行する。一方、システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが大きい区分ではないと判定した場合には(ステップS82:NO)、ステップS86に移行する。
ステップS83において、システム制御部14は、スコア計算処理を実行する。ステップS83のスコア計算処理は、図8に示すステップS29の処理と同様である。次いで、システム制御部14は、選択購入者の指定商品の購入時期に応じて各商品サイズのスコアに重み付けを行う(ステップS84)。この処理内容は、図8のステップS30と同様である。次いで、システム制御部14は、選択購入者の各商品サイズのスコアを、各商品サイズの小スコアにそれぞれ加算する(ステップS85)。次いで、システム制御部14は、ステップS35に移行する。
ステップS86において、システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが小さい区分であるか否かを判定する。指定者の身長が属する区分が選択購入者の身長が属する区分以下の身長の区分であり、且つ、指定者の体重が属する区分が選択購入者の体重が属する区分以下の区分であり、なお且つ、指定者の体型区分と選択購入者の体型区分とが同一でない場合、指定者の体型区分は選択購入者の体型区分よりも身体サイズが小さい区分である。システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが小さい区分であると判定した場合には(ステップS86:YES)、ステップS87に移行する。一方、システム制御部14は、指定者の体型区分が選択購入者の体型区分よりも身体サイズが小さい区分ではないと判定した場合には(ステップS86:NO)、ステップS35に移行する。この場合、指定者の体型区分は、選択購入者の体型区分よりも身体サイズが大きい区分であるとも小さい区分であるともいえない。
ステップS87において、システム制御部14は、スコア計算処理を実行する。次いで、システム制御部14は、選択購入者の指定商品の購入時期に応じて各商品サイズのスコアに重み付けを行う(ステップS88)。この処理内容は、図8のステップS30と同様である。次いで、システム制御部14は、選択購入者の各商品サイズのスコアを、各商品サイズの大スコアにそれぞれ加算する(ステップS89)。次いで、システム制御部14は、ステップS35に移行する。
ステップS35において、システム制御部14は、全ての購入履歴を選択したと判定した場合には(ステップS35:NO)、小スコアが最も高い商品サイズを特定する(ステップS90)。次いで、システム制御部14は、大スコアが最も高い商品サイズを特定する(ステップS91)。次いで、推定手段としてのシステム制御部14は、小スコアが最も高い商品サイズと大スコアが最も高い商品サイズとの間にある商品サイズを、適合サイズとして特定する(ステップS92)。システム制御部14は、この処理を終えると、商品サイズ推定処理を終了させる。
以上説明したように、本実施形態によれば、身体サイズの大小関係に基づいて、身体サイズが指定者よりも小さい既購入者と、身体サイズが指定者よりも大きい既購入者とを特定し、特定された既購入者が購入した指定商品の商品サイズに対する評価に基づいて、身体サイズが指定者よりも小さい既購入者に合う指定商品の商品サイズと、身体サイズが指定者よりも大きい既購入者に合う指定商品の商品サイズとを推定し、推定された商品サイズの間にある商品サイズを、適合サイズであると推定する。従って、身体サイズが指定者の身体サイズと同程度であるユーザが存在しなくても、適合サイズを推定することができる。
なお、電子商店街サーバ1は、既購入者の身体サイズが指定者の身体サイズよりも予め設定された大きさ以上大きい場合、既購入者の身体サイズは指定者の身体サイズよりも大きいと判定し、既購入者の身体サイズが指定者の身体サイズよりも予め設定された大きさ以上小さい場合、既購入者の身体サイズは指定者の身体サイズよりも小さいと判定してもよい。
また、電子商店街サーバ1は、第1実施形態の場合と同様に、評価人数に基づいて、小スコアと大スコアのそれぞれについて、評価ありの場合のスコアの重みと評価なしの場合のスコアの重みとを変えてもよい。
また、第1及び第2実施形態とが組み合わせて実施されるように、電子商店街サーバ1が構成されてもよい。例えば、身体サイズが指定者の身体サイズと同一の範囲に含まれる既購入者の人数を、身体サイズ同一人数とする。例えば、電子商店街サーバ1は、身体サイズ同一人数が予め設定された人数以上である場合、身体サイズが指定者の身体サイズと同一の範囲に含まれる既購入者からの評価に基づいて、適合サイズを推定してもよい。一方、電子商店街サーバ1は、身体サイズ同一人数が予め設定された人数未満である場合、身体サイズが指定者の身体サイズと同一の範囲に含まれない既購入者からの評価に基づいて、適合サイズを推定してもよい。
[3.第3実施形態]
次に、第3実施形態の概要を説明する。第3実施形態においては、電子商店街サーバ1が、既購入者の身体サイズと既購入者が購入した指定商品の商品サイズとの組の分布に近似する近似式を、既購入者からの評価を考慮して求め、近似式に基づいて、適合サイズを推定する。なお、第1実施形態と同様の点についての説明は省略する。
次に、第3実施形態の概要を説明する。第3実施形態においては、電子商店街サーバ1が、既購入者の身体サイズと既購入者が購入した指定商品の商品サイズとの組の分布に近似する近似式を、既購入者からの評価を考慮して求め、近似式に基づいて、適合サイズを推定する。なお、第1実施形態と同様の点についての説明は省略する。
上述したように、第1実施形態においては、身体サイズが指定者の身体サイズと同一の範囲に含まれる既購入者が存在しないと、適合サイズを推定することができない。一方、第2実施形態においては、身体サイズが指定者の身体サイズよりも大きい既購入者と、身体サイズが指定者の身体サイズよりも小さい既購入者との両方が存在しないと、適合サイズを推定することができない。そこで、電子商店街サーバ1は、身体サイズと購入した商品サイズのうち少なくとも何れか一方が互いに異なる既購入者が2人以上存在すれば、適合サイズを推定することができるように処理する。
具体的に、電子商店街サーバ1は、既購入者の身体サイズと既購入者が購入した商品サイズとの組の分布に基づいて、身体サイズと商品サイズとの関係に近似する近似式を求める。このとき、電子商店街サーバ1は、既購入者からの評価に基づいて、その既購入者の身体サイズと商品サイズとの組に対して重み付けをする。なお、既購入者の身体サイズと商品サイズとの組を、単に「組」という。
例えば、既購入者の身体サイズとして身長を用いるとする。また、指定商品の商品サイズは、S、M及びLサイズがあるとする。身長をxとし、商品サイズをyとする。また、求めるべき近似式を示す関数をfとし、yとxとの関係が、y=f(x)で表されるとする。ここで、S、M及びLサイズは、例えば、1、2及び3に変換される。既購入者の実際の身体サイズ及び商品サイズを、xi及びyiとする。iは、各組に対して付与される番号である。f(xi)と実際のyiとでは、差が生じる場合がある。f(xi)とyiとの差の分散Jは、下記の式により求められる。
式1において、mは、実際に得られた組の総数である。つまり、mはデータ数である。また、αiは、組iに対する重み係数である。αiは0以上の値である。例えば、最小二乗法で近似式を求める場合、電子商店街サーバ1は、Jが最小になるように関数fを求める。このとき、電子商店街サーバ1は、αiを、組iに対応する既購入者からの評価に応じた値とする。具体的に、電子商店街サーバ1は、評価が高いほどαiを大きくする。つまり、スコアが高いほどαiが大きくなる。これにより、組iに対する評価が高いほど、yiとf(xi)との差が、αiを用いない場合と比較して縮小するように関数fが求められる。なお、電子商店街サーバ1は、上述した方法以外の方法で近似式を求めてもよい。求められた近似式に指定者の身長を代入した場合に算出される商品サイズが、指定者の適合サイズとなる。近似式には、既購入者の身体サイズが反映される。従って、近似式と指定者の身体サイズとに基づいて適合サイズを算出することは、指定者の身体サイズと既購入者の身体サイズとの大小関係に基づいて指定者の適合サイズを推定することの一例である。
図14(a)は、身長と商品サイズとの組の分布と、近似線をとを示す図である。図14において、横軸は身長であり縦軸は商品サイズである。また、図14(a)における円は、組を示す。円の大きさは、スコアの高さに比例している。また、組が同一である既購入者が複数存在する場合、円の大きさが示すスコアは、組が同一である複数の既購入者のスコアの合計である。図14(a)の符号200は、近似曲線である。なお、近似式は曲線の式であってもよいし直線の式であってもよい。
例えば、指定者の身長が165cmであるとする。この場合、近似曲線200により、指定者の適合サイズは、SサイズとMサイズとの間に位置する。具体的に、適合サイズとSサイズとの差は、適合サイズとMサイズとの差の3倍である。この場合の、推薦サイズ情報110は種々考えられる。図14(b)乃至図14(d)は、推薦サイズ情報110の表示例を示す図である。例えば、図14(b)に示すように、各サイズの位置として、「S」、「M」及び「L」の文字が表示され、各商品サイズに対する適合サイズの位置が図形等で示されてもよい。また、図14(c)に示すように、適合サイズが最も近い商品サイズを最終的な適合サイズとして表示されてもよい。例えば、「あなたの体型に近い人は、Mサイズに対する評価が良いです。」が表示される。また、適合サイズが最も近い商品サイズと、適合サイズが最も近い商品サイズが適合サイズである確率とが表示されるようにしてもよい。例えば、SサイズとMサイズとの差を100%であると仮定すると、適合サイズとMサイズとの差は25%である。そこで、Mサイズが適合サイズである確率を、75%とする。この場合、図14(d)に示すように、例えば「あなたに合うサイズがMサイズである可能性は75%です。」が表示される。
次に、情報処理システムSの動作について、図15を用いて説明する。図15は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。図15において、図8または図9と同様の処理については同様の符号が付されている。
図15に示すように、システム制御部14は、ステップS21、S23~S27、S29及びS30を実行する。次いで、システム制御部14は、選択購入者の身長、選択購入者が購入した商品サイズ及び選択購入者が購入した商品サイズのスコアをRAM14cに保存する(ステップS101)。次いで、システム制御部14は、ステップS35に移行する。
ステップS35において、システム制御部14は、全ての購入履歴を選択したと判定した場合には(ステップS35:NO)、RAM14cに保存しておいた各選択購入者の身長、選択購入者が購入した商品サイズ及びスコアに基づいて、各組をスコアに基づいて重み付けをして、近似式を求める(ステップS102)。例えば、式1のJが最小となるように、近似式の各項の係数を求める。次いで、推定手段としてのシステム制御部14は、求めた近似式に基づいて適合サイズを計算する(ステップS103)。具体的に、システム制御部14は、近似式に指定者の身長を代入した場合の商品サイズを計算する。そして、システム制御部14は、算出された商品サイズを、適合サイズとして特定する。システム制御部14は、この処理を終えると、適合サイズ推定処理を終了させる。
以上説明したように、本実施形態によれば、システム制御部14が、既購入者の身体サイズとその既購入者が購入した指定商品の商品サイズとの組の分布の近似式を、既購入者からの評価に基づいて組を重み付けして求め、近似式と指定者の身体サイズとに基づいて算出される商品サイズを、適合サイズであると推定する。従って、身体サイズ及び購入した指定商品の商品サイズの少なくとも何れか一方が互いに異なるユーザが複数存在すれば、適合サイズを推定することができる。
なお、上記実施形態において、電子商店街サーバ1は、身長に基づいて近似式を求めていた。しかしながら、身長以外の身体サイズに基づいて近似式を求めてもよい。また、電子商店街サーバ1は、指定商品の種類に応じて、用いる身体サイズを変えてもよい。また、電子商店街サーバ1は、複数の身体サイズに基づいて近似式を求めてもよい。例えば、身長及び体重の両方に基づいて近似式を求めるとする。身長及び体重をx及びyとし、商品サイズをzとする。また、近似式を示す関数をgとすると、z=g(x,y)となる。
また、電子商店街サーバ1は、第1実施形態の場合と同様に、評価人数に基づいて、伸長と商品サイズとの各組について、評価ありの場合のスコアの重みと評価なしの場合のスコアの重みとを変えてもよい。
[4.第4実施形態]
次に、第4実施形態の概要を説明する。第4実施形態においては、電子商店街サーバ1は、指定者が過去に購入した商品の商品サイズと、既購入者が過去に購入した商品の商品サイズとに基づいて、指定者の身体サイズと既購入者の身体サイズとが同一の範囲に含まれるか否かを判定する。なお、第1実施形態と同様の点についての説明は省略する。
次に、第4実施形態の概要を説明する。第4実施形態においては、電子商店街サーバ1は、指定者が過去に購入した商品の商品サイズと、既購入者が過去に購入した商品の商品サイズとに基づいて、指定者の身体サイズと既購入者の身体サイズとが同一の範囲に含まれるか否かを判定する。なお、第1実施形態と同様の点についての説明は省略する。
第1実施形態において、電子商店街サーバ1は、ユーザにより予め登録された体型情報に基づいて処理を行っていた。しかしながら、ユーザが体型情報を登録しない場合がある。そこで、電子商店街サーバ1は、指定者及び既購入者がそれぞれ過去に購入したことがある商品の商品サイズに基づいて、指定者の身体サイズと既購入者の身体サイズとが同一の範囲に含まれるか否かを判定する。指定者及び既購入者がそれぞれ購入したことがある商品のうち、身体サイズが同一の範囲に含まれるかの判定に用いられる商品を、「参照商品」という。なお、指定者が購入したことがある商品は、本発明における第1商品の一例である。また、既購入者が購入したことがある商品は、本発明における第2商品の一例である。また、指定者及び既購入者がそれぞれ過去に購入したことがある商品の商品サイズは、本発明における体型情報の一例である。また、本実施形態の場合、会員情報のフォーマット上、会員情報に体型情報が含まれていなくてもよい。
指定者が購入したことがある参照商品の商品サイズと、既購入者が購入したことがある参照商品の商品サイズとが同一である場合、指定者の身体サイズと既購入者の身体サイズとが同程度であると推定することができる。なお、本実施形態における商品サイズは、本発明における身体サイズ情報の一例である。
指定者の参照商品と既購入者の参照商品とは全く異なるものであってもよい。しかしながら、商品に表記されている商品サイズが同じであっても、例えば、商品のブランドや国等によっては、実際のサイズが異なる場合がある。そのため、身体サイズが同一の範囲に含まれるかの判定精度が低下する場合がある。そこで、参照商品としてもよい商品が、予め定められた条件で限定されてもよい。例えば、参照商品は、指定者及び既購入者の何れもが購入した同一の商品であると定められてもよい。また、例えば、参照商品は、指定者及び既購入者の何れもが同じブランドの範囲内で購入した商品であると定められてもよい。ブランドが同一であれば、商品サイズの基準は同一である蓋然性が高いからである。また、例えば、参照商品は、指定者及び既購入者の何れもが同じ種類の範囲内で購入した商品であると定められてもよい。例えば、商品を、トップスとボトムスの2種類に分けてもよい。トップスとボトムスとでは、商品サイズの基準が異なる場合があるからである。また、指定者及び既購入者の何れもが同じブランド及び種類の範囲内で購入した商品であると定められてもよい。なお、以降において、或る商品と同一の範疇に属する商品とは、参照商品の条件により定められる商品をいう。つまり、或る商品と同一の範疇に属する商品は、例えば、或る商品と同一の商品であったり、或る商品とブランドが同一である商品であったり、或る商品と種類が同一である商品であったりする。
参照商品を特に限定しない場合、電子商店街サーバ1は、各商品の商品サイズを、商品が実際に合う身体サイズに変換してもよい。変換後のサイズを、「基準サイズ」という。基準サイズは、例えば、身長、体重、上半身の長さ、下半身の長さ、バストサイズ、ウエストサイズ、ヒップサイズ等であってもよい。また、基準サイズは、例えば、商品サイズの記号、号数、インチ数等であってもよい。記憶部12には、サイズ変換DBが構築される。サイズ変換DBには、例えば、ブランドID、商品サイズ及び基準サイズが、ブランドと商品サイズとの組ごとに登録される。電子商店街サーバ1は、商品情報に含まれるブランドID及び商品サイズに基づいて、適合する基準サイズを取得することができる。電子商店街サーバ1は、例えば、基準サイズが属する体型区分を特定する。そして、電子商店街サーバ1は、指定者の体型区分と既購入者の体型区分とが一致するか否かを判定する。なお、基準サイズは、本発明における身体サイズ情報の一例である。
ところで、指定者が参照商品を購入した時期から現在に至るまでに、指定者の身体サイズが変化する場合がある。そのため、指定者が購入した参照商品の商品サイズが、指定者が参照商品を購入した時期においては指定者の身体サイズに合っていたとしても、現在の指定者の身体サイズには合わない場合がある。従って、指定者の参照商品の購入時期が古い場合、指定者の身体サイズと、指定者の参照商品と同一の範疇に属する参照商品を購入した既購入者の身体サイズが同一の範疇に属するかの判定精度が低下する場合がある。判定精度が低下すると、既購入者からの評価の信頼性が低下する。そこで、電子商店街サーバ1は、指定者の参照商品の購入時期に応じて、その参照商品と同一の範疇に属する参照商品を購入した既購入者のスコアに重み付けをしてもよい。具体的に、電子商店街サーバ1は、購入時期が新しいほど重みを重くする。例えば、電子商店街サーバ1は、図3(b)に示すように、重み係数W3を決定してもよい。重み係数W3は、参照商品の購入時期の差に応じた重みを示す係数である。
また、既購入者が購入した参照商品の商品サイズが、既購入者が参照商品を購入した時期において既購入者の身体サイズに合い、且つ、既購入者が購入した指定商品の商品サイズが、既購入者が指定商品を購入した時期において既購入者の身体サイズに合っていたとする。しかしながら、既購入者が参照商品(または、指定商品)を購入した時期から既購入者が指定商品(または、参照商品)を購入した時期に至るまでに、既購入者の身体サイズが変化する場合がある。そのため、参照商品の購入時期と指定商品の購入時期との差が長くなると、既購入者の身体サイズが変化している蓋然性が高くなる。既購入者の身体サイズが変化していると、既購入者からの評価の信頼性が低くなる。そこで、電子商店街サーバ1は、既購入者の参照商品の購入時期と既購入者の指定商品の購入時期との差に応じて、既購入者のスコアに重み付けをしてもよい。具体的に、電子商店街サーバ1は、差が短いほど重みを重くする。例えば、電子商店街サーバ1は、図3(b)に示すように、重み係数W4を決定してもよい。重み係数W4は、購入時期の差に応じた重みを示す係数である。
また、電子商店街サーバ1は、指定者からの参照商品に対する評価に基づいて、その参照商品と同一の範疇に属する参照商品を購入した既購入者のスコアを重み付けしてもよい。また、電子商店街サーバ1は、既購入者からの参照商品に対する評価に基づいて、その既購入者のスコアに重み付けしてもよい。参照商品に対する評価が高いほど、ユーザが購入した参照商品の商品サイズがユーザの身体サイズに合っている蓋然性が高いからである。具体的に、電子商店街サーバ1は、評価が高いほど重みを重くする。評価の内容は、図3(a)に示す内容と同様である。電子商店街サーバ1は、評価の内容に対応するスコアに応じて、重み係数を決定する。そして、電子商店街サーバ1は、決定した重み係数を、各商品サイズのスコアに掛け合わせる。
また、電子商店街サーバ1は、指定商品の種類と同じ種類の商品のみに、参照商品を限定してもよい。また、電子商店街サーバ1は、指定商品のブランドと同じブランドの商品のみに、参照商品を限定してもよい。
また、電子商店街サーバ1は、指定者が他人のために購入した参照商品の購入履歴を、適合サイズの推定に用いなくてもよい。具体的に、電子商店街サーバ1は、指定者が他人のために購入した参照商品の購入履歴から取得される商品サイズを、推定に用いない。また、電子商店街サーバ1は、既購入者が他人のために購入した指定商品や参照商品の購入履歴を、適合サイズの推定に用いなくてもよい。具体的に、電子商店街サーバ1は、既購入者が他人のために購入した商品の購入履歴から取得される商品サイズ、及び、その購入履歴に基づいて特定される既購入者からの指定商品に対する評価を、推定に用いない。ユーザが他人のために購入する商品の例としては、ユーザが大人である場合の子供用の商品、ユーザの性別とは異なる性別用の商品等がある。
次に、情報処理システムSの動作について、図16を用いて説明する。図16は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。図16において、図8と同様の処理については同様の符号が付されている。なお、ステップS31~S39の処理内容は、図9と同様である。
図16に示すように、システム制御部14は、指定者のユーザIDを含む購入履歴を、購入履歴DB12eから検索する(ステップS121)。次いで、システム制御部14は、購入履歴除外処理を実行する(ステップS122)。このとき、システム制御部14は、ステップS121において検索された指定者の購入履歴を指定する。購入履歴除外処理では、指定された購入履歴の中から、ユーザが他人のために商品を購入した購入履歴が除外される。除外された購入履歴は、適合サイズの推定に用いられない。
図17は、本実施形態に係る電子商店街サーバ1のシステム制御部14の購入履歴除外処理における処理例を示すフローチャートである。図17に示すように、システム制御部14は、検索された各購入履歴に含まれるジャンルIDに基づいて、ユーザが購入した全商品に対する女性用の商品の割合と男性用の商品の割合とを計算する。そして、システム制御部14は、女性用の商品の割合が男性用の商品の割合よりも大きいか否かを判定する(ステップS141)。このとき、システム制御部14は、女性用の商品の割合が男性用の商品の割合よりも大きいと判定した場合には(ステップS141:YES)、ステップS142に移行する。一方、システム制御部14は、女性用の商品の割合が男性用の商品の割合よりも大きくはないと判定した場合には(ステップS141:NO)、ステップS144に移行する。
ステップS142において、システム制御部14は、男性用の商品の割合が閾値以下であるか否かを判定する。このとき、システム制御部14は、男性用の商品の割合が閾値以下であると判定した場合には(ステップS142:YES)、指定された購入履歴の中から、男性用の商品の購入履歴を除外する(ステップS143)。次いで、システム制御部14は、ステップS146に移行する。一方、システム制御部14は、男性用の商品の割合が閾値よりも大きいと判定した場合には(ステップS142:NO)、ステップS146に移行する。
ステップS144において、システム制御部14は、女性用の商品の割合が閾値以下であるか否かを判定する。このとき、システム制御部14は、女性用の商品の割合が閾値以下であると判定した場合には(ステップS144:YES)、指定された購入履歴の中から、女性用の商品の購入履歴を除外する(ステップS145)。次いで、システム制御部14は、ステップS146に移行する。一方、システム制御部14は、女性用の商品の割合が閾値よりも大きいと判定した場合には(ステップS144:NO)、ステップS146に移行する。
ステップS146において、システム制御部14は、指定された購入履歴からユーザIDを取得する。次いで、システム制御部14は、取得したユーザIDを含む会員情報を会員情報DB12aから取得する。そして、システム制御部14は、取得した会員情報に含まれる年齢に基づいて、ユーザが大人であるか否かを判定する。このとき、システム制御部14は、ユーザが大人であると判定した場合には(ステップS146:YES)、指定された購入履歴の中から、子供用の商品の購入履歴を除外する(ステップS147)。システム制御部14は、この処理を終えると、購入履歴除外処理を終了させる。一方、システム制御部14は、ユーザが大人ではないと判定した場合には(ステップS146:NO)、購入履歴除外処理を終了させる。
システム制御部14は、購入履歴除外処理を終えると、図16に示すように、ステップS22~S26を実行する。ステップS26において、システム制御部14は、購入目的判定処理の戻り値が「他人のため」ではないと判定した場合には(ステップS26:NO)、選択購入者のユーザIDを含む購入履歴を、購入履歴DB12eから検索する(ステップS123)。なお、システム制御部14は、指定商品の購入履歴を検索対象から除外してもよい。次いで、システム制御部14は、購入履歴除外処理を実行する(ステップS124)。このとき、システム制御部14は、ステップS123において検索された選択購入者の購入履歴を指定する。
次いで、システム制御部14は、指定者の購入履歴の検索結果に含まれる購入履歴と、選択購入者の購入履歴の検索結果に含まれる購入履歴とに基づいて、指定者が購入したことがある商品と同一の範疇に属する商品を選択購入者が購入したことがあるか否かを判定する(ステップS125)。例えば、商品が同一であるか否かは、商品IDまたは商品コードに基づいて判定することができる。また、ブランドが同一であるか否かは、ブランドIDに基づいて判定することができる。また、種類が同一であるか否かは、ジャンルIDに基づいて判定することができる。システム制御部14は、指定者が購入したことがある商品と同一の範疇に属する商品を選択購入者が購入したことがないと判定した場合には(ステップS125:NO)、ステップS35に移行する。一方、システム制御部14は、指定者が購入したことがある商品と同一の範疇に属する商品を選択購入者が購入したことがあると判定した場合には(ステップS125:YES)、ステップS126に移行する。
ステップS126において、システム制御部14は、指定者が購入した商品のうち、選択購入者が購入した商品と同一の範疇に属すると判定した参照商品の購入履歴を特定する。また、システム制御部14は、選択購入者が購入した商品のうち、指定者が購入した商品と同一の範疇に属すると判定した参照商品の購入履歴を特定する。次いで、身体サイズ情報取得手段としてのシステム制御部14は、指定者が購入した参照商品の商品サイズと、選択購入者が購入した参照商品サイズとを、それぞれの購入履歴から取得する。そして、システム制御部14は、指定者が購入した参照商品の商品サイズと、選択購入者が購入した参照商品の商品サイズとが同一であるか否かを判定する。このとき、システム制御部14は、指定者が購入した参照商品の商品サイズと、選択購入者が購入した参照商品の商品サイズとが同一ではないと判定した場合には(ステップS126:NO)、ステップS35に移行する。一方、システム制御部14は、指定者が購入した参照商品の商品サイズと、選択購入者が購入した参照商品の商品サイズとが同一であると判定した場合には(ステップS126:YES)、スコア計算処理を実行する(ステップS29)。なお、指定者が購入したことがある商品と同一の範疇に属する商品を選択購入者が複数回購入したことがある場合がある。この場合、購入時によって商品サイズが異なる場合がある。そこで、システム制御部14は、指定者が購入した参照商品の商品サイズと、選択購入者が購入した参照商品の商品サイズとが同一である割合を算出してもよい。そして、システム制御部14は、算出した割合が予め設定された割合以上である場合に、スコア計算処理を実行してもよい。
システム制御部14は、スコア計算処理を終えると、指定者の参照商品の購入時期に応じて各商品サイズのスコアに重み付けを行う(ステップS127)。具体的に、システム制御部14は、指定者の参照商品の購入履歴に含まれる購入日時に対応する重み係数W3を記憶部12から取得する。購入履歴が複数ある場合、システム制御部14は、例えば、購入日時の平均に対応する重み係数W3を取得する。システム制御部14は、各商品サイズのスコアに重み係数W3を掛け合わせる。
次いで、システム制御部14は、選択購入者の参照商品の購入日時と選択購入者の指定商品の購入日時との差に応じて各商品サイズのスコアに重み付けを行う(ステップS128)。具体的に、システム制御部14は、購入日時の差に対応する重み係数W4を記憶部12から取得する。購入日時は、購入履歴から取得することができる。参照商品が複数ある場合、システム制御部14は、例えば、購入日時の差の平均に対応する重み係数W4を取得する。システム制御部14は、各商品サイズのスコアに重み係数W4を掛け合わせて、選択購入者の商品サイズごとの最終的なスコアを計算する。システム制御部14は、この処理を終えると、ステップS31に移行する。
以上説明したように、本実施形態によれば、システム制御部14が、購入履歴に基づいて、指定者が購入したことがある商品の商品サイズと、既購入者が購入したことがある商品の商品サイズとを取得する。そして、システム制御部14が、指定者が購入したことがある商品の商品サイズと既購入者が購入したことがある商品の商品サイズとの大小関係に基づいて、購入したことがある商品の商品サイズが、指定者が購入したことがある商品の商品サイズと同一である既購入者を特定し、特定された既購入者が購入した指定商品の商品サイズ及びその商品サイズに対する評価に基づいて、適合サイズを推定する。従って、ユーザからの身体サイズ情報の登録がなくても、適合サイズを推定することができる。
また、システム制御部14が、指定商品を購入した既購入者のうち、指定者が購入した商品と同一の範疇に属する商品を購入した既購入者からの評価を用いて商品サイズを推定し、指定者が参照商品を購入した時期が新しいほど、その参照商品と同一の範疇に属する商品を購入した既購入者からの評価を重視して商品サイズを推定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、既購入者の参照商品の購入時期とその既購入者の指定商品の購入時期とが近いほど、その既購入者からの評価を重視して商品サイズを推定する。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、女性用の商品及び男性用の商品のうち、ユーザが購入した商品に含まれる割合が5割未満に設定された閾値以下である方の商品を参照商品から除外し、その商品の購入履歴を適合サイズの推定に用いない。従って、適合サイズの推定精度を高めることができる。
また、システム制御部14が、大人であるユーザが子供用に購入した商品を参照商品から除外し、その商品の購入履歴を適合サイズの推定に用いない。従って、適合サイズの推定精度を高めることができる。
[5.第5実施形態]
次に、第5実施形態の概要を説明する。第5実施形態は、第2実施形態と第4実施形態とを組み合わせた実施形態である。具体的に、電子商店街サーバ1は、指定者が過去に購入した商品の商品サイズと、既購入者が過去に購入した商品の商品サイズとに基づいて、指定者の身体サイズと既購入者の身体サイズとの大小関係を判定する。なお、第2実施形態または第4実施形態と同様の点についての説明は省略する。
次に、第5実施形態の概要を説明する。第5実施形態は、第2実施形態と第4実施形態とを組み合わせた実施形態である。具体的に、電子商店街サーバ1は、指定者が過去に購入した商品の商品サイズと、既購入者が過去に購入した商品の商品サイズとに基づいて、指定者の身体サイズと既購入者の身体サイズとの大小関係を判定する。なお、第2実施形態または第4実施形態と同様の点についての説明は省略する。
指定者が購入したことがある参照商品の商品サイズが、既購入者が購入したことがある参照商品の商品サイズよりも大きい場合、指定者の身体サイズは既購入者の身体サイズよりも大きいと推定することができる。また、指定者が購入したことがある参照商品の商品サイズが、既購入者が購入したことがある参照商品の商品サイズよりも小さい場合、指定者の身体サイズは既購入者の身体サイズよりも小さいと推定することができる。なお、本実施形態における商品サイズは、本発明における身体サイズ情報の一例である。
次に、情報処理システムSの動作について、図18及び図19を用いて説明する。図18及び図19は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。図18及び図19において、図8、図9または図16と同様の処理については同様の符号が付されている。
図18に示すように、システム制御部14は、ステップS121、S122、S81、S23~S26、S123~S125を実行する。ステップS125において、システム制御部14は、指定者が購入したことがある商品と同一の範疇に属する商品を選択購入者が購入したことがあると判定した場合には(ステップS125:YES)、ステップS161に移行する。
図19に示すように、ステップS161において、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも大きいか否かを判定する。このとき、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも大きくはないと判定した場合には(ステップS161:NO)、ステップS164に移行する。一方、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも大きいと判定した場合には(ステップS161:YES)、スコア計算処理を実行する(ステップS83)。次いで、システム制御部14は、各商品サイズのスコアに重み付けを行う(ステップS162、S163)。ステップS162及びS163の処理内容は、ステップS127及びS128の処理内容と同様である。次いで、システム制御部14は、ステップS85に移行する。
ステップS164において、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも小さいか否かを判定する。このとき、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも小さくはないと判定した場合には(ステップS164:NO)、ステップS35に移行する。一方、システム制御部14は、指定者が購入した参照商品の商品サイズが、選択購入者が購入した参照商品の商品サイズよりも小さいと判定した場合には(ステップS164:YES)、スコア計算処理を実行する(ステップS87)。次いで、システム制御部14は、各商品サイズのスコアに重み付けを行う(ステップS165、S166)。ステップS165及びS166の処理内容は、ステップS127及びS128の処理内容と同様である。次いで、システム制御部14は、ステップS89に移行する。
システム制御部14は、ステップS85またはS89の処理を終えると、ステップS35、S36、S90~S92を、第2実施形態の場合と同様に実行する。
以上説明したように、本実施形態によれば、システム制御部14が、購入履歴に基づいて、指定者が購入したことがある商品の商品サイズと、既購入者が購入したことがある商品の商品サイズとを取得する。そして、システム制御部14が、指定者が購入したことがある商品の商品サイズと既購入者が購入したことがある商品の商品サイズとの大小関係に基づいて、購入した商品サイズが、指定者が購入した商品サイズよりも小さい既購入者と、購入した商品サイズが、指定者が購入した商品サイズよりも大きい既購入者とを特定し、特定された既購入者が購入した指定商品の商品サイズ及びその商品サイズに対する評価に基づいて、購入した商品サイズが、指定者が購入した商品サイズよりも小さい既購入者に合う指定商品の商品サイズと、購入した商品サイズが、指定者が購入した商品サイズよりも大きい既購入者とを推定し、推定された商品サイズの間にある商品サイズを、適合サイズであると推定する。従って、ユーザからの身体サイズ情報の登録がなくても、適合サイズを推定することができる。
なお、第4及び第5実施形態において、電子商店街サーバ1は、体型情報を登録しているユーザについては、会員情報から体型情報を取得してもよい。この場合の基準サイズは、例えば、身長等で表される。例えば、電子商店街サーバ1は、指定者の体型情報が登録されている場合に、体型情報が登録されている既購入者については、第1または第2実施形態と同様の処理を行う。
一方、電子商店街サーバ1は、指定者の体型情報が登録されている場合に、体型情報が登録されていない既購入者については、指定者の参照商品と既購入者の参照商品とを特定する。このとき、電子商店街サーバ1は、指定者が購入したことがある商品の商品サイズを、基準サイズとしての身長に変換する。そして、電子商店街サーバ1は、変換された身長と登録されている指定者の身長との差が予め設定された長さ以上である商品の購入履歴は、指定者の購入履歴の検索結果から除外する。このような商品は、指定者の身体サイズに合わない商品であるからである。ここで、電子商店街サーバ1は、変換された身長が指定者の身長よりも低い商品の購入履歴のみ、指定者の購入履歴の検索結果から除外してもよい。
また、電子商店街サーバ1は、指定者の体型情報が登録されていない場合に、体型情報が登録されている既購入者についても、指定者の参照商品と既購入者の参照商品とを特定する。このとき、電子商店街サーバ1は、既購入者が購入したことがある商品の商品サイズを、基準サイズとしての身長に変換する。そして、電子商店街サーバ1は、変換された身長と登録されている既購入者の身長との差が予め設定された長さ以上である商品の購入履歴は、既購入者の購入履歴の検索結果から除外する。ここで、電子商店街サーバ1は、変換された身長が既購入者の身長よりも低い商品の購入履歴のみ、既購入者の購入履歴の検索結果から除外してもよい。
[6.第6実施形態]
次に、第6実施形態の概要を説明する。第6実施形態は、第3実施形態と第4実施形態とを組み合わせた実施形態である。具体的に、電子商店街サーバ1は、既購入者が過去に購入した商品の商品サイズに基づいて、既購入者の身体サイズを推定する。そして、電子商店街サーバ1は、推定した身体サイズを用いて近似式を求める。なお、第3実施形態または第4実施形態と同様の点についての説明は省略する。
次に、第6実施形態の概要を説明する。第6実施形態は、第3実施形態と第4実施形態とを組み合わせた実施形態である。具体的に、電子商店街サーバ1は、既購入者が過去に購入した商品の商品サイズに基づいて、既購入者の身体サイズを推定する。そして、電子商店街サーバ1は、推定した身体サイズを用いて近似式を求める。なお、第3実施形態または第4実施形態と同様の点についての説明は省略する。
ユーザが購入したことがある商品の商品サイズから変換された基準サイズは、ユーザの身体サイズに対応する蓋然性がある。従って、電子商店街サーバ1は、既購入者の基準サイズを用いて、既購入者の基準サイズと既購入者が購入した指定商品の商品サイズとの組の分布に近似する近似式を求めることができる。そして、電子商店街サーバ1は、指定者の基準サイズを用いて適合サイズを推定することができる。なお、本実施形態における基準サイズは、本発明における身体サイズ情報の一例である。
次に、情報処理システムSの動作について、図20及び図21を用いて説明する。図20は、本実施形態に係る電子商店街サーバ1のシステム制御部14の適合サイズ推定処理における処理例を示すフローチャートである。図20及び図21において、図8、図9または図16と同様の処理については同様の符号が付されている。
図20に示すように、システム制御部14は、ステップS121及びS122を実行する。次いで、システム制御部14は、指定者の購入履歴の検索結果に含まれる購入履歴から、ブランドID及び商品サイズを取得する。そして、システム制御部14は、取得したブランドID及び商品サイズに対応する基準サイズを、サイズ変換DBから取得する(ステップS181)。なお、購入履歴が複数存在する場合、システム制御部14は、複数の基準サイズを取得する場合がある。この場合、システム制御部14は、例えば、基準サイズの平均値を、指定者の最終的な基準サイズとする。
次いで、システム制御部14は、ステップS23~S26、S123及びS124を実行する。次いで、システム制御部14は、選択購入者の購入履歴の検索結果に含まれる購入履歴から、ブランドID及び商品サイズを取得する。そして、システム制御部14は、取得したブランドID及び商品サイズに対応する基準サイズを、サイズ変換DBから取得する(ステップS182)。次いで、システム制御部14は、ステップS29及びS127を実行する。次いで、システム制御部14は、選択購入者の基準サイズ、選択購入者が購入した指定商品の商品サイズ及び選択購入者が購入した指定商品の商品サイズのスコアをRAM14cに保存する(ステップS183)。次いで、システム制御部14は、ステップS35に移行する。
図21に示すように、ステップS35において、システム制御部14は、全ての購入履歴を選択したと判定した場合には(ステップS35:NO)、RAM14cに保存しておいた各選択購入者の基準サイズ、選択購入者が購入した指定商品の商品サイズ及びスコアに基づいて、各組をスコアに基づいて重み付けをして、近似式を求める(ステップS184)。次いで、システム制御部14は、求めた近似式と、指定者の基準サイズとに基づいて、適合サイズを計算する(ステップS185)。システム制御部14は、この処理を終えると、適合サイズ推定処理を終了させる。
以上説明したように、本実施形態によれば、システム制御部14が、購入履歴に基づいて、指定者が購入したことがある商品の商品サイズと、既購入者が購入したことがある商品の商品サイズとを取得し、取得した商品サイズを基準サイズに変換する。そして、システム制御部14が、既購入者の基準サイズとその既購入者が購入した指定商品の商品サイズとの組の分布の近似式を、既購入者からの評価に基づいて組を重み付けして求め、近似式と指定者の基準サイズとに基づいて算出される商品サイズを、適合サイズであると推定する。従って、ユーザからの身体サイズ情報の登録がなくても、適合サイズを推定することができる。
なお、電子商店街サーバ1は、体型情報を登録しているユーザについては、体型情報を取得してもよい。
また、上記各実施形態において、電子商店街サーバ1は、指定者の体型情報が登録されている場合には、指定商品の商品サイズを基準サイズとしての身長等に変換し、変換された身長と指定者の身長との差が予め設定された差以上である場合には、推薦サイズ情報110を表示させなくてもい。ここで、電子商店街サーバ1は、変換された身長が指定者の身長よりも低い場合にのみ、推薦サイズ情報110を表示させなくてもい。
また、推薦サイズ情報110が表示されてもよいウェブページは、商品ページに限られるものではない。例えば、推薦サイズ情報110が検索結果ページに表示されてもよい。検索結果ページには、例えば、検索された商品ごとに推薦サイズ情報110が表示される。この場合、ユーザの要求に基づいて特定される商品は、検索された各商品である。
また、上記各実施形態においては、複数の店舗から商品が販売される電子商店街に本発明が適用されていた。しかしながら、単一の販売元から商品が販売される電子商取引のウェブサイトに本発明が適用されてもよい。
また、上記各実施形態においては、本発明における商品が洋服に適用されていた。しかしながら、本発明における商品が、例えば、洋服以外の衣類、靴、帽子、装身具等の身につける商品に適用されてもよい。
1 電子商店街サーバ
2 店舗端末
3 ユーザ端末
11 通信部
12 記憶部
12a 会員情報DB
12b ジャンル情報DB
12c 商品情報DB
12d 買い物かご削除履歴DB
12e 購入履歴DB
12f レビュー情報DB
13 入出力インターフェース
14 システム制御部
14a CPU
14b ROM
14c RAM
15 システムバス
NW ネットワーク
S 情報処理システム
2 店舗端末
3 ユーザ端末
11 通信部
12 記憶部
12a 会員情報DB
12b ジャンル情報DB
12c 商品情報DB
12d 買い物かご削除履歴DB
12e 購入履歴DB
12f レビュー情報DB
13 入出力インターフェース
14 システム制御部
14a CPU
14b ROM
14c RAM
15 システムバス
NW ネットワーク
S 情報処理システム
Claims (20)
- サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段と、
前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段と、
前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段と、
前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段と、
前記推定手段により推定された前記サイズを出力する出力手段と、
を備えることを特徴とする情報処理装置。 - 請求項1に記載の情報処理装置において、
前記評価特定手段は、返品履歴記憶手段に記憶された前記商品の返品履歴に基づいて、前記サイズが互いに異なる複数の前記特定商品を購入した前記他のユーザが該複数の特定商品のうち一部の前記特定商品を返品したと判定される場合、返品されていない前記サイズの前記評価が、返品された前記サイズの前記評価よりも高くなるように、前記評価を特定することを特徴とする情報処理装置。 - 請求項1または請求項2に記載の情報処理装置において、
前記評価特定手段は、前記他のユーザにより入力された前記評価を取得することを特徴とする情報処理装置。 - 請求項2または請求項3に記載の情報処理装置において、
前記評価特定手段は、非購入履歴記憶手段に記憶された、前記他のユーザが前記商品を購入しようと決めた後に購入をやめた非購入履歴に基づいて、前記他のユーザが前記特定商品についてサイズを選択した後に、該サイズをやめて他のサイズを購入したと判定される場合、購入したサイズの評価が、やめたサイズの前記評価よりも高くなるように、前記評価を特定することを特徴とする情報処理装置。 - 請求項1乃至4の何れか1項に記載の情報処理装置において、
前記評価特定手段は、返品履歴記憶手段に記憶された前記商品の返品履歴に基づいて、前記サイズが互いに異なる複数の前記特定商品を購入した前記他のユーザが該複数の特定商品のうち一部の前記特定商品を返品したと判定される場合、返品されていない前記サイズの前記評価が、返品された前記サイズの前記評価よりも高くなるように、前記評価を特定し、前記他のユーザから前記評価が入力されている場合、入力された前記評価を取得し、
前記推定手段は、前記返品履歴に基づいて特定される前記評価を、前記他のユーザから入力される前記評価よりも重視して前記サイズを推定することを特徴とする情報処理装置。 - 請求項1乃至5の何れか1項に記載の情報処理装置において、
前記評価特定手段は、前記他のユーザから前記評価が入力されている場合、入力された前記評価を取得し、前記評価特定手段は、非購入履歴記憶手段に記憶された、前記他のユーザが前記商品を購入しようと決めた後に購入をやめた非購入履歴に基づいて、前記他のユーザが前記特定商品についてサイズを選択した後に、該サイズをやめて他のサイズを購入したと判定される場合、購入したサイズの評価が、やめたサイズの前記評価よりも高くなるように、前記評価を特定し、
前記推定手段は、前記他のユーザから入力される前記評価を、前記非購入履歴に基づいて特定される前記評価よりも重視して前記サイズを推定することを特徴とする情報処理装置。 - 請求項1乃至6の何れか1項に記載の情報処理装置において、
前記身体サイズ情報取得手段は、ユーザから登録された身体サイズをユーザごとに記憶する身体サイズ記憶手段から、前記要求ユーザ及び前記他のユーザのうち少なくとも何れか一方の身体サイズを、前記身体サイズ情報として取得することを特徴とする情報処理装置。 - 請求項7に記載の情報処理装置において、
前記推定手段は、前記購入履歴に基づいて、前記他のユーザが前記特定商品を購入した時期が新しいほど、該他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする情報処理装置。 - 請求項1乃至8の何れか1項に記載の情報処理装置において、
前記身体サイズ情報取得手段は、前記購入履歴に基づいて、前記要求ユーザが購入したことがある第1商品のサイズと、前記他のユーザが購入したことがある第2商品のサイズと、の少なくとも何れか一方を、前記身体サイズ情報として取得することを特徴とする情報処理装置。 - 請求項9に記載の情報処理装置において、
前記推定手段は、前記特定商品を購入した前記他のユーザのうち、前記第1商品と同一の範疇に属する前記第2商品を購入した前記他のユーザからの前記評価を用いて前記サイズを推定し、前記要求ユーザが前記第1商品を購入した時期が新しいほど、該第1商品と同一の範疇に属する前記第2商品を購入した前記他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする情報処理装置。 - 請求項9または請求項10に記載の情報処理装置において、
前記推定手段は、前記他のユーザの前記第2商品の購入時期と該他のユーザの前記特定商品の購入時期とが近いほど、該他のユーザからの前記評価を重視して前記サイズを推定することを特徴とする情報処理装置。 - 請求項1乃至11の何れか1項に記載の情報処理装置において、
前記推定手段は、女性用の前記商品及び男性用の前記商品のうち、ユーザが購入した前記商品に含まれる割合が5割未満の予め設定された割合以下である方の前記商品の前記購入履歴に基づいて取得される情報を、前記サイズの推定に用いないことを特徴とする情報処理装置。 - 請求項1乃至12の何れか1項に記載の情報処理装置において、
前記推定手段は、大人であるユーザが子供用の前記商品を購入したことを示す前記購入履歴に基づいて取得される情報を、前記サイズの推定に用いないことを特徴とする情報処理装置。 - 請求項1乃至13の何れか1項に記載の情報処理装置において、
前記出力手段は、前記要求ユーザが大人であり、且つ、前記特定商品が子供用の前記商品である場合、前記サイズを出力しないことを特徴とする情報処理装置。 - 請求項1乃至14の何れか1項に記載の情報処理装置において、
前記推定手段は、前記身体サイズ情報の大小関係に基づいて、身体サイズが前記要求ユーザの身体サイズと同じ身体サイズの範囲に含まれる前記他のユーザを特定し、特定した他のユーザが購入した特定商品のサイズ、及び該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定することを特徴とする情報処理装置。 - 請求項1乃至15の何れか1項に記載の情報処理装置において、
前記推定手段は、前記身体サイズ情報の大小関係に基づいて、身体サイズが前記要求ユーザよりも小さい前記他のユーザと、身体サイズが前記要求ユーザよりも大きい前記他のユーザとを特定し、特定した他のユーザが購入した特定商品のサイズ、及び該サイズに対する前記評価に基づいて、身体サイズが前記要求ユーザよりも小さい前記他のユーザに合う前記特定商品の第1サイズと、身体サイズが前記要求ユーザよりも大きい前記他のユーザに合う前記特定商品の第2サイズとを推定し、前記第1サイズと前記第2サイズとの間にある前記サイズを、前記要求ユーザに合う前記サイズであると推定することを特徴とする情報処理装置。 - 請求項1乃至14の何れか1項に記載の情報処理装置において、
前記推定手段は、前記他のユーザの前記身体サイズ情報と該他のユーザが購入した前記特定商品のサイズとの組の分布の近似式を、前記他のユーザからの前記評価に基づいて前記組を重み付けして求め、前記近似式と前記要求ユーザの前記身体サイズ情報とに基づいて算出される前記サイズを、前記要求ユーザに合う前記サイズであると推定することを特徴とする情報処理装置。 - コンピュータにより実行される情報処理方法であって、
サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得ステップと、
前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得ステップと、
前記サイズ取得ステップにより取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定ステップと、
前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定ステップと、
前記推定ステップにより推定された前記サイズを出力する出力ステップと、
を含むことを特徴とする情報処理方法。 - コンピュータを、
サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段、
前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段、
前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段、
前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段、及び、
前記推定手段により推定された前記サイズを出力する出力手段、
として機能させることを特徴とする情報処理プログラム。 - コンピュータを、
サイズが複数ある身につける商品の購入履歴を記憶する購入履歴記憶手段から、要求ユーザの要求に応じて特定される特定商品を購入した他のユーザが購入した前記特定商品のサイズを取得するサイズ取得手段、
前記要求ユーザの身体サイズに関する身体サイズ情報及び前記他のユーザの身体サイズに関する身体サイズ情報を取得する身体サイズ情報取得手段、
前記サイズ取得手段により取得された前記サイズに対する前記他のユーザによる評価を特定する評価特定手段、
前記要求ユーザの身体サイズ情報と前記他のユーザの身体サイズ情報との大小関係、該他のユーザが購入した特定商品のサイズ、及び、該サイズに対する前記評価に基づいて、前記要求ユーザに合う前記特定商品のサイズを推定する推定手段、及び、
前記推定手段により推定された前記サイズを出力する出力手段、
として機能させることを情報処理プログラムがコンピュータ読み取り可能に記録されていることを特徴とする記録媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20120872686 EP2711887A4 (en) | 2012-03-30 | 2012-10-15 | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, INFORMATION PROCESSING PROGRAM, AND RECORDING MEDIUM |
CN201280040461.0A CN103748607A (zh) | 2012-03-30 | 2012-10-15 | 信息处理装置、信息处理方法、信息处理程序和记录介质 |
US14/115,426 US20140108202A1 (en) | 2012-03-30 | 2012-10-15 | Information processing apparatus, information processing method, information processing program, and recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-078670 | 2012-03-30 | ||
JP2012078670A JP5256362B1 (ja) | 2012-03-30 | 2012-03-30 | 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013145394A1 true WO2013145394A1 (ja) | 2013-10-03 |
Family
ID=49052936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076617 WO2013145394A1 (ja) | 2012-03-30 | 2012-10-15 | 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140108202A1 (ja) |
EP (1) | EP2711887A4 (ja) |
JP (1) | JP5256362B1 (ja) |
CN (1) | CN103748607A (ja) |
WO (1) | WO2013145394A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5686934B1 (ja) * | 2014-06-23 | 2015-03-18 | 楽天株式会社 | 情報処理装置、情報処理方法、プログラム、記憶媒体 |
JP2021081937A (ja) * | 2019-11-18 | 2021-05-27 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | ユーザー端末、制御方法及びコンピュータープログラム |
US11106277B2 (en) | 2015-02-09 | 2021-08-31 | Naver Corporation | Cartoon statistical reading data method and apparatus |
JPWO2021186638A1 (ja) * | 2020-03-18 | 2021-09-23 | ||
JP7479437B1 (ja) | 2022-11-18 | 2024-05-08 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
WO2024106175A1 (ja) * | 2022-11-18 | 2024-05-23 | 株式会社Zozo | 情報処理装置、情報処理方法及びプログラム |
JP7564397B2 (ja) | 2022-11-18 | 2024-10-08 | 株式会社Zozo | 情報処理装置 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103927391A (zh) * | 2014-04-30 | 2014-07-16 | 小米科技有限责任公司 | 信息处理方法及装置 |
JP5664816B1 (ja) * | 2014-07-18 | 2015-02-04 | 富士ゼロックス株式会社 | 情報処理装置及び情報処理プログラム |
CN105447058A (zh) * | 2014-09-29 | 2016-03-30 | 阿里巴巴集团控股有限公司 | 提供辅助信息的方法及装置 |
US10402737B1 (en) | 2014-10-22 | 2019-09-03 | Amdocs Development Limited | System, method, and computer program for providing proactive customer care for issues associated with setting up the billing process as part of the ordering process |
KR101679012B1 (ko) * | 2015-01-23 | 2016-11-23 | 주식회사 포워드벤처스 | 쇼핑 서비스 제공 시스템 및 쇼핑 서비스 제공 방법 |
CN104715409A (zh) * | 2015-03-20 | 2015-06-17 | 北京京东尚科信息技术有限公司 | 一种电子商务用户购买力分类方法及系统 |
WO2017026021A1 (ja) * | 2015-08-07 | 2017-02-16 | 株式会社sizebook | 商品情報提供サーバ装置、商品情報提供方法、及び、商品情報提供プログラム |
JP6309555B2 (ja) * | 2016-01-25 | 2018-04-11 | 株式会社メイキップ | 適正サイズ提示方法、適正サイズ提示システム、サーバ装置、及びプログラム |
WO2017149647A1 (ja) * | 2016-03-01 | 2017-09-08 | 楽天株式会社 | 推奨装置、推奨方法、プログラム、及び、記録媒体 |
JP6105829B1 (ja) * | 2016-03-11 | 2017-03-29 | 楽天株式会社 | 検索装置、検索方法、プログラム、及び、非一時的なコンピュータ読取可能な情報記録媒体 |
CN106067131A (zh) * | 2016-05-27 | 2016-11-02 | 北京京东尚科信息技术有限公司 | 订单的下单方法和下单装置 |
JP2018018383A (ja) * | 2016-07-29 | 2018-02-01 | 富士通株式会社 | 出力処理プログラム、推奨サイズ表示プログラム、出力処理装置及び出力処理方法 |
JP6322781B1 (ja) * | 2016-08-25 | 2018-05-09 | 楽天株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
CN107967637B (zh) * | 2016-10-20 | 2022-04-29 | 阿里巴巴集团控股有限公司 | 一种商品对象型号的推荐方法、装置及电子设备 |
JP7073101B2 (ja) * | 2016-12-29 | 2022-05-23 | 株式会社Elements | 情報処理装置、情報処理方法、及びプログラム |
JP6572397B2 (ja) * | 2017-06-12 | 2019-09-11 | Spiber株式会社 | 管理装置、製造管理システム、管理方法、プログラム、及び記録媒体 |
CN111149123A (zh) | 2017-09-27 | 2020-05-12 | 乐天株式会社 | 信息处理装置、信息处理方法、程序以及存储介质 |
JP6494000B1 (ja) * | 2017-12-22 | 2019-04-03 | 株式会社キビラ | 靴フィッティング支援システム及び靴フィッティング支援プログラム |
JP2018092679A (ja) * | 2018-03-14 | 2018-06-14 | 株式会社メイキップ | 適正サイズ提示方法、適正サイズ提示システム、サーバ装置、及びプログラム |
WO2020021619A1 (ja) * | 2018-07-24 | 2020-01-30 | 株式会社Fuji | 介助装置の適合判定装置 |
CN110858378B (zh) * | 2018-08-23 | 2023-07-28 | 浙江天猫技术有限公司 | 评价信息的展示方法及订单创建方法、加购方法、装置 |
JP6518973B1 (ja) * | 2018-09-10 | 2019-05-29 | ゲイトアシスト合同会社 | 義足に関する情報を提供するための装置及び方法 |
CN109242629B (zh) * | 2018-09-14 | 2022-06-28 | 咪咕互动娱乐有限公司 | 一种商品尺码的推荐方法及装置、终端、存储介质 |
CN110955366A (zh) * | 2018-09-27 | 2020-04-03 | 北大方正集团有限公司 | 产品规格的联动方法及联动装置、计算机设备和存储介质 |
JP6998331B2 (ja) * | 2019-01-17 | 2022-01-18 | ヤフー株式会社 | 推定装置、推定方法及び推定プログラム |
WO2020183667A1 (ja) | 2019-03-13 | 2020-09-17 | 三菱電機株式会社 | 情報処理装置、情報処理方法および情報提供システム |
US10540708B1 (en) * | 2019-05-08 | 2020-01-21 | Caastle, Inc. | Systems and methods of electronic closet recommendation engines and displays of an apparel subscription application |
CN114387052A (zh) * | 2020-10-22 | 2022-04-22 | 阿里巴巴集团控股有限公司 | 推荐方法、服务提供方法、装置、设备和存储介质 |
CN112418985A (zh) * | 2020-11-19 | 2021-02-26 | 定智衣(上海)服装科技有限公司 | 一种可自我迭代的智能量体的解决方案 |
JP7221314B2 (ja) * | 2021-01-25 | 2023-02-13 | ユニ・チャーム株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7253011B2 (ja) * | 2021-07-29 | 2023-04-05 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7074922B1 (ja) * | 2021-09-29 | 2022-05-24 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7100779B1 (ja) | 2022-04-25 | 2022-07-13 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7266738B1 (ja) * | 2022-04-25 | 2023-04-28 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7426681B1 (ja) | 2023-02-28 | 2024-02-02 | 株式会社マイベスト | 商品/サービスの選択時にユーザー視点で横断共通な評価を実現する方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002245303A (ja) | 2001-02-20 | 2002-08-30 | Nec Access Technica Ltd | 仮想試着電子商取引システム |
JP2003216868A (ja) * | 2002-01-25 | 2003-07-31 | Seiko Epson Corp | 衣類又は履物の販売管理システム、衣類又は履物の販売管理装置、プログラム及び記録媒体 |
JP2004029909A (ja) * | 2002-06-21 | 2004-01-29 | Casio Comput Co Ltd | 商品案内装置およびプログラム |
JP2007265077A (ja) * | 2006-03-29 | 2007-10-11 | Nomura Research Institute Ltd | 子供衣類管理装置および子供衣類管理システム |
JP2009282600A (ja) * | 2008-05-20 | 2009-12-03 | Yahoo Japan Corp | プロフィールを利用した商品情報提供サーバ、システム、方法及びプログラム |
JP2010257130A (ja) * | 2009-04-23 | 2010-11-11 | Japan Research Institute Ltd | 商品購入支援システム、商品購入支援方法および商品購入支援プログラム |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4679256A (en) * | 1986-10-23 | 1987-07-14 | Uniforms To You & Company | Multi-size jumper dress |
US5402362A (en) * | 1992-05-21 | 1995-03-28 | The United States Of America As Represented By The Secretary Of The Army | Method of utilize trial dyeings to improve color formulations |
US5930769A (en) * | 1996-10-07 | 1999-07-27 | Rose; Andrea | System and method for fashion shopping |
US6353770B1 (en) * | 1999-05-26 | 2002-03-05 | Levi Strauss & Co. | Apparatus and method for the remote production of customized clothing |
US20020004763A1 (en) * | 2000-01-20 | 2002-01-10 | Lam Peter Ar-Fu | Body profile coding method and apparatus useful for assisting users to select wearing apparel |
US6546309B1 (en) * | 2000-06-29 | 2003-04-08 | Kinney & Lange, P.A. | Virtual fitting room |
BE1013816A6 (nl) * | 2000-10-30 | 2002-09-03 | Douelou Nv | Order-productie-en distributie-systeem voor kleding en confectie en methodiek. |
US6665577B2 (en) * | 2000-12-20 | 2003-12-16 | My Virtual Model Inc. | System, method and article of manufacture for automated fit and size predictions |
US20020126132A1 (en) * | 2001-01-24 | 2002-09-12 | Harry Karatassos | Targeted force application in clothing simulations |
US7469218B2 (en) * | 2002-04-12 | 2008-12-23 | Morley Ross G | Method for facilitating ordering of garments |
WO2004084661A2 (en) * | 2003-03-20 | 2004-10-07 | Mbrio, Llc | Systems and methods for improved apparel fit |
US7685727B2 (en) * | 2005-05-27 | 2010-03-30 | Sieber Stephen C | Measuring device for garment tailoring, and related methods |
US7487116B2 (en) * | 2005-12-01 | 2009-02-03 | International Business Machines Corporation | Consumer representation rendering with selected merchandise |
CN101206749B (zh) * | 2006-12-19 | 2013-06-05 | 株式会社G&G贸易公司 | 使用多路图像检索模块推荐产品的方法和系统 |
US9420834B2 (en) * | 2007-07-10 | 2016-08-23 | Proudest Monkey, Llc | Abrasive resistant garment |
US20090094138A1 (en) * | 2007-10-05 | 2009-04-09 | Stormy Compean Sweitzer | System and method for calculating, tracking, and projecting children's clothing sizes over time |
US7905028B2 (en) * | 2008-02-04 | 2011-03-15 | William A. Ward | Systems and methods for collecting body measurements, virtually simulating models of actual and target body shapes, ascertaining garment size fitting, and processing garment orders |
CA2659698C (en) * | 2008-03-21 | 2020-06-16 | Dressbot Inc. | System and method for collaborative shopping, business and entertainment |
US20090287452A1 (en) * | 2008-05-13 | 2009-11-19 | Qinetiq Limited | Method and Apparatus for Accurate Footwear and Garment Fitting |
US20100030663A1 (en) * | 2008-06-30 | 2010-02-04 | Myshape, Inc. | System and method for networking shops online and offline |
US8655053B1 (en) * | 2010-05-31 | 2014-02-18 | Andrew S Hansen | Body modeling and garment fitting using an electronic device |
WO2012016052A1 (en) * | 2010-07-28 | 2012-02-02 | True Fit Corporation | Fit recommendation via collaborative inference |
GB201102794D0 (en) * | 2011-02-17 | 2011-03-30 | Metail Ltd | Online retail system |
-
2012
- 2012-03-30 JP JP2012078670A patent/JP5256362B1/ja active Active
- 2012-10-15 WO PCT/JP2012/076617 patent/WO2013145394A1/ja active Application Filing
- 2012-10-15 US US14/115,426 patent/US20140108202A1/en not_active Abandoned
- 2012-10-15 CN CN201280040461.0A patent/CN103748607A/zh active Pending
- 2012-10-15 EP EP20120872686 patent/EP2711887A4/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002245303A (ja) | 2001-02-20 | 2002-08-30 | Nec Access Technica Ltd | 仮想試着電子商取引システム |
JP2003216868A (ja) * | 2002-01-25 | 2003-07-31 | Seiko Epson Corp | 衣類又は履物の販売管理システム、衣類又は履物の販売管理装置、プログラム及び記録媒体 |
JP2004029909A (ja) * | 2002-06-21 | 2004-01-29 | Casio Comput Co Ltd | 商品案内装置およびプログラム |
JP2007265077A (ja) * | 2006-03-29 | 2007-10-11 | Nomura Research Institute Ltd | 子供衣類管理装置および子供衣類管理システム |
JP2009282600A (ja) * | 2008-05-20 | 2009-12-03 | Yahoo Japan Corp | プロフィールを利用した商品情報提供サーバ、システム、方法及びプログラム |
JP2010257130A (ja) * | 2009-04-23 | 2010-11-11 | Japan Research Institute Ltd | 商品購入支援システム、商品購入支援方法および商品購入支援プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2711887A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5686934B1 (ja) * | 2014-06-23 | 2015-03-18 | 楽天株式会社 | 情報処理装置、情報処理方法、プログラム、記憶媒体 |
WO2015198376A1 (ja) * | 2014-06-23 | 2015-12-30 | 楽天株式会社 | 情報処理装置、情報処理方法、プログラム、記憶媒体 |
US10402886B2 (en) | 2014-06-23 | 2019-09-03 | Rakuten, Inc. | Information processing device, information processing method, program, and storage medium |
US11106277B2 (en) | 2015-02-09 | 2021-08-31 | Naver Corporation | Cartoon statistical reading data method and apparatus |
JP2021081937A (ja) * | 2019-11-18 | 2021-05-27 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | ユーザー端末、制御方法及びコンピュータープログラム |
JP7369600B2 (ja) | 2019-11-18 | 2023-10-26 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | ユーザー端末、制御方法及びコンピュータープログラム |
JPWO2021186638A1 (ja) * | 2020-03-18 | 2021-09-23 | ||
WO2021186638A1 (ja) * | 2020-03-18 | 2021-09-23 | 日本電気株式会社 | 推薦制御装置、システム、方法及びプログラムが格納された非一時的なコンピュータ可読媒体 |
JP7400944B2 (ja) | 2020-03-18 | 2023-12-19 | 日本電気株式会社 | 推薦制御装置、システム、方法及びプログラム |
JP7479437B1 (ja) | 2022-11-18 | 2024-05-08 | 株式会社Zozo | 情報処理装置、情報処理方法及び情報処理プログラム |
WO2024106175A1 (ja) * | 2022-11-18 | 2024-05-23 | 株式会社Zozo | 情報処理装置、情報処理方法及びプログラム |
JP7564397B2 (ja) | 2022-11-18 | 2024-10-08 | 株式会社Zozo | 情報処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2013210699A (ja) | 2013-10-10 |
US20140108202A1 (en) | 2014-04-17 |
CN103748607A (zh) | 2014-04-23 |
EP2711887A1 (en) | 2014-03-26 |
JP5256362B1 (ja) | 2013-08-07 |
EP2711887A4 (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5256362B1 (ja) | 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 | |
JP5124680B1 (ja) | 情報処理装置、情報処理方法、情報処理プログラム及び記録媒体 | |
US9697282B2 (en) | Search apparatus, search method, search program, and recording medium | |
JP2018018136A (ja) | 電子商取引システム | |
JP6679451B2 (ja) | 選択装置、選択方法および選択プログラム | |
JP5241903B2 (ja) | レビュー文章出力システム、レビュー文章出力方法、プログラム及びコンピュータ可読情報記憶媒体 | |
US20180349981A1 (en) | Methods and systems of discovery of products in e-commerce | |
JP6976207B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
JP2007200099A (ja) | アイテム選択支援装置、方法およびプログラム | |
JP2013210821A (ja) | 情報提供装置、情報提供方法、情報提供プログラム、及びそのプログラムを記憶するコンピュータ読取可能な記録媒体 | |
US20130060610A1 (en) | Methods and systems of using personalized multi-dimensional avatar (pmda) in commerce | |
TWI512509B (zh) | Association authoring device, association grant method, and association grant program product | |
JP6322781B1 (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
JP6945518B2 (ja) | 情報処理装置、情報処理方法および情報処理プログラム | |
US20160343046A1 (en) | Review text output system and review text output method | |
WO2015011678A1 (en) | Method for determining a fitting index of a garment based on anthropometric data of a user, and device and system thereof | |
JP6527257B1 (ja) | 提供装置、提供方法および提供プログラム | |
JP7133508B2 (ja) | 提供装置、提供方法および提供プログラム | |
JP7139294B2 (ja) | 提供装置、提供方法及び提供プログラム | |
JP7266797B2 (ja) | スタイリングデータベース管理システムおよび方法 | |
KR20180124280A (ko) | 온라인 상품 추천 방법 및 장치 | |
WO2019198340A1 (ja) | マッチングシステム | |
TW201913493A (zh) | 提高商品推薦準確度的方法 | |
JP6494000B1 (ja) | 靴フィッティング支援システム及び靴フィッティング支援プログラム | |
TW202345058A (zh) | 系統、使用者終端的電腦程式及伺服器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14115426 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12872686 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012872686 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012872686 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |