WO2013145245A1 - ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置 - Google Patents

ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置 Download PDF

Info

Publication number
WO2013145245A1
WO2013145245A1 PCT/JP2012/058471 JP2012058471W WO2013145245A1 WO 2013145245 A1 WO2013145245 A1 WO 2013145245A1 JP 2012058471 W JP2012058471 W JP 2012058471W WO 2013145245 A1 WO2013145245 A1 WO 2013145245A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb structure
exhaust gas
adhesive layer
inorganic
Prior art date
Application number
PCT/JP2012/058471
Other languages
English (en)
French (fr)
Inventor
弘平 太田
將平 島田
寿英 伊藤
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to JP2014507209A priority Critical patent/JP5990572B2/ja
Priority to EP12872399.6A priority patent/EP2832710B1/en
Priority to PCT/JP2012/058471 priority patent/WO2013145245A1/ja
Publication of WO2013145245A1 publication Critical patent/WO2013145245A1/ja
Priority to US14/499,249 priority patent/US20150013284A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2075Other inorganic materials, e.g. ceramics the material being particulate or granular sintered or bonded by inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/005Filters specially adapted for use in internal-combustion engine lubrication or fuel systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5076Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with masses bonded by inorganic cements
    • C04B41/5089Silica sols, alkyl, ammonium or alkali metal silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/597Aspects relating to the structure of the interlayer whereby the interlayer is continuous but porous, e.g. containing hollow or porous particles, macro- or micropores or cracks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb structure, a honeycomb filter for exhaust gas purification, and an exhaust gas purification device.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains particulates such as soot (hereinafter also referred to as PM), and in recent years, it has become a problem that this PM is harmful to the environment or the human body. ing. Further, since harmful gas components such as CO, HC or NOx are contained in the exhaust gas, there is a concern about the influence of the harmful gas components on the environment or the human body.
  • PM soot
  • cordierite is used as an exhaust gas purification device that collects PM in exhaust gas by being connected to an internal combustion engine and purifies harmful gas components in exhaust gas such as CO, HC, or NOx contained in the exhaust gas.
  • Various honeycomb structures made of porous ceramics such as silicon carbide have been proposed.
  • honeycomb structures a plurality of honeycomb fired bodies made of columnar porous ceramics, in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls separated, are bound together via an adhesive layer to separate the cells.
  • honeycomb structure in which either one end of a cell wall is sealed and functions as a filter.
  • Patent Document 1 As a conventional honeycomb structure as described above, in Patent Document 1, even if a local temperature change caused by local combustion or the like occurs, the generated thermal stress can be relaxed, A honeycomb filter that is less prone to cracking and excellent in strength and durability is disclosed.
  • the thermal expansion coefficient ⁇ L of the adhesive layer and the thermal expansion coefficient ⁇ F of the honeycomb fired body are 0.01 ⁇
  • the honeycomb filter disclosed in Patent Document 1 described above has the following problems. That is, the honeycomb filter is an invention made on the assumption that it is used in a wide temperature range of 10 to 800 ° C. which is a realistic temperature range, but it is a temperature exceeding the above-mentioned assumption very rarely. It may be used at a temperature exceeding 800 ° C., particularly at a temperature range of 1200 ° C. or higher. When used at such an extremely high temperature, cracks are generated inside the honeycomb filter, so There remains a problem that the curate may leak outside the regulation value.
  • the present inventors have included an alumina fiber and an inorganic balloon in the adhesive layer, while oxidizing the honeycomb fired body to form a honeycomb fired body.
  • an oxide layer containing silicon on the surface of silicon carbide, a honeycomb in which particulates such as soot do not leak outside beyond the regulation value even when used in a temperature range of 1200 ° C. or higher.
  • the present inventors have found that a structure, a honeycomb filter using the honeycomb structure, and an exhaust gas purification apparatus using the honeycomb filter can be provided, and the present invention has been completed.
  • a plurality of silicon carbide honeycomb fired bodies in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall therebetween are bound together via an adhesive layer.
  • the adhesive layer includes at least an alumina fiber and an inorganic balloon.
  • an oxide layer containing silicon is formed on the surface of silicon carbide particles constituting the honeycomb fired body, and the oxide layer is exposed to a high temperature of 1500 to 1600 ° C.
  • the endothermic reaction of the following formula (1) or (2) proceeds, Due to this endothermic reaction, the temperature of the honeycomb fired body is unlikely to rise, and the honeycomb structure can be prevented from reaching a high temperature.
  • the amount of heat absorbed per mole of SiO 2 by the following reaction is shown.
  • the silicon carbide-based fired body refers to a fired body in which silicon carbide is 60% by weight or more.
  • the silicon carbide-based fired body may include a material other than silicon carbide, and may include, for example, 40% by weight or less of metal silicon as a material other than silicon carbide.
  • the silicon carbide fired body contains metallic silicon, an oxide layer containing silicon is also formed on the surface of metallic silicon.
  • the silicon carbide particles constituting the honeycomb fired body there is a constricted portion generated when two particles called “neck” are connected. Silicon carbide particles are bonded to each other through a neck.
  • the coupling angle of the neck is small, and the coupling end of the neck is sharp. Therefore, when an external force or thermal shock is applied to the honeycomb fired body composed of such silicon carbide particles, stress concentrates on the joint end portion of the neck.
  • the neck coupling angle becomes large and the neck coupling end becomes smooth. Therefore, the stress concentration on the coupling end of the neck is alleviated. As a result, it is considered that the mechanical strength of the honeycomb fired body is improved.
  • the adhesive layer includes at least an alumina fiber and an inorganic balloon, and when the alumina fiber is used as a material in the adhesive layer, it does not melt or undergo phase transformation up to about 1400 ° C. Even at a high temperature of 1200 ° C. or higher, there is an effect of stopping the development of cracks, and the strength of the adhesive layer is hardly deteriorated. Moreover, since the inorganic balloon has an effect of stopping the development of cracks, mechanical deterioration of the adhesive layer can be prevented. Furthermore, since the adhesive layer including the inorganic balloon has a small heat capacity, the thermal conductivity of the adhesive layer is increased, and the thermal stress difference between the honeycomb fired body and the adhesive layer generated during PM combustion is reduced. Can do. As a result, cracks generated in the adhesive layer due to the thermal stress difference can be suppressed, and cracks generated in the honeycomb fired body can be suppressed.
  • the average length of the alumina fibers is 25 to 100 ⁇ m, and the average particle diameter of the inorganic balloon is 70 to 300 ⁇ m.
  • the adhesive layer constituting the honeycomb structure according to claim 2 contains alumina fibers having an average length of 25 to 100 ⁇ m and an appropriate length. Therefore, alumina fibers are contained in the adhesive layer. The dispersibility of is improved. Due to this, the adhesive layer excluding the portion where the inorganic balloon is present has few voids and the like, has a dense structure, improves mechanical strength, and does not easily generate cracks. Moreover, since the alumina fiber having the above-described length has an effect of stopping the progress of cracks, the progress of the cracks can be stopped even if a crack occurs in the adhesive layer.
  • the adhesive layer constituting the honeycomb structure according to claim 2 includes an inorganic balloon having an average particle diameter of 70 to 300 ⁇ m, and the inorganic balloon has a length relative to the length of the alumina fiber. The size is just right, both the alumina fiber and the inorganic balloon are more easily dispersed, the voids are uniformly dispersed, and the adhesive layer becomes dense except for the portion where the inorganic balloon is present. Furthermore, the well-dispersed inorganic balloon also has an effect of stopping the progress of cracks, so that even when cracks occur in the adhesive layer, the progress of cracks can be reliably stopped.
  • the adhesive layer including the inorganic balloon has a small heat capacity, the thermal conductivity of the adhesive layer is increased, and the thermal stress difference between the honeycomb fired body and the adhesive layer generated during PM combustion is reduced. Can do. As a result, cracks generated in the adhesive layer due to the thermal stress difference can be suppressed, and cracks generated in the honeycomb fired body can be suppressed.
  • the average length of the alumina fibers is less than 25 ⁇ m, the length of the alumina fibers is too short, so that the fibers tend to aggregate and the dispersibility tends to be lowered.
  • the alumina fiber has an effect of stopping the progress of cracks. However, if the length of the alumina fiber is too short, the effect of suppressing the progress of cracks is hardly obtained. On the other hand, even if the average length of the alumina fiber exceeds 100 ⁇ m, the length of the alumina fiber becomes too long, so that it becomes easy to orient in a certain direction and the dispersibility tends to be lowered.
  • the inorganic balloon is too small in size, so that the dispersibility of the alumina particles, the inorganic binder, and the inorganic particles is deteriorated. Since the voids are likely to be created in the agent layer and it is difficult to become dense, the strength decreases. On the other hand, when the average particle diameter of the inorganic balloon exceeds 300 ⁇ m, the inorganic balloon is too large compared to the adhesive layer, and therefore, a portion with low strength is easily formed.
  • the aspect ratio (fiber length / fiber diameter) of the alumina fiber is 3 to 30. For this reason, the mechanical strength of the adhesive layer is further improved, and even if cracks occur in the adhesive layer, the progress of the cracks can be more reliably stopped.
  • the aspect ratio is less than 3, it is difficult to obtain an effect of improving the mechanical strength and an effect of suppressing crack progress.
  • the aspect ratio exceeds 30, the alumina fiber is easily broken when the adhesive layer is formed, and the above-described effect is hardly obtained.
  • the oxide layer has a thickness of 100 to 600 nm.
  • an oxidizing atmosphere is formed during PM combustion, and therefore, it is considered that an oxide film is formed on the honeycomb structure.
  • the temperature distribution of the honeycomb structure is not uniform, and the thickness of the oxide film becomes non-uniform. Therefore, it is difficult to form a uniform oxide film having a thickness of 100 to 600 nm under such conditions.
  • the honeycomb structure of the present invention has an oxide film of 100 nm or more formed before use, the effects of the present invention are easily obtained.
  • the thickness of the oxide layer is 100 to 600 nm
  • heat applied to the adhesive layer can be reduced, and crystallization (cristobalite) of the silica content in the adhesive layer can be prevented.
  • the joint end portion of the neck becomes smooth, so that the mechanical strength is reduced.
  • the thickness of the oxide layer is less than 100 nm, the thickness of the oxide layer is too thin, so that the amount of heat absorbed by the above endothermic reaction is reduced, and the silica component is easily crystallized. Further, it is not possible to sufficiently obtain the effect of relaxing the stress concentration at the coupling end portion of the neck.
  • the thickness of the oxide layer exceeds 600 nm, the bonding portion between the silicon carbide particles in the neck portion becomes too small, and the mechanical strength may be lowered. Furthermore, even if the thickness of the oxide layer is increased further, the effect of suppressing crystallization of the silica content in the adhesive layer cannot be improved.
  • the adhesive layer further includes inorganic particles and an inorganic binder.
  • the alumina fiber, the inorganic balloon, and the inorganic particles in the adhesive layer are bonded by the inorganic binder, and the adhesive layer is excellent in mechanical characteristics.
  • the adhesive layer contains inorganic particles, a denser adhesive layer can be formed and the mechanical properties are improved.
  • the adhesive strength can be increased by allowing the inorganic binder and the inorganic particles to enter pores on the outer surface of the honeycomb fired body.
  • the content of the inorganic balloon is 5.0 to 50.0% by volume. For this reason, the mechanical characteristics as a filter can be maintained.
  • the content of the inorganic balloon is less than 5.0% by volume, the content of the inorganic balloon is too small, so that the dispersibility of the material constituting the adhesive layer is deteriorated, voids are easily formed, and the strength is reduced.
  • the heat capacity of the adhesive layer is not reduced, the difference in thermal stress generated between the honeycomb fired body and the adhesive layer due to PM combustion cannot be reduced. Therefore, cracks are generated in the adhesive layer, which induces the generation of cracks in the honeycomb fired body, and soot leakage occurs.
  • the content of the inorganic balloon exceeds 50% by volume, the content of the inorganic balloon is excessively increased, so that the remaining material is excessively decreased, and the strength is reduced and cracks are liable to develop.
  • the content of the alumina fiber is 5.0 to 50.0% by volume.
  • the alumina fiber in an adhesive bond layer can be disperse
  • the content of the alumina fiber is less than 5.0% by volume, the content of the alumina fiber is too small, and the reinforcing effect of the adhesive layer by the fiber is small. Moreover, it becomes difficult to obtain the effect of suppressing the progress of cracks.
  • the content of the alumina fiber exceeds 50.0% by volume, the amount of the alumina fiber is too large, so that the dispersibility of the alumina fiber is lowered and the mechanical characteristics are easily biased.
  • the inorganic balloon is a fly ash balloon.
  • the fly ash balloon is nearly spherical, and its components are silica and alumina, so there is no fear of melting or the like even when exposed to a high temperature of 1200 ° C. or higher.
  • the fly ash balloon has a small specific gravity, the heat capacity of the adhesive layer can be lowered.
  • the stress difference from the honeycomb fired body can be reduced.
  • the occurrence of cracks in the adhesive layer due to the thermal stress difference can be suppressed, the cracks generated in the honeycomb fired body can be suppressed, and soot leakage can be suppressed.
  • the inorganic particles are silicon carbide particles. For this reason, an adhesive bond layer turns into an adhesive bond layer excellent in heat resistance and mechanical characteristics.
  • the inorganic binder is a solidified product of silica sol or alumina sol. Since silica sol or alumina sol is used as a raw material for forming the inorganic binder, the adhesive layer has excellent heat resistance.
  • An exhaust gas purification honeycomb filter according to claim 11 is an exhaust gas purification honeycomb filter arranged in an exhaust passage of an internal combustion engine and configured to filter particulates discharged from the internal combustion engine.
  • a honeycomb structure according to any one of claims 1 to 10 is used.
  • the exhaust gas purifying apparatus is wound around a casing, an exhaust gas purifying honeycomb filter accommodated in the casing, and the exhaust gas treatment body, and is disposed between the exhaust gas treatment body and the casing.
  • An exhaust gas purification device comprising a holding sealing material,
  • the exhaust gas purifying honeycomb filter according to claim 11 is used as the exhaust gas purifying honeycomb filter.
  • FIG. 1 is a perspective view schematically showing an example of a honeycomb structure according to the first embodiment of the present invention.
  • Fig. 2 (a) is a perspective view schematically showing an example of a honeycomb fired body constituting the honeycomb structure of the present invention
  • Fig. 2 (b) is a diagram of the honeycomb fired body shown in Fig. 2 (a). It is AA sectional view taken on the line.
  • Fig.3 (a) is explanatory drawing which shows typically the coupling
  • FIG.3 (b) is the partial expansion of the silicon carbide particle shown to Fig.3 (a).
  • FIG. FIG. 4 is a cross-sectional view showing a state in which an aggregate of honeycomb fired bodies is produced using an adhesive paste.
  • FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing an example of a honeycomb structure according to the first embodiment of the present invention.
  • FIG. 2A is an example of a honeycomb fired body constituting the honeycomb structure of the present invention.
  • FIG. 2B is a schematic perspective view, and FIG. 2B is a cross-sectional view taken along the line AA of the honeycomb fired body shown in FIG.
  • a plurality of honeycomb fired bodies 110 having a shape as shown in FIGS. 2A and 2B are bundled through an adhesive layer 101 to form a ceramic block 103. Furthermore, a coat layer 102 is formed on the outer periphery of the ceramic block 103.
  • a large number of cells 111 are arranged in parallel in the longitudinal direction (direction a in FIG. 2 (a)) with a cell wall 113 therebetween. Any one end of the cell 111 is sealed with a sealing material 112. Therefore, the exhaust gas G that has flowed into the cell 111 with one end face opened always flows out from the other cell 111 with the other end face open after passing through the cell wall 113 separating the cells 111. Therefore, the cell wall 113 functions as a filter for collecting PM and the like.
  • the honeycomb fired body 110 constituting the honeycomb structure 100 according to the first embodiment of the present invention is composed of a silicon carbide honeycomb fired body 110.
  • the silicon carbide honeycomb fired body 110 means a fired body containing 60% by weight or more of silicon carbide and 40% by weight or less of metal silicon, and may contain no ceramic other than silicon carbide.
  • the particles may be bonded with metallic silicon or the like.
  • a silicon-containing oxide layer (hereinafter, also simply referred to as an oxide layer) is formed on the surface of silicon carbide particles.
  • the lower limit of the thickness of the oxide layer is preferably 100 nm, and more preferably 200 nm.
  • the upper limit of the thickness of the oxide layer is desirably 600 nm, and more desirably 400 nm.
  • the heat applied to the adhesive layer 101 can be reduced, and the crystallization (cristobarite) of the silica content in the adhesive layer 101 can be prevented. It is possible to prevent the adhesive layer 101 from further expanding the cracks of the honeycomb fired body 110 due to the change in thermal expansion accompanying the crystallization of the silica component, and promoting the leakage of particulates.
  • the honeycomb fired body 110 is bonded in a state in which a large number of silicon carbide particles as aggregates have a large number of pores between them, or a plurality of silicon carbide particles are bonded in a state of having pores therein.
  • FIG. 3A is an explanatory view schematically showing a bonding state between silicon carbide particles constituting the honeycomb fired body 110.
  • FIG.3 (b) is the elements on larger scale of the silicon carbide particle shown to Fig.3 (a).
  • the silicon carbide particles 31 constituting the honeycomb fired body 110 are bonded to each other through a neck 31a.
  • An oxide layer 32 containing silicon is formed on the surface of the silicon carbide particles 31.
  • the coupling angle of the neck 31a is increased, and the coupling end portion of the neck 31a is smooth. Therefore, stress concentration on the coupling end portion 31a of the neck is alleviated. As a result, it is considered that the mechanical strength of the honeycomb fired body is improved.
  • the silicon carbide particles constituting the honeycomb fired body 110 have an average particle diameter of about 11 to 20 ⁇ m. Therefore, when the thickness of the oxide layer is 100 to 600 nm, the thickness of the oxide layer is very thin compared to the silicon carbide particles, and therefore, even when used as a filter, the pressure loss is adversely affected. There is nothing.
  • the thickness of the oxide layer can be measured using X-ray photoelectron spectroscopy (XPS).
  • XPS is an analysis method that irradiates a sample surface with X-rays and measures the energy of the generated photoelectrons with a device called an energy analyzer.
  • the constituent elements of the sample and their electronic states can be analyzed by XPS.
  • XPS X-ray photoelectron spectroscopy
  • the depth (thickness) of the oxide layer can be determined by analyzing the composition by XPS while scraping the surface of the sample at a constant speed by ion sputtering. . Based on the measurement results using such a measurement method, it is estimated that an oxide layer having a thickness of 100 to 600 nm is formed on the surface of the silicon carbide particles.
  • the porosity of the honeycomb fired body 110 is not particularly limited, but is preferably about 40 to 70 vol%. When the porosity is less than 40 vol%, the honeycomb structure 100 is likely to be clogged. On the other hand, when the porosity exceeds 70 vol%, the strength of the honeycomb fired body 110 is lowered and easily broken.
  • the porosity can be measured by, for example, a mercury intrusion method.
  • the average pore diameter of the honeycomb fired body 110 is preferably 5 to 100 ⁇ m. If the average pore diameter is less than 5 ⁇ m, the particulates are easily clogged. On the other hand, when the average pore diameter exceeds 100 ⁇ m, the particulates easily pass through the pores, the ability to collect the particulates is lowered, and the function as a filter is lowered.
  • the thickness of the cell wall 113 of the honeycomb fired body 110 of the present invention is not particularly limited, but is preferably 0.1 to 0.4 mm. If the thickness of the cell wall 113 of the honeycomb fired body 110 is less than 0.1 mm, the thickness of the cell wall supporting the honeycomb structure may be reduced, and the strength of the honeycomb fired body 110 may not be maintained. On the other hand, if the thickness of the cell wall 113 of the honeycomb fired body 110 exceeds 0.4 mm, the pressure loss of the honeycomb structure 100 may be increased.
  • the thickness of the outer wall (outer peripheral wall) 102 included in the honeycomb fired body 110 constituting the honeycomb structure 100 of the present invention is not particularly limited, but is the same as the thickness of the cell wall 113 of the honeycomb fired body 110. It is desirable that the thickness is 0.1 to 0.4 mm.
  • the cell density (the number of cells per unit area) in the cross section perpendicular to the longitudinal direction of the honeycomb fired body 110 is not particularly limited, but a desirable lower limit is 16.0 cells / cm 2 (100 cells / in 2 ), The desirable upper limit is 93.0 / cm 2 (600 / in 2 ), the more desirable lower limit is 38.8 / cm 2 (250 / in 2 ), and the more desirable upper limit is 77.5 / cm 2. 2 (500 pieces / in 2 ).
  • the adhesive layer 101 constituting the honeycomb structure 100 according to the first embodiment of the present invention will be described.
  • the adhesive layer 101 for bonding the honeycomb fired bodies 110 includes at least an alumina fiber and an inorganic balloon.
  • the lower limit of the average length of the alumina fiber is preferably 25 ⁇ m and more preferably 40 ⁇ m.
  • the upper limit of the average length of the alumina fiber is preferably 100 ⁇ m, and more preferably 60 ⁇ m.
  • the average length of the alumina fibers is less than 25 ⁇ m, the length of the alumina fibers is too short, so that the fibers tend to aggregate and the dispersibility tends to be lowered.
  • Alumina fiber has the effect of stopping the development of cracks. However, if the length of the alumina fiber is too short, it becomes difficult to obtain the effect of suppressing the progress of cracks. On the other hand, even if the average length of the alumina fiber exceeds 100 ⁇ m, the length of the alumina fiber becomes too long, so that it becomes easy to orient in a certain direction and the dispersibility tends to be lowered.
  • the aspect ratio (fiber length / fiber diameter) of the alumina fiber is desirably 3 to 30.
  • the mechanical strength of the adhesive layer is further improved, and even when a crack is generated in the adhesive layer, the progress of the crack can be more reliably stopped.
  • the alumina fiber may contain only alumina (Al 2 O 3 ), or may contain silica (SiO 2 ) in addition to alumina.
  • the inorganic balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Among these, a fly ash balloon is desirable.
  • the lower limit of the average particle size of the inorganic balloon is desirably 70 ⁇ m, and more desirably 150 ⁇ m.
  • the upper limit of the average particle size of the inorganic balloon is desirably 300 ⁇ m, and more desirably 200 ⁇ m.
  • the inorganic balloon is usually spherical, and the average particle size is the average diameter of the spherical particles.
  • the inorganic balloon is too small in size, so that the dispersibility of the alumina particles, the inorganic binder, and the inorganic particles is deteriorated. Since the voids are likely to be created in the agent layer and it is difficult to become dense, the strength decreases. On the other hand, when the average particle diameter of the inorganic balloon exceeds 300 ⁇ m, the inorganic balloon is too large compared to the adhesive layer, and therefore, a portion with low strength is easily formed.
  • the adhesive layer may further contain inorganic particles and an inorganic binder.
  • the inorganic particles include ceramic particles such as nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, and carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide. . These may be used alone or in combination of two or more.
  • silicon carbide particles having excellent thermal conductivity are desirable.
  • the lower limit of the average particle size of the inorganic particles is desirably 0.01 ⁇ m, and more desirably 0.1 ⁇ m.
  • the upper limit of the average particle diameter of the inorganic particles is desirably 100 ⁇ m, more desirably 15 ⁇ m, and further desirably 10 ⁇ m. If the particle size of the inorganic particles is less than 0.01 ⁇ m, the cost may increase. On the other hand, if the particle size of the inorganic particles exceeds 100 ⁇ m, the filling rate may be deteriorated and the adhesive force and the thermal conductivity may be reduced. is there.
  • the inorganic binder examples include solidified materials such as silica sol, alumina sol, and titania sol. These may be used alone or in combination of two or more.
  • the inorganic binder is silica, alumina, titania, etc., in which fine oxides suspended in an aqueous solution are solidified when the adhesive layer is dried or fired, and alumina fibers, inorganic balloons, It plays a role of bonding inorganic particles.
  • the inorganic binder also serves to bond the adhesive layer and the honeycomb fired body.
  • a solidified product of silica sol or alumina sol is desirable.
  • the solidified product refers to silica, alumina, titania or the like that is substantially free of moisture formed by forming an adhesive paste layer and then drying or heating the adhesive paste layer at a temperature higher than that.
  • these solidified products may contain OH groups, crystal water and the like.
  • the lower limit of the content of the alumina fiber contained in the adhesive layer 101 is preferably 5.0% by volume and more preferably 10% by volume in terms of solid content.
  • the upper limit of the content of the alumina fiber is preferably 50.0% by volume and more preferably 30% by volume in terms of solid content.
  • the content of the alumina fiber is less than 5.0% by volume, the content of the alumina fiber is too small, and the reinforcing effect of the adhesive layer by the fiber is small. Moreover, it becomes difficult to obtain the effect of suppressing the progress of cracks.
  • it exceeds 50.0% by volume the amount of alumina fiber is too large, so that the dispersibility of the alumina fiber is lowered, and the mechanical characteristics are likely to be biased.
  • the lower limit of the shot content of the alumina fiber is desirably 1% by volume
  • the upper limit of the shot content of the alumina fiber is desirably 10% by volume, more desirably 5% by volume, and further desirably 3% by volume. Setting the shot content to less than 1% by volume is difficult in production, and if the shot content exceeds 10% by volume, the wall surface of the porous ceramic member 20 may be damaged.
  • the shot content in the alumina fiber refers to the percentage by weight in the alumina fiber of shots (non-fibrous particles) that cannot remain as fibers but remain as particles.
  • the lower limit of the content of the inorganic balloon contained in the adhesive layer 101 is preferably 5.0% by volume and more preferably 10% by volume in terms of solid content.
  • the upper limit of the content of the inorganic balloon is preferably 50.0% by volume and more preferably 45% by volume in terms of solid content.
  • the lower limit of the content of the inorganic particles contained in the adhesive layer 101 is preferably 3% by volume, more preferably 10% by volume, and still more preferably 20% by volume in terms of solid content.
  • the upper limit of the content of the inorganic particles is preferably 80% by volume, more preferably 60% by volume, and still more preferably 40% by volume in terms of solid content.
  • the thermal conductivity may be reduced.
  • the content exceeds 80% by volume the adhesive strength is reduced when the adhesive layer 14 is exposed to a high temperature. May be invited.
  • the lower limit of the content of the inorganic binder contained in the adhesive layer 101 is preferably 1% by volume and more preferably 5% by volume.
  • the upper limit of the content of the inorganic binder is desirably 30% by volume, more desirably 15% by volume, and further desirably 9% by volume. If the content of the inorganic binder is less than 1% by volume, the adhesive strength may be reduced. On the other hand, if it exceeds 30% by volume, the thermal conductivity may be reduced.
  • the thickness of the adhesive layer 101 is desirably 0.3 to 3.0 mm.
  • the adhesive layer 101 configured as described above enters the inside of the honeycomb fired body 110 at the interface with the honeycomb fired body 110, and solidifies the inorganic binder. Etc., the adhesive layer 101 and the honeycomb fired body 110 are firmly bonded, and the coat layer 102 is formed on the outer periphery.
  • the material constituting the coat layer 102, the weight ratio of the material, and the like may be the same as those of the adhesive layer 101.
  • the thickness of the coat layer 102 is desirably 0.1 to 3 mm.
  • the coat layer may not be required.
  • the ceramic constituting the honeycomb fired body is made of silicon carbide
  • the material of the honeycomb fired body may be silicon carbide and metal silicon.
  • a forming step is performed in which a honeycomb formed body is manufactured by extruding a wet mixture containing silicon carbide powder and a binder.
  • a wet mixture for manufacturing a honeycomb formed body is prepared by mixing silicon carbide powder having different average particle diameters, an organic binder, a liquid plasticizer, a lubricant, and water.
  • the wet mixture is put into an extruder and extruded to produce a honeycomb formed body of a predetermined shape.
  • the honeycomb formed body is cut into a predetermined length and dried using a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, or the like. Then, a sealing step of filling a predetermined cell with a sealing material paste as a sealing material and sealing the cell is performed.
  • the ceramic raw material (wet mixture) can be used as the sealing material paste.
  • the conditions for the cutting step, the drying step, and the sealing step the conditions conventionally used when manufacturing a honeycomb fired body can be applied.
  • a degreasing step of heating the organic matter in the honeycomb formed body in a degreasing furnace is performed, and the honeycomb fired body is transported to the firing furnace and subjected to the firing step to produce a honeycomb fired body.
  • the conditions conventionally used when manufacturing a honeycomb fired body can be applied.
  • the honeycomb formed body is heated at 300 to 650 ° C. in an oxygen-containing atmosphere.
  • the silicon carbide particles in the honeycomb formed body are sintered by heating at 2000 to 2200 ° C. in a non-oxidizing atmosphere.
  • an oxidation process is performed in which the honeycomb fired body is oxidized by heat treatment at 1100 to 1400 ° C. for 1 to 30 hours in an oxidizing atmosphere. Through the oxidation step, an oxide layer is formed on the surface of the silicon carbide particles constituting the honeycomb fired body.
  • the oxidation step is performed in an atmosphere containing oxygen, and is preferably performed in an air atmosphere from the viewpoint of cost.
  • the oxygen concentration (content converted to oxygen) in the oxidizing atmosphere is not particularly limited, but is preferably 5 to 21% by volume. In view of cost, it is desirable to use air.
  • the oxygen concentration in the oxidizing atmosphere is less than 5% by volume, oxidation of the surface of the silicon carbide particles of the honeycomb fired body becomes unstable, and it becomes difficult to form an oxide layer having a desired thickness. Further, if the oxygen concentration in the oxidizing atmosphere is less than 5% by volume, it is necessary to perform heat treatment for a long time, and the production efficiency tends to decrease.
  • the oxygen concentration in the oxidizing atmosphere exceeds 21% by volume, a process for generating the oxidizing atmosphere, such as preparing oxygen gas, is required, and the manufacturing efficiency tends to be reduced.
  • the heat treatment temperature in the oxidation step is desirably 1100 to 1400 ° C.
  • the heat treatment temperature is less than 1100 ° C., it is difficult to form an oxide layer having a desired thickness.
  • the heat treatment temperature exceeds 1400 ° C., it becomes difficult to control the thickness of the oxide film.
  • the heat treatment time in the oxidation step is preferably 1 to 30 hours, but is appropriately determined according to the heat treatment temperature, the thickness of the target oxide layer, and the like. Specifically, when the heat treatment temperature is 1200 ° C., the heat treatment time is desirably 20 to 22 hours, and when the heat treatment temperature is 1400 ° C., the heat treatment time is desirably 4 to 5 hours. When the heat treatment time is shorter than the lower limit value, it is difficult to form an oxide layer having a target thickness. On the other hand, when the heat treatment time exceeds the upper limit value, an oxide layer thicker than the target thickness is formed.
  • the heat treatment time means a time for maintaining the heat treatment temperature after the temperature is raised to the target heat treatment temperature. Therefore, the time during which the honeycomb fired body is heated in the entire oxidation process includes the time required for temperature increase and decrease in addition to the heat treatment time.
  • an oxide layer having a desired thickness (preferably 100 to 600 nm) can be formed on the surface of the silicon carbide particles constituting the honeycomb fired body.
  • FIG. 4 is a cross-sectional view showing a state in which an aggregate of honeycomb fired bodies is produced using the adhesive paste.
  • the method of forming the adhesive paste layer is not particularly limited.
  • the cross-section of the adhesive paste layer is formed on a table 400 having a V-shaped cross section along the V-shape of the table.
  • the honeycomb fired body 110 (see FIG. 2) is placed, and adhesive paste is applied to the two side surfaces (110a and 110b) facing the upper side of the honeycomb fired body 110 by using a squeegee or the like to obtain a predetermined thickness.
  • an adhesive paste layer 130 is formed.
  • honeycomb fired body 110 is placed on the adhesive paste layer 130. Then, an adhesive paste is further applied to the side facing the upper side of the other honeycomb fired body 110 to form an adhesive paste layer 130, and another honeycomb fired body 110 is mounted on the adhesive paste layer 130.
  • a honeycomb aggregate in which an adhesive paste layer is formed between a predetermined number of honeycomb fired bodies is manufactured.
  • the adhesive paste preferably contains at least an alumina fiber, an inorganic balloon, and an inorganic binder (such as silica sol), and further preferably contains inorganic particles.
  • an alumina fiber, the inorganic balloon, the inorganic binder (silica sol, etc.) and the inorganic particles those described in the above-described honeycomb structure of the present embodiment are used.
  • the preferred range of each component when preparing the adhesive paste is to apply the adhesive paste to the side surface of the honeycomb fired body.
  • the honeycomb fired body is bound and degreased at 700 ° C.
  • the solid content concentration ranges from 5 to 15% by volume for alumina fibers, 35 to 45% by volume for inorganic balloons, and 10 to 15% by volume for inorganic binders. desirable.
  • the material further contains inorganic particles, the range of 30 to 40% by volume of inorganic particles after degreasing is desirable.
  • the adhesive paste may contain an organic binder, but when used as an exhaust gas filter for vehicles, it becomes high temperature, so that it easily decomposes and disappears and causes fluctuations in adhesive strength. It is desirable that the amount is contained.
  • organic binder examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the organic binders, carboxymethyl cellulose is desirable.
  • the lower limit of the content of the organic binder in the adhesive paste is solid content, preferably 0.1% by volume, more preferably 0.2% by volume, and still more preferably 0.4% by volume.
  • the upper limit of the content of the organic binder is preferably 5.0% by volume, more preferably 1.0% by volume, and still more preferably 0.6% by volume in terms of solid content.
  • a dispersion medium liquid may be used.
  • the dispersion medium liquid include water, an organic solvent such as acetone, and an alcohol such as methanol.
  • the dispersion paste is added to adjust the viscosity so that the resulting adhesive paste has a certain viscosity, and then used.
  • the viscosity of the adhesive paste is preferably 15 to 25 Pa ⁇ s (10,000 to 20,000 cps (cP)).
  • an adhesive paste layer is formed by applying an adhesive paste on a predetermined side surface of the honeycomb fired body in which predetermined ends of each cell are sealed, and on the adhesive paste layer,
  • the step of laminating other honeycomb fired bodies is sequentially repeated to produce a honeycomb block, but the honeycomb block may be produced by the following steps.
  • a honeycomb fired body having a predetermined shape such as a cylinder, is formed by combining and firing the honeycomb fired bodies at predetermined intervals by supporting and fixing both ends of the honeycomb fired bodies having a predetermined number of various shapes at predetermined positions. Is made.
  • the aggregate is desirably housed in a container having a predetermined shape, and the container having the predetermined shape preferably has substantially the same volume and shape as the aggregate.
  • an adhesive paste layer is formed between the honeycomb fired bodies by injecting an adhesive paste into the space formed between the honeycomb fired bodies through the injection port formed in the container. Then, it is set as the aggregate
  • a large square pillar-shaped honeycomb fired body aggregate is manufactured by the above bundling step, and then a honeycomb block having a cylindrical shape or a cylindrical column shape is manufactured by performing cutting using a diamond cutter or the like. Finally, a coating layer forming step is performed in which a coating agent paste is applied to the outer periphery of the honeycomb block, dried and solidified to form a coating layer.
  • a coating agent paste a paste similar to or different from the adhesive paste is used.
  • an aggregate of large square pillar-shaped honeycomb fired bodies is produced by a bundling process, and various types of honeycomb fired bodies having outer walls on their side surfaces are bonded with an adhesive.
  • a honeycomb block having a predetermined shape such as a cylinder may be produced, and a coat layer may be formed around the honeycomb block.
  • the coat layer is not necessarily provided, and may be provided as necessary.
  • the adhesive paste and the coating agent paste may be dried and solidified simultaneously.
  • the oxidation process is performed after the honeycomb fired body is manufactured (that is, between the firing process and the bonding process).
  • the method for manufacturing a honeycomb filter according to the first embodiment of the present invention between the bonding step and the outer periphery processing step, between the outer periphery processing step and the outer periphery coat layer forming step, or after the outer periphery coat layer forming step.
  • An oxidation step may be performed.
  • FIG. 5 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus according to the first embodiment of the present invention.
  • An exhaust gas purification device 200 shown in FIG. 5 includes a metal casing 220 having a gas inlet side 221 and a gas outlet side 222, and a honeycomb filter 120 accommodated in the metal casing 220.
  • a honeycomb filter 120 having the same configuration as that of the honeycomb structure 100 shown in FIG. 1 is used. Then, similarly to the honeycomb fired body 110 shown in FIGS. 2A and 2B, any end portion of the cell 21 of the honeycomb fired body 20 constituting the honeycomb filter 120 is covered with a sealing material 24. It is sealed.
  • a holding sealing material 230 is disposed between the honeycomb filter 120 and the metal casing 220, and the honeycomb filter 120 is held by the holding sealing material 230.
  • the holding sealing material 230 is wound around the honeycomb filter 120.
  • the holding sealing material is a mat-like member having a substantially rectangular shape in plan view mainly made of inorganic fibers such as alumina.
  • an inlet pipe for introducing exhaust gas discharged from an internal combustion engine such as a diesel engine into the exhaust gas purification device 200 is connected to the gas inlet side 221 of the metal casing 220.
  • a discharge pipe for discharging the exhaust gas that has passed through the exhaust gas purification apparatus 200 to the outside is connected to the gas outlet side 222 of the metal casing 220.
  • the exhaust gas discharged from the internal combustion engine (in FIG. 5, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow) is sent from the gas inlet side 221 of the metal casing 220 to the exhaust gas purification device 200. Inflow. Thereafter, the exhaust gas G flows into the honeycomb filter 120 from the one end face 25 side of the honeycomb fired body 20. Specifically, the exhaust gas G flows into the cell 21 in which one end face 25 of the honeycomb fired body 20 is opened. The exhaust gas G passes through the cell wall 22 separating the cells 21. At this time, PM in the exhaust gas G is collected by the cell wall 22 and the exhaust gas G is purified.
  • the purified exhaust gas G flows into the cell 21 in which the other end face 26 of the honeycomb fired body 20 is opened, and is discharged out of the honeycomb filter 120. Then, the exhaust gas G is discharged out of the exhaust gas purification device 200 from the gas outlet side 222 of the metal casing 220.
  • the honeycomb filter usually rises to around 800 ° C., but when the regeneration process is performed in a so-called excessive trapping state in which the regeneration process timing is delayed and the amount of accumulated soot is larger than usual, the honeycomb filter
  • the temperature of the filter may be 1200 ° C. or higher.
  • honeycomb filter according to the present embodiment uses the honeycomb structure described in claim 1, cracks are generated even when the temperature of such a honeycomb filter becomes 1200 ° C. or higher. Hard to do. Even if a crack occurs, the crack generated in the honeycomb filter does not spread over the whole, and soot and other particulates can be prevented from leaking outside beyond the regulation value.
  • one honeycomb filter according to the first embodiment of the present invention may be accommodated in a metal casing, or a honeycomb structure used as another catalyst carrier It may be arranged with the body.
  • the honeycomb filter according to the first embodiment of the present invention manufactured by the above method is arranged in a metal casing. Specifically, a mat having a substantially rectangular shape in plan view mainly made of inorganic fibers is prepared as a holding sealing material, and the mat is wound around the honeycomb filter. And it can be set as an exhaust gas purification apparatus by press-fitting the honeycomb filter by which the mat
  • the metal casing is formed in a shape that can be separated into two parts, a first metal casing and a second metal casing, and a honeycomb filter around which a mat made of inorganic fibers is wound is placed on the first metal casing. It can also be set as an exhaust gas purification device by covering and sealing a second metal casing later.
  • a silicon-containing oxide layer is formed on the surface of the silicon carbide particles constituting the honeycomb fired body, and the endothermic reaction described above when the oxide layer is exposed to a high temperature of 1500 to 1600 ° C.
  • the honeycomb structured body is unlikely to increase in temperature due to the endothermic reaction, and the honeycomb structured body can be prevented from reaching a high temperature. Therefore, heat applied to the adhesive layer can be reduced, and crystallization (cristobarite) of the silica content of the adhesive layer can be prevented.
  • the adhesive layer constituting the honeycomb structure of the present embodiment includes at least an alumina fiber and an inorganic balloon.
  • the alumina fiber is used as a material in the adhesive layer, up to about 1400 ° C., Since it does not melt or undergo phase transformation, it has the effect of stopping the growth of cracks even at a high temperature of 1200 ° C. or higher, and the strength of the adhesive layer is unlikely to deteriorate.
  • the inorganic balloon has an effect of stopping the development of cracks, mechanical deterioration of the adhesive layer can be prevented.
  • the silica content in the adhesive layer is reduced by using an inorganic fiber, the change in thermal expansion due to the crystallization of the silica content described above is reduced.
  • the adhesive layer including the inorganic balloon has a small heat capacity, the thermal conductivity of the adhesive layer is increased, and the thermal stress difference between the honeycomb fired body and the adhesive layer generated during PM combustion is reduced. Can do. As a result, cracks generated in the adhesive layer due to the thermal stress difference can be suppressed, and cracks generated in the honeycomb fired body can be suppressed.
  • the adhesive layer constituting the honeycomb structure of the present embodiment includes an inorganic balloon having an average particle size of 70 to 300 ⁇ m, and this inorganic balloon is exactly the length of the alumina fiber. It has a good size, and both the alumina fiber and the inorganic balloon are more easily dispersed. The voids are uniformly dispersed and the adhesive layer becomes dense except for the portion where the inorganic balloon is present. Furthermore, the well-dispersed inorganic balloon also has an effect of stopping the progress of cracks, so that even when cracks occur in the adhesive layer, the progress of cracks can be reliably stopped.
  • the adhesive layer including the inorganic balloon has a small heat capacity, the thermal conductivity of the adhesive layer is increased, and the thermal stress difference between the honeycomb fired body and the adhesive layer generated during PM combustion is reduced. Can do. As a result, cracks generated in the adhesive layer due to the thermal stress difference can be suppressed, and cracks generated in the honeycomb fired body can be suppressed.
  • the adhesive layer constituting the honeycomb structure of the present embodiment includes alumina fibers having an average length of 25 to 100 ⁇ m and appropriate length, alumina fibers in the adhesive layer are included in the adhesive layer. Dispersibility is improved. Due to this, the adhesive layer excluding the portion where the inorganic balloon is present has few voids and the like, has a dense structure, improves mechanical strength, and does not easily generate cracks. Moreover, since the alumina fiber having the above-described length has an effect of stopping the progress of cracks, the progress of the cracks can be stopped even if a crack occurs in the adhesive layer.
  • the adhesive layer constituting the honeycomb structure of the present embodiment includes alumina fibers having an aspect ratio of 3 to 30, the mechanical strength of the adhesive layer is further improved, and the adhesive Even when cracks occur in the layer, the progress of cracks can be more reliably stopped.
  • the thickness of the oxide layer of the silicon carbide particles in the honeycomb fired body constituting the honeycomb structure of the present embodiment is 100 to 600 nm, heat applied to the adhesive layer can be reduced, Crystallization (cristobalite) of the silica content in the adhesive layer can be prevented. Furthermore, as described above, the joint end portion of the neck becomes smooth, so that the mechanical strength is reduced. Moreover, since the thickness of the oxide layer is smaller than the thickness of the silicon carbide particles, even if the oxide layer is formed on the silicon carbide particles, the pressure loss of the honeycomb filter is not adversely affected.
  • the adhesive layer constituting the honeycomb structure of the present embodiment further includes inorganic particles and an inorganic binder, the alumina fibers, inorganic balloons, and inorganic particles in the adhesive layer are bonded by the inorganic binder.
  • the adhesive layer is excellent due to its mechanical properties.
  • the adhesive layer contact includes inorganic particles, the mechanical properties are improved.
  • the adhesive layer and the honeycomb fired body are more easily bonded by the inorganic binder.
  • a fly ash balloon can be included as an inorganic balloon in the adhesive layer constituting the honeycomb structure of the present embodiment.
  • This fly ash balloon is close to a sphere, and its components are silica and alumina, so it has excellent affinity with alumina fibers, and it becomes easier to disperse with some of the alumina fibers attached to the fly ash balloon. The progress of cracks and the like can be satisfactorily prevented.
  • the content of the alumina fiber in the adhesive layer constituting the honeycomb structure of the present embodiment is 5.0 to 50.0% by volume, the alumina fiber in the adhesive layer is favorably dispersed. be able to.
  • a fly ash balloon can be included as an inorganic balloon. Since this fly ash balloon is close to a sphere and its components are silica and alumina, there is no risk of melting or the like even when exposed to a high temperature of 1200 ° C. or higher. Furthermore, since the fly ash balloon has a small specific gravity, the heat capacity of the adhesive layer can be lowered. Thus, since the heat capacity of the adhesive layer can be reduced, the difference in thermal stress from the honeycomb fired body can be reduced. As a result, the occurrence of cracks in the adhesive layer due to the thermal stress difference can be suppressed, the cracks generated in the honeycomb fired body can be suppressed, and soot leakage can be suppressed.
  • Silicon carbide particles can be included as inorganic particles in the adhesive layer constituting the honeycomb structure of the present embodiment, and the adhesive layer containing silicon carbide has heat resistance and mechanical properties. It becomes an excellent adhesive layer.
  • the adhesive layer constituting the honeycomb structure of the present embodiment can contain a solidified product of silica sol or alumina sol as the inorganic binder, and silica sol or alumina sol as a raw material for forming the inorganic binder. By using, it becomes an adhesive layer excellent in heat resistance.
  • Example 1 Examples that more specifically disclose the first embodiment of the present invention will be described below. In addition, this invention is not limited only to these Examples.
  • Silicon carbide coarse powder 52.8% by weight having an average particle diameter of 22 ⁇ m and silicon carbide fine powder 22.6% by weight of an average particle diameter of 0.5 ⁇ m were dry-mixed. 2.1% by weight of resin, 4.6% by weight of organic binder (methyl cellulose), 2.8% by weight of lubricant (Unilube manufactured by NOF Corporation), 1.3% by weight of glycerin, and 13.8% by weight of water were added. The mixture is kneaded to obtain a mixed composition, followed by an extrusion molding step of extrusion molding. A raw honeycomb having the same shape as that shown in FIG. A molded body was produced.
  • the raw honeycomb molded body is dried using a microwave dryer to obtain a dried honeycomb molded body, and then a predetermined cell is filled with a paste having the same composition as that of the generated molded body. Used to dry.
  • a degreasing process for degreasing the dried honeycomb molded body at 400 ° C. is performed, and a firing process is performed under a normal pressure argon atmosphere at 2200 ° C. for 3 hours, with a porosity of 42% and an average pore diameter of 9 ⁇ m.
  • the following oxidation process was performed on the obtained honeycomb fired body.
  • the temperature is raised from room temperature at a heating rate of 1 ° C./min in an air atmosphere, and when the maximum temperature reaches 1200 ° C., the temperature is maintained for 3 hours and then gradually heated to room temperature. The temperature was lowered and taken out at room temperature (25 ° C.).
  • the surface of the honeycomb fired body was oxidized.
  • alumina fiber having an average fiber length of 60 ⁇ m SiO 2 : 20 wt%, Al 2 O 3 : 80 wt% mullite fiber
  • fly ash balloon average particle diameter: 300 ⁇ m
  • carbonization having an average particle diameter of 0.5 ⁇ m Silicone particles, silica sol (solid content concentration: 30% by weight), carboxymethylcellulose, polyvinyl alcohol, and water were mixed and kneaded to prepare an adhesive paste.
  • a honeycomb fired body is placed on a table 400 having a V-shaped cross section as shown in FIG. 4 along the V-shape of the table 400, and the adhesive paste having the above composition is applied to the honeycomb fired body 110.
  • the adhesive paste layer was formed by applying the squeegee on the side facing upward. Then, the process of sequentially laminating the other honeycomb fired bodies 110 on the adhesive paste layer is repeated to produce 16 honeycomb fired bodies 110 bonded through the adhesive paste layer, and 180 ° C. By drying and solidifying the adhesive paste layer in 20 minutes, a prismatic honeycomb aggregate having a thickness of the adhesive layer 101 of 1 mm was produced.
  • a Quanta SXM manufactured by ULVAC-PHI was used as the XPS apparatus, and a monochromated Al-K ⁇ ray (Monochromated Al-K ⁇ ) was used as the X-ray source.
  • the measurement conditions were voltage: 15 kV, output: 25 W, measurement area: 100 ⁇ m ⁇ .
  • the ion sputtering conditions were ion species: Ar + , voltage: 1 kV, and sputtering rate (SiO 2 conversion): 1.5 nm / min.
  • PM leakage amount measuring apparatus includes a 2L (liter) common rail diesel engine, an exhaust gas pipe for circulating exhaust gas from the engine, and a metal casing connected to the exhaust gas pipe and having a honeycomb filter fixed via a holding sealing material. And a PM counting device (MEXA-100SPCS, manufactured by HORIBA) capable of integrating and counting the number of PMs after passing through the honeycomb filter.
  • PM counting device MEXA-100SPCS, manufactured by HORIBA
  • honeycomb filter honeycomb filter
  • Example 1 and Comparative Example 1 The honeycomb structure (honeycomb filter) according to Example 1 and Comparative Example 1 was subjected to PM collection by the following procedure, and then regenerated.
  • the honeycomb filter manufactured in Example 1 and Comparative Example 1 is arranged in the exhaust passage of the engine, and further, on the gas inflow side of the honeycomb filter, a catalyst support (diameter: 200 mm, A length: 100 mm, a cell density: 400 cells / inch 2 , and a platinum carrying amount: 5 g / L) were installed to obtain an exhaust gas purification device.
  • a catalyst support diameter: 200 mm, A length: 100 mm, a cell density: 400 cells / inch 2 , and a platinum carrying amount: 5 g / L
  • the engine was operated so that the engine speed was 1500 min ⁇ 1 and the torque was 50 Nm, and the exhaust gas was circulated inside the honeycomb filter.
  • the operating conditions were changed so that the engine speed was 2000 min ⁇ 1 and the torque was 90 Nm, and the operation was continued until it became stable.
  • the honeycomb filter had a collection amount of 21 g / L, which was larger than the normal collection amount. PM was collected.
  • the differential pressure before and after the honeycomb filter was increased, and PM was burned. Thereafter, the differential pressure before and after the elevated honeycomb filter dropped due to PM combustion.
  • the operating conditions were returned to idling 10 seconds after the descent. Thereafter, the engine was operated in a normal mode so that the engine speed was 1500 min ⁇ 1 and the torque was 50 Nm, and the number of PM leaking from the honeycomb filter (# / km) was measured using the PM counting device. .
  • the number of PM indicates the number of PM leaking from the honeycomb filter when it is assumed that the engine has advanced by 1 km by operating the engine.
  • honeycomb filter honeycomb filter
  • a honeycomb fired body in which an oxide layer having a thickness of 200 nm was formed on silicon carbide particles was used.
  • the honeycomb structure according to the example in which the adhesive layer including the alumina fiber and the fly ash balloon is formed maintains strength even when exposed to high-temperature heat, and the temperature is 1200 ° C. or higher. It has been clarified that cracks do not spread over the entire surface even after exposure, and that particulates such as soot can be prevented from leaking outside beyond the regulation value.
  • a biosoluble fiber was used as the inorganic fiber added to the adhesive layer, no inorganic balloon was added, the honeycomb fired body was not oxidized, and the oxide layer was Those that were not formed have no oxide film on the honeycomb fired body, so when exposed to a temperature of 1200 ° C. or higher, the temperature of the honeycomb fired body increases, cracks spread throughout, and the strength of the adhesive layer also decreases. It was found that particulates such as soot leaked outside beyond the regulation value.
  • the ends of the cells may not be sealed.
  • Such a honeycomb structure can be suitably used as a catalyst carrier.
  • the shape of the honeycomb fired body is not particularly limited, but it is desirable that the honeycomb fired bodies be easily bundled when the honeycomb fired bodies are bound together to produce a honeycomb structure.
  • a square, a rectangle, a hexagon, a fan shape, etc. are mentioned.
  • the shape of the honeycomb structure of the present invention is not limited to a columnar shape, and may be an arbitrary shape such as an elliptical column shape or a rectangular column shape.
  • the wet mixture that is the raw material of the honeycomb formed body may contain an organic binder, a plasticizer, a lubricant, a dispersion medium liquid, and the like in addition to the ceramic powder as the main component of the honeycomb structure.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and polyethylene glycol. Of these, methylcellulose is desirable.
  • the blending amount of the organic binder is usually preferably 1 to 10 parts by weight with respect to 100 parts by weight of the ceramic powder.
  • plasticizer For example, glycerol etc. are mentioned.
  • the lubricant is not particularly limited, and examples thereof include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether. In some cases, the plasticizer and the lubricant may not be contained in the mixed raw material powder.
  • the dispersion medium liquid examples include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • a molding aid may be added to the wet mixture.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like.
  • a pore-forming agent such as balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, and graphite may be added to the wet mixture as necessary.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Of these, alumina balloons are desirable.
  • the sealing material paste for sealing the cell is not particularly limited, but it is desirable that the porosity of the sealing material manufactured through a subsequent process is 30 to 75%, for example, the same as the wet mixture is used. be able to.
  • the honeycomb structure may carry a catalyst for purifying exhaust gas.
  • a catalyst for purifying exhaust gas for example, a noble metal such as platinum, palladium, rhodium or the like is desirable, and among these, platinum is more desirable.
  • other catalysts for example, alkali metals such as potassium and sodium, and alkaline earth metals such as barium can be used. These catalysts may be used alone or in combination of two or more.
  • a method of manufacturing the honeycomb structure of the present invention a plurality of honeycomb aggregates are produced, and an adhesive paste layer (adhesive paste layer containing a foam material) is formed on the side surface of the honeycomb aggregate, A method of binding a plurality of honeycomb aggregates in the binding step may be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Ceramic Products (AREA)

Abstract

本発明は、800℃を超えた温度、特に1200℃以上の温度範囲で使用された場合であっても、スス等のパティキュレートが規制値以上に外部に漏れることのないハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、多数のセルがセル壁を隔てて長手方向に並設された炭化ケイ素質のハニカム焼成体が接着剤層を介して複数個結束され、前記セルを隔てるセル壁のいずれか一方の端部が目封じされたハニカム構造体であって、前記ハニカム焼成体を構成する炭化ケイ素粒子の表面には、ケイ素を含む酸化物層が形成されており、前記接着剤層は、少なくともアルミナファイバと無機バルーンとを含むことを特徴とする。 

Description

ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置
本発明は、ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置に関する。
ディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMともいう)が含まれており、近年、このPMが環境又は人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HC又はNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境又は人体に及ぼす影響についても懸念されている。
そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HC又はNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、コージェライトや炭化ケイ素等の多孔質セラミックからなるハニカム構造体が種々提案されている。
これらハニカム構造体のなかで、多数のセルがセル壁を隔てて長手方向に並設された柱状の多孔質セラミックからなるハニカム焼成体が接着剤層を介して複数個結束され、上記セルを隔てるセル壁のいずれか一方の端部が目封じされ、フィルタとして機能するハニカム構造体が提案されている。
上記のような従来のハニカム構造体として、特許文献1には、局部的な燃焼等に起因する局部的な温度変化が生じた場合であっても、発生する熱応力を緩和させることができ、クラックが発生しにくく、強度及び耐久性に優れたハニカムフィルタが開示されている。
国際公開第03/067041号
この特許文献1に記載のハニカムフィルタでは、接着剤層の熱膨張率αと、ハニカム焼成体の熱膨張率αとが、0.01<|α-α|/α<1.0の関係を有するように構成されているので、局部的な温度変化が生じた場合であっても、発生する熱応力を接着剤層により緩和させることが可能である。
しかしながら、上述した特許文献1に開示されたハニカムフィルタには次のような問題がある。すなわち、上記ハニカムフィルタは、現実的な温度範囲である10~800℃といった広い温度範囲において使用されることを想定してなされた発明であるが、ごく稀に上記した想定を超えた温度である800℃を超えた温度、特に1200℃以上の温度範囲において使用されることもあり、このような極めて高い温度で使用された場合には、ハニカムフィルタの内部にクラックが発生し、スス等のパティキュレートが規制値以上に外部に漏れてしまうことがあるという問題が残されていた。
この原因について検討したところ、接着剤層に含まれているシリカ分が1200℃以上になると結晶化(例えば、クリストバライト化)することで、熱膨張特性が変化し、ハニカム構造体を構成するハニカム焼成体と接着剤層との熱膨張率の差が大きくなる。このため、ハニカム焼成体に入ったクラックを接着剤層がさらに押し広げ、スス等のパティキュレートの漏れを助長してしまうことがわかった。
本発明者らは、上記知見に基づき、さらに検討を行った結果、接着剤層にアルミナファイバと無機バルーンとを含ませ、一方、上記ハニカム焼成体を酸化処理して、ハニカム焼成体を構成する炭化ケイ素の表面にケイ素を含む酸化物層を形成することにより、1200℃以上の温度範囲で使用された場合であっても、スス等のパティキュレートが規制値以上に外部に漏れることのないハニカム構造体、該ハニカム構造体を用いたハニカムフィルタ及び該ハニカムフィルタを用いた排ガス浄化装置を提供することができることを見出し、本発明を完成させたものである。
すなわち、請求項1に記載のハニカム構造体は、多数のセルがセル壁を隔てて長手方向に並設された炭化ケイ素質のハニカム焼成体が接着剤層を介して複数個結束され、上記セルを隔てるセル壁のいずれか一方の端部が目封じされたハニカム構造体であって、
上記ハニカム焼成体を構成する炭化ケイ素粒子の表面には、ケイ素を含む酸化物層が形成されており、
上記接着剤層は、少なくともアルミナファイバと無機バルーンとを含むことを特徴とする。
請求項1に記載のハニカム構造体では、ハニカム焼成体を構成する炭化ケイ素粒子の表面にケイ素を含む酸化物層が形成されており、この酸化物層が、1500~1600℃の高温に晒された際に、下記の(1)式又は(2)の吸熱反応が進行し、ハニカム構造体は、
この吸熱反応に起因してハニカム焼成体の温度が上昇しにくく、ハニカム構造体が高温になるのを防ぐことができる。なお、下記の(1)式及び(2)式では、下記の反応によりSiO1モル当たりが吸収する熱量を示している。
SiO = SiO(g) + 1/2O 800kJ/mol・・・(1)
SiO + C = SiO(g) + CO 700kJ/mol・・・(2)
そのため、接着剤層にかかる熱を低減することができ、接着剤層のシリカ分の結晶化(クリストバライト化)を防ぐことができる。これにより、熱膨張性の変化に起因して、ハニカム焼成体のクラックを接着剤層がさらに押し広げ、パティキュレートの漏れを助長してしまうことを防ぐことができる。さらに、アルミナファイバを用い、接着剤層中のシリカ分の含有量を少なくすることにより、よりこの効果を高めることができる。
なお、本発明において、炭化ケイ素質焼成体とは、炭化ケイ素が60重量%以上の焼成体をいうものとする。上記炭化ケイ素質焼成体は、炭化ケイ素以外の材料を含んでいてもよく、炭化ケイ素以外の材料として、例えば、40重量%以下の金属ケイ素を含んでいてもよい。炭化ケイ素焼成体が金属ケイ素を含む場合には、金属ケイ素の表面にも、ケイ素を含む酸化物層が形成されることになる。
また、ハニカム焼成体を構成する炭化ケイ素粒子の間には、「ネック」と呼ばれる2つの粒子が連結されたときに生じるくびれた部分が存在する。炭化ケイ素粒子同士は、互いにネックを介して結合されている。
炭化ケイ素粒子の表面に酸化物層が形成されていない場合、ネックの結合角度は小さく、ネックの結合端部は先鋭状になっている。従って、このような炭化ケイ素粒子から構成されたハニカム焼成体に外力又は熱衝撃が加わると、ネックの結合端部に応力が集中する。
一方、炭化ケイ素粒子の表面に酸化物層が形成されている場合、ネックの結合角度が大きくなり、ネックの結合端部が滑らかになる。従って、ネックの結合端部への応力集中が緩和される。その結果、ハニカム焼成体の機械的強度が向上すると考えられる。
上記接着剤層中には、少なくともアルミナファイバと無機バルーンとを含み、アルミナファイバは、接着剤層中の材料として使用した場合、1400℃程度まで、溶損したり、相変態することがないので、1200℃以上の高温でもクラックの進展を止める効果があり、接着剤層の強度が劣化しにくい。また、無機バルーンもクラックの進展を止める効果があるので、接着剤層の機械的劣化を防止することができる。さらに、無機バルーンを含む接着剤層は、熱容量が小さくなるので、接着剤層の熱伝導率が大きくなり、PMの燃焼時に発生するハニカム焼成体と接着剤層との熱応力差を小さくすることができる。その結果、熱応力差に起因して接着剤層に発生するクラックを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができる。
請求項2に記載のハニカム構造体では、上記アルミナファイバの平均長さは25~100μm、前記無機バルーンの平均粒径は、70~300μmである。
また、請求項2に記載のハニカム構造体を構成する接着剤層中には、平均長さが25~100μmと適切な長さのアルミナファイバが含まれているので、接着剤層中でアルミナファイバの分散性が良好となる。これに起因して無機バルーンが存在している部分を除く接着層は、空隙等が少なく、緻密な構造となり、機械的強度が向上し、クラックが発生しにくくなる。また、上記した長さのアルミナファイバはクラックの進展を止める効果があるので、たとえ接着剤層にクラックが発生した場合であってもクラックの進展を食い止めることができる。
また、請求項2に記載のハニカム構造体を構成する接着剤層中には、平均粒径が70~300μmの無機バルーンが含まれており、この無機バルーンは、アルミナファイバの長さに対して丁度よい大きさであり、アルミナファイバ及び無機バルーンの両方がより分散し易くなり、空隙が均一に分散するとともに無機バルーンが存在している部分を除いて接着層がより緻密となる。さらに、良好に分散した無機バルーンもクラックの進展を止める効果があるので、接着剤層にクラックが発生した場合であってもクラックの進展を確実に食い止めることができる。
さらに、無機バルーンを含む接着剤層は、熱容量が小さくなるので、接着剤層の熱伝導率が大きくなり、PMの燃焼時に発生するハニカム焼成体と接着剤層との熱応力差を小さくすることができる。その結果、熱応力差に起因して接着剤層に発生するクラックを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができる。
アルミナファイバの平均長さが25μm未満であると、アルミナファイバの長さが短すぎるため、凝集し易くなり、分散性が低下し易くなる。アルミナファイバは、クラックの進展を止める効果を有するが、アルミナファイバの長さが短すぎると、さらに、クラックの進展を抑制する効果が得られにくくなる。一方、アルミナファイバの平均長さが100μmを超えても、アルミナファイバの長さが長くなりすぎるため、一定方向に配向し易くなり、分散性が低下し易くなる。
無機バルーンの平均粒径が70μm未満であると、無機バルーンの大きさが小さすぎるため、アルミナ粒子、無機バインダ、無機粒子の分散性が悪くなり、無機バルーンが存在している部分を除いて接着剤層に空隙が生まれやすく、緻密になりにくいため、強度が低下する。一方、無機バルーンの平均粒径が300μmを超えると、無機バルーンが接着剤層に比べて大きすぎるため、強度が低い部分ができ易くなる。
請求項3に記載のハニカム構造体では、上記アルミナファイバのアスペクト比(繊維長/繊維径)は、3~30である。
このため、接着剤層の機械的強度がより向上し、接着剤層にクラックが発生した場合であってもクラックの進展をより確実に食い止めることができる。
上記アスペクト比が3未満であると、機械的強度の向上効果及びクラック進展抑制の効果が得られにくくなる。一方、上記アスペクト比が30を超えると、接着剤層形成時にアルミナファイバが折れやすくなり、上記の効果が得られにくくなる。
請求項4に記載のハニカム構造体では、上記酸化物層の厚さは、100~600nmである。
一般に、ハニカム構造体を排ガス浄化装置のハニカムフィルタとして使用した場合、PM燃焼時に酸化雰囲気となるため、ハニカム構造体に酸化膜が形成されると考えられる。しかしながら、このようなPMの燃焼時においては、ハニカム構造体の温度分布は均一でないため、酸化膜の厚さが不均一になってしまう。従って、このような条件では、均一な100~600nmの厚さの酸化膜を形成することは困難である。
また、本発明のハニカム構造体は、使用前から100nm以上の酸化膜が形成されているため、本発明の効果が得られ易い。
また、酸化物層の厚さが100~600nmであると、接着剤層にかかる熱を低減することができ、接着剤層内のシリカ分の結晶化(クリストバライト化)を防ぐことができる。さらに、上記したように、ネックの結合端部が滑らかになるため、機械的強度が低減する。
酸化物層の厚さが100nm未満であると、酸化物層の厚さが薄すぎるため、上記した吸熱反応により吸収される熱量が少なくなり、シリカ分が結晶化し易くなる。また、ネックの結合端部への応力集中を緩和する効果を充分に得ることができない。一方、酸化物層の厚さが600nmを超えると、ネック部における炭化ケイ素粒子同士の結合部分が小さくなりすぎ、機械的強度の低下を招くことがある。さらに、これ以上酸化層の厚さを厚くしても、接着剤層内のシリカ分の結晶化抑制効果を向上させることはできない。
請求項5に記載のハニカム構造体では、上記接着剤層は、さらに無機粒子及び無機バインダを含む。
このため、接着剤層中のアルミナファイバ、無機バルーン、無機粒子は、無機バインダにより接着され、機械的特性により優れた接着剤層となる。また、上記接着剤層は、無機粒子を含んでいるため、より緻密な接着剤層を形成することができ、機械的特性が改善される。さらに、上記無機バインダ及び無機粒子がハニカム焼成体の外面の気孔に入り込むことで接着強度を高めることができる。
請求項6に記載のハニカム構造体では、上記無機バルーンの含有量は、5.0~50.0体積%である。
このため、フィルタとしての機械的特性を維持することができる。
無機バルーンの含有量が5.0体積%未満であると、無機バルーンの含有量が少なすぎるため、接着剤層を構成する材料の分散性が悪くなり、空隙ができ易くなり、強度が低下することがある。また、接着剤層の熱容量が小さくならないので、PMの燃焼によりハニカム焼成体と接着剤層の間に発生する熱応力差を小さくすることができない。そのため、接着剤層にクラックが発生し、それがハニカム焼成体のクラックの発生を誘導し、スス漏れが生じる。一方、無機バルーンの含有量が50体積%を超えると、逆に無機バルーンの含有量が多くなりすぎるため、残りの材料が少なくなりすぎ、強度低下及びクラックの進展が起こり易くなる。
請求項7に記載のハニカム構造体では、上記アルミナファイバの含有量は、5.0~50.0体積%である。
このため、接着剤層中のアルミナファイバを良好に分散させることができる。
アルミナファイバの含有量が5.0体積%未満であると、アルミナファイバの含有量が少なすぎるため、ファイバによる接着剤層の補強効果が小さい。また、クラックの進展を抑制する効果がえられにくくなる。一方、アルミナファイバの含有量が50.0体積%を超えると、アルミナファイバの量が多すぎるため、アルミナファイバの分散性が低下し、機械的特性に偏りが生じ易くなる。
請求項8に記載のハニカム構造体では、上記無機バルーンは、フライアッシュバルーンである。
フライアッシュバルーンは、球形に近く、その成分は、シリカとアルミナであるため、1200℃以上の高温に晒された場合であっても、溶損等のおそれがない。さらにフライアッシュバルーンは、比重が小さいため、接着剤層の熱容量を低くすることができる。このように、接着剤層の熱容量を低くすることができるため、ハニカム焼成体との応力差を小さくすることができる。その結果、熱応力差によって接着剤層にクラックが発生するのを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができ、スス漏れを抑えることができる。
請求項9に記載のハニカム構造体では、上記無機粒子は、炭化ケイ素粒子である。
このため、接着剤層は、耐熱性、機械的特性に優れた接着剤層となる。
請求項10に記載のハニカム構造体では、上記無機バインダは、シリカゾル又はアルミナゾルの固化物である。
無機バインダを形成するための原料としてシリカゾル又はアルミナゾルを使用しているため、耐熱性に優れた接着剤層となる。
請求項11に記載の排ガス浄化用ハニカムフィルタは、内燃機関の排気通路に配置され、上記内燃機関より排出されたパティキュレートを濾過することができるように構成された排ガス浄化用ハニカムフィルタであって、請求項1~10に記載のハニカム構造体が用いられている。
このため、上記排ガス浄化用ハニカムフィルタが800℃を超えた温度、特に1200℃以上の高温に晒された場合であっても、クラックが発生しにくく、また、クラックが発生した場合であっても、クラックの進展を止めることができ、スス等のパティキュレートが規制値以上に外部に漏れることがないようにすることができる。
請求項12に記載の排ガス浄化装置は、ケーシングと、上記ケーシングに収容された排ガス浄化用ハニカムフィルタと、上記排ガス処理体の周囲に巻き付けられ、上記排ガス処理体及び上記ケーシングの間に配設された保持シール材とを備える排ガス浄化装置であって、
上記排ガス浄化用ハニカムフィルタとして、請求項11に記載の排ガス浄化用ハニカムフィルタが用いられていることを特徴とする。
このため、上記排ガス浄化装置が800℃を超えた温度、特に1200℃以上の高温に晒された場合であっても、クラックが発生しにくく、また、接着剤層にクラックが発生した場合であっても、クラックの進展を止めることができ、スス等のパティキュレートが規制値以上に外部に漏れることがないようにすることができる。
図1は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図である。 図2(a)は、本発明のハニカム構造体を構成するハニカム焼成体の一例を模式的に示した斜視図であり、図2(b)は、図2(a)に示すハニカム焼成体のA-A線断面図である。 図3(a)は、ハニカム焼成体を構成する炭化ケイ素粒子同士の結合状態を模式的に示す説明図であり、図3(b)は、図3(a)に示す炭化ケイ素粒子の部分拡大図である。 図4は、接着剤ペーストを用いてハニカム焼成体の集合体を作製する様子を示した断面図である。 図5は、本発明の第一実施形態に係る排ガス浄化装置の一例を模式的に示す断面図である。
(第一実施形態)
以下、本発明のハニカム構造体の一実施形態である第一実施形態について図面を参照しながら説明する。
図1は、本発明の第一実施形態に係るハニカム構造体の一例を模式的に示す斜視図であり、図2(a)は、本発明のハニカム構造体を構成するハニカム焼成体の一例を模式的に示した斜視図であり、図2(b)は、図2(a)に示すハニカム焼成体のA-A線断面図である。
図1に示すハニカム構造体100では、図2(a)及び図2(b)に示すような形状のハニカム焼成体110が接着剤層101を介して複数個結束されてセラミックブロック103を構成し、さらに、このセラミックブロック103の外周にコート層102が形成されている。
図2(a)及び図2(b)に示すハニカム焼成体110には、多数のセル111がセル壁113を隔てて長手方向(図2(a)中、aの方向)に並設されており、セル111のいずれかの端部が封止材112で封止されている。従って、一方の端面が開口したセル111に流入した排ガスGは、必ずセル111を隔てるセル壁113を通過した後、他方の端面が開口した他のセル111から流出するようになっている。
従って、セル壁113がPM等を捕集するためのフィルタとして機能する。
次に、本発明の第一実施形態に係るハニカム構造体100を構成するハニカム焼成体110について説明する。
本実施形態のハニカム構造体100は、炭化ケイ素質のハニカム焼成体110により構成されている。炭化ケイ素質のハニカム焼成体110とは、炭化ケイ素を60重量%以上、金属ケイ素を40重量%以下含む焼成体を意味し、炭化ケイ素のほかのセラミックを含まないものであってよく、炭化ケイ素粒子が金属ケイ素等により接着されたものであってもよい。
本実施形態に係るハニカム構造体100では、炭化ケイ素粒子の表面には、ケイ素を含む酸化物層(以下、単に酸化物層ともいう)が形成されている。
前記酸化物層の厚さの下限は、100nmであることが望ましく、200nmであることがより望ましい。上記酸化物層の厚さの上限は、600nmであることが望ましく、400nmであることがより望ましい。
ハニカム焼成体110が1500~1600℃の高温に晒された際、この酸化物層を構成するシリカは、下記の(1)式又は(2)で表わす吸熱反応が進行する。この吸熱反応に起因してハニカム焼成体110の温度が上昇しにくく、ハニカム焼成体110を含むハニカム構造体100が高温になるのを防ぐことができる。なお、下記の(1)式及び(2)式では、下記の反応によりSiO1モル当たりが吸収する熱量を示している。
SiO = SiO(g) + 1/2O 800kJ/mol・・・(1)
SiO + C = SiO(g) + CO 700kJ/mol・・・(2)
そのため、接着剤層101にかかる熱を低減することができ、接着剤層101中のシリカ分の結晶化(クリストバライト化)を防ぐことができる。シリカ分の結晶化に伴う熱膨張性の変化に起因して、ハニカム焼成体110のクラックを接着剤層101がさらに押し広げ、パティキュレートの漏れを助長してしまうことを防止することができる。
ハニカム焼成体110は、骨材としての多数の炭化ケイ素粒子が相互間に多数の細孔を保有した状態で結合するか、又は、複数の炭化ケイ素粒子がその内部に気孔を保有した状態で結合することによって構成されている。
図3(a)は、ハニカム焼成体110を構成する炭化ケイ素粒子同士の結合状態を模式的に示す説明図である。図3(b)は、図3(a)に示す炭化ケイ素粒子の部分拡大図である。
図3(a)及び図3(b)に示すように、ハニカム焼成体110を構成する炭化ケイ素粒子31は、互いにネック31aを介して結合されている。また、炭化ケイ素粒子31の表面には、ケイ素を含む酸化物層32が形成されている。
炭化ケイ素粒子31の表面に酸化物層32が形成されている場合、ネック31aの結合角度が大きくなり、ネック31aの結合端部が滑らかになる。従って、ネックの結合端部31aへの応力集中が緩和される。その結果、ハニカム焼成体の機械的強度が向上すると考えられる。
一方、ハニカム焼成体110を構成する炭化ケイ素粒子は、11~20μm程度の平均粒子径を有する。そのため、酸化物層の厚さが100~600nmであると、酸化物層の厚さが炭化ケイ素粒子に比べて非常に薄いため、フィルタとして用いた場合であっても、圧力損失に悪影響を及ぼすことがない。
なお、酸化物層の厚さは、X線光電子分光法(XPS)を用いて測定することができる。XPSは、サンプル表面にX線を照射し、生じる光電子のエネルギーをエネルギーアナライザーと呼ばれる装置で測定する分析法である。XPSにより、サンプルの構成元素とその電子状態を分析することができる。また、X線光電子分析とイオンスパッタリングを交互に繰り返すことにより、サンプルの深さ方向(厚さ方向)の組成の変化を知ることができる。
本実施形態に係るハニカム構造体においては、イオンスパッタリングにより一定速度でサンプルの表面を削り取りながら、XPSによりその組成を分析することにより、酸化物層の深さ(厚さ)を決定することができる。このような測定方法を用いた測定結果に基づくと、上記炭化ケイ素粒子の表面には、厚さが100~600nmの酸化物層が形成されていると推定している。
ハニカム焼成体110の気孔率は特に限定されないが、40~70vol%程度であることが望ましい。気孔率が40vol%未満であると、ハニカム構造体100が目詰まりを起こし易く、一方、気孔率が70vol%を超えると、ハニカム焼成体110の強度が低下して破壊され易くなる。なお、上記気孔率は、例えば、水銀圧入法により測定することができる。
また、ハニカム焼成体110の平均気孔径は5~100μmであることが望ましい。平均気孔径が5μm未満であると、パティキュレートが容易に目詰まりを起こし易い。一方、平均気孔径が100μmを超えると、パティキュレートが気孔を通り抜け易くなり、該パティキュレートを捕集する能力が低下し、フィルタとしての機能が低下することになる。
本発明のハニカム焼成体110のセル壁113の厚さは、特に限定されないが、0.1~0.4mmが望ましい。
ハニカム焼成体110のセル壁113の厚さが0.1mm未満であると、ハニカム構造を支持するセル壁の厚さが薄くなり、ハニカム焼成体110の強度を保つことができなくなるおそれがあり、一方、ハニカム焼成体110のセル壁113の厚さが0.4mmを超えると、ハニカム構造体100の圧力損失の上昇を引き起こす場合があるからである。
また、本発明のハニカム構造体100を構成するハニカム焼成体110が有する外壁(外周壁)102の厚さは、特に限定されるものではないが、ハニカム焼成体110のセル壁113の厚さと同様に0.1~0.4mmであることが望ましい。
また、ハニカム焼成体110の長手方向に垂直な断面におけるセル密度(単位面積当たりのセルの個数)は特に限定されないが、望ましい下限は、16.0個/cm(100個/in)、望ましい上限は、93.0個/cm(600個/in)、より望ましい下限は、38.8個/cm(250個/in)、より望ましい上限は、77.5個/cm(500個/in)である。
次に、本発明の第一実施形態に係るハニカム構造体100を構成する接着剤層101について説明する。
本実施形態のハニカム構造体100において、ハニカム焼成体110間を接着する接着剤層101は、少なくともアルミナファイバと無機バルーンとを含む。
上記アルミナファイバの平均長さの下限は、25μmが望ましく、40μmがより望ましい。また、上記アルミナファイバの平均長さの上限は、100μmが望ましく、60μmがより望ましい。
アルミナファイバの平均長さが25μm未満であると、アルミナファイバの長さが短すぎるため、凝集し易くなり、分散性が低下し易くなる。アルミナファイバは、クラックの進展を止める効果を有する。しかし、アルミナファイバの長さが短すぎると、さらに、クラックの進展を抑制する効果が得られにくくなる。一方、アルミナファイバの平均長さが100μmを超えても、アルミナファイバの長さが長くなりすぎるため、一定方向に配向し易くなり、分散性が低下し易くなる。
上記アルミナファイバのアスペクト比(繊維長/繊維径)は、3~30であることが望ましい。アルミナファイバが上記したアスペクト比を有することにより、接着剤層の機械的強度がより向上し、接着剤層にクラックが発生した場合であってもクラックの進展をより確実に食い止めることができる。
アルミナファイバは、アルミナ(Al)のみを含んでもよいし、アルミナの他にシリカ(SiO)を含んでいてもよい。
具体的には、上記アルミナファイバの組成比は、重量比で、Al:SiO=65:35~99:1であることが望ましく、Al:SiO=70:30~99:1であることがより望ましく、Al:SiO=72:28~98:2であることがさらに望ましい。
無機ファイバとして、アルミナファイバを用い、接着剤層中のシリカ分の含有量を少なくすることにより、上述したシリカ分の結晶化による熱膨張性の変化が小さくなる。
上記無機バルーンとしては、特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、フライアッシュバルーンが望ましい。
無機バルーンの平均粒径の下限は、70μmが望ましく、150μmがより望ましい。無機バルーンの平均粒径の上限は、300μmが望ましく、200μmがより望ましい。
なお、無機バルーンは、通常、球形であり、平均粒径は、球状粒子の平均直径である。
無機バルーンの平均粒径が70μm未満であると、無機バルーンの大きさが小さすぎるため、アルミナ粒子、無機バインダ、無機粒子の分散性が悪くなり、無機バルーンが存在している部分を除いて接着剤層に空隙が生まれやすく、緻密になりにくいため、強度が低下する。一方、無機バルーンの平均粒径が300μmを超えると、無機バルーンが接着剤層に比べて大きすぎるため、強度が低い部分ができ易くなる。
着剤層は、さらに無機粒子及び無機バインダを含んでいてもよい。
上記無機粒子としては、例えば、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、炭化ケイ素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック等のセラミック粒子が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記無機粒子のなかでは、熱伝導性に優れる炭化ケイ素粒子が望ましい。
無機粒子の平均粒径の下限は、0.01μmが望ましく、0.1μmがより望ましい。無機粒子の平均粒径の上限は、100μmが望ましく、15μmがより望ましく、10μmがさらに望ましい。無機粒子の粒径が0.01μm未満では、コストが高くなることがあり、一方、無機粒子の粒径が100μmを超えると、充填率が悪くなり接着力及び熱伝導性の低下を招くことがある。
上記無機バインダとしては、例えば、シリカゾル、アルミナゾル、チタニアゾル等の固化物を挙げることができる。これらは1種類で使用されてもよく、2種以上が併用されてもよい。上記無機バインダは、接着剤層を乾燥又は焼成させた際に水溶液中に懸濁した微小な酸化物が固化したシリカ、アルミナ、チタニア等であり、接着剤層に含まれるアルミナファイバ、無機バルーン、無機粒子等を接着する役割を果たす。また、上記無機バインダは、接着剤層とハニカム焼成体とを接着する役割も果たす。上記無機バインダのなかでは、シリカゾル又はアルミナゾルの固化物が望ましい。
上記固化物とは、接着剤ペースト層を形成した後、接着剤ペースト層を乾燥又はそれよりも高い温度で加熱することにより形成されたほぼ水分を含まないシリカ、アルミナ、チタニア等をいう。ただし、これらの固化物はOH基や結晶水等を含むものであってもよい。
接着剤層101に含まれるアルミナファイバの含有量の下限は、固形分で、5.0体積%が望ましく、10体積%がより望ましい。一方、上記アルミナファイバの含有量の上限は、固形分で、50.0体積%が望ましく、30体積%がより望ましい。
上記アルミナファイバの含有量が5.0体積%未満では、アルミナファイバの含有量が少なすぎるため、ファイバによる接着剤層の補強効果が小さい。また、クラックの進展を抑制する効果がえられにくくなる。一方、50.0体積%を超えると、アルミナファイバの量が多すぎるため、アルミナファイバの分散性が低下し、機械的特性に偏りが生じ易くなる。
また、上記アルミナファイバのショット含有率の下限は、1体積%が望ましく、上記アルミナファイバのショット含有率の上限は、10体積%が望ましく、5体積%がより望ましく、3体積%がさらに望ましい。
ショット含有率を1体積%未満とするのは製造上困難であり、ショット含有量が10体積%を超えると、多孔質セラミック部材20の壁面を傷つけてしまうことがある。なお、アルミナファイバ中のショット含有率とは、繊維になりきれないで粒子のまま残るショット(非繊維状粒子)のアルミナファイバ中の重量百分率をいう。
接着剤層101に含まれる無機バルーンの含有量の下限は、固形分で、5.0体積%が望ましく、10体積%がより望ましい。一方、上記無機バルーンの含有量の上限は、固形分で、50.0体積%が望ましく、45体積%がより望ましい。上記無機バルーンの含有量が5.0体積%未満では、無機バルーンの含有量が少なすぎるため、接着剤層を構成する材料の分散性が悪くなり、空隙ができ易くなり、強度が低下することがある。また、接着剤層の熱容量が小さくならないので、PMの燃焼によりハニカム焼成体と接着剤層の間に発生する熱応力差を小さくすることができない。そのため、接着剤層にクラックが発生し、それがハニカム焼成体のクラックの発生を誘導し、スス漏れが生じる。一方、無機バルーンの含有量が50.0体積%を超えると、逆に無機バルーンの含有量が多くなりすぎるため、残りの材料が少なくなりすぎ、強度低下及びクラックの進展が起こり易くなる。
接着剤層101に含まれる無機粒子の含有量の下限は、固形分で、3体積%が望ましく、10体積%がより望ましく、20体積%がさらに望ましい。一方、上記無機粒子の含有量の上限は、固形分で、80体積%が望ましく、60体積%がより望ましく、40体積%がさらに望ましい。上記無機粒子の含有量が3体積%未満では、熱伝導率の低下を招くことがあり、一方、80体積%を超えると、接着剤層14が高温にさらされた場合に、接着強度の低下を招くことがある。
接着剤層101に含まれる無機バインダの含有量の下限は、1体積%が望ましく、5体積%がより望ましい。一方、上記無機バインダの含有量の上限は、30体積%が望ましく、15体積%がより望ましく、9体積%がさらに望ましい。上記無機バインダの含有量が1体積%未満では、接着強度の低下を招くことがあり、一方、30体積%を超えると、熱伝導率の低下を招くことがある。
接着剤層101の厚さは、0.3~3.0mmであることが望ましい。
本発明の第一実施形態に係るハニカム構造体100では、上記のように構成された接着剤層101がハニカム焼成体110との界面でハニカム焼成体110の内部に入り込み、上記無機バインダの固化物等を介して接着剤層101とハニカム焼成体110とがしっかりと接着されており、外周にコート層102が形成されている。
コート層102を構成する材料、上記材料の重量割合等は、接着剤層101と同様であってもよい。コート層102の厚さは、0.1~3mmであることが望ましい。
ハニカム構造体100が、側面に溝が露出しておらず、側面全体に外壁が形成された複数種類のハニカム焼成体を組み合わせて構成されている場合には、コート層を必要としない場合もある。
次に、本発明の第一実施形態に係るハニカム構造体の製造方法について説明する。
以下の説明では、その一例として、ハニカム焼成体を構成するセラミックが炭化ケイ素からなる場合について説明するが、ハニカム焼成体の材料は、炭化ケイ素と金属ケイ素であってもよい。
(1)本実施形態のハニカム構造体の製造方法では、まず、炭化ケイ素粉末とバインダとを含む湿潤混合物を押出成形することによってハニカム成形体を作製する成形工程を行う。具体的には、まず、平均粒子径の異なる炭化ケイ素粉末と、有機バインダと液状の可塑剤と潤滑剤と水とを混合することにより、ハニカム成形体製造用の湿潤混合物を調製する。続いて、上記湿潤混合物を押出成形機に投入し、押出成形することにより所定形状のハニカム成形体を作製する。
(2)次に、ハニカム成形体を所定の長さに切断し、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させた後、所定のセルに封止材となる封止材ペーストを充填して上記セルを目封じする封止工程を行う。ここで、封止材ペーストとしては、上記セラミック原料(湿潤混合物)を用いることができる。
上記切断工程、上記乾燥工程、上記封止工程の条件は、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。
(3)その後、ハニカム成形体中の有機物を脱脂炉中で加熱する脱脂工程を行い、焼成炉に搬送し、焼成工程を行ってハニカム焼成体を作製する。脱脂工程及び焼成工程の条件としては、従来からハニカム焼成体を作製する際に用いられている条件を適用することができる。例えば、脱脂工程では、ハニカム成形体を、酸素含有雰囲気下において、300~650℃で加熱する。また、焼成工程では、非酸化性雰囲気下において、2000~2200℃で加熱することにより、ハニカム成形体中の炭化ケイ素粒子を焼結させる。
以上の工程によって、所定形状のハニカム焼成体を製造することができる。
(4)次に、ハニカム焼成体を、酸化雰囲気下において、1100~1400℃で1~30時間熱処理して酸化する酸化工程を行う。
上記酸化工程により、ハニカム焼成体を構成する炭化ケイ素粒子の表面に酸化物層を形成する。
上記酸化工程は、酸素を含む雰囲気下において行うものであり、コスト面から考えると、大気雰囲気下で行うことが望ましい。
酸化雰囲気中の酸素濃度(酸素に換算した含有量)は特に限定されないが、5~21容量%であることが望ましい。コスト面から考えると、空気を用いることが望ましい。
酸化雰囲気中の酸素濃度が5容量%未満であると、ハニカム焼成体の炭化ケイ素粒子の表面の酸化が不安定となり、所望の厚さの酸化物層を形成することが困難となる。また、酸化雰囲気中の酸素濃度が5容量%未満であると、長時間熱処理を行う必要があり、製造効率が低下しやすくなる。一方、酸化雰囲気中の酸素濃度が21容量%を超えると、酸素ガスを準備する等、酸化雰囲気を生成する工程が必要となり、製造効率が低下しやすくなる。
酸化工程における熱処理温度は、1100~1400℃であることが望ましい。
熱処理温度が1100℃未満であると、所望の厚さの酸化物層を形成することが難しくなる。また、目的の厚さの酸化物層を形成するために長時間熱処理を行う必要がある。一方、熱処理温度が1400℃を超えると、酸化膜の厚さをコントロールすることが難しくなる。
酸化工程における熱処理時間は、1~30時間であることが望ましいが、熱処理温度、及び、目的の酸化物層の厚さ等に応じて適宜決定される。
具体的には、熱処理温度が1200℃である場合、熱処理時間は20~22時間であることが望ましく、熱処理温度が1400℃である場合、熱処理時間は4~5時間であることが望ましい。
熱処理時間が下限値よりも短いと、目的の厚さの酸化物層を形成することが困難となる。一方、熱処理時間が上限値を超えると、目的の厚さよりも厚い酸化物層が形成されてしまう。
本明細書において、熱処理時間とは、目的の熱処理温度まで昇温した後、その熱処理温度を保持する時間のことをいう。従って、酸化工程全体においてハニカム焼成体を加熱している時間は、上記熱処理時間の他に、昇温及び降温のために必要な時間が含まれる。
上記の条件で酸化工程を行うことにより、ハニカム焼成体を構成する炭化ケイ素粒子の表面に、所望の厚さ(好ましくは100~600nmの厚さ)を有する酸化物層を形成することができる。
(5)続いて、上記接着剤ペーストを用い、ハニカム焼成体の側面に接着剤ペースト層を形成する。
図4は、上記接着剤ペーストを用いてハニカム焼成体の集合体を作製する様子を示した断面図である。
接着剤ペースト層を形成する方法は、特に限定されるものでないが、例えば、図4に示すように、断面がV字形状に構成された台400の上に上記台のV字形状に沿ってハニカム焼成体110(図2参照)を載置し、ハニカム焼成体110の上側を向いた2つの側面(110a及び110b)に、接着剤ペーストをスキージ等を用いることにより塗布して、所定の厚さの接着剤ペースト層130を形成する。
次に、接着剤ペースト層130の上に他のハニカム焼成体110を載置する。そして、上記他のハニカム焼成体110の上側を向いた側面にさらに接着剤ペーストを塗布して接着剤ペースト層130を形成し、接着剤ペースト層130の上にさらに別のハニカム焼成体110を載置する工程を繰り返すことによって、所定の数のハニカム焼成体の間に接着剤ペースト層が形成されてなるハニカム集合体を作製する。
上記接着剤ペーストは、少なくともアルミナファイバと無機バルーンと無機バインダ(シリカゾル等)とを含むことが望ましく、さらに無機粒子を含むことが望ましい。アルミナファイバ、無機バルーン、無機バインダ(シリカゾル等)及び無機粒子は、上述した本実施形態のハニカム構造体で説明したものを使用する。
各成分の割合に関し、アルミナファイバと無機バルーンと無機バインダとを主成分として含む場合、接着剤ペーストを調製する際の各成分の好ましい範囲は、ハニカム焼成体の側面に接着剤ペーストを塗布してハニカム焼成体を結束し、700℃で脱脂した際の固形分濃度が、アルミナファイバは5~15体積%、無機バルーンは35~45体積%、無機バインダは、10~15体積%となる範囲が望ましい。
上記材料に、さらに無機粒子を含む場合には、脱脂後の無機粒子が30~40体積%となる範囲が望ましい。
また、上記接着剤ペーストは、有機バインダを含んでもよいが、車両用排気ガスフィルタとして使用した場合には、高温となるため、分解消失しやすく、接着強度の変動の原因となるため、なるべく少ない量が含有されていることが望ましい。
上記有機バインダとしては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。上記有機バインダーのなかでは、カルボキシメチルセルロースが望ましい。
接着剤ペースト中の上記有機バインダーの含有量の下限は、固形分で、0.1体積%が望ましく、0.2体積%がより望ましく、0.4体積%がさらに望ましい。一方、上記有機バインダーの含有量の上限は、固形分で、5.0体積%が望ましく、1.0体積%がより望ましく、0.6体積%がさらに望ましい。上記有機バインダーの含有量が0.1体積%未満では、接着剤層14のマイグレーションを抑制するのが難しくなり、一方、5.0体積%を超えると、接着剤層14が高温にさらされた場合に、有機バインダーが焼失し、接着強度が低下し易い。
また、接着剤ペーストを調製する際には、分散媒液を使用してもよく、分散媒液としては、例えば、水、アセトン等の有機溶媒、メタノール等のアルコール等が挙げられる。
上記した各原料を混合する後、得られる接着剤ペーストが一定の粘度となるように、分散媒等を加えて粘度を調節した後使用する。この接着剤ペーストの粘度は、15~25Pa・s(1万~2万cps(cP))が望ましい。
上記接着工程では、各セルの所定の端部が封止されたハニカム焼成体の所定の側面に、接着剤ペーストを塗布して接着剤ペースト層を形成し、この接着剤ペースト層の上に、順次他のハニカム焼成体を積層する工程を繰り返してハニカムブロックを作製しているが、以下のような工程で、ハニカムブロックを作製してもよい。
すなわち、所定数の種々の形状のハニカム焼成体の両端部を所定の位置で支持、固定することにより、ハニカム焼成体が所定の間隔で組み合わされて円柱等の所定形状の集合体となったものを作製する。上記集合体は、所定形状の容器の内部に収容されていることが望ましく、所定形状の容器は、集合体とほぼ同じ容積、形状であることが望ましい。
次に、ハニカム焼成体同士の間に形成された空間に、上記容器に形成された注入口を介して接着剤ペーストを注入することにより、ハニカム焼成体の間に接着剤ペースト層を形成し、その後、乾燥、硬化させることにより接着剤層を有する大きな四角柱形状のハニカム焼成体の集合体とする。
(6)上記結束工程により大きな四角柱形状のハニカム焼成体の集合体を作製し、その後、ダイヤモンドカッター等を用いて切削加工を行うことにより、円柱や堕円柱形状のハニカムブロックを作製する。そして、最後に、ハニカムブロックの外周に、コート剤ペーストを塗布し、乾燥、固化してコート層を形成するコート層形成工程を行う。コート剤ペーストとしては、上記接着剤ペーストと同様の又は異なるペーストを使用する。以上の工程によって、本実施形態のハニカム構造体を製造することができる。
上述したハニカム構造体の製造方法では、結束工程により大きな四角柱形状のハニカム焼成体の集合体を作製しているが、種々の形状のハニカム焼成体でその側面に外壁を有するものを接着剤で接着することにより、円柱等の所定形状のハニカムブロックを作製し、その周囲にコート層を形成してもよい。なお、コート層は必ずしも設ける必要はなく、必要に応じて設ければよい。コート層を形成する場合には、接着剤ペーストとコート剤ペーストとの乾燥、固化を同時に行ってもよい。
なお、上述したハニカムフィルタの製造方法では、ハニカム焼成体を作製した後(すなわち、焼成工程と接着工程との間)に酸化工程を行っている。
しかしながら、本発明の第一実施形態に係るハニカムフィルタの製造方法では、接着工程と外周加工工程との間、外周加工工程と外周コート層形成工程との間、又は、外周コート層形成工程の後に酸化工程を行ってもよい。また、外周コート層が形成されていないセラミックブロックに対して酸化工程を行ってもよい。
本発明の第一実施形態に係る排ガス浄化装置について説明する。
本発明の第一実施形態に係る排ガス浄化装置には、上述した本発明の第一実施形態に係るハニカムフィルタが用いられている。
図5は、本発明の第一実施形態に係る排ガス浄化装置の一例を模式的に示す断面図である。
図5に示す排ガス浄化装置200は、ガス入口側221及びガス出口側222を備えた金属ケーシング220と、金属ケーシング220内に収容されたハニカムフィルタ120とを備えている。
図5に示す排ガス浄化装置200では、ハニカムフィルタ120として、図1に示したハニカム構造体100と同様の構成のものが用いられている。
そして、図2(a)及び図2(b)に示したハニカム焼成体110と同様に、ハニカムフィルタ120を構成するハニカム焼成体20のセル21のいずれかの端部は、封止材24で目封じされている。
また、ハニカムフィルタ120と金属ケーシング220との間には、保持シール材230が配設されており、保持シール材230によりハニカムフィルタ120が保持されている。
保持シール材230は、ハニカムフィルタ120の周囲に巻き付けられている。
保持シール材は、主にアルミナ等の無機繊維からなる平面視略矩形状のマット状の部材である。
さらに、金属ケーシング220のガス入口側221には、ディーゼルエンジン等の内燃機関から排出された排ガスを排ガス浄化装置200内に導入するための導入管が接続される。一方、金属ケーシング220のガス出口側222には、排ガス浄化装置200内を通過した排ガスを外部に排出する排出管が接続される。
上記のようなハニカムフィルタ120を備えた排ガス浄化装置200を用いて排ガスを浄化する本発明の第一実施形態に係る排ガス浄化方法について、図5を参照して以下に説明する。
図5に示したように、内燃機関から排出された排ガス(図5中、排ガスをGで示し、排ガスの流れを矢印で示す)は、金属ケーシング220のガス入口側221から排ガス浄化装置200に流入する。その後、排ガスGは、ハニカム焼成体20の一方の端面25側からハニカムフィルタ120に流入する。具体的には、排ガスGは、ハニカム焼成体20の一方の端面25が開口したセル21に流入する。
そして、排ガスGは、セル21を隔てるセル壁22を通過する。この際、排ガスG中のPMはセル壁22で捕集され、排ガスGが浄化される。
浄化された排ガスGは、ハニカム焼成体20の他方の端面26が開口したセル21に流入し、ハニカムフィルタ120の外に排出される。そして、排ガスGは、金属ケーシング220のガス出口側222から排ガス浄化装置200の外に排出される。
上記方法によりススを含むPMを捕集すると、ハニカムフィルタ120のセル壁22にPMが堆積し、圧力損失が上昇するため、所定量のPMが堆積すると、PM中のススを燃焼させて除去する再生処理を行う必要がある。
ディーゼルエンジンを搭載した車両では、コモンレール式ディーゼルエンジンを搭載していることが多いので、エンジンをフルロードにして、排ガスの温度を上昇させることにより、ハニカムフィルタに堆積したPM中のススを強制燃焼させることができる。
この際、ハニカムフィルタは、通常、800℃前後まで上昇するが、再生処理のタイミングが遅れ、堆積したススの量が通常よりも多くなった、いわゆる過捕集の状態で再生処理を行うとハニカムフィルタの温度が1200℃以上の温度となる場合がある。
本実施形態に係るハニカムフィルタは、請求項1に記載されたハニカム構造体を用いているので、このようなハニカムフィルタの温度が1200℃以上の温度となった場合であっても、クラックが発生しにくい。もし、クラックが発生した場合であっても、ハニカムフィルタに発生したクラックが全体に広がることがなく、スス等のパティキュレートが規制値以上に外部に漏れることを防止することができる。
本発明の第一実施形態に係る排ガス浄化装置では、金属ケーシング内に、本発明の第一実施形態に係るハニカムフィルタが1つ収容されていてもよいし、他の触媒担体として用いられるハニカム構造体と一緒に配置されていてもよい。
以下、本発明の第一実施形態に係る排ガス浄化装置の製造方法について説明する。
上記の方法で製造した本発明の第一実施形態に係るハニカムフィルタを金属ケーシング内に配置する。具体的には、保持シール材として、主に無機繊維からなる平面視略矩形状のマットを準備し、このマットをハニカムフィルタに巻き付ける。そして、略円筒状の金属ケーシングにマットが巻き付けられたハニカムフィルタを圧入することによって排ガス浄化装置とすることができる。
また、金属ケーシングを、第一の金属ケーシング及び第二の金属ケーシングの2つの部品に分離可能な形状としておき、無機繊維からなるマットを巻き付けたハニカムフィルタを第一の金属ケーシング上に載置した後に第二の金属ケーシングを被せて密封することによって排ガス浄化装置とすることもできる。
以下、本実施形態のハニカム構造体及びハニカム構造体の製造方法の作用効果について列挙する。
(1)ハニカム焼成体を構成する炭化ケイ素粒子の表面にケイ素を含む酸化物層が形成されており、この酸化物層が、1500~1600℃の高温に晒された際に、上述した吸熱反応が進行し、ハニカム構造体は、この吸熱反応に起因してハニカム焼成体の温度が上昇しにくく、ハニカム構造体が高温になるのを防ぐことができる。
そのため、接着剤層にかかる熱を低減することができ、接着剤層のシリカ分の結晶化(クリストバライト化)を防ぐことができる。これにより、熱膨張性の変化に起因して、ハニカム焼成体のクラックを接着剤層がさらに押し広げ、パティキュレートの漏れを助長してしまうことが防ぐことができる。さらに、アルミナファイバを用い、接着剤層中のシリカ分の含有量を少なくすることにより、よりこの効果を高めることができる。
(2)本実施形態のハニカム構造体を構成する炭化ケイ素粒子の間には、「ネック」と呼ばれる2つの粒子が連結されたときに生じるくびれた部分が存在する。炭化ケイ素粒子同士は、互いにネックを介して結合されている。
炭化ケイ素粒子の表面に酸化物層が形成されていない場合、ネックの結合角度は小さく、ネックの結合端部は先鋭状になっている。従って、このような炭化ケイ素粒子から構成されたハニカム焼成体に外力又は熱衝撃が加わると、ネックの結合端部に応力が集中する。
一方、炭化ケイ素粒子の表面に酸化物層が形成されている場合、ネックの結合角度が大きくなり、ネックの結合端部が滑らかになる。従って、ネックの結合端部への応力集中が緩和される。その結果、ハニカム焼成体の機械的強度が向上すると考えられる。
(3)本実施形態のハニカム構造体の構成する接着剤層中には、少なくともアルミナファイバと無機バルーンとを含み、アルミナファイバは、接着剤層中の材料として使用した場合、1400℃程度まで、溶損したり、相変態することがないので、1200℃以上の高温でもクラックの進展を止める効果があり、接着剤層の強度が劣化しにくい。また、無機バルーンもクラックの進展を止める効果があるので、接着剤層の機械的劣化を防止することができる。また、無機ファイバとすることにより、接着剤層中のシリカ分が少なくなるので、上述したシリカ分の結晶化による熱膨張性の変化が小さくなる。
さらに、無機バルーンを含む接着剤層は、熱容量が小さくなるので、接着剤層の熱伝導率が大きくなり、PMの燃焼時に発生するハニカム焼成体と接着剤層との熱応力差を小さくすることができる。その結果、熱応力差に起因して接着剤層に発生するクラックを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができる。
(4)本実施形態のハニカム構造体を構成する接着剤層中には、平均粒径が70~300μmの無機バルーンが含まれており、この無機バルーンは、アルミナファイバの長さに対して丁度よい大きさであり、アルミナファイバ及び無機バルーンの両方がより分散し易くなり、空隙が均一に分散するとともに無機バルーンが存在している部分を除いて接着層がより緻密となる。さらに、良好に分散した無機バルーンもクラックの進展を止める効果があるので、接着剤層にクラックが発生した場合であってもクラックの進展を確実に食い止めることができる。
さらに、無機バルーンを含む接着剤層は、熱容量が小さくなるので、接着剤層の熱伝導率が大きくなり、PMの燃焼時に発生するハニカム焼成体と接着剤層との熱応力差を小さくすることができる。その結果、熱応力差に起因して接着剤層に発生するクラックを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができる。
(5)本実施形態のハニカム構造体を構成する接着剤層中には、平均長さが25~100μmと適切な長さのアルミナファイバが含まれているので、接着剤層中でアルミナファイバの分散性が良好となる。これに起因して無機バルーンが存在している部分を除く接着層は、空隙等が少なく、緻密な構造となり、機械的強度が向上し、クラックが発生しにくくなる。また、上記した長さのアルミナファイバはクラックの進展を止める効果があるので、たとえ接着剤層にクラックが発生した場合であってもクラックの進展を食い止めることができる。
(6)本実施形態のハニカム構造体を構成する接着剤層中には、アスペクト比が3~30のアルミナファイバが含まれているので、接着剤層の機械的強度がより向上し、接着剤層にクラックが発生した場合であってもクラックの進展をより確実に食い止めることができる。
(7)本実施形態のハニカム構造体を構成するハニカム焼成体中の炭化ケイ素粒子の酸化物層の厚さは、100~600nmであるので、接着剤層にかかる熱を低減することができ、接着剤層内のシリカ分の結晶化(クリストバライト化)を防ぐことができる。さらに、上記したように、ネックの結合端部が滑らかになるため、機械的強度が低減する。また、酸化物層の厚さは、炭化ケイ素粒子の厚さに比べると小さいので、炭化ケイ素粒子に酸化物層が形成されても、ハニカムフィルタの圧力損失等に悪影響を与えることはない。
(8)本実施形態のハニカム構造体の構成する接着剤層中には、さらに無機粒子及び無機バインダを含むので、接着剤層中のアルミナファイバ、無機バルーン、無機粒子は、無機バインダにより接着され、機械的特性により優れた接着剤層となる。また、上記接着剤層接は、無機粒子を含んでいるため、機械的特性が改善される。さらに、上記無機バインダにより接着剤層とハニカム焼成体もより接着され易くなる。
(9)本実施形態のハニカム構造体の構成する接着剤層中には、無機バルーンとして、フライアッシュバルーンを含ませることができる。このフライアッシュバルーンは、球形に近く、その成分は、シリカとアルミナであるため、アルミナファイバとの親和性に優れ、フライアッシュバルーンにアルミナファイバの一部が付着した状態でより分散しやすくなり、クラック等の進展を良好に阻止することができる。
(10)本実施形態のハニカム構造体の構成する接着剤層中の上記無機バルーンの含有量は、5.0~50.0体積%であるので、フィルタとしての機械的特性を維持することができる。
(11)本実施形態のハニカム構造体の構成する接着剤層中のアルミナファイバの含有量は、5.0~50.0体積%であるので、接着剤層中のアルミナファイバを良好に分散させることができる。
(12)本実施形態のハニカム構造体の構成する接着剤層中には、無機バルーンとして、フライアッシュバルーンを含ませることができる。このフライアッシュバルーンは、球形に近く、その成分は、シリカとアルミナであるため、1200℃以上の高温に晒された場合であっても、溶損等のおそれがない。さらにフライアッシュバルーンは、比重が小さいため、接着剤層の熱容量を低くすることができる。このように、接着剤層の熱容量を低くすることができるため、ハニカム焼成体との熱応力差を小さくすることができる。その結果、熱応力差によって接着剤層にクラックが発生するのを抑制することができ、ハニカム焼成体に発生するクラックを抑制することができ、スス漏れを抑えることができる。
(13)本実施形態のハニカム構造体の構成する接着剤層中には、無機粒子として、炭化ケイ素粒子を含ませることができ、炭化ケイ素を含んだ接着剤層は、耐熱性、機械的特性に優れた接着剤層となる。
(14)本実施形態のハニカム構造体の構成する接着剤層中には、上記無機バインダとして、シリカゾル又はアルミナゾルの固化物を含ませることができ、無機バインダを形成するための原料としてシリカゾル又はアルミナゾルを使用することにより、耐熱性に優れた接着剤層となる。
(15)本実施形態のハニカムフィルタでは、いわゆる過捕集の状態で再生処理を行う等により、ハニカムフィルタの温度が1200℃以上の温度となった場合であっても、クラックが全体に広がることがなく、スス等のパティキュレートが規制値以上に外部に漏れることを防止することができる。
(実施例)
(実施例1)
以下、本発明の第一実施形態をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(ハニカム焼成体の作製工程)
平均粒子径22μmを有する炭化ケイ素の粗粉末52.8重量%と、平均粒子径0.5μmの炭化ケイ素の微粉末22.6重量%とを乾式混合し、得られた混合物に対して、アクリル樹脂2.1重量%、有機バインダ(メチルセルロース)4.6重量%、潤滑剤(日油社製 ユニルーブ)2.8重量%、グリセリン1.3重量%、及び、水13.8重量%を加えて混練して混合組成物を得た後、押出成形する押出成形工程を行い、図2(a)に示した形状と略同様の形状であって、セルの目封じをしていない生のハニカム成形体を作製した。
次いで、マイクロ波乾燥機を用いて上記生のハニカム成形体を乾燥させ、ハニカム成形体の乾燥体とした後、上記生成形体と同様の組成のペーストを所定のセルに充填し、再び乾燥機を用いて乾燥させた。
ハニカム成形体の乾燥体を400℃で脱脂する脱脂工程を行い、常圧のアルゴン雰囲気下2200℃、3時間の条件で焼成工程を行い、気孔率が42%、平均気孔径が9μm、大きさが34.3mm×34.3mm×150.5mm、セルの数(セル密度)が148個/inch、セル壁の厚さが0.40mmの炭化ケイ素焼結体からなるハニカム焼成体を製造した。
得られたハニカム焼成体に対して、以下の酸化工程を行った。
酸化工程では、空気雰囲気下において、室温から昇温速度1℃/分で昇温し、最高温度が1200℃になったところで、その温度を3時間維持して加熱し、その後、除々に室温まで降温し、室温(25℃)で取り出した。
この酸化工程により、ハニカム焼成体の表面が酸化された。
(接着剤ペーストの調製)
接着剤ペーストとして、平均繊維長60μmのアルミナファイバ(SiO:20wt%、Al:80wt%のムライト繊維)、フライアッシュバルーン(平均粒径:300μm)、平均粒子径0.5μmの炭化ケイ素粒子、シリカゾル(固形分濃度:30重量%)、カルボキシメチルセルロース、ポリビニルアルコール、及び、水を混合、混練して接着剤ペーストを調製した。
(結束工程)
図4に示すような断面がV字形状に構成された台400の上に、台400のV字形状に沿ってハニカム焼成体を載置し、上記組成の接着剤ペーストをハニカム焼成体110の上側を向いた側面にスキージを用いて塗布して接着剤ペースト層を形成した。そして、この接着剤ペースト層の上に順次他のハニカム焼成体110を積層する工程を繰り返して、16個のハニカム焼成体110が接着剤ペースト層を介して接着されたものを作製し、180℃、20分で接着剤ペースト層を乾燥固化させることにより、接着材層101の厚さが1mmで角柱状のハニカム集合体を作製した。
(外周加工工程及びコート層形成工程)
次に、セラミックブロックの外周をダイヤモンドカッターを用いて円柱状に研削し、セラミックブロック103を作製した。
続いて、上記接着剤ペーストと同じ材料からなるコート剤ペーストを用いて、セラミックブロックの外周部に厚さ0.2mmのコート剤ペースト層を形成した。そして、このコート剤ペースト層を120℃で乾燥して、外周にコート層102が形成された直径143.8mm×長さ150.5mmの円柱状のハニカム構造体(ハニカムフィルタ)を製造した。製造したハニカム構造体を構成する接着剤中の成分の特性及び接着剤層の組成を下記の表1に示す。
(比較例1)
接着剤ペーストを調製する際、アルミナファイバの代わりに、SiO:62.4wt%、Al:1.2wt%、CaO:34.2wt%、ZrO:0.01wt%、KO:1.0wt%、NaO:0.13wt%の生体溶解性ファイバを用い、無機バルーンを添加せず、ハニカム焼成体の酸化工程を行わなかった他は、実施例1と同様にしてハニカム構造体を製造した。
製造したハニカム構造体を構成する接着剤中の成分の特性及び接着剤層の組成を下記の表1に示す。
ハニカム構造体の評価
(1)X線光電子分光法(XPS)による酸化物層の厚さの測定
各実施例及び各比較例に係るハニカム構造体に関し、XPSにより、ハニカム焼成体の酸化物層の厚さ(nm)を測定した。
XPS測定用サンプルとして、各実施例及び各比較例において製造したハニカム焼成体から、2cm×2cm×0.25mmの大きさの炭化ケイ素部分を切り出した。そして、XPS測定用サンプルの破断面ではない表面を観察した。
XPS装置としては、ULVAC-PHI社製のQuantera SXMを用い、X線源としては、モノクロ化されたAl-Kα線(Monochromated Al-Kα)を用いた。測定条件は、電圧:15kV、出力:25W、測定領域:100μmφとした。イオンスパッタ条件は、イオン種:Ar、電圧:1kV、スパッタレート(SiO換算):1.5nm/minとした。
上記XPS装置を用いて、XPS測定用サンプルの定性分析(ワイドスキャン)、及び、C、O、Siについての深さ方向分析を行った。深さ方向分析の結果より、SiOプロファイルの最高強度と最低強度の中間となる強度の時間と、XPS測定用サンプルのスパッタレート(SiO換算)から酸化物層の厚さを算出した。
実施例1及び比較例1に係るハニカム焼成体を構成する炭化ケイ素粒子の酸化物層の厚さの測定結果を表1に示す。
(2)再生処理後において漏れたPM量(PMの数)の測定
再生処理後において漏れたPM数の測定は、以下のようなPM漏れ量測定装置を用いて行った。
このPM漏れ量測定装置は、2L(リットル)のコモンレール式ディーゼルエンジンと、エンジンからの排ガスを流通する排ガス管と、排ガス管に接続され、保持シール材を介してハニカムフィルタが固定された金属ケーシングと、ハニカムフィルタを通過した後のPMの数を一定時間積算カウントすることが可能なPMカウント装置(HORIBA社製、MEXA-100SPCS)からなる。
実施例1及び比較例1に係るハニカム構造体(ハニカムフィルタ)について、以下の手順によって、PMの捕集を行い、その後、再生処理を行った。
まず、実施例1及び比較例1で製造したハニカムフィルタをエンジンの排気通路に配置し、さらにハニカムフィルタよりガス流入側に、市販のコージェライトからなるハニカム構造体の触媒担持体(直径:200mm、長さ:100mm、セル密度:400セル/inch、白金担持量:5g/L)を設置して排気ガス浄化装置とした。
そして、まず、エンジンの回転数が1500min-1、トルクが50Nmとなるようにエンジンを運転し、ハニカムフィルタの内部に排ガスを流通させた。次に、エンジンの回転数が2000min-1、トルクが90Nmとなるように運転条件を変更し、安定するまで運転を続け、ハニカムフィルタに21g/Lと通常の捕集量より多い捕集量のPMを捕集させた。
その後に、ハニカムフィルタの排ガス流入側の温度が550℃付近に達するまでポストインジェクションを行い、ハニカムフィルタの前後の差圧を上昇させ、PMを燃焼させた。
その後、上昇したハニカムフィルタの前後の差圧がPMの燃焼により降下した。降下したときから10秒後に運転条件をアイドリングに戻した。
その後、エンジンの回転数が1500min-1、トルクが50Nmとなるようにエンジンを通常のモードで運転し、ハニカムフィルタから漏れたPMの数(#/km)を上記PMカウント装置を用いて測定した。
なお、PMの数は、エンジンを運転させることにより、1km進んだと仮定した場合にハニカムフィルタから漏れたPMの数を示している。
(PMの漏れに対する評価方法)
漏れたPMの数が1.0×1012個以下のものを、漏れ量が少なく、フィルタの性能が良好とし、表1に○印を付している。一方、漏れたPMの数が1.0×1012個以上のものは、漏れ量が多く、フィルタの性能が不充分とし、表1に×印を付している。
その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
実施例1に係るハニカム構造体(ハニカムフィルタ)の再生処理前後におけるスス漏れの測定結果より明らかなように、炭化ケイ素粒子に200nmの厚さの酸化物層が形成されたハニカム焼成体を用いるとともに、アルミナファイバ及びフライアッシュバルーンを含む接着剤層が形成された実施例に係るハニカム構造体は、高温の熱に晒された場合であっても、強度を保っており、1200℃以上の温度に晒された後においてもクラックが全体に広がることがなく、スス等のパティキュレートが規制値以上に外部に漏れることを防止することができることが明らかになった。
これに対し、比較例1のように、接着剤層中に添加する無機ファイバとして、生体溶解性ファイバを使用し、無機バルーンを添加せず、ハニカム焼成体を酸化処理せず、酸化物層を形成しなかったものは、ハニカム焼成体が酸化膜を有さないので、1200℃以上の温度に晒されるとハニカム焼成体の温度が上昇し、クラックが全体に広がり、接着剤層の強度も低下し易く、スス等のパティキュレートが規制値以上に外部に漏れることが判明した。
(その他の実施形態)
本発明のハニカム構造体は、セルの端部が封止されていなくてもよい。このようなハニカム構造体は、触媒担持体として好適に使用することができる。
また、ハニカム焼成体の形状は、特に限定されるものではないが、ハニカム焼成体同士を結束させてハニカム構造体を作製する際に結束しやすい形状であることが望ましく、その断面形状としては、正方形、長方形、六角形、扇状等が挙げられる。
また、本発明のハニカム構造体の形状は、円柱形状に限定されるものでなく、例えば、楕円柱形状、角柱形状等の任意の形状であっても良い。
ハニカム成形体の原料である湿潤混合物には、ハニカム構造体の主成分となるセラミック粉末のほか、有機バインダ、可塑剤、潤滑剤、分散媒液等が含まれていてもよい。
上記有機バインダとしては特に限定されず、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール等が挙げられる。これらのなかでは、メチルセルロースが望ましい。有機バインダの配合量は、通常、セラミック粉末100重量部に対して、1~10重量部が望ましい。
上記可塑剤としては、特に限定されず、例えば、グリセリン等が挙げられる。また、潤滑剤は特に限定されず、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物等が挙げられる。
なお、可塑剤、潤滑剤は、場合によっては、混合原料粉末に含まれていなくてもよい。
上記分散媒液としては、例えば、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられる。
さらに、湿潤混合物中には、成形助剤が添加されていてもよい。
成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられる。
さらに、湿潤混合物には、必要に応じて酸化物系セラミックを成分とする微小中空球体であるバルーンや、球状アクリル粒子、グラファイト等の造孔剤を添加してもよい。
バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等が挙げられる。これらのなかでは、アルミナバルーンが望ましい。
セルを封止する封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材の気孔率が30~75%となるものが望ましく、例えば、湿潤混合物と同様のものを用いることができる。
ハニカム構造体には、排ガスを浄化するための触媒を担持させてもよく、担持させる触媒としては、例えば、白金、パラジウム、ロジウム等の貴金属が望ましく、このなかでは、白金がより望ましい。また、その他の触媒として、例えば、カリウム、ナトリウム等のアルカリ金属、バリウム等のアルカリ土類金属を用いることもできる。これらの触媒は、単独で用いてもよいし、2種以上併用してもよい。
また、本発明のハニカム構造体を製造する方法として、複数個のハニカム集合体を作製し、ハニカム集合体の側面に接着剤ペースト層(発泡材料を含有する接着剤ペースト層)を形成して、結束工程において複数のハニカム集合体同士を結束させる方法を用いてもよい。
20、110 ハニカム焼成体
21、111 セル
24、112 封止材
22、113 セル壁
31 炭化ケイ素粒子
31a ネック
32 酸化物層
100 ハニカム構造体
101 接着剤層
102 コート層
103 セラミックブロック
110a、110b 側面
120 ハニカムフィルタ
130 接着剤ペースト
200 排ガス浄化装置
220 金属ケーシング
221 ガス入口側
223 ガス出口側
230 保持シール材

Claims (12)

  1. 多数のセルがセル壁を隔てて長手方向に並設された炭化ケイ素質のハニカム焼成体が接着剤層を介して複数個結束され、前記セルを隔てるセル壁のいずれか一方の端部が目封じされたハニカム構造体であって、
    前記ハニカム焼成体を構成する炭化ケイ素粒子の表面には、ケイ素を含む酸化物層が形成されており、
    前記接着剤層は、少なくともアルミナファイバと無機バルーンとを含むことを特徴とするハニカム構造体。
  2. 前記アルミナファイバの平均長さは25~100μm、
    前記無機バルーンの平均粒径は、70~300μmである請求項1に記載のハニカム構造体。
  3. 前記アルミナファイバのアスペクト比(繊維長/繊維径)は、3~30である請求項1又は2に記載のハニカム構造体。
  4. 前記酸化物層の厚さは、100~600nmである請求項1~3のいずれかに記載のハニカム構造体。
  5. 前記接着剤層は、さらに無機粒子及び無機バインダを含む請求項1~4のいずれかに記載のハニカム構造体。
  6. 前記無機バルーンの含有量は、5.0~50.0体積%である請求項1~5のいずれかに記載のハニカム構造体。
  7. 前記アルミナファイバの含有量は、5.0~50.0体積%である請求項1~6のいずれかに記載のハニカム構造体。
  8. 前記無機バルーンは、フライアッシュバルーンである請求項1~7のいずれかに記載のハニカム構造体。
  9. 前記無機粒子は、炭化ケイ素粒子である請求項1~8のいずれかに記載のハニカム構造体。
  10. 前記無機バインダは、シリカゾル又はアルミナゾルの固化物である請求項1~9のいずれかに記載のハニカム構造体。
  11. 内燃機関の排気通路に配置され、前記内燃機関より排出されたパティキュレートを濾過するように構成された排ガス浄化用ハニカムフィルタであって、
    請求項1~10に記載のハニカム構造体が用いられていることを特徴とする排ガス浄化用ハニカムフィルタ。
  12. ケーシングと、
    前記ケーシングに収容された排ガス浄化用ハニカムフィルタと、
    前記排ガス処理体の周囲に巻き付けられ、前記排ガス処理体及び前記ケーシングの間に配設された保持シール材とを備える排ガス浄化装置であって、
    前記排ガス浄化用ハニカムフィルタとして、請求項11に記載の排ガス浄化用ハニカムフィルタが用いられていることを特徴とする排ガス浄化装置。
PCT/JP2012/058471 2012-03-29 2012-03-29 ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置 WO2013145245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014507209A JP5990572B2 (ja) 2012-03-29 2012-03-29 ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置
EP12872399.6A EP2832710B1 (en) 2012-03-29 2012-03-29 Honeycomb structure, honeycomb filter for exhaust gas purification, and exhaust gas purification device
PCT/JP2012/058471 WO2013145245A1 (ja) 2012-03-29 2012-03-29 ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置
US14/499,249 US20150013284A1 (en) 2012-03-29 2014-09-29 Honeycomb structured body, exhaust gas purifying honeycomb filter, and exhaust gas purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058471 WO2013145245A1 (ja) 2012-03-29 2012-03-29 ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/499,249 Continuation US20150013284A1 (en) 2012-03-29 2014-09-29 Honeycomb structured body, exhaust gas purifying honeycomb filter, and exhaust gas purifying device

Publications (1)

Publication Number Publication Date
WO2013145245A1 true WO2013145245A1 (ja) 2013-10-03

Family

ID=49258610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058471 WO2013145245A1 (ja) 2012-03-29 2012-03-29 ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置

Country Status (4)

Country Link
US (1) US20150013284A1 (ja)
EP (1) EP2832710B1 (ja)
JP (1) JP5990572B2 (ja)
WO (1) WO2013145245A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275725A1 (en) * 2014-03-26 2015-10-01 Ngk Insulators, Ltd. Honeycomb structure
US20160257619A1 (en) * 2015-03-04 2016-09-08 Tyk Corporation Silicon carbide-natured refractory block
US9944552B2 (en) 2013-07-22 2018-04-17 Morgan Advanced Materials Plc Inorganic fibre compositions

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013186923A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP6239305B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239306B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239303B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239304B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239307B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP7051524B2 (ja) * 2018-03-26 2022-04-11 日本碍子株式会社 多孔質材料、セル構造体および多孔質材料の製造方法
JP7184707B2 (ja) * 2019-06-18 2022-12-06 日本碍子株式会社 ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184010A (ja) * 1988-01-14 1989-07-21 Toshiba Ceramics Co Ltd フイルター
JP2000218165A (ja) * 1999-01-29 2000-08-08 Ibiden Co Ltd ハニカムフィルタ及びその製造方法
WO2003067041A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre
WO2006137149A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP2007204360A (ja) * 2006-01-05 2007-08-16 Asahi Glass Co Ltd セラミックス接合用組成物およびセラミックス接合体
WO2008120386A1 (ja) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体
JP2011037675A (ja) * 2009-08-13 2011-02-24 Shin-Etsu Chemical Co Ltd 炭化珪素の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002530175A (ja) * 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
CN100453511C (zh) * 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
JP2006289237A (ja) * 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
EP1806329A3 (en) * 2006-01-05 2008-09-03 Asahi Glass Company, Limited Composition for ceramic bonding and ceramic bonded article
JP5485546B2 (ja) * 2006-03-30 2014-05-07 日本碍子株式会社 接合体、ハニカムセグメント接合体、及びそれを用いたハニカム構造体
PL2174921T3 (pl) * 2007-07-26 2015-09-30 Ngk Insulators Ltd Materiał wiążący dla struktury typu plastra miodu i struktura typu plastra miodu wykorzystująca ten materiał
WO2009069731A1 (ja) * 2007-11-30 2009-06-04 Ngk Insulators, Ltd. 炭化珪素質多孔体
EP2441513B1 (en) * 2010-10-13 2013-08-07 Ibiden Co., Ltd. Honeycomb catalyst body and method for manufacturing honeycomb catalyst body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184010A (ja) * 1988-01-14 1989-07-21 Toshiba Ceramics Co Ltd フイルター
JP2000218165A (ja) * 1999-01-29 2000-08-08 Ibiden Co Ltd ハニカムフィルタ及びその製造方法
WO2003067041A1 (fr) 2002-02-05 2003-08-14 Ibiden Co., Ltd. Filtre a nid d'abeille pour la decontamination des gaz d'echappement, matiere adhesive et de revetement, et procede d'obtention dudit filtre
WO2006137149A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP2007204360A (ja) * 2006-01-05 2007-08-16 Asahi Glass Co Ltd セラミックス接合用組成物およびセラミックス接合体
WO2008120386A1 (ja) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体
JP2011037675A (ja) * 2009-08-13 2011-02-24 Shin-Etsu Chemical Co Ltd 炭化珪素の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2832710A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944552B2 (en) 2013-07-22 2018-04-17 Morgan Advanced Materials Plc Inorganic fibre compositions
US20150275725A1 (en) * 2014-03-26 2015-10-01 Ngk Insulators, Ltd. Honeycomb structure
JP2015187044A (ja) * 2014-03-26 2015-10-29 日本碍子株式会社 ハニカム構造体
US9429054B2 (en) * 2014-03-26 2016-08-30 Ngk Insulators, Ltd. Honeycomb structure
US20160257619A1 (en) * 2015-03-04 2016-09-08 Tyk Corporation Silicon carbide-natured refractory block

Also Published As

Publication number Publication date
EP2832710A1 (en) 2015-02-04
EP2832710B1 (en) 2019-06-19
EP2832710A4 (en) 2015-06-03
JPWO2013145245A1 (ja) 2015-08-03
US20150013284A1 (en) 2015-01-15
JP5990572B2 (ja) 2016-09-14

Similar Documents

Publication Publication Date Title
JP5990572B2 (ja) ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置
JP4812316B2 (ja) ハニカム構造体
JP4932256B2 (ja) セラミック焼結体およびセラミックフィルタ
JP5063604B2 (ja) ハニカムフィルタ
JP4516017B2 (ja) セラミックハニカム構造体
JP2006289237A (ja) ハニカム構造体
JP5801681B2 (ja) ハニカム触媒体、及び、ハニカム触媒体の製造方法
JPWO2003067042A1 (ja) 排気ガス浄化用ハニカムフィルタ
JPWO2004113252A1 (ja) ハニカム構造体
WO2007058007A1 (ja) ハニカム構造体
JP5260982B2 (ja) ハニカムフィルタ
JPWO2008126328A1 (ja) ハニカムフィルタ
JPWO2008126329A1 (ja) ハニカムフィルタ
WO2011042990A1 (ja) ハニカムフィルタ
WO2013175552A1 (ja) ハニカムフィルタ、排ガス浄化装置、及び、排ガス浄化方法
JP2011098336A (ja) ハニカムフィルタ
JP2012102004A (ja) ハニカム構造体及び排ガス浄化装置
WO2009101691A1 (ja) ハニカム構造体
WO2013145243A1 (ja) ハニカム構造体、排ガス浄化用ハニカムフィルタ及び排ガス浄化装置
JP5184867B2 (ja) ハニカムフィルタ
JP5234970B2 (ja) ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP2008284542A (ja) ハニカムフィルタ
WO2009095982A1 (ja) ハニカム構造体
JP2004188278A (ja) 排気ガス浄化用ハニカムフィルタ
JP2011224538A (ja) ハニカムフィルタ及び排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012872399

Country of ref document: EP