WO2013141096A1 - 液化ガス輸送用車両 - Google Patents

液化ガス輸送用車両 Download PDF

Info

Publication number
WO2013141096A1
WO2013141096A1 PCT/JP2013/056902 JP2013056902W WO2013141096A1 WO 2013141096 A1 WO2013141096 A1 WO 2013141096A1 JP 2013056902 W JP2013056902 W JP 2013056902W WO 2013141096 A1 WO2013141096 A1 WO 2013141096A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquefied gas
transport vehicle
gas transport
vehicle
tank
Prior art date
Application number
PCT/JP2013/056902
Other languages
English (en)
French (fr)
Inventor
吉野 明
晋吾 國谷
Original Assignee
エア・ウォーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エア・ウォーター株式会社 filed Critical エア・ウォーター株式会社
Priority to CN201380014642.0A priority Critical patent/CN104203645A/zh
Priority to KR20147025824A priority patent/KR20140138732A/ko
Publication of WO2013141096A1 publication Critical patent/WO2013141096A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/22Tank vehicles
    • B60P3/224Tank vehicles comprising auxiliary devices, e.g. for unloading or level indicating
    • B60P3/225Adaptations for pumps or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks

Definitions

  • the present invention relates to a liquefied gas transport vehicle such as a tank truck for transporting liquefied gas such as liquefied natural gas.
  • a liquefied gas transportation vehicle such as a tank truck can be cited.
  • the liquefied gas transport vehicle includes a tank T that stores the liquefied gas, and an electric pump P that sends out the liquefied gas in the tank T to the outside.
  • the electric pump P includes a pump main body P 0 and a drive motor M 0 that drives the pump main body P 0 .
  • reference symbol E denotes an engine that gives a rotational force to the drive wheels (tires) W
  • reference symbol G denotes a generator (alternator) that uses the power of the engine E
  • reference symbol B 0.
  • I a lead storage battery (battery) that is electrically connected to the generator (alternator G) (see broken line 1 in the figure) and stores electricity generated by the generator (alternator G).
  • a liquefied gas transport vehicle employing a plug-in hybrid as shown in FIG. 15B has recently been proposed. Yes.
  • an engine E and a power motor M 1 are connected in series, and a rotational force is applied to drive wheels (tires) W by the power of either or both of them.
  • the power motor M 1 is electrically connected to the lithium ion secondary battery B 1 (see broken line 2 in the figure), and is driven to rotate by the electric power from the lithium ion secondary battery B 1 .
  • the power motor M 1 is rotated by using the rotation of the engine E, by its rotation, generates power (Acts as a generator). Further, even during braking, the power motor M 1 generates power (acts as a generator) so as to obtain regenerative energy.
  • the electricity generated by the power motor M 1 acting as a generator is stored in the lithium ion secondary battery B 1 .
  • the tank T for storing the liquefied gas and the electric pump P for sending the liquefied gas in the tank T to the outside are the same as those in the liquefied gas transport vehicle shown in FIG.
  • the transport of the liquefied gas by the liquefied gas transport vehicle is performed as follows. That is, first, the manufactured liquefied gas is filled in the tank T of the liquefied gas transport vehicle at the manufacturing site. Then, the vehicle for transporting liquefied gas is traveled to a store owned by the above-mentioned consumer (company, etc.). Thereafter, in the storage, the drive motor M 0 of the electric pump P and the power source (AC power supply) 20 provided in the storage are electrically connected [see FIGS. 15 (a) and 15 (b). 1), the electric pump P is driven (see, for example, FIG. 2 of Patent Document 1), and the liquefied gas in the tank T of the liquefied gas transport vehicle is sent out to the storage tank of the reservoir. Transfer. In this way, the transportation of the liquefied gas is completed.
  • the liquefied gas transport vehicle a vehicle that does not include the electric pump P (pressurized type) has been conventionally used.
  • the liquefied gas in the tank T is sent out by increasing the pressure in the tank T, lowering the pressure in the storage tank of the storage, and utilizing the pressure difference between the two.
  • the pressure in the tank T of the liquefied gas transport vehicle is lowered to the original state (about atmospheric pressure), and the pressure in the storage tank of the reservoir is raised to the original state. Done.
  • the weight of the tank T is increased, and the amount of liquefied gas that can be accommodated in the tank T is reduced correspondingly (the load weight is restricted in transportation by a vehicle), which is inferior in terms of transportation efficiency.
  • the load weight is restricted in transportation by a vehicle
  • the load weight is restricted in transportation by a vehicle
  • the load weight is restricted in transportation by a vehicle
  • the pressure in the storage tank of the said storage place since it is necessary to reduce the pressure in the storage tank of the said storage place during the time which sends out the said liquefied gas, supply of liquefied gas cannot be received from the storage tank. If the supply of the liquefied gas cannot be stopped, it is necessary to add another storage tank for switching.
  • the present invention has been made in view of such circumstances, and the liquefied gas transport vehicle itself can be used even if electric power cannot be secured in a reservoir that stores the liquefied gas transported by the liquefied gas transport vehicle.
  • Liquefied gas transport vehicle that can transfer liquefied gas to the storage tank of the storage using the electric pump mounted on the tank, and does not need to raise or lower the internal pressure of the liquefied gas storage tank or the storage tank The purpose is to provide
  • a vehicle for transporting liquefied gas is a vehicle for transporting liquefied gas comprising a tank for storing liquefied gas and an electric pump for sending the liquefied gas in the tank to the outside. Therefore, the power supply for driving the electric pump is installed.
  • the liquefied gas transport vehicle of the present invention is equipped with a power source for driving an electric pump, the electric pump can be driven using the power source to send out the liquefied gas in the tank. Therefore, the vehicle for transporting liquefied gas of the present invention can transfer the transported liquefied gas to the storage tank of the above-mentioned storage even if the power cannot be secured in the storage. Further, when the electric pump and the power source are mounted on a conventional pressurizing type that does not include the electric pump, the electric pump is driven using the power source as described above, and the inside of the tank is Therefore, it is not necessary to raise or lower the internal pressure of the tank storing the liquefied gas or the storage tank of the storage.
  • the time required for sending out the liquefied gas can be shortened. Further, even during the time when the liquefied gas is being sent out, it is not necessary to lower the pressure in the storage tank of the consumer (company, etc.), and the liquefied gas can be supplied from the storage tank. There is no need to add.
  • the power source is at least one of a storage battery and a capacitor
  • the power source is supplied from a charger or alternator mounted on a liquefied gas transport vehicle or a liquefied gas transport vehicle. Can be charged.
  • the power supply to the power source is performed by an alternator or a motor driven by using an engine mounted on the liquefied gas transport vehicle, and a charger provided outside the liquefied gas transport vehicle.
  • the storage battery can be charged from the alternator or motor while traveling, or from the charger provided at the liquefied gas manufacturing facility or the like while the vehicle is stopped.
  • FIG. 1 shows a first embodiment of a vehicle for transporting liquefied gas according to the present invention.
  • the liquefied gas transport vehicle of this embodiment is equipped with a lithium ion secondary battery B 2 as a power source for driving an existing electric pump P in the conventional liquefied gas transport vehicle shown in FIG. These are electrically connected to an existing generator (alternator G) (see broken line 3 in the figure).
  • the lithium ion secondary battery B 2 is a DC power supply, whereas the drive motor M 0 of the existing electric pump P is for an AC power supply. Therefore, the lithium ion secondary battery B 2 and the electric motor are used.
  • a control device C including an inverter is provided between the drive motor M 0 of the pump P, and the control device C is electrically connected to the lithium ion secondary battery B 2 and the drive motor M 0 of the electric pump P.
  • the other parts are the same as those of the conventional liquefied gas transport vehicle shown in FIG. 15A, and the same reference numerals are given to the same parts.
  • the liquefied gas transport vehicle of this embodiment itself has a driving force (driving wheel W) and a loading platform N on which the liquefied gas storage tank T is mounted.
  • a charger 10 for an electric vehicle is installed in advance at a manufacturing site that produces liquefied gas such as liquefied natural gas.
  • the manufactured liquefied gas is filled into the tank T of the liquefied gas transport vehicle, and the charger 10 charges the lithium ion secondary battery B 2 (two points in the figure). (See chain line 11).
  • the vehicle for transporting the liquefied gas is caused to travel to a reservoir owned by the liquefied gas consumer (company or the like).
  • the lithium ion secondary mounted on the vehicle itself without using the power source 20 of the reservoir (see FIG. 15A).
  • a liquefied gas that has transported can be transferred to a storage tank of the reservoir.
  • the lithium ion secondary battery B 2 has a charging rate of 100% by both charging by the charger 10 at the factory and power storage by power generation of the generator (alternator G) during traveling. It is preferable.
  • examples of the lithium ion secondary battery B 2 include those for electric vehicles (for example, LEV50 manufactured by GS Yuasa).
  • Examples of the charger 10 for charging the lithium ion secondary battery B 2 include those for electric vehicles, and a quick charger (for example, TQVC500M3 or TQVC200M3 manufactured by Takasago Seisakusho Co., Ltd.) may be used. An ordinary charger with a charging speed may be used.
  • a quick charger for example, TQVC500M3 or TQVC200M3 manufactured by Takasago Seisakusho Co., Ltd.
  • An ordinary charger with a charging speed may be used.
  • Examples of the inverter of the control device C include those for general industries.
  • the drive motor M 0 of the existing electric pump P is about 7.5 to 30 kW depending on the capacity of the tank T of the liquefied gas transport vehicle.
  • FCKLW21 manufactured by Toshiba Corporation, etc. Can be given.
  • FIG. 2 shows a second embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the same as the liquefied gas transport vehicle of the first embodiment shown in FIG. 1, except that an existing lead storage battery (battery) B 0 is removed and power is generated by a generator (alternator G). electrical and is obtained so as to power storage only to the lithium ion secondary battery B 2.
  • Other parts are the same as those in the first embodiment, and the same reference numerals are given to the same parts.
  • the lithium ion secondary battery B 2 is driven to drive the electric pump P in the reservoir, as in the first embodiment. Electric power is used, and the transported liquefied gas can be transferred to the storage tank of the storage without using the power supply 20 of the storage (see FIG. 15A).
  • FIG. 3 shows a third embodiment of the vehicle for transporting liquefied gas of the present invention.
  • the liquefied gas transport vehicle according to this embodiment has a second lithium ion battery as a power source for driving an existing electric pump P in a liquefied gas transport vehicle employing the plug-in hybrid shown in FIG.
  • the secondary battery B 2 is mounted, and an existing generator (power motor M 1 ) is electrically connected to the second lithium ion secondary battery B 2 (see the broken line 6 in the figure).
  • the existing (first) lithium ion secondary battery B 1 for the power motor M 1 that gives a rotational force to the drive wheels (tires) W is also the second lithium ion secondary battery B for the electric pump P. 2 is also used for the electric vehicle (for example, LEV50 manufactured by GS Yuasa).
  • the manufactured liquefied gas is filled in the tank T of the liquefied gas transport vehicle at the manufacturing site.
  • the charger 10 charges the first and second lithium ion secondary batteries B 1 and B 2 (see the two-dot chain line 11 in the figure).
  • the liquefied gas transport vehicle is traveled to a storage owned by the liquefied gas consumer (company, etc.), and during this travel, the electricity generated by the generator (power motor M 1 )
  • the first and second lithium ion secondary batteries B 1 and B 2 are charged.
  • the power by drives the electric pump P from the second lithium ion secondary battery B 2, and sends the liquefied gas in the tank T of the liquefied gas transportation vehicles, the reservoir Transfer to storage tank. In this way, the transportation of the liquefied gas is completed.
  • the power of the mounted second lithium ion secondary battery B 2 can be obtained without using the power source 20 of the reservoir (see FIG. 15B). Utilized, the transported liquefied gas can be transferred to the storage tank of the storage.
  • the second lithium ion secondary battery B 2 has a charging rate by both charging by the charger 10 at the factory and power storage by power generation of the generator (power motor M 1 ) while traveling. Is preferably 100%.
  • FIG. 4 shows a fourth embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the same as the liquefied gas transport vehicle of the third embodiment shown in FIG. 3, except that the existing first lithium ion secondary battery B 1 is removed and a generator (power motor) is removed.
  • the electricity generated in M 1 ) is stored only in the second lithium ion secondary battery B 2 .
  • Other parts are the same as those in the third embodiment, and the same reference numerals are given to the same parts.
  • the second lithium ion secondary battery is used to drive the electric pump P in the reservoir.
  • power of B 2 are utilized, without using the power supply 20 of the reservoir [FIG 15 (b)], the liquefied gas has been transported can be transferred to a storage tank of the reservoir.
  • FIG. 5 shows a fifth embodiment of the vehicle for transporting liquefied gas of the present invention.
  • the vehicle for transporting liquefied gas according to this embodiment includes a tractor head (towing vehicle) K having an engine E and a driving force (driving wheels W), and a trailer chassis that is pulled by the tractor head K and has no driving force.
  • the lithium ion secondary battery B 2 is mounted on the container S.
  • Other parts are the same as those in the first embodiment, and the same reference numerals are given to the same parts. Then, the same operations and effects as the first embodiment are obtained.
  • FIG. 6 shows a sixth embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the liquefied gas transport vehicle of the fifth embodiment shown in FIG. 5 in which the lithium ion secondary battery B 2 is mounted on the tractor head K.
  • Other parts are the same as those in the fifth embodiment, and the same reference numerals are given to the same parts. And, there are the same operations and effects as the fifth embodiment.
  • FIG. 7 shows a seventh embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the same as the liquefied gas transport vehicle of the sixth embodiment shown in FIG. 6, except that an existing lead storage battery (battery) B 0 is removed and power is generated by a generator (alternator G). electrical and is obtained so as to power storage only to the lithium ion secondary battery B 2.
  • the other parts are the same as those in the sixth embodiment, and the same reference numerals are given to the same parts.
  • FIG. 8 shows an eighth embodiment of the vehicle for transporting liquefied gas of the present invention.
  • the liquefied gas transport vehicle of this embodiment is a liquefied gas transport vehicle that employs a plug-in hybrid, and is an existing (first) lithium ion battery for the engine E, the power motor M 1 , and the power motor M 1 .
  • a (second) lithium ion secondary battery B 2 serving as a power source for the electric pump P is mounted on the container S in a liquefied gas transport vehicle including a tank T and a container S containing the electric pump P.
  • an existing generator power motor M 1
  • Other parts are the same as those in the third embodiment, and the same reference numerals are given to the same parts. And the same operation and effect as the above-mentioned 3rd embodiment are produced.
  • FIG. 9 shows a ninth embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the same as the liquefied gas transport vehicle of the eighth embodiment shown in FIG. 8, in which the lithium ion secondary battery B 2 is mounted on the tractor head K.
  • Other parts are the same as those in the eighth embodiment, and the same reference numerals are given to the same parts. Then, the same operations and effects as those of the eighth embodiment are achieved.
  • FIG. 10 shows a tenth embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is the same as the liquefied gas transport vehicle of the ninth embodiment shown in FIG. 9, except that the existing first lithium ion secondary battery B 1 is removed and the generator (power motor) is removed.
  • the electricity generated in M 1 ) is stored only in the second lithium ion secondary battery B 2 .
  • Other parts are the same as those in the ninth embodiment, and the same reference numerals are given to the same parts.
  • FIG. 11 shows an eleventh embodiment of the liquefied gas transport vehicle of the present invention.
  • a lithium ion secondary battery B 2 is mounted as a power source for driving the existing electric pump P in the conventional liquefied gas transport vehicle shown in FIG. [In other words, in the first embodiment shown in FIG. 1, the lithium ion secondary battery B 2 and the existing generator (alternator G) are not electrically connected).
  • the other parts are the same as those of the conventional liquefied gas transport vehicle shown in FIG. 15A, and the same reference numerals are given to the same parts.
  • the produced liquefied gas is filled in the tank T of the liquefied gas transport vehicle and the charger 10 is used.
  • the charger 10 is used to charge the lithium ion secondary battery B 2 (see the two-dot chain line 11 in the figure).
  • the electric power of the lithium ion secondary battery B 2 is used to drive the electric pump P, and the electric pump 20 is transported without using the power source 20 (see FIG. 15A) of the storage.
  • the liquefied gas can be transferred to the storage tank of the reservoir.
  • FIG. 12 shows a twelfth embodiment of the liquefied gas transport vehicle of the present invention.
  • the liquefied gas transport vehicle of this embodiment is a second lithium ion secondary battery B 2 as a power source for driving the existing electric pump P in the conventional liquefied gas transport vehicle shown in FIG.
  • the second lithium ion secondary battery B 2 is electrically connected to the existing generator (power motor M 1 ). It ’s not.
  • the other parts are the same as those of the conventional liquefied gas transport vehicle shown in FIG. 15B, and the same reference numerals are given to the same parts.
  • the manufactured liquefied gas is filled in the tank T of the liquefied gas transport vehicle and the charger 10 is used. Then, the first and second lithium ion secondary batteries B 1 and B 2 are charged (see the two-dot chain line 11 in the figure). Then, in the reservoir, the electric pump the second power of the lithium ion secondary battery B 2 to drive the P is utilized, without using the power supply 20 of the reservoir [FIG 15 (a) see]
  • the liquefied gas that has been transported can be transferred to the storage tank of the storage.
  • FIG. 13 shows a thirteenth embodiment of the liquefied gas transport vehicle of the present invention.
  • the vehicle for transporting liquefied gas of this embodiment is one in which the lithium ion secondary battery B 2 and the existing generator (alternator G) are not electrically connected in the fifth embodiment shown in FIG. it is (i.e., the conventional trailer type liquefied gas transport vehicles, is obtained by mounting the lithium ion secondary battery B 2 as a power source for driving the existing electric pump P).
  • Other parts are the same as those in the fifth embodiment, and the same reference numerals are given to the same parts. Then, the liquefied gas can be transported in the same manner as in the eleventh embodiment.
  • FIG. 14 shows a fourteenth embodiment of the liquefied gas transport vehicle of the present invention.
  • the vehicle for transporting liquefied gas of this embodiment is electrically connected to the second lithium ion secondary battery B 2 and the existing generator (power motor M 1 ) in the eighth embodiment shown in FIG.
  • the second lithium ion secondary battery B 2 is used as a power source for driving an existing electric pump P in a trailer type liquefied gas transport vehicle adopting a plug-in hybrid. Equipped).
  • Other parts are the same as those in the eighth embodiment, and the same reference numerals are given to the same parts. Then, the liquefied gas can be transported in the same manner as in the twelfth embodiment.
  • the lithium ion secondary battery B 2 is used as the power source of the electric pump P.
  • any other power source may be used as long as it can be charged and discharged.
  • a secondary battery may be used, a capacitor may be used, or both the secondary battery and the capacitor may be used in combination.
  • the drive motor M 0 for the electric pump P is used for an existing AC power supply.
  • a lithium ion secondary battery (DC power supply) B 2 is used as the power supply for the drive motor M 0. Therefore, the drive motor M 0 may be replaced with one for a DC power source. In this case, an AC / DC converter is not required for the control device C that is electrically connected to the drive motor M 0 .
  • the driving motor M 0 for the DC power source for example, Meidensha Co. YCD221 / 101, YCD221 / 231 or LW15 etc. PUES Co., and the like.
  • the mill of the liquefied gas has been installed charger 10 for charging the lithium ion secondary battery B 2, it may not be installed.
  • the lithium ion secondary battery B 2 is charged by power generation by a generator (alternator G, power motor M 1 ) during traveling.
  • the lithium ion secondary battery B 2 serving as the power source of the electric pump P is mounted on the container S.
  • the lithium ion secondary battery B 2 may be mounted on the trailer chassis D in these embodiments.
  • FIG. 1 shows a conventional liquefied gas transport vehicle equipped with an engine-driven truck (20-ton car) manufactured by Hino Motors, and a tank having a capacity of 13,000 liters and an electric pump (drive motor: Toshiba Corporation, FCKLW21).
  • a control device including a lithium ion secondary battery (manufactured by GS Yuasa, LEV50) and an inverter is mounted as the power source for the electric pump.
  • the electric pump is driven by the power of the lithium ion secondary battery, and the liquefied gas in the tank of the liquefied gas transport vehicle can be sent out and transferred to the storage tank of the storage. It was.
  • the charge rate of the lithium ion secondary battery at the completion of the transportation was 20%.
  • Example 2 Moreover, in the said Example 1, the existing lead acid battery (battery) was removed, and the electric power generated with the said generator (alternator) was stored only in the said lithium ion secondary battery (2nd shown in FIG. 2). See the embodiment). Using such a liquefied gas transport vehicle, the liquefied gas was transported in the same manner as in Example 1 above. As a result, the liquefied gas transported by using the power of the lithium ion secondary battery can be transferred to the tank of the reservoir instead of using the power source of the reservoir for driving the electric pump. did it. Moreover, although it took about 70 minutes to transfer from the tank of the liquefied gas transport vehicle to the storage tank of the reservoir, the time could be shortened compared to about 90 minutes in the case of the conventional pressurized type.
  • the present invention can be used for a liquefied gas transport vehicle capable of transporting liquefied gas without worrying about securing a power source in a storage at a transport destination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transportation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 液化ガス輸送用車両で輸送された液化ガスを貯蔵する貯蔵所において電力を確保することができなくても、上記液化ガス輸送用車両自体に搭載された電動ポンプを利用して液化ガスを上記貯蔵所の貯蔵タンクに移すことができ、また、搭載する液化ガス収容タンクや上記貯蔵タンクの内圧を昇降する必要のない液化ガス輸送用車両を提供する。その液化ガス輸送用車両は、液化ガスを収容するタンクTと、このタンクT内の上記液化ガスを外部に送出する電動ポンプPとを備えた液化ガス輸送用車両に、上記電動ポンプPを駆動するためのリチウムイオン二次電池B2,キャパシタ等の電源を搭載したものとなっている。

Description

液化ガス輸送用車両
 本発明は、液化天然ガス等の液化ガスを輸送するタンクローリ等の液化ガス輸送用車両に関するものである。
 液体窒素,液体酸素,液体アルゴン,液化天然ガス(LNG),液化石油ガス(LPG)等の液化ガスは、その液化ガスを製造する製造所から、その液化ガスを必要とする企業等の需要者まで、様々な輸送手段で輸送される。その輸送手段の一つとして、例えば、タンクローリ等の液化ガス輸送用車両があげられる。その液化ガス輸送用車両は、図15(a)に示すように、液化ガスを収容するタンクTと、このタンクT内の液化ガスを外部に送出する電動ポンプPとを備えている。その電動ポンプPは、ポンプ本体P0と、そのポンプ本体P0を駆動する駆動モータM0とからなっている。なお、図15(a)において、符号Eは、駆動輪(タイヤ)Wに回転力を与えるエンジン、符号Gは、そのエンジンEの動力を利用して駆動する発電機(オルタネータ)、符号B0は、その発電機(オルタネータG)と電気的に接続され(図の破線1参照)、その発電機(オルタネータG)で発電した電気を蓄電する鉛蓄電池(バッテリ)である。
 また、このような、エンジンEのみで駆動する上記液化ガス輸送用車両の他に、最近では、図15(b)に示すような、プラグインハイブリッドを採用する液化ガス輸送用車両も提案されている。このものは、エンジンEと動力モータM1とが直列に接続され、そのいずれかまたは両方の動力により、駆動輪(タイヤ)Wに回転力を与えるようになっている。上記動力モータM1は、リチウムイオン二次電池B1と電気的に接続され(図の破線2参照)、そのリチウムイオン二次電池B1からの電力により回転駆動するようになっている。また、上記動力モータM1が駆動輪(タイヤ)Wに回転力を与えていない状態でも、その動力モータM1は、エンジンEの回転を利用して回転しており、その回転により、発電するようになっている(発電機として作用する)。さらに、ブレーキ時でも、上記動力モータM1は、回生エネルギーを得るよう発電する(発電機として作用する)ようになっている。そして、上記動力モータM1が発電機として作用して発電した電気は、上記リチウムイオン二次電池B1に蓄電されるようになっている。なお、液化ガスを収容するタンクTおよびこのタンクT内の液化ガスを外部に送出する電動ポンプPは、図15(a)に示す上記液化ガス輸送用車両と同様である。
 上記液化ガス輸送用車両による液化ガスの輸送は、つぎのようにして行われる。すなわち、まず、上記製造所において、製造された液化ガスを上記液化ガス輸送用車両のタンクTに充填する。ついで、その液化ガス輸送用車両を上記需要者(企業等)が所有する貯蔵所まで走行させる。その後、その貯蔵所において、上記電動ポンプPの駆動モータM0と、その貯蔵所に備えられている電源(交流電源)20とを電気的に接続し〔図15(a),(b)に示す一点鎖線21参照)、上記電動ポンプPを駆動させ(例えば、特許文献1の図2参照)、上記液化ガス輸送用車両のタンクT内の液化ガスを送出し、上記貯蔵所の貯蔵タンクに移す。このようにして、液化ガスの輸送が完了する。
 一方、上記液化ガス輸送用車両として、上記電動ポンプPを備えていないもの(加圧式のもの)も、従来より用いられている。この液化ガス輸送用車両でのタンクT内の液化ガスの送出は、そのタンクT内の圧力を上げ、上記貯蔵所の貯蔵タンク内の圧力を下げ、両者の圧力差を利用して行われる。そして、その送出を終えた後は、液化ガス輸送用車両のタンクT内の圧力を元の状態(大気圧程度)に下げ、上記貯蔵所の貯蔵タンク内の圧力を元の状態に上げることが行われる。
特開2007-237877号公報
 しかしながら、貯蔵所によっては、上記電動ポンプPを駆動させるのに充分な電力が得られない場合がある。すなわち、貯蔵所に、そもそも電源20が備えられていなかったり、電源20が備えられていたとしても、電力が他の用途に使用されているために上記電動ポンプPの駆動に不充分であったり、停電や天災等により電源20を利用することができなかったりする場合があるからである。そのような場合、上記電動ポンプPを備えた液化ガス輸送用車両では、タンクT内の液化ガスを送出することができず、上記貯蔵所の貯蔵タンクに移すことができない。
 一方、上記電動ポンプPを備えていない(加圧式の)液化ガス輸送用車両では、上記のように、タンクT内の液化ガスを送出するのに外部からの電力が不要であるため、上記貯蔵所において電力を確保することができなくても、上記タンクT内の液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。しかしながら、上記のように、タンクT内の液化ガスを送出す際に、そのタンクT内の圧力を上げ、その送出を終えた後は、そのタンクT内の圧力を下げる必要があるため、その送出完了に時間を要する。しかも、上記タンクT内の圧力を上げる必要性から、その昇圧に耐えるよう上記タンクTの周壁を厚くする必要がある。そのため、上記タンクTの重量が増加し、その分、そのタンクT内に収容できる液化ガスの量が少なくなり(車両による輸送では積載重量に規制がある)、輸送効率の点で劣る。また、上記液化ガスを送出している時間は、上記貯蔵所の貯蔵タンク内の圧力を下げる必要があるため、その貯蔵タンクから液化ガスの供給を受けることができない。その液化ガスの供給を止められない場合には、切り換え用の貯蔵タンクを別に追加する必要がある。
 本発明は、このような事情に鑑みなされたもので、液化ガス輸送用車両で輸送された液化ガスを貯蔵する貯蔵所において電力を確保することができなくても、上記液化ガス輸送用車両自体に搭載された電動ポンプを利用して液化ガスを上記貯蔵所の貯蔵タンクに移すことができ、また、搭載する液化ガス収容タンクや上記貯蔵タンクの内圧を昇降する必要のない液化ガス輸送用車両の提供をその目的とする。
 上記の目的を達成するため、本発明の液化ガス輸送用車両は、液化ガスを収容するタンクと、このタンク内の上記液化ガスを外部に送出する電動ポンプとを備えた液化ガス輸送用車両であって、上記電動ポンプを駆動するための電源を搭載したという構成をとる。
 本発明の液化ガス輸送用車両は、電動ポンプ駆動用の電源を搭載しているため、その電源を利用して電動ポンプを駆動させ、タンク内の液化ガスを送出することができる。よって、本発明の液化ガス輸送用車両は、貯蔵所において電力を確保することができなくても、輸送された液化ガスを、上記貯蔵所の貯蔵タンクに移すことができる。また、上記電動ポンプを備えていなかった従来の加圧式のものに、上記電動ポンプと上記電源とを搭載すると、上記のように、上記電源を利用して上記電動ポンプを駆動させ、上記タンク内の液化ガスを送出することができるようになるため、液化ガスを収容する上記タンクや上記貯蔵所の貯蔵タンクの内圧を昇降する必要がない。そのため、上記液化ガスの送出に要する時間を短縮することができる。また、上記液化ガスを送出している時間でも、上記需要者(企業等)の貯蔵タンク内の圧力を下げる必要がなく、その貯蔵タンクから液化ガスを供給することもでき、切り換え用の貯蔵タンクを追加する必要もない。
 特に、上記電源が、蓄電池およびキャパシタの少なくとも一方である場合には、液化ガスの製造所等に設けた充電器や液化ガス輸送用車両に搭載された発電機(オルタネータ)等から、上記電源に充電することができる。
 また、上記電源への電力供給が、上記液化ガス輸送用車両に搭載されたエンジンを利用して駆動されるオルタネータまたはモータ、および上記液化ガス輸送用車両の外部に設けられた充電器によって行われる場合には、走行中に上記オルタネータまたはモータから、停車中に液化ガスの製造所等に設けた上記充電器から、上記蓄電池に蓄電することができる。
本発明の液化ガス輸送用車両の第1の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第2の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第3の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第4の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第5の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第6の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第7の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第8の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第9の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第10の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第11の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第12の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第13の実施の形態を模式的に示す説明図である。 本発明の液化ガス輸送用車両の第14の実施の形態を模式的に示す説明図である。 従来の液化ガス輸送用車両を模式的に示す説明図であり、(a)はエンジン駆動車両を示し、(b)はプラグインハイブリッド車両を示している。
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
 図1は、本発明の液化ガス輸送用車両の第1の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図15(a)に示す従来の液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源としてリチウムイオン二次電池B2を搭載し、既設の発電機(オルタネータG)に電気的に接続した(図の破線3参照)ものである。また、上記リチウムイオン二次電池B2は直流電源であるのに対し、上記既設の電動ポンプPの駆動モータM0は、交流電源用であるため、上記リチウムイオン二次電池B2と上記電動ポンプPの駆動モータM0との間に、インバータを含む制御装置Cを設け、その制御装置Cを上記リチウムイオン二次電池B2と上記電動ポンプPの駆動モータM0とに電気的に接続している(図の破線4,5参照)。それ以外の部分は、図15(a)に示す従来の液化ガス輸送用車両と同様であり、同様の部分には同じ符号を付している。なお、この実施の形態の液化ガス輸送用車両は、それ自体が、駆動力(駆動輪W)と、液化ガス収容タンクTを搭載した荷台Nとを有するものである。
 この第1の実施の形態の液化ガス輸送用車両による液化ガスの輸送方法の一例について説明する。この例では、液化天然ガス等の液化ガスを製造する製造所に、予め、電気自動車用の充電器10を設置しておく。そして、まず、上記製造所において、製造された液化ガスを上記液化ガス輸送用車両のタンクTに充填するとともに、上記充電器10で上記リチウムイオン二次電池B2を充電する(図の二点鎖線11参照)。ついで、その液化ガス輸送用車両を上記液化ガスの需要者(企業等)が所有する貯蔵所まで走行させる。この走行中において、上記発電機(オルタネータG)で発電された電気を、上記既設の鉛蓄電池(バッテリ)B0および上記リチウムイオン二次電池B2に蓄電する。その後、その貯蔵所において、上記リチウムイオン二次電池B2の電力により上記電動ポンプPを駆動させ、上記液化ガス輸送用車両のタンクT内の液化ガスを送出し、上記貯蔵所の貯蔵タンクに移す。このようにして、液化ガスの輸送が完了する。
 このように、この第1の実施の形態の液化ガス輸送用車両では、上記貯蔵所の電源20〔図15(a)参照〕を利用することなく、この車両自体に搭載した上記リチウムイオン二次電池B2の電力を利用して、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。なお、上記リチウムイオン二次電池B2は、上記製造所での充電器10による充電と、走行中での発電機(オルタネータG)の発電による蓄電との両方により、充電率を100%にすることが好ましい。
 より詳しく説明すると、上記リチウムイオン二次電池B2としては、例えば、電気自動車用のもの(例えば、GSユアサ社製のLEV50)等があげられる。
 上記リチウムイオン二次電池B2を充電する充電器10としては、例えば、電気自動車用のもの等があげられ、急速充電器(例えば、高砂製作所社製のTQVC500M3またはTQVC200M3)でもよいし、普通の充電速度の普通充電器でもよい。
 上記制御装置Cのインバータとしては、例えば、一般産業用のもの等があげられる。
 上記既設の電動ポンプPの駆動モータM0は、上記液化ガス輸送用車両のタンクTの容量に応じて、7.5~30kW程度のものが用いられており、例えば、東芝社製のFCKLW21等があげられる。
 図2は、本発明の液化ガス輸送用車両の第2の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図1に示す第1の実施の形態の液化ガス輸送用車両において、既設の鉛蓄電池(バッテリ)B0を取り外し、発電機(オルタネータG)で発電された電気を上記リチウムイオン二次電池B2のみに蓄電するようにしたものである。それ以外の部分は、上記第1の実施の形態と同様であり、同様の部分には同じ符号を付している。
 そして、液化ガスの輸送については、この第2の実施の形態においても、上記第1の実施の形態と同様、上記貯蔵所において、上記電動ポンプPの駆動に上記リチウムイオン二次電池B2の電力が利用され、上記貯蔵所の電源20〔図15(a)参照〕を利用することなく、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。
 図3は、本発明の液化ガス輸送用車両の第3の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図15(b)に示すプラグインハイブリッドを採用する液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源として第2のリチウムイオン二次電池B2を搭載するとともに、その第2のリチウムイオン二次電池B2に既設の発電機(動力モータM1)を電気的に接続した(図の破線6参照)ものである。なお、駆動輪(タイヤ)Wに回転力を与える動力モータM1用の既設の(第1の)リチウムイオン二次電池B1も、上記電動ポンプP用の第2のリチウムイオン二次電池B2も、前記電気自動車用のもの(例えば、GSユアサ社製のLEV50)等が用いられる。
 そして、この第3の実施の形態の液化ガス輸送用車両による液化ガスの輸送方法の一例としては、まず、上記製造所において、製造された液化ガスを上記液化ガス輸送用車両のタンクTに充填するとともに、上記充電器10で上記第1および第2のリチウムイオン二次電池B1,B2を充電する(図の二点鎖線11参照)。ついで、その液化ガス輸送用車両を上記液化ガスの需要者(企業等)が所有する貯蔵所まで走行させ、この走行中に、上記発電機(動力モータM1)で発電された電気を、上記第1および第2のリチウムイオン二次電池B1,B2に蓄電する。その後、その貯蔵所において、上記第2のリチウムイオン二次電池B2からの電力により上記電動ポンプPを駆動させ、上記液化ガス輸送用車両のタンクT内の液化ガスを送出し、上記貯蔵所の貯蔵タンクに移す。このようにして、液化ガスの輸送が完了する。
 このように、この第3の実施の形態においても、上記貯蔵所の電源20〔図15(b)参照〕を利用することなく、搭載した上記第2のリチウムイオン二次電池B2の電力を利用して、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。なお、上記第2のリチウムイオン二次電池B2は、上記製造所での充電器10による充電と、走行中での発電機(動力モータM1)の発電による蓄電との両方により、充電率を100%にすることが好ましい。
 図4は、本発明の液化ガス輸送用車両の第4の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図3に示す第3の実施の形態の液化ガス輸送用車両において、既設の第1のリチウムイオン二次電池B1を取り外し、発電機(動力モータM1)で発電された電気を上記第2のリチウムイオン二次電池B2のみに蓄電するようにしたものである。それ以外の部分は、上記第3の実施の形態と同様であり、同様の部分には同じ符号を付している。
 そして、液化ガスの輸送については、この第4の実施の形態においても、上記第3の実施の形態と同様、上記貯蔵所において、上記電動ポンプPの駆動に上記第2のリチウムイオン二次電池B2の電力が利用され、上記貯蔵所の電源20〔図15(b)参照〕を利用することなく、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。
 図5は、本発明の液化ガス輸送用車両の第5の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、エンジンEおよび駆動力(駆動輪W)を有するトラクタヘッド(牽引車)Kと、このトラクタヘッドKに牽引される、駆動力を有さないトレーラシャシ(台車)Dと、このトレーラシャシDに載置された、上記タンクTおよび上記電動ポンプPを収容したコンテナSとを備えた従来の液化ガス輸送用車両に、その電動ポンプPの電源となる上記リチウムイオン二次電池B2を上記コンテナSに搭載したものである。それ以外の部分は、上記第1の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第1の実施の形態と同様の作用・効果を奏する。
 図6は、本発明の液化ガス輸送用車両の第6の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図5に示す第5の実施の形態の液化ガス輸送用車両において、上記リチウムイオン二次電池B2を上記トラクタヘッドKに搭載したものである。それ以外の部分は、上記第5の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第5の実施の形態と同様の作用・効果を奏する。
 図7は、本発明の液化ガス輸送用車両の第7の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図6に示す第6の実施の形態の液化ガス輸送用車両において、既設の鉛蓄電池(バッテリ)B0を取り外し、発電機(オルタネータG)で発電された電気を上記リチウムイオン二次電池B2のみに蓄電するようにしたものである。それ以外の部分は、上記第6の実施の形態と同様であり、同様の部分には同じ符号を付している。
 図8は、本発明の液化ガス輸送用車両の第8の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、プラグインハイブリッドを採用する液化ガス輸送用車両であり、エンジンE,動力モータM1,動力モータM1用の既設の(第1の)リチウムイオン二次電池B1および駆動力(駆動輪W)を有するトラクタヘッドKと、このトラクタヘッドKに牽引される、駆動力を有さないトレーラシャシDと、このトレーラシャシDに載置された、上記タンクTおよび上記電動ポンプPを収容したコンテナSとを備えた液化ガス輸送用車両に、その電動ポンプPの電源となる(第2の)リチウムイオン二次電池B2を上記コンテナSに搭載するとともに、その第2のリチウムイオン二次電池B2に既設の発電機(動力モータM1)を電気的に接続したものである。それ以外の部分は、上記第3の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第3の実施の形態と同様の作用・効果を奏する。
 図9は、本発明の液化ガス輸送用車両の第9の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図8に示す第8の実施の形態の液化ガス輸送用車両において、上記リチウムイオン二次電池B2を上記トラクタヘッドKに搭載したものである。それ以外の部分は、上記第8の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第8の実施の形態と同様の作用・効果を奏する。
 図10は、本発明の液化ガス輸送用車両の第10の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図9に示す第9の実施の形態の液化ガス輸送用車両において、既設の第1のリチウムイオン二次電池B1を取り外し、発電機(動力モータM1)で発電された電気を上記第2のリチウムイオン二次電池B2のみに蓄電するようにしたものである。それ以外の部分は、上記第9の実施の形態と同様であり、同様の部分には同じ符号を付している。
 図11は、本発明の液化ガス輸送用車両の第11の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図15(a)に示す従来の液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源としてリチウムイオン二次電池B2を搭載したものである〔すなわち、図1に示す第1の実施の形態において、上記リチウムイオン二次電池B2と既設の発電機(オルタネータG)とを電気的に接続していないものである〕。それ以外の部分は、図15(a)に示す従来の液化ガス輸送用車両と同様であり、同様の部分には同じ符号を付している。
 そして、液化ガスの輸送については、まず、上記第1の実施の形態と同様、上記製造所において、製造された液化ガスを上記液化ガス輸送用車両のタンクTに充填するとともに、上記充電器10で上記リチウムイオン二次電池B2を充電する(図の二点鎖線11参照)。そして、上記貯蔵所において、上記電動ポンプPの駆動に上記リチウムイオン二次電池B2の電力が利用され、上記貯蔵所の電源20〔図15(a)参照〕を利用することなく、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。
 図12は、本発明の液化ガス輸送用車両の第12の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図15(b)に示す従来の液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源として第2のリチウムイオン二次電池B2を搭載したものである〔すなわち、図3に示す第3の実施の形態において、上記第2のリチウムイオン二次電池B2と既設の発電機(動力モータM1)とを電気的に接続していないものである〕。それ以外の部分は、図15(b)に示す従来の液化ガス輸送用車両と同様であり、同様の部分には同じ符号を付している。
 そして、液化ガスの輸送については、まず、上記第3の実施の形態と同様、上記製造所において、製造された液化ガスを上記液化ガス輸送用車両のタンクTに充填するとともに、上記充電器10で上記第1および第2のリチウムイオン二次電池B1,B2を充電する(図の二点鎖線11参照)。そして、上記貯蔵所において、上記電動ポンプPの駆動に上記第2のリチウムイオン二次電池B2の電力が利用され、上記貯蔵所の電源20〔図15(a)参照〕を利用することなく、輸送してきた液化ガスを上記貯蔵所の貯蔵タンクに移すことができる。
 図13は、本発明の液化ガス輸送用車両の第13の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図5に示す第5の実施の形態において、リチウムイオン二次電池B2と既設の発電機(オルタネータG)とを電気的に接続していないものである(すなわち、従来のトレーラ型の液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源として上記リチウムイオン二次電池B2を搭載したものである)。それ以外の部分は、上記第5の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第11の実施の形態と同様にして、液化ガスの輸送を行うことができる。
 図14は、本発明の液化ガス輸送用車両の第14の実施の形態を示している。この実施の形態の液化ガス輸送用車両は、図8に示す第8の実施の形態において、第2のリチウムイオン二次電池B2と既設の発電機(動力モータM1)とを電気的に接続していないものである(すなわち、プラグインハイブリッドを採用するトレーラ型の液化ガス輸送用車両に、既設の電動ポンプPを駆動させるための電源として上記第2のリチウムイオン二次電池B2を搭載したものである)。それ以外の部分は、上記第8の実施の形態と同様であり、同様の部分には同じ符号を付している。そして、上記第12の実施の形態と同様にして、液化ガスの輸送を行うことができる。
 なお、上記各実施の形態では、電動ポンプPの電源として、リチウムイオン二次電池B2を用いたが、充電も放電も可能なものであれば、他の電源でもよく、例えば、ニッケル水素二次電池を用いてもよいし、キャパシタを用いてもよいし、それら二次電池とキャパシタの両方を併用してもよい。
 また、上記各実施の形態では、電動ポンプPの駆動モータM0として、既設の交流電源用のものを用いたが、その駆動モータM0の電源としてリチウムイオン二次電池(直流電源)B2を利用することから、その駆動モータM0を直流電源用のものに換えてもよい。この場合、駆動モータM0に電気的に接続されている制御装置Cに、交流・直流変換器は不要となる。そして、上記直流電源用の駆動モータM0としては、例えば、明電舎社製のYCD221/101,YCD221/231,またはピューズ社製のLW15等があげられる。
 さらに、上記各実施の形態では、液化ガスの製造所に、リチウムイオン二次電池B2を充電するための充電器10を設置したが、設置しなくてもよい。その場合は、走行中における発電機(オルタネータG,動力モータM1)での発電により、上記リチウムイオン二次電池B2を充電するようにする。
 また、上記第5,第8の実施の形態では、電動ポンプPの電源となるリチウムイオン二次電池B2をコンテナSに搭載し、上記第6,第7,第9の実施の形態では、そのリチウムイオン二次電池B2をトラクタヘッドKに搭載したが、それら実施の形態では、上記リチウムイオン二次電池B2をトレーラシャシDに搭載してもよい。
 つぎに、実施例について説明する。但し、本発明は、実施例に限定されるわけではない。
〔実施例1〕
〔液化ガス輸送用車両〕
 日野自動車社製のエンジン駆動のトラック(20トン車)に、容量13000リットルのタンクと、電動ポンプ(駆動モータ:東芝社製、FCKLW21)とを備えた従来の液化ガス輸送用車両に、図1に示す第1の実施の形態と同様にして、上記電動ポンプ用の電源としてリチウムイオン二次電池(GSユアサ社製、LEV50)およびインバータを含む制御装置を搭載した。
〔液化ガスの輸送〕
 液化天然ガスを製造する製造所において、製造された液化天然ガスを上記液化ガス輸送用車両のタンクに充填するとともに、急速充電器(高砂製作所社製、TQVC500M3)で上記リチウムイオン二次電池を、充電率が80%となるよう充電した。ついで、その液化ガス輸送用車両を需要者の貯蔵所まで300km走行させた。この走行中に、上記液化ガス輸送用車両に既設の発電機(オルタネータ)の発電により、上記リチウムイオン二次電池は充電され、充電率が100%となった。その後、上記貯蔵所において、上記リチウムイオン二次電池の電力により上記電動ポンプを駆動させ、上記液化ガス輸送用車両のタンク内の液化ガスを送出し、上記貯蔵所の貯蔵タンクに移すことができた。この輸送完了時における上記リチウムイオン二次電池の充電率は20%であった。
〔実施例2〕
 また、上記実施例1において、既設の鉛蓄電池(バッテリ)を取り外し、上記発電機(オルタネータ)で発電された電気を上記リチウムイオン二次電池のみに蓄電するようにした(図2に示す第2の実施の形態参照)。このような液化ガス輸送用車両を用いて、上記実施例1と同様にして液化ガスを輸送した。その結果、上記電動ポンプの駆動に、上記貯蔵所の電源を利用するのではなく、上記リチウムイオン二次電池の電力を利用して、輸送してきた液化ガスを上記貯蔵所のタンクに移すことができた。また、上記液化ガス輸送用車両のタンクから上記貯蔵所の貯蔵タンクに移すのに、約70分の時間を要したが、従来の加圧式の場合の約90分よりも時間を短縮できた。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明は、輸送先の貯蔵所での電源確保を心配することなく、液化ガスを輸送することのできる液化ガス輸送用車両に利用することができる。
 B2 リチウムイオン二次電池
 P 電動ポンプ
 T タンク

Claims (5)

  1.  液化ガスを収容するタンクと、このタンク内の上記液化ガスを外部に送出する電動ポンプとを備えた液化ガス輸送用車両であって、上記電動ポンプを駆動するための電源を搭載したことを特徴とする液化ガス輸送用車両。
  2.  上記電源が、蓄電池およびキャパシタの少なくとも一方である請求項1記載の液化ガス輸送用車両。
  3.  上記電源への電力供給が、上記液化ガス輸送用車両に搭載されたエンジンを利用して駆動されるオルタネータまたはモータ、および上記液化ガス輸送用車両の外部に設けられた充電器によって行われる請求項1記載の液化ガス輸送用車両。
  4.  上記液化ガス輸送用車両自体が、駆動力と、上記タンクを搭載した荷台とを有する請求項1~3のいずれか一項に記載の液化ガス輸送用車両。
  5.  上記液化ガス輸送用車両が、駆動力を有する牽引車と、この牽引車に牽引される、駆動力を有さない台車と、この台車に載置された、上記タンクを収容したコンテナとからなり、上記電動ポンプが上記台車に搭載され、上記電源が上記牽引車または上記コンテナに搭載されている請求項1~3のいずれか一項に記載の液化ガス輸送用車両。
PCT/JP2013/056902 2012-03-23 2013-03-13 液化ガス輸送用車両 WO2013141096A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380014642.0A CN104203645A (zh) 2012-03-23 2013-03-13 液化气运输车
KR20147025824A KR20140138732A (ko) 2012-03-23 2013-03-13 액화가스 수송용 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-067972 2012-03-23
JP2012067972A JP5902523B2 (ja) 2012-03-23 2012-03-23 液化ガス輸送用車両

Publications (1)

Publication Number Publication Date
WO2013141096A1 true WO2013141096A1 (ja) 2013-09-26

Family

ID=49222556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056902 WO2013141096A1 (ja) 2012-03-23 2013-03-13 液化ガス輸送用車両

Country Status (4)

Country Link
JP (1) JP5902523B2 (ja)
KR (1) KR20140138732A (ja)
CN (1) CN104203645A (ja)
WO (1) WO2013141096A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456064A (zh) * 2014-11-26 2015-03-25 三一重型能源装备有限公司 液氮泵车
WO2020187511A1 (de) * 2019-03-16 2020-09-24 Messer Gaspack Gmbh Mobiles system zum versorgen eines kunden mit einem fluid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6609104B2 (ja) * 2015-02-12 2019-11-20 アストモスエネルギー株式会社 液化石油ガスの提供方法
FR3043165B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Dispositif de transport d'un gaz liquefie et procede de transfert de ce gaz a partir de ce dispositif

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001548A (ja) * 2003-06-12 2005-01-06 Horokita:Kk トレーラ牽引車両
JP2008290627A (ja) * 2007-05-25 2008-12-04 Sonobe Setsubi Kogyo:Kk 給水車
JP2009275734A (ja) * 2008-05-12 2009-11-26 Nippon Sharyo Seizo Kaisha Ltd 運搬車両

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822954Y2 (ja) * 1980-06-09 1983-05-16 日本トレ−ルモ−ビル株式会社 タンクコンテナ
JPH0667175U (ja) * 1993-03-08 1994-09-20 富士エンジニアリング株式会社 液化ガス充填用バルクローリ
JPH07304379A (ja) * 1994-05-10 1995-11-21 Fuji Car Mfg Co Ltd 液化ガス充填用バルクローリ
CN2325260Y (zh) * 1998-04-08 1999-06-23 中国航空工业总公司宏图飞机制造厂 一种液化石油气体运输车
JP2005349891A (ja) * 2004-06-09 2005-12-22 Yoshio Yamada 運送用車両の独立空調装置
CN1311999C (zh) * 2005-01-31 2007-04-25 上海汽车工业(集团)总公司汽车工程研究院 并联式混合动力驱动系统及其驱动方法
JP2007046714A (ja) * 2005-08-10 2007-02-22 Chugoku Electric Power Co Inc:The 遮光装置
CN1319770C (zh) * 2005-10-15 2007-06-06 谢百年 并联式混合动力汽车用电机
JP3134673U (ja) * 2007-05-29 2007-08-23 古河ユニック株式会社 車両搭載型クレーン用圧油供給装置
CN201300709Y (zh) * 2008-12-02 2009-09-02 曹秉刚 一种混合动力农用车
CN201696251U (zh) * 2009-08-21 2011-01-05 范福仓 自供电水泵
JP3156582U (ja) * 2009-10-23 2010-01-07 株式会社豊田自動織機 ハイブリッド型産業車両
JP3163449U (ja) * 2010-08-04 2010-10-14 東武鉄道株式会社 軌陸型架線作業車
CN101920692A (zh) * 2010-08-23 2010-12-22 李若臣 移动上门环保节能蒸汽洗车装置
CN102095078B (zh) * 2010-12-09 2012-11-21 中国西电电气股份有限公司 一种变压器用多功能吸油装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005001548A (ja) * 2003-06-12 2005-01-06 Horokita:Kk トレーラ牽引車両
JP2008290627A (ja) * 2007-05-25 2008-12-04 Sonobe Setsubi Kogyo:Kk 給水車
JP2009275734A (ja) * 2008-05-12 2009-11-26 Nippon Sharyo Seizo Kaisha Ltd 運搬車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456064A (zh) * 2014-11-26 2015-03-25 三一重型能源装备有限公司 液氮泵车
CN104456064B (zh) * 2014-11-26 2016-07-13 三一重型能源装备有限公司 液氮泵车
WO2020187511A1 (de) * 2019-03-16 2020-09-24 Messer Gaspack Gmbh Mobiles system zum versorgen eines kunden mit einem fluid
CN113631420A (zh) * 2019-03-16 2021-11-09 梅塞尔气体包装有限公司 用于向顾客供应流体的系统
US20220212592A1 (en) * 2019-03-16 2022-07-07 Messer Gaspack Gmbh Mobile System For Supplying A Client With A Fluid

Also Published As

Publication number Publication date
JP5902523B2 (ja) 2016-04-13
KR20140138732A (ko) 2014-12-04
CN104203645A (zh) 2014-12-10
JP2013199176A (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
RU2666592C2 (ru) Автомобильный прицеп
CN111976507B (zh) 具有交换电池组的电动车
CN109747456A (zh) 移动能量存储设备
JP4984010B2 (ja) 車両の電源システムおよびそれを備える電動車両
WO2013141096A1 (ja) 液化ガス輸送用車両
US8324860B2 (en) Distributed charging system and method for electrical vehicle
US8413589B2 (en) Container-based locomotive power source
JP2010200393A (ja) 電気自動車用補助バッテリー装置及び電源供給方法
US20190225071A1 (en) Utility vehicle and method for operating the utility vehicle
JP2016022890A (ja) プラグインハイブリッド車両
CN205523730U (zh) 纯电动移动补电车
JP2013162567A (ja) 運搬用電動車両の電力供給システム及び電力供給方法
JP2016020131A (ja) 無人搬送車の搬送システム
JP2016022891A (ja) ハイブリッド車両
JP4375779B2 (ja) 燃料電池自動車用燃料の供給システム
Hearn et al. Design and demonstration of an extended range hydrogen fuel cell utility vehicle
US11273715B1 (en) Charging system for battery powered electric vehicles
IT201800010270A1 (it) Veicolo del tipo di un rimorchio, di un semirimorchio e simili
CN217864113U (zh) 废钢车
RU2806835C1 (ru) Мобильная заправочная станция
Cornils Medium-duty plug-in hybrid electric vehicle for utility fleets
Bakhsh et al. Comparative study of alternative energy vehicles: state of the art review
CN112810529A (zh) 一种纯电动电源车及其控制方法
CA3240352A1 (en) A battery swapping system with battery magazine for general applications
IT201800021109A1 (it) Dispositivo di ricarica rapido per un veicolo con propulsione elettrica e provvisto di spintori a gas e relativo metodo di utilizzo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147025824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763875

Country of ref document: EP

Kind code of ref document: A1