WO2013140574A1 - 固体電解質材料、固体電解質及び電池 - Google Patents

固体電解質材料、固体電解質及び電池 Download PDF

Info

Publication number
WO2013140574A1
WO2013140574A1 PCT/JP2012/057339 JP2012057339W WO2013140574A1 WO 2013140574 A1 WO2013140574 A1 WO 2013140574A1 JP 2012057339 W JP2012057339 W JP 2012057339W WO 2013140574 A1 WO2013140574 A1 WO 2013140574A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
positive electrode
negative electrode
lithium
battery
Prior art date
Application number
PCT/JP2012/057339
Other languages
English (en)
French (fr)
Inventor
康宏 原田
高見 則雄
稲垣 浩貴
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2012/057339 priority Critical patent/WO2013140574A1/ja
Priority to JP2014505902A priority patent/JP5727092B2/ja
Publication of WO2013140574A1 publication Critical patent/WO2013140574A1/ja
Priority to US14/202,729 priority patent/US9553331B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a solid electrolyte material, a solid electrolyte, and a battery.
  • lithium-ion secondary batteries with high energy density have attracted a great deal of attention from small electronic devices as hybrid vehicles, electric vehicles, and stationary power sources for power storage.
  • lithium ion secondary batteries using inorganic solid electrolytes are expected to be safe batteries without the risk of leakage of organic electrolyte and gas generation.
  • a lithium battery using a solid electrolyte is less likely to cause a side reaction other than a battery reaction as compared with a battery using an electrolytic solution, a longer life can be expected.
  • an all-solid battery using an inorganic solid electrolyte can easily be configured by laminating electrodes and electrolyte layers, so that the manufacturing cost can be reduced, and at the same time, a bipolar battery configuration is possible.
  • a high energy density can be expected as compared with a battery using a liquid electrolyte.
  • a lithium ion battery with high electromotive force uses a highly oxidizing substance for the positive electrode and a highly reducing substance for the negative electrode, it is stable when these substances are brought into contact with the solid electrolyte. There must be.
  • Perovskite compounds are attracting attention because they have high lithium ion conductivity and can be easily obtained by solid phase reaction in the atmosphere.
  • a typical example of this material is La 0.67-X Li 3X TiO 3 .
  • titanium since titanium as a constituent element is easily reduced, there is a problem that the electrolyte reacts with a highly reducible negative electrode material, titanium is reduced from tetravalent to trivalent, and exhibits electronic conductivity.
  • the electrolyte shows conductivity other than ions, it leads to an internal short circuit of the battery, which is a big problem for practical use.
  • a method has been attempted in which a part of the constituent elements is replaced with another element that is less likely to be reduced than titanium.
  • the lithium ion conductivity is remarkably reduced to about 1/10 to 1/100 by substitution of the constituent elements.
  • Embodiments provide a solid electrolyte material having high lithium ion conductivity at room temperature, a solid electrolyte using the solid electrolyte material, and a battery.
  • a solid electrolyte material, and a solid electrolyte and a battery including the solid electrolyte material are provided.
  • the battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte layer disposed between the positive electrode and the negative electrode. At least one of the positive electrode, the negative electrode, and the electrolyte layer includes a solid electrolyte material.
  • the solid electrolyte material is an oxide represented by ABO 3 . Li and vacancies are included in the A site of the oxide.
  • the cubic root V 1/3 of the unit cell volume is in the range of 386 pm ⁇ V 1/3 ⁇ 397 pm.
  • the vertex ⁇ top of the absorption peak in the infrared absorption spectrum satisfies the formula (1).
  • FIG. 1 is a schematic diagram showing a perovskite crystal structure of a solid electrolyte material according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the solid electrolyte secondary battery according to the embodiment.
  • FIG. 3 is a cross-sectional view showing the bipolar battery according to the embodiment.
  • FIG. 4 is a graph showing the relationship between the cubic root V 1/3 of the unit cell volume and the peak ⁇ top of the absorption peak.
  • a solid electrolyte material that is an oxide represented by ABO 3 is provided.
  • the A site includes Li and vacancies.
  • the cubic root V 1/3 of the unit cell volume is in the range of 386 pm ⁇ V 1/3 ⁇ 397 pm.
  • the vertex ⁇ top of the absorption peak in the infrared absorption spectrum satisfies the formula (1).
  • ABO 3 An example of the oxide represented by ABO 3 is one having a perovskite crystal structure.
  • a schematic diagram of the perovskite crystal structure is shown in FIG. This crystal structure belongs to a cubic system or a similar crystal system slightly distorted from this system. A typical space group of this crystal structure is Pm3m.
  • the perovskite crystal structure has a three-dimensional skeleton formed by sharing the apexes of the BO 6 octahedron, and the A site ion occupies 12 coordination sites between the three-dimensional skeletons. Has a structure.
  • the oxide represented by ABO 3 is desirably a titanium oxide containing Ti at the B site. Thereby, the lithium ion conductivity at room temperature can be further improved.
  • the A site further contains at least one element selected from the group consisting of La, Sr, Na, Ca and Nd in combination with Li and vacancies
  • the B site contains Ti, Ta, Cr, Fe, Co
  • the ionic radius of the A site is larger than that of the B site, so that the stability of the perovskite structure can be increased.
  • such a combination of the A site and the B site is suitable for forming a hole path capable of conducting lithium ions at the A site.
  • the B site contains at least one element selected from the group consisting of Ta, Cr, Fe, Co, Ga, and Nb and Ti
  • an element (Ti) that is easily reduced can be replaced with another element (Ta , Cr, Fe, Co, Ga, and Nb), the chemical stability of the constituent elements can be improved.
  • the cubic root V 1/3 of the unit cell volume is measured by the following method.
  • the solid electrolyte material is pulverized, and the obtained sample is filled in a holder portion having a depth of 0.2 mm formed on the glass sample plate. At this time, care should be taken so that the sample is sufficiently filled in the holder portion. Also, be careful that there are no cracks or voids due to insufficient filling of the sample. Next, using another glass plate from the outside, the sample is sufficiently pressed to smooth the sample. Be careful not to cause unevenness from the reference surface of the holder due to excessive or insufficient filling amount. Next, the glass plate filled with the sample is set in a powder X-ray diffractometer, and a diffraction pattern is obtained using Cu-K ⁇ rays.
  • the peak position may be shifted or the intensity ratio may be changed depending on how the sample is filled.
  • a sample is preferably packed in a capillary and measured using a rotating sample stage.
  • the lattice constant is refined from the obtained diffraction pattern by Rietveld analysis or the like. From this lattice constant, the cubic root V 1/3 of the unit lattice volume can be obtained.
  • the peak ⁇ top of the absorption peak in the infrared absorption spectrum is measured by the following method.
  • the solid electrolyte material is pulverized, and the obtained sample is mixed with CsI powder and pressed under reduced pressure to obtain a pellet-shaped green compact. This is measured in the range of 4000 to 224 cm ⁇ 1 using an infrared absorption spectrum apparatus. A resolution of about 4 cm -1 is preferable.
  • a Nicolet Nexus 470 FT-IR device can be applied. At this time, from the obtained absorption spectrum, the peak ⁇ top (cm ⁇ 1 ) of the absorption peak of the corresponding sample can be obtained.
  • One method for synthesizing a solid electrolyte material is a solid phase reaction method.
  • oxides of constituent elements and various salt compounds such as carbonates or nitrates that generate constituent elements by heating can be used as raw materials for the solid-phase reaction. These are mixed in such a blending ratio that the charge neutrality is maintained when the element ratio of A: B: O in the composition represented by ABO 3 becomes 1: 1: 3. This mixture can be obtained by firing.
  • the titanium source is preferably titanium dioxide (TiO 2 ), and different crystal phases such as rutile and anatase can be used singly or in combination.
  • Oxides are preferably used as raw materials for lanthanum, niobium, tantalum, neodymium, gallium, iron, cobalt, chromium, iron and the like.
  • raw materials for strontium sodium, calcium and the like, metal salts such as chlorides, carbonates and nitrates are preferably used.
  • the raw material one kind or two or more kinds selected from these can be used.
  • These raw materials are mixed so as to have a target composition and calcined.
  • pre-baking the mixture at 600 to 800 ° C.
  • a uniform mixed state can be obtained by thermal diffusion. If the calcining temperature is less than 600 ° C., it is difficult to obtain a sufficient mixed state. On the other hand, if it exceeds 800 ° C., sintering proceeds and it is difficult to obtain a uniform mixed state.
  • the pre-baking time is preferably about 5 to 20 hours.
  • the pre-fired mixture is pulverized and mixed again, and fired at 1000 ° C. to 1400 ° C. in the air or in the circulation of oxygen gas or nitrogen gas.
  • the precursor of the solid electrolyte material may be baked alone, but the grain boundary at the interface can be obtained by solidifying the laminate of the positive electrode, the negative electrode, and the solid electrolyte layer containing the precursor by pressure molding or the like, and then firing. It is also possible to constitute an all-solid battery with a small size. If the calcination temperature is lower than 1000 ° C, the reactivity is poor, and it takes time for calcination and it is difficult to obtain the target phase.
  • the target crystal structure can be obtained by performing firing in a nitrogen atmosphere or pure oxygen atmosphere, firing under high pressure, or the like.
  • the solid electrolyte material can also be synthesized by a solution method (sol-gel method).
  • a metal alkoxide containing a target constituent element is used as a raw material, and a water-soluble salt is used as a raw material for other additive elements.
  • titanium isopropoxide is dissolved in ethanol, and then lithium and strontium nitrate and tantalum salts are dissolved so as to have the target composition. These are added with good stirring to obtain a gel-like mixture.
  • the resulting gel mixture is dried by heating at around 90-120 ° C.
  • a target compound having a perovskite structure can be obtained.
  • the temperature is lower than 450 ° C., not only the reactivity is poor, but also organic components contained in the raw material remain in the structure without being decomposed, which is not preferable.
  • it exceeds 1000 degreeC there exists a possibility that a part of component will evaporate, and it will be easy to deviate from a target composition.
  • the target product can be obtained by firing at a low temperature, so that the transpiration of component elements is small and the grain growth can be suppressed, so that a lithium ion conductive solid electrolyte material can be easily obtained. Can get to.
  • a solid battery can be easily formed by synthesizing a solid electrolyte material by a sol-gel method.
  • the cubic root V 1/3 of the unit cell volume and the apex ⁇ top of the absorption peak can be kept within the target ranges by adjusting the composition and firing conditions and performing rapid cooling after firing, for example. This is because the crystallinity of the bulk portion of the solid electrolyte material can be increased, and a dense domain structure in which constituent elements are randomly arranged can be obtained.
  • the cubic root V 1/3 of the unit cell volume is in the range of 386 pm ⁇ V 1/3 ⁇ 397 pm, and the peak ⁇ top of the absorption peak in the infrared absorption spectrum is expressed by the formula Since (1) is satisfied, a decrease in lithium ion conductivity due to a difference in constituent elements can be avoided, and a solid electrolyte material having high lithium ion conductivity at room temperature can be provided.
  • a solid electrolyte and a battery including the solid electrolyte material according to the first embodiment can be provided.
  • the battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolyte layer disposed between the positive electrode and the negative electrode. At least one of the positive electrode, the negative electrode, and the electrolyte layer includes the solid electrolyte material according to the first embodiment.
  • the battery can include an exterior member that houses the positive electrode, the negative electrode, and the electrolyte layer.
  • An example of the solid electrolyte is an electrolyte layer, but the solid electrolyte is not limited to a layered one, and includes, for example, a powdery or pellety one.
  • the electrolyte layer the positive electrode, the negative electrode, the nonaqueous electrolyte, and the exterior member will be described in detail.
  • Electrolyte layer includes the solid electrolyte material according to the first embodiment.
  • the electrolyte layer may be substantially made of a solid electrolyte material, but may contain a non-aqueous electrolyte, a polymer (polymer material) electrolyte, or a room temperature molten salt material in order to further reduce the contact area. .
  • the non-aqueous electrolyte includes a liquid non-aqueous electrolyte prepared by dissolving the electrolyte in an organic solvent, a gel non-aqueous electrolyte in which the liquid electrolyte and a polymer material are combined, and the like.
  • the liquid nonaqueous electrolyte is prepared, for example, by dissolving the electrolyte in an organic solvent at a concentration of 0.5 mol / L or more and 2.5 mol / L or less.
  • the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluorometa.
  • lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], or a mixture thereof.
  • the electrolyte is preferably one that is difficult to oxidize even at a high potential, and LiPF 6 is most preferred.
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate; chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC); , Tetrahydrofuran (THF), cyclic ether such as 2methyltetrahydrofuran (2MeTHF), dioxolane (DOX), chain ether such as dimethoxyethane (DME), dietoethane (DEE), ⁇ -butyrolactone (GBL), acetonitrile (AN) ), Sulfolane (SL) and the like alone or in combination.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and vinylene carbonate
  • chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC)
  • THF Tetrahydro
  • polymer material examples include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), and the like.
  • Room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 to 25 ° C.) among organic salts composed of a combination of organic cations and anions.
  • the room temperature molten salt include a room temperature molten salt that exists alone as a liquid, a room temperature molten salt that becomes a liquid when mixed with an electrolyte, and a room temperature molten salt that becomes a liquid when dissolved in an organic solvent.
  • the melting point of a room temperature molten salt used for a nonaqueous electrolyte battery is 25 ° C. or less.
  • the organic cation generally has a quaternary ammonium skeleton.
  • the polymer solid electrolyte is obtained by dissolving an electrolyte in a polymer material and solidifying it.
  • Negative electrode The negative electrode is supported on one or both sides of the negative electrode current collector and the negative electrode current collector, and includes a negative electrode active material, a conductive agent, and a binder as necessary (negative electrode active material-containing layer) ).
  • a solid electrolyte material is mixed in the gap between the dispersed negative electrode active materials, and a binder may be filled in the gap as necessary.
  • the conductive agent is blended in order to improve current collecting performance and suppress contact resistance with the current collector.
  • the negative electrode active material is not particularly limited, but may be any material that can charge and discharge lithium ions among lithium metal, carbon, oxide, sulfide, and the like.
  • titanium-containing oxide examples include titanium-based oxides that do not contain lithium during lithium oxide synthesis, lithium-titanium oxides, and lithium-titanium composite oxides in which some of the constituent elements of lithium-titanium oxide are replaced with different elements. Is included.
  • the lithium titanium oxide examples include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (0 ⁇ x ⁇ 3)), ramsteride type lithium titanate (for example, Li 2 + y Ti 3). And O 7 (0 ⁇ y ⁇ 3)).
  • titanium-based oxide examples include metal composite oxides containing TiO 2 , Ti, and at least one element selected from the group consisting of V, Sn, Cu, Ni, Co, and Fe.
  • TiO 2 includes those having a monoclinic ⁇ -type structure (TiO 2 (B)), those having an anatase type structure, and those having a rutile type structure.
  • sulfides include titanium-based sulfides such as TiS 2 , molybdenum-based sulfides such as MoS 2, and iron-based sulfides such as FeS, FeS 2 , and Li x FeS 2 (0 ⁇ x ⁇ 4). Is included.
  • the solid electrolyte material may be present on the surface of the negative electrode active material particles by mixing the solid electrolyte material of the first embodiment with the negative electrode active material particles.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine-based rubber, styrene butadiene rubber and the like.
  • the binder is preferably blended in the negative electrode material layer in the range of 2% by mass to 30% by mass. By setting the amount of the binder to 2% by mass or more, the binding property between the negative electrode material layer and the current collector can be increased. On the other hand, from the viewpoint of increasing the capacity, the binder is preferably 30% by mass or less.
  • the conductive agent is also preferably blended in the negative electrode material layer at a ratio of 30% by mass or less.
  • the current collector is made of a material that is electrochemically stable at the lithium insertion / release potential of the negative electrode active material.
  • the current collector is preferably made from copper, nickel, stainless steel or aluminum.
  • the thickness of the current collector is preferably 0.1 to 20 ⁇ m. The current collector having such a thickness can balance the strength and weight reduction of the negative electrode. In the case of an all-solid battery using a solid electrolyte, it is desirable to form the current collector by depositing or sputtering a metal.
  • a negative electrode active material, a solid electrolyte material, a binder, and a conductive agent are suspended in a commonly used solvent to prepare a slurry.
  • the slurry is applied to a current collector, dried, and a negative electrode material layer is formed. After forming, it is produced by applying a press.
  • the negative electrode active material, the solid electrolyte material, and the conductive agent may be formed into pellets, and the obtained green compact may be used as the negative electrode material layer.
  • the negative electrode may contain a nonaqueous electrolyte, a polymer (polymer material) electrolyte, or a room temperature molten salt material in order to reduce the contact area.
  • Positive electrode includes a current collector and a positive electrode material layer (positive electrode active material-containing layer) that is supported on one or both surfaces of the current collector and includes a positive electrode active material and a binder.
  • the positive electrode active material includes oxides, sulfides, and the like.
  • the positive electrode active material is, for example, manganese dioxide (MnO 2 ) occluded with lithium, iron oxide, copper oxide, nickel oxide, lithium manganese composite oxide (eg Li x Mn 2 O 4 or Li x MnO 2 ), lithium nickel composite oxide.
  • Li x NiO 2 lithium cobalt composite oxide (eg, Li x CoO 2 ), lithium nickel cobalt composite oxide (eg, LiNi 1-y Co y O 2 ), lithium manganese cobalt composite oxide (eg, Li x Mn y Co 1-y O 2 ), spinel type lithium-manganese-nickel composite oxide (e.g., Li x Mn 2-y Ni y O 4), lithium phosphates having an olivine structure (e.g., Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x etc. CoPO 4), iron sulfate [e.g. Fe 2 (SO 4) 3] , vanadium oxide (e.g. V 2 O 5 ).
  • x and y are in the range of 0-1.
  • the positive electrode active material capable of obtaining a high positive electrode voltage is lithium manganese composite oxide (Li x Mn 2 O 4 ), lithium nickel composite oxide (Li x NiO 2 ), lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel-cobalt composite oxide (LiNi 1-y Co y O 2), spinel type lithium-manganese-nickel composite oxide (Li x Mn 2-y Ni y O 4), lithium manganese cobalt composite oxide (Li x Mn y Co 1 -y O 2 ), lithium iron phosphate (Li x FePO 4 ), lithium nickel cobalt manganese composite oxide, and the like.
  • X and y are in the range of 0 to 1.
  • the primary particle size of the positive electrode active material is preferably 100 nm or more and 1 ⁇ m or less.
  • a positive electrode active material having a primary particle size of 100 nm or more is easy to handle in industrial production.
  • a positive electrode active material having a primary particle size of 1 ⁇ m or less can smoothly diffuse lithium ions in a solid.
  • the specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more and 10 m 2 / g or less.
  • the positive electrode active material having a specific surface area of 0.1 m 2 / g or more can sufficiently ensure the occlusion / release sites of lithium ions.
  • the positive electrode active material having a specific surface area of 10 m 2 / g or less is easy to handle in industrial production and can ensure good charge / discharge cycle performance.
  • the solid electrolyte material may exist on the surface of the positive electrode active material particles by mixing the solid electrolyte material of the first embodiment with the positive electrode active material particles.
  • the conductive agent can be blended as necessary in order to enhance the current collecting performance and suppress the contact resistance with the current collector.
  • Examples of the conductive agent include carbonaceous materials such as acetylene black, carbon black, and graphite.
  • the mixing ratio of the positive electrode active material and the binder is preferably in the range of 80% by mass to 98% by mass for the positive electrode active material and 2% by mass to 20% by mass for the binder.
  • the amount of the binder 2% by mass or more sufficient electrode strength can be obtained, and by making it 20% by mass or less, the blending amount of the insulator of the electrode can be reduced and the internal resistance can be reduced.
  • the effect of adding the conductive agent is obtained by setting the amount to 3% by mass or more, and by making the amount 15% by mass or less, non-water on the surface of the positive electrode conductive agent under high temperature storage is obtained. Electrolyte decomposition can be reduced.
  • a positive electrode active material, a solid electrolyte material, a binder and a conductive agent blended as necessary are suspended in an appropriate solvent to prepare a slurry, and this slurry is applied to a positive electrode current collector and dried.
  • the positive electrode material layer is formed and then pressed.
  • a positive electrode active material, a solid electrolyte material, and optionally a binder and a conductive agent may be formed into a pellet shape, and the obtained green compact may be used as the positive electrode material layer.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil.
  • the thickness of the aluminum foil or aluminum alloy foil is desirably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% by mass or more.
  • the aluminum alloy is preferably an alloy containing elements such as magnesium, zinc, and silicon.
  • the content of transition metals such as iron, copper, nickel, and chromium contained in the aluminum foil or aluminum alloy foil is preferably 1% by mass or less. In the case of an all-solid battery using a solid electrolyte, it is desirable to form the current collector by depositing or sputtering a metal.
  • the positive electrode may contain a nonaqueous electrolyte, a polymer (polymer material) electrolyte, or a room temperature molten salt material in order to reduce the contact area.
  • the exterior member is a laminate film having a thickness of 0.5 mm or less or a metal container having a thickness of 1.0 mm or less.
  • the metal container is more preferably 0.5 mm or less in thickness.
  • a molding material is preferably used as the exterior member.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • Examples of the exterior member include a small battery exterior member loaded on a portable electronic device and the like, and a large battery exterior member loaded on a two-wheeled or four-wheeled automobile, depending on the battery size.
  • the laminate film a multilayer film in which a metal layer is interposed between resin films is used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • the resin film for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • the laminate film can be formed into the shape of an exterior member by sealing by heat sealing.
  • Metal containers are made from aluminum or aluminum alloy.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 100 ppm or less.
  • Mold material includes resin mold material made of cresol novolac type epoxy resin (ECN), biphenyl type epoxy resin, and fused silica filler.
  • ECN cresol novolac type epoxy resin
  • a polyfunctional mold resin having a high crosslinking density and a high glass transition temperature, a lead-free or halogen-free mold resin based on biphenyl or a high-functional polymer can be used.
  • a ceramic / glass-based molding material can be used in consideration of the influence of heat generation and the like. Any mold material having excellent insulation and heat resistance used mainly in the field of semiconductors can be applied.
  • the battery according to the second embodiment includes, for example, a solid electrolyte secondary battery and a bipolar battery.
  • a solid electrolyte secondary battery and a bipolar battery An example of the thin solid electrolyte secondary battery according to the embodiment is shown in FIG.
  • An example of a bipolar battery is shown in FIG.
  • the solid electrolyte secondary battery includes a metal container 1 and an electrode group 2 housed in the container 1.
  • the electrode group 2 is a laminate including a positive electrode 5, a negative electrode 8, and a solid electrolyte layer 9.
  • the positive electrode 5 includes a positive electrode current collector 3 and a positive electrode material layer 4 laminated on the positive electrode current collector 3.
  • the negative electrode 8 includes a negative electrode current collector 6 and a negative electrode material layer 7 laminated on the negative electrode current collector 6.
  • the solid electrolyte layer 9 is disposed between the positive electrode material layer 4 and the negative electrode material layer 7.
  • the positive electrode terminal 10 is fixed to the container 1 via an insulating member (not shown) and is electrically connected to the positive electrode current collector 3.
  • the negative electrode terminal 11 is fixed to the container 1 via an insulating member (not shown) and is electrically connected to the negative electrode current collector 6.
  • the positive electrode and the negative electrode are electrically insulated from the container 1.
  • the bipolar battery includes a plurality of bipolar structures in which the positive electrode material layer 4 is bonded to one surface of the current collector 12 and the negative electrode material layer 7 is bonded to the other surface.
  • a solid electrolyte layer 9 is interposed between the positive electrode material layer 4 and the negative electrode material layer 7.
  • the plurality of bipolar structures constitute one laminate by interposing the solid electrolyte layer 9 therebetween.
  • the positive electrode current collector 3 is joined to the positive electrode material layer 4 located in one outermost layer of the laminate.
  • a negative electrode current collector 6 is bonded to the negative electrode material layer 7 located on the other outermost layer of the laminate.
  • the positive electrode terminal 10 is fixed to the container 1 via an insulating member (not shown) and is electrically connected to the positive electrode current collector 3.
  • the negative electrode terminal 11 is fixed to the container 1 via an insulating member (not shown) and is electrically connected to the negative electrode current collector 6.
  • the laminate is electrically insulated from the container 1.
  • the solid electrolyte battery and the bipolar battery can be used as a battery pack by connecting members such as a charge / discharge circuit and housing them in a casing.
  • the use of the battery and the battery pack using the battery is not particularly limited, and examples thereof include cars such as automobiles (including motorcycles), bicycles, buses, and trains.
  • the cubic root V 1/3 of the unit cell volume of the solid electrolyte material included in the battery and the peak ⁇ top of the absorption peak in the infrared absorption spectrum are measured, for example, by the following method.
  • the electrolyte material can be taken out by scraping off the positive electrode material layer and the negative electrode material layer by polishing.
  • the extracted electrolyte material is pulverized until the average particle size becomes about 5 ⁇ m.
  • the average particle diameter can be determined by a laser diffraction method. Using these samples, powder X-ray diffraction and infrared absorption spectrum measurement are performed. The methods of powder X-ray diffraction and infrared absorption spectrum measurement are the same as in the first embodiment.
  • the lithium ion conductivity can be increased, and the rate The charge / discharge performance including the performance can be improved.
  • the solid electrolyte of 2nd Embodiment since the solid electrolyte material of 1st Embodiment is included, the solid electrolyte excellent in lithium ion conductivity is realizable.
  • the obtained solid electrolyte material was subjected to powder X-ray diffraction measurement as follows. First, the solid electrolyte material was pulverized until the average particle size became about 10 ⁇ m. The obtained sample was filled in a holder portion having a depth of 0.2 mm formed on a glass sample plate. Then, using another glass plate from the outside, the sample was smoothed by pressing sufficiently. Next, the glass plate filled with the sample was placed in a powder X-ray diffractometer, and a diffraction pattern was obtained using Cu-K ⁇ rays.
  • Table 1 shows the cubic root V 1/3 of the unit cell volume calculated from the lattice constant obtained from these analysis results. From this result, it was confirmed that the cubic root V 1/3 of the unit cell volume was in the range of 386 pm ⁇ V 1/3 ⁇ 397 pm.
  • FIG. 4 is a graph showing the relationship between the cubic root V 1/3 of the unit cell volume obtained from the powder X-ray diffraction measurement and the peak ⁇ top (cm ⁇ 1 ) of the absorption peak obtained from the infrared absorption spectrum measurement. is there.
  • Formula (1): ⁇ top (cm ⁇ 1 ) 4.7 ⁇ V 1/3 (pm) ⁇ b where b is 1230 is L 1 , and when b is 1220, L is 2 and a straight line when b is 1240 is L 3 .
  • the cubic root V 1/3 of the unit cell volume satisfies 386 pm ⁇ V 1/3 ⁇ 397 pm. is there. From FIG. 4, it was confirmed that the solid electrolyte materials of Examples 1 to 4 satisfy the formula (1) and 386 pm ⁇ V 1/3 ⁇ 397 pm.
  • the solid electrolyte materials obtained in Examples and Comparative Examples were not pulverized, and pellet samples were prepared from each.
  • the ion blocking electrode was configured by masking the side surface of the pellet-like sample and sputtering gold on both sides. This sample was vacuum-dried at 130 ° C. for 12 hours, and then AC impedance measurement was performed in an argon atmosphere and a 25 ° C. environment. The frequency was 5 Hz to 13 MHz. From the Cole-Cole plot obtained from the measurement results, the lithium ion conductivity ⁇ b of the bulk portion was determined. The results are shown in Table 1.
  • the solid electrolyte materials of Examples 1 to 4 have higher lithium ion conductivity at room temperature than Comparative Examples 1 and 2.
  • the solid electrolyte materials of Examples 1 to 4 and Comparative Examples 1 and 2 were pulverized to obtain solid electrolyte material powders of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the solid electrolyte material obtained by uniaxial pressure molding into a disk shape having a diameter of 1 mm and a diameter of 12 mm obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was thinned to a thickness of 0.1 mm by polishing, thereby forming a layered structure.
  • a solid electrolyte was prepared. Using these, all solid-state batteries A and B were produced by the following method.
  • lithium cobaltate was prepared as a positive electrode active material. 30% by mass of solid electrolyte material powder with respect to lithium cobaltate, 5% by mass of acetylene black as a conductive auxiliary agent, and 5% by mass of PVdF as a binder are dispersed in an N-methylpyrrolidone (NMP) solvent, Made into a paste.
  • NMP N-methylpyrrolidone
  • a positive electrode paste was applied to the surface of the layered solid electrolyte and dried at 140 ° C. to form a positive electrode material layer.
  • metal lithium having a thickness of 1 mm was cut out to a diameter of 11 mm and attached to the solid electrolyte surface opposite to the positive electrode material layer by pressure bonding to form a negative electrode.
  • the obtained electrode group was enclosed in a coin cell to obtain an all-solid battery A.
  • a current collector was formed on the positive electrode material layer side by gold sputtering.
  • the all solid state batteries A and B of Examples 1 to 4 have excellent rate performance regardless of the type of the negative electrode active material, with a small capacity drop when the discharge rate is increased.
  • all the solid state batteries A and B of Comparative Examples 1 and 2 have a large capacity drop when the discharge rate is increased, and are inferior in rate performance in any negative electrode active material.
  • the positive electrode and the negative electrode were applied or pressure-bonded to the solid electrolyte.
  • the present invention is not limited to this method, and solid electrolytes such as a method using a green compact as a positive electrode, an electrolyte, or a negative electrode, various spin coating methods, PVD methods, etc. All the methods used in the fabrication of can be applied.
  • the cubic root V 1/3 of the unit cell volume is in the range of 386 pm ⁇ V 1/3 ⁇ 397 pm, and the absorption peak in the infrared absorption spectrum Since the vertex ⁇ top of the above satisfies equation (1), the lithium ion conductivity at room temperature can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Abstract

 実施形態によれば、固体電解質材料が提供される。固体電解質材料はABO3で表される酸化物である。酸化物のAサイトにLiと空孔を含む。単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にある。赤外吸収スペクトルにおける吸収ピークの頂点νtopが、式(1)を満たす。 νtop(cm-1)=4.7×V1/3(pm)-b 式(1) 但し、1220≦b≦1240。

Description

固体電解質材料、固体電解質及び電池
 本発明の実施形態は、固体電解質材料、固体電解質及び電池に関する。
 近年、エネルギー密度の高いリチウムイオン二次電池は、小型の電子デバイスからハイブリッド車、電気自動車、電力貯蔵用定置型電源として大きな注目を浴びている。なかでも、無機固体電解質を用いたリチウムイオン二次電池は有機電解液の漏液やガス発生の心配がなく、安全な電池として期待されている。また、固体電解質を用いたリチウム電池は電解液を用いた電池と比較して、電池反応以外の副反応が生じる可能性も低くなるため、長寿命化も期待できる。更に、無機固体電解質を用いた全固体電池では、電極と電解質層を積層して構成することが容易であることから製造コストを低減することが出来ると同時にバイポーラ型の電池構成も可能である。これにより、液系電解質を用いた電池に比べて、高いエネルギー密度を期待することができる。しかしながら、起電力の高いリチウムイオン電池では、正極に酸化力の高い物質を用い、かつ負極に還元力の高い物質を用いていることから、これらの物質と固体電解質を接触させた際に安定である必要がある。
 高いリチウムイオン導電性を持ち、大気中で固相反応によって容易に得ることが可能な、ペロブスカイト化合物が注目されている。この材料において代表的なものとして、La0.67-XLi3XTiO3が挙げられる。この化合物は、X=0.11の組成において、酸化物固体電解質でトップクラスの1.5×10-3 S/cmという高い室温リチウムイオン導電性を示す。その一方で、構成元素であるチタンが還元されやすいため、電解質が還元性の高い負極材料と反応し、チタンが4価から3価に還元され、電子導電性を示すという問題がある。電解質はイオン以外の導電を示すと電池の内部短絡につながるため、実用化には大きな課題となっている。そこで、構成元素の一部をチタンより還元されにくい別の元素に置き換えるといった方法が試みられている。しかしながら、構成元素置換によりリチウムイオン導電性が1/10~1/100程度まで著しく低下する。
H. Watanabe et al., Journal of Power Sources, Volume 68, Issue 2, October 1997, Pages 421-426 Y. Kawakami et al., Solid State Ionics, Volume 110, Issues 3-4, 2 July 1998, Pages 187-192
 実施形態は、室温でのリチウムイオン導電性が高い固体電解質材料、この固体電解質材料を用いた固体電解質及び電池を提供する。
 実施形態によれば、固体電解質材料と、この固体電解質材料を含む固体電解質及び電池が提供される。電池は、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極の間に配置された電解質層とを含む。正極、負極及び電解質層のうち少なくともひとつが固体電解質材料を含む。固体電解質材料はABO3で表される酸化物である。酸化物のAサイトにLiと空孔を含む。単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にある。赤外吸収スペクトルにおける吸収ピークの頂点νtopが、式(1)を満たす。
  νtop(cm-1)=4.7×V1/3(pm)-b  式(1)
 但し、1220≦b≦1240。
図1は、実施形態に係る固体電解質材料のペロブスカイト型結晶構造を示す模式図である。 図2は、実施形態に係る固体電解質二次電池を示す断面図である。 図3は、実施形態に係るバイポーラ電池を示す断面図である。 図4は、単位格子体積の立方根V1/3と吸収ピークの頂点νtopとの関係を示すグラフである。
 以下、実施形態を図面を参照して説明する。
(第1の実施形態)
 第1の実施形態によれば、ABO3で表される酸化物である固体電解質材料が提供される。Aサイトは、Liと空孔を含む。単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にある。赤外吸収スペクトルにおける吸収ピークの頂点νtopが、式(1)を満たす。
  νtop(cm-1)=4.7×V1/3(pm)-b  式(1)
 但し、1220≦b≦1240
 ABO3で表される酸化物の一例に、ペロブスカイト型結晶構造を持つものがある。ペロブスカイト型結晶構造の模式図を図1に示す。この結晶構造は、立方晶系、又はこの晶系から僅かに歪んだ類似結晶系に属している。この結晶構造の代表的な空間群はPm3mである。ペロブスカイト型結晶構造は、図1に示すように、BO6八面体が頂点を共有することによって形成された三次元骨格を有し、Aサイトイオンが三次元骨格間の12配位サイトを占有している構造を有する。Aサイトが元素ですべて満たされずに、空孔(欠陥構造)が存在する場合、ここにリチウムイオンの通り道である導電経路が構成される。その立方格子の面内に存在する酸化物イオン四辺形のボトルネックを通して、リチウムイオンが隣接の空のAサイトに移動することで、リチウムイオン導電性が発現するとされている。この導電機構により結晶格子内をリチウムイオンが移動する場合、酸化物イオンと骨格を構成するカチオン(主にBサイトカチオン)との結合強度が、リチウムイオン導電性に大きな影響を与える。そこで、Bカチオンと酸化物イオンの結合強度を知るため、赤外吸収スペクトルを用いてB-O間の伸縮振動を調べたところ、構成元素に応じて結晶格子の大きさに最適な条件があること、最適とされる結晶格子サイズでも赤外吸収スペクトルの振動数によってはリチウムイオン導電性が低くなることを初めて見出した。その結果、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にあり、かつ赤外吸収スペクトルにおける吸収ピークの頂点νtopが、式(1)を満たすときに、高いリチウムイオン導電性を示すことが分かった。
  νtop(cm-1)=4.7×V1/3(pm)-b  式(1)
 但し、1220≦b≦1240
 これは、リチウムイオンが結晶格子中を移動する際に、最も適していると考えられる結晶格子の大きさと骨格の柔軟性を維持できる関係を示しており、室温で10-3~10-4S/cmと高いリチウムイオン導電率を維持することができる。
 ABO3で表される酸化物は、BサイトにTiを含むチタン酸化物であることが望ましい。これにより、室温でのリチウムイオン導電率をより向上することができる。
 Aサイトが、Li及び空孔と併せ、La,Sr,Na,Ca及びNdよりなる群から選択される少なくとも1種の元素をさらに含み、Bサイトが、Ti,Ta,Cr,Fe,Co,Ga及びNbよりなる群から選択される少なくとも1種の元素を含むことが望ましい。これにより、Aサイトのイオン半径がBサイトよりも大きくなるため、ペロブスカイト構造の安定性を高くすることができる。また、このようなAサイトとBサイトの組み合わせは、Aサイトにリチウムイオンの導電が可能な空孔経路を構成するうえで適したものである。さらに、Bサイトが、Ta,Cr,Fe,Co,Ga及びNbよりなる群から選択される少なくとも1種の元素と、Tiを含むことによって、還元されやすい元素(Ti)を他の元素(Ta,Cr,Fe,Co,Ga及びNbよりなる群から選択される少なくとも1種の元素)で置き換えることができるため、構成元素の化学的安定性を向上することができる。
 単位格子体積の立方根V1/3の測定は、以下の方法によって行われる。
 固体電解質材料を粉砕し、得られた試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填する。このとき、試料が十分にホルダー部分に充填されるように留意する。また、試料の充填不足によりひび割れ、空隙等がないように注意する。次いで、外部から別のガラス板を使い、充分に押し付けて試料を平滑化する。充填量の過不足により、ホルダーの基準面より凹凸が生じることのないように注意する。次いで、試料が充填されたガラス板を粉末X線回折装置に設置し、Cu-Kα線を用いて回折パターンを取得する。
 なお、試料の配向性が高い場合は、試料の充填の仕方によってピークの位置がずれたり、強度比が変化したりする可能性がある。そのような試料は、キャピラリーに詰めて回転試料台を用いて測定することが望ましい。このような方法で測定することにより、オペレータによる測定結果の違いを排除し、再現性を高くすることができる。
 得られた回折パターンからリートベルト解析等により、格子定数を精密化する。この格子定数から、単位格子体積の立方根V1/3を求めることができる。
 赤外吸収スペクトルにおける吸収ピークの頂点νtopは、以下の方法で測定される。固体電解質材料を粉砕し、得られた試料をCsIの粉末と混合して、減圧プレスすることでペレット状の圧粉体を得る。これを、赤外吸収スペクトル装置を用いて、4000~224cm-1の範囲で測定する。分解能は4cm-1程度のものが好ましい。例えば、Nicolet Nexus 470 FT-IR装置などが適用できる。このとき、得られた吸収スペクトルから、該当する試料の吸収ピークの頂点νtop(cm-1)を求めることができる。
 固体電解質材料を合成する一つの方法として、固相反応法が挙げられる。固相反応の原料として、構成元素の酸化物、加熱により構成元素を生成する炭酸塩又は硝酸塩などの各種塩化合物を用いることができる。これらを、ABO3で表される組成におけるA:B:Oの元素比が1:1:3となったときに電荷的中性が保たれるような配合比率で混合する。この混合物を焼成することにより得ることができる。
 BサイトにTiを含む場合、チタン源としては、二酸化チタン(TiO2)が好ましく、ルチルやアナターゼ等の異なる結晶相を単独または2種類組み合わせて用いることができる。ランタン、ニオブ、タンタル、ネオジウム、ガリウム、鉄、コバルト、クロム、鉄等の原料としては、酸化物を用いることが好ましい。ストロンチウム、ナトリウム、カルシウム等の原料としては、塩化物、炭酸塩や硝酸塩などの金属塩を用いることが好ましい。原料には、これらの中から選択される1種類または2種類以上を用いることができる。
 これらの原料を目的組成となるよう混合し、仮焼成する。混合物を600~800℃で仮焼成することで、熱拡散により均一な混合状態を得ることができる。仮焼成温度が600℃未満では十分な混合状態が得られにくく、一方、800℃を越えると焼結が進み均一な混合状態が得られにくい。仮焼成時間は5~20時間程度が好ましい。仮焼成を行った混合物を再び粉砕混合し、大気中または酸素ガスや窒素ガスなどの流通下において、1000℃~1400℃で焼成する。このとき、目的とする結晶構造(例えばペロブスカイト構造)を得るために、焼成後に再粉砕したのち、再び同様の手順で複数回に分けて焼成することが好ましい。粉砕方法は特に制限されない。また、固体電解質材料の前駆体を単独で焼成しても良いが、前駆体を含む正極、負極及び固体電解質層の積層物を加圧成型などにより固めてから焼成することで、界面の粒界の小さな全固体電池を構成することも可能である。焼成温度が1000℃より低いと反応性が悪く、焼成に時間がかかるうえ目的とする相が得られにくく、1400℃より高いと、リチウムをはじめとするアルカリ金属やアルカリ土類金属の蒸散が多くなり目的組成から逸脱しやすくなる。焼成時間の合計は、焼成温度にもよるが概ね1~5時間で、そのなかでも1300℃で2時間程度が好ましい。また、焼成雰囲気としてはコストや利便性からも空気が好適である。しかしながら、ペロブスカイト構造を形成し難い組成の場合、窒素雰囲気下や純酸素雰囲気下での焼成や、高圧下での焼成などを行うことで目的の結晶構造を得ることができる。
 固相反応法によって、リチウムイオン導電性の固体電解質材料を得ることが可能であるが、固体電解質材料は、溶液法(ゾルゲル法)によっても合成可能である。原料として、目的構成元素を含む金属アルコキシドを用い、その他の添加元素の原料として水溶性の塩を用いる。例えば、Aサイトにストロンチウムとリチウム、Bサイトにチタンとタンタルを含む化合物の場合、チタンイソプロポキシドをエタノール中に溶解し、次いでリチウムやストロンチウムの硝酸塩やタンタルの塩を目的組成となるように溶解し、これらを良く攪拌しながら加えることでゲル状の混合物を得る。得られたゲル状混合物を90~120℃前後で加熱して乾燥させる。この粉末を450℃~1000℃で焼成することにより、目的とするペロブスカイト構造を有する化合物を得ることができる。このとき、450℃より温度が低いと反応性が乏しいだけでなく、原料に含まれる有機成分も分解されずに構造中に残留してしまうため好ましくない。また1000℃を超えると成分の一部が蒸散する可能性が高く目的組成から逸脱しやすい。このように、ゾルゲル法を用いることにより目的生成物を低温度の焼成で得られるため、成分元素の蒸散が少なく、かつ粒成長も抑えることができるため、リチウムイオン導電性の固体電解質材料を容易に得ることができる。また、固体電解質材料をゾルゲル法で合成することによって、固体電池を容易に形成することが可能となる。
 単位格子体積の立方根V1/3及び吸収ピークの頂点νtopは、例えば、組成及び焼成条件を調整し、焼成後に急冷を行うことによって目的の範囲内に収めることが可能である。これは、固体電解質材料のバルク部分の結晶性を高くすることができ、かつ構成元素がランダムに配列した緻密なドメイン構造を得ることが可能になるためである。
 第1の実施形態の固体電解質材料によれば、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にあり、かつ赤外吸収スペクトルにおける吸収ピークの頂点νtopが式(1)を満たすため、構成元素の違いによるリチウムイオン導電率の低下を回避することができ、室温で高いリチウムイオン導電率を持つ固体電解質材料を提供することができる。
(第2実施形態)
 第2実施形態によれば、第1の実施形態に係る固体電解質材料を含む固体電解質及び電池を提供することができる。電池は、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極の間に配置された電解質層とを含む。正極、負極及び電解質層のうち少なくともひとつが、第1の実施形態に係る固体電解質材料を含む。また、電池は、正極、負極及び電解質層が収納される外装部材を備えることができる。固体電解質の一例として電解質層が挙げられるが、固体電解質は層状のものに限らず、例えば粉末状、ペレット状等のものも含まれる。
 以下、電解質層、正極、負極、非水電解質及び外装部材について詳述する。
1)電解質層
 電解質層は、第1の実施形態に係る固体電解質材料を含むものである。電解質層は、固体電解質材料から実質的になるものでもよいが、より接触面積を低減するために、非水電解質、ポリマー(高分子材料)電解質あるいは常温溶融塩材料を含むものであっても良い。
 非水電解質には、電解質を有機溶媒に溶解することにより調整される液状非水電解質、液状電解質と高分子材料を複合化したゲル状非水電解質等が含まれる。
 液状非水電解質は、例えば、電解質を0.5モル/L以上2.5モル/L以下の濃度で有機溶媒に溶解することにより調製される。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO22]等のリチウム塩、またはこれらの混合物を挙げることができる。電解質は高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。有機溶媒は、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート等の環状カーボネートや、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等の鎖状カーボネートや、テトラヒドロフラン(THF)、2メチルテトラヒドロフラン(2MeTHF)、ジオキソラン(DOX)等の環状エーテルや、ジメトキシエタン(DME)、ジエトエタン(DEE)等の鎖状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)等の単独または混合溶媒を挙げることができる。
 高分子材料は、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等を挙げることができる。
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンの組合せからなる有機塩の内、常温(15~25℃)で液体として存在しうる化合物を指す。常温溶融塩としては、単体で液体として存在する常温溶融塩、電解質と混合させることで液体となる常温溶融塩、有機溶媒に溶解させることで液体となる常温溶融塩等が挙げられる。なお、一般に、非水電解質電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
 高分子固体電解質は、電解質を高分子材料に溶解して固体化したものである。
2)負極
 負極は、負極集電体と、負極集電体の片面若しくは両面に担持され、負極活物質および導電剤、必要に応じて結着剤等を含む負極材料層(負極活物質含有層)を有する。この負極材料層において、分散された負極活物質の間隙に固体電解質材料が混在していることが好ましく、必要に応じてそれらの間隙に結着剤が埋められてもよい。導電剤は集電性能の向上および集電体との接触抵抗を抑えるために配合されていることが望ましい。
 負極活物質は、特に制約は無いが、リチウム金属、カーボン、酸化物、硫化物などのうち、リチウムイオンを充放電可能な材料であればよい。
 酸化物の一例として、チタン含有酸化物が挙げられる。チタン含有酸化物には、例えば、酸化物合成時はリチウムを含まないチタン系酸化物、リチウムチタン酸化物、リチウムチタン酸化物の構成元素の一部を異種元素で置換したリチウムチタン複合酸化物などが含まれる。リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム(例えばLi4+xTi512(0≦x≦3))、ラムステライド型のチタン酸リチウム(例えばLi2+yTi37(0≦y≦3))などを挙げることができる。チタン系酸化物としては、TiO2、TiとV、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物などが挙げられる。TiOには、単斜晶系β型構造を有するもの(TiO(B))、アナターゼ型構造を有するもの、ルチル型構造を有するものが含まれる。
 硫化物には、例えばTiS2などのチタン系硫化物、例えばMoS2などのモリブデン系硫化物、例えば、FeS、FeS2、LixFeS2(0≦x≦4)などの鉄系硫化物などが含まれる。
 負極活物質粒子に第1の実施形態の固体電解質材料を混合することによって負極活物質粒子表面に固体電解質材料が存在していても良い。
 導電剤は、例えばアセチレンブラック、カーボンブラック、黒鉛等の炭素質物を挙げることができる。
 結着剤は、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジェンゴム等が挙げられる。
 結着剤は、負極材料層中に2質量%以上30質量%以下の範囲で配合されていることが好ましい。結着剤の量を2質量%以上にすることによって、負極材料層と集電体の結着性を高くすることができる。一方、高容量化の観点から、結着剤は30質量%以下であることが好ましい。導電剤も負極材料層中に30質量%以下の割合で配合されることが好ましい。
 集電体は、負極活物質のリチウムの吸蔵・放出電位にて電気化学的に安定である材料が用いられる。集電体は、銅、ニッケル、ステンレス、またはアルミニウムから作られることが好ましい。集電体の厚さは0.1~20μmであることが好ましい。このような厚さを有する集電体は、負極の強度と軽量化をバランスできる。固体電解質を用いた全固体電池の場合、集電体として金属を蒸着またはスパッタすることで形成することが望ましい。
 負極は、例えば負極活物質、固体電解質材料、結着剤および導電剤を汎用されている溶媒に懸濁してスラリーを調製し、このスラリーを集電体に塗布し、乾燥し、負極材料層を形成した後、プレスを施すことにより作製される。
 また、負極の作製において負極活物質、固体電解質材料および導電剤をペレット状に形成し、得られた圧粉体を負極材料層として用いてもよい。
 負極は、接触面積を低減するために、非水電解質、ポリマー(高分子材料)電解質あるいは常温溶融塩材料を含むものであっても良い。
3)正極
 正極は、集電体と、この集電体の片面もしくは両面に担持され、正極活物質および結着剤を含む正極材料層(正極活物質含有層)とを有する。
 正極活物質には、酸化物、硫化物等が含まれる。正極活物質は、例えばリチウムを吸蔵した二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCoy2)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2)、スピネル型リチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4,LixFe1-yMnyPO4,LixCoPO4など)、硫酸鉄[例えばFe2(SO43]、バナジウム酸化物(例えばV25)などが挙げられる。ここでx、yは、0~1の範囲である。
 高い正極電圧が得られる正極活物質は、リチウムマンガン複合酸化物(LixMn24)、リチウムニッケル複合酸化物(LixNiO2)、リチウムコバルト複合酸化物(LixCoO2)、リチウムニッケルコバルト複合酸化物(LiNi1-yCoy2)、スピネル型リチウムマンガンニッケル複合酸化物(LixMn2-yNiy4)、リチウムマンガンコバルト複合酸化物(LixMnyCo1-y2)、リチウムリン酸鉄(LixFePO4)、リチウムニッケルコバルトマンガン複合酸化物などが挙げられる。なお、x、yは0~1の範囲である。
 常温溶融塩を用いる場合、リチウムリン酸鉄、LixVPO4F、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルコバルト複合酸化物を用いることがサイクル寿命の観点から好ましい。これは、正極活物質と常温溶融塩との反応性が少なくなるためである。正極活物質の一次粒径は、100nm以上1μm以下であると好ましい。一次粒径が100nm以上の正極活物質は、工業生産の上で取り扱い易くなる。一次粒径が1μm以下の正極活物質は、リチウムイオンの固体内拡散をスムーズに進行させることが可能になる。
 正極活物質の比表面積は、0.1m2/g以上10m2/g以下であることが好ましい。0.1m2/g以上の比表面積を有する正極活物質は、リチウムイオンの吸蔵・放出サイトを十分に確保できる。10m2/g以下の比表面積を有する正極活物質は、工業生産の上で取り扱い易く、かつ良好な充放電サイクル性能を確保できる。
 正極活物質粒子に第1の実施形態の固体電解質材料を混合することによって正極活物質粒子表面に固体電解質材料が存在していても良い。
 正極活物質と集電体の結着等を目的とする結着剤は、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム等が挙げられる。
 導電剤は、集電性能を高め、かつ集電体との接触抵抗を抑えるために必要に応じて配合することができる。導電剤は、例えばアセチレンブラック、カーボンブラック、黒鉛等の炭素質物を挙げることができる。
 正極活物質および結着剤の配合割合は、正極活物質は80質量%以上98質量%以下、結着剤は2質量%以上20質量%以下の範囲にすることが好ましい。結着剤の量を2質量%以上にすることにより十分な電極強度が得られ、20質量%以下にすることにより電極の絶縁体の配合量を減少させ、内部抵抗を減少できる。
 導電剤を加える場合には、その量を3質量%以上にすることにより導電剤の添加効果が得られ、15質量%以下にすることにより、高温保存下での正極導電剤表面での非水電解質の分解を低減することができる。
 正極は、例えば正極活物質、固体電解質材料、必要に応じて配合される結着剤および導電剤を適当な溶媒に懸濁してスラリーを調製し、このスラリーを正極集電体に塗布し、乾燥することにより正極材料層を形成した後、プレスを施すことにより作製される。
 また、正極の作製において正極活物質、固体電解質材料、必要に応じて結着剤および導電剤を混合したペレット状に形成し、得られた圧粉体を正極材料層として用いてもよい。
 正極集電体は、アルミニウム箔またはアルミニウム合金箔であることが好ましい。アルミニウム箔またはアルミニウム合金箔の厚さは、0.1μm以上20μm以下、より好ましくは15μm以下にすることが望ましい。アルミニウム箔の純度は99質量%以上が好ましい。アルミニウム合金は、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム箔またはアルミニウム合金箔に含まれる鉄、銅、ニッケル、クロムなどの遷移金属の含有量は、1質量%以下にすることが好ましい。固体電解質を用いた全固体電池の場合、集電体として金属を蒸着またはスパッタすることで形成することが望ましい。
 正極は、接触面積を低減するために、非水電解質、ポリマー(高分子材料)電解質あるいは常温溶融塩材料を含むものであっても良い。
4)外装部材
 外装部材は、固体電解質材料に非水電解質が併用される場合、厚さ0.5mm以下のラミネートフィルムまたは厚さ1.0mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。更に、固体電解質で構成される全固体電池の場合は、外装部材としてモールド材が用いられることが好ましい。
 外装部材の形状は、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。外装部材は、電池寸法に応じて、例えば携帯用電子機器等に積載される小型電池用外装部材、二輪乃至四輪の自動車等に積載される大型電池用外装部材が挙げられる。
 ラミネートフィルムは、樹脂フィルム間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
 金属製容器は、アルミニウムまたはアルミニウム合金等から作られる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。アルミニウムまたはアルミニウム合金において鉄、銅、ニッケル、クロム等の遷移金属の含有量は100ppm以下にすることが好ましい。
 モールド材には、クレゾールノボラック型エポキシ樹脂(ECN)、ビフェニル型エポキシ樹脂、溶融シリカフィラーでつくられる樹脂モールド材が含まれる。そのほかにも、高架橋密度で高ガラス転移温度となる多官能モールド樹脂や、ビフェニルあるいは高機能ポリマーベースの、鉛フリー、ハロゲンフリーのモールド樹脂なども利用可能である。一方で、大型大容量の固体電池の場合、発熱等の影響を考慮してセラミックス・ガラス系のモールド材を利用することができる。主に半導体の分野で用いられる絶縁性・耐熱性に優れたモールド材であれば、適用可能である。
 第2の実施形態に係る電池には、例えば、固体電解質二次電池、バイポーラ電池が含まれる。実施形態に係る薄型の固体電解質二次電池の一例を図2に示す。さらにバイポーラ電池の一例を図3に示す。
 図1に示すように、固体電解質二次電池は、金属製の容器1と、容器1内に収納される電極群2とを含む。電極群2は、正極5と、負極8と、固体電解質層9とを含む積層体である。正極5は、正極集電体3と、正極集電体3に積層された正極材料層4とを含む。負極8は、負極集電体6と、負極集電体6に積層された負極材料層7とを含む。固体電解質層9は、正極材料層4と負極材料層7との間に配置される。正極端子10は、容器1に絶縁部材(図示しない)を介して固定され、正極集電体3と電気的に接続されている。負極端子11は、容器1に絶縁部材(図示しない)を介して固定され、負極集電体6と電気的に接続されている。正極と負極は、容器1から電気的に絶縁されている。
 図2に示すように、バイポーラ電池は、集電体12の一方の面に正極材料層4が接合され、かつ他方の面に負極材料層7が接合されたバイポーラ構造体を複数備える。正極材料層4と負極材料層7の間に、固体電解質層9が介在されている。すなわち、複数のバイポーラ構造体は、その間に固体電解質層9を介在することによって一つの積層体を構成している。積層体の一方の最外層に位置する正極材料層4に、正極集電体3が接合されている。また、積層体の他方の最外層に位置する負極材料層7に、負極集電体6が接合されている。正極端子10は、容器1に絶縁部材(図示しない)を介して固定され、正極集電体3と電気的に接続されている。負極端子11は、容器1に絶縁部材(図示しない)を介して固定され、負極集電体6と電気的に接続されている。積層体は、容器1から電気的に絶縁されている。
 固体電解質電池及びバイポーラ電池は、それぞれ、充放電回路等の部材を接続した後、これらを筐体に収めることによって電池パックとして使用することができる。
 電池、この電池を用いた電池パックの用途は、特に限定されるものではないが、例えば、自動車(自動二輪車を含む)、自転車、バス、電車などの車を挙げることができる。
 電池に含まれる固体電解質材料の単位格子体積の立方根V1/3と赤外吸収スペクトルにおける吸収ピークの頂点νtopは、例えば、以下の方法によって測定される。全固体電池の場合、正極材料層及び負極材料層を研磨によって削り落とすことで、電解質材料を取り出すことができる。取り出した電解質材料を平均粒子径が5μm程度となるまで粉砕する。なお、平均粒子径はレーザー回折法によって求めることができる。これらの試料を用いて、粉末X線回折及び赤外吸収スペクトル測定を行う。粉末X線回折及び赤外吸収スペクトル測定の方法は、第1の実施形態と同様である。
 以上説明した第2の実施形態の電池によれば、正極、負極及び電解質層のうち少なくともひとつが第1の実施形態の固体電解質材料を含むため、リチウムイオン導電性を高くすることができ、レート性能をはじめとする充放電性能を向上することができる。また、第2の実施形態の固体電解質によれば、第1の実施形態の固体電解質材料を含むため、リチウムイオン導電性に優れた固体電解質を実現することができる。
 以下、実施例に基づいて実施形態をさらに詳細に説明する。
 <実施例1~4>
 (合成)
 Sr0.56-XNaXLi0.33Ta0.56+XTi0.44-XO3(0≦x≦0.44)で表されるペロブスカイト型酸化物のうち、X=0.1, 0.2, 0.3, 0.44を合成した。なお、Liを含むAサイトには、空孔が存在していた。X=0.1であるものを実施例1、X=0.2であるものを実施例2、X=0.3であるものを実施例3、X=0.44であるものを実施例4とする。出発原料として、市販の試薬であるSr(NO3)2, Na2CO3, Li2CO3, Ta2O5及びTiO2を用いた。これらの粉末を、所定のモル比となるように秤量し、乳鉢で混合した。次に、電気炉に入れ、800℃で12時間仮焼した。この粉末を再び混合した後、厚さ1mm直径12mmの円盤状に一軸加圧成型し、1350℃で約1時間焼成した。赤外吸収スペクトルにおける吸収ピークの頂点νtopが式(1)を満たすものを得るために、1000℃で12時間熱処理したのち、再び1350℃で1時間焼成し、次いで炉外に取り出して急冷した。この処理により、バルク部分の結晶性が向上し、かつ構成元素がランダムに配列した緻密なドメイン構造が得られるため、吸収ピークの頂点νtopが式(1)を満たす固体電解質材料を得ることができる。なお、これらの処理の間にリチウム元素の蒸散が生じるため、あらかじめこの蒸散分を見積もり、原料中に過剰にLiを加えることで正しい組成が得られるようにした。
 (粉末X線回折測定)
 得られた固体電解質材料について、以下のように粉末X線回折測定を行った。まず、固体電解質材料を平均粒子径が10μm程度となるまで粉砕した。得られた試料を、ガラス試料板上に形成された深さ0.2mmのホルダー部分に充填した。次いで、外部から別のガラス板を使い、充分に押し付けて試料を平滑化した。次いで、試料が充填されたガラス板を粉末X線回折装置に設置し、Cu-Kα線を用いて回折パターンを取得した。
 その結果、リートベルト法による結晶構造解析結果から、目的とするペロブスカイト型構造を有していることが確認できた。これらの解析結果から得られた格子定数から算出した、単位格子体積の立方根V1/3を表1に示した。この結果から、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にあることが確認できた。
(赤外吸収スペクトル測定)
 粉末X線回折測定と同様に粉砕した試料を、CsIの粉末と混合して、減圧プレスすることでペレット状の圧粉体を得た。これを、Nicolet Nexus 470 FT-IR赤外吸収スペクトル装置を用いて、4000~224cm-1の範囲で測定した。分解能は4cm-1程度とした。このとき、得られた吸収スペクトルから、該当する試料の吸収ピークの頂点νtop(cm-1)を求めて表1に示した。
 図4は、粉末X線回折測定から得られた単位格子体積の立方根V1/3と赤外吸収スペクトル測定から得られた吸収ピークの頂点νtop(cm-1)との関係を示すグラフである。式(1):νtop(cm-1)=4.7×V1/3(pm)-bのbが1230である時の直線をL1とし、bが1220である時の直線をL2とし、bが1240である時の直線をL3とする。直線L2と直線L3とで囲まれた領域(直線上を含む)のうち、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmを満たすものが、実施形態の範囲である。図4から、実施例1~4の固体電解質材料が式(1)及び386pm≦V1/3≦397pmを満たすことを確認できた。
<比較例1,2>
 (Li0.25La0.25)1-xSr0.5xNbO3(X=0.1)及び(Li0.25La0.25)1-xCa0.5xNbO3(X=0.1)を非特許文献2に記載の方法で合成した。すなわち、原料酸化物を所定のモル比で混合し、ペレット化して800℃で2時間仮焼したのち、1250℃で24時間焼成した。得られた試料を、実施例と同様に粉砕して、粉末X回折測定及び赤外吸収スペクトル測定を行った。粉末X線回折の結果から、比較例1,2の固体電解質材料の単位格子体積の立方根V1/3は、386pm≦V1/3≦397pmの範囲にあることがわかった。しかしながら、比較例1,2の固体電解質材料の赤外吸収スペクトル測定から得られた吸収ピークの頂点νtop(cm-1)は、図4から明らかなように、式(1)の範囲を逸脱していることが確認された。
(リチウムイオン導電率測定)
 実施例および比較例で得られた固体電解質材料を粉砕せず、それぞれからペレット状試料を作製した。ペレット状試料の側面をマスキングして、両面に金をスパッタすることで、イオンブロッキング電極を構成した。この試料を130℃で12時間真空乾燥したのち、アルゴン雰囲気、25℃環境下において交流インピーダンス測定を行った。周波数は5Hzから13MHzとした。測定結果から得られたコールコールプロットから、バルク部分のリチウムイオン導電率σbを求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~4の固体電解質材料は、室温でのリチウムイオン導電率が、比較例1,2よりも高い。
 実施例1~4及び比較例1,2の固体電解質材料を粉砕し、実施例1~4及び比較例1,2の固体電解質材料粉末を得た。また、実施例1~4及び比較例1,2で得られた厚さ1mm直径12mmの円盤状に一軸加圧成型した固体電解質材料を、研磨により厚さ0.1mmまで薄くすることにより、層状の固体電解質を作製した。これらを用いて以下の方法によって全固体電池A,Bを作製した。なお、実施例1の固体電解質材料粉末及び層状の固体電解質を用いて作製したものを、実施例1の全固体電池A,Bとする。同様に、実施例2~4及び比較例1,2の固体電解質材料粉末及び層状の固体電解質を用いて作製したものを、実施例2~4及び比較例1,2の全固体電池A,Bとする。
 (全固体電池Aの作製)
 正極活物質として市販のコバルト酸リチウムを用意した。コバルト酸リチウムに対して固体電解質材料粉末を30質量%、導電助剤としてアセチレンブラックを5質量%、バインダーとしてPVdFを5質量%混合し、これらをN-メチルピロリドン(NMP)溶媒に分散させ、ペースト状にした。
 次に、層状の固体電解質の表面に正極ペーストを塗布して140℃で乾燥することにより正極材料層を形成した。次に、アルゴン雰囲気下において、厚さ1mmの金属リチウムを直径11mmに切り出し、正極材料層と反対側の固体電解質面に圧着により貼り付け、負極を形成した。得られた電極群をコインセル中に封入し、全固体電池Aを得た。正極材料層側には金スパッタにより集電体を形成した。
 (全固体電池Bの作製)
 層状の固体電解質の表面に正極材料層を全固体電池Aの作製と同様にして形成した。次に、負極活物質として市販のスピネル型チタン酸リチウムLi4Ti5O12(LTO)を用意した。Li4Ti5O12に対して固体電解質材料粉末を30質量%、導電助剤としてアセチレンブラックを5質量%、バインダーとしてPVdFを5質量%混合し、これらをN-メチルピロリドン(NMP)溶媒に分散させ、ペースト状にした。これを正極とは逆の面に塗布して、140℃で乾燥することにより負極材料層を形成した。正極材料層及び負極材料層それぞれの表面に金スパッタすることにより、集電体を形成し、全固体電池Bを得た。
(充放電測定)
 実施例1~4及び比較例1,2の全固体電池A,Bに45℃環境下で充放電試験を行った。充放電試験は、負極にチタン酸リチウムを用いた全固体電池Bでは、1.0V~2.7Vの電位範囲で行い、金属リチウムを負極に用いた全固体電池Aでは3.2V~4.2Vの電位範囲で行った。0.01、0.03、0.05及び0.1C(時間放電率)での放電容量を測定し、その結果を0.01C(時間放電率)での放電容量を100%として下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1~4の全固体電池A,Bは、負極活物質の種類に拘らず、放電レートを高くした際の容量低下が小さく、レート性能に優れている。これに対し、比較例1,2の全固体電池A,Bは、いずれの負極活物質においても、放電レートを高くした際の容量低下が大きく、レート性能に劣っている。
 なお、実施例においては、正極及び負極を固体電解質に塗布または圧着したが、この方法に限らず、圧粉体を正極、電解質または負極として用いる方法、各種スピンコート法、PVD法など、固体電解質の作製で行われている方法全般を適用することができる。
 以上述べた少なくとも一つの実施形態及び実施例の固体電解質材料によれば、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にあり、かつ赤外吸収スペクトルにおける吸収ピークの頂点νtopが式(1)を満たすため、室温でのリチウムイオン導電率を向上することが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…容器、2…電極群、3…正極集電体、4…正極材料層、5…正極、6…負極集電体、7…負極材料層、8…負極、9…固体電解質層、10…正極端子、11…負極端子、12…集電体。

Claims (6)

  1.  ABO3で表される酸化物であり、AサイトにLiと空孔を含み、単位格子体積の立方根V1/3が386pm≦V1/3≦397pmの範囲にあり、かつ赤外吸収スペクトルにおける吸収ピークの頂点νtopが、式(1)を満たすことを特徴とする固体電解質材料。
      νtop(cm-1)=4.7×V1/3(pm)-b  式(1)
     但し、1220≦b≦1240。
  2.  ペロブスカイト型結晶構造を有し、前記Aサイトが、La,Sr,Na,Ca及びNdよりなる群から選択される少なくとも1種の元素をさらに含み、Bサイトが、Ti,Ta,Cr,Fe,Co,Ga及びNbよりなる群から選択される少なくとも1種の元素を含むことを特徴とする請求項1に記載の固体電解質材料。
  3.  Bサイトが、Ta,Cr,Fe,Co,Ga及びNbよりなる群から選択される少なくとも1種の元素と、Tiを含むことを特徴とする請求項1または2に記載の固体電解質材料。
  4.  正極活物質を含む正極と、負極活物質を含む負極と、前記正極と前記負極の間に配置された電解質層とを含む電池であって、前記正極、前記負極及び前記電解質層のうち少なくともひとつが、請求項1~3いずれか1項記載の固体電解質材料を含むことを特徴とする電池。
  5.  前記正極活物質及び前記負極活物質のうち少なくとも一方の表面に、請求項1~3いずれか1項記載の固体電解質材料が存在することを特徴とする請求項4記載の電池。
  6.  請求項1~3いずれか1項記載の固体電解質材料を含むことを特徴とする固体電解質。
PCT/JP2012/057339 2012-03-22 2012-03-22 固体電解質材料、固体電解質及び電池 WO2013140574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/057339 WO2013140574A1 (ja) 2012-03-22 2012-03-22 固体電解質材料、固体電解質及び電池
JP2014505902A JP5727092B2 (ja) 2012-03-22 2012-03-22 固体電解質材料、固体電解質及び電池
US14/202,729 US9553331B2 (en) 2012-03-22 2014-03-10 Solid electrolyte material, solid electrolyte, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057339 WO2013140574A1 (ja) 2012-03-22 2012-03-22 固体電解質材料、固体電解質及び電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/202,729 Continuation US9553331B2 (en) 2012-03-22 2014-03-10 Solid electrolyte material, solid electrolyte, and battery

Publications (1)

Publication Number Publication Date
WO2013140574A1 true WO2013140574A1 (ja) 2013-09-26

Family

ID=49222068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057339 WO2013140574A1 (ja) 2012-03-22 2012-03-22 固体電解質材料、固体電解質及び電池

Country Status (3)

Country Link
US (1) US9553331B2 (ja)
JP (1) JP5727092B2 (ja)
WO (1) WO2013140574A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046538A1 (ja) * 2013-09-30 2015-04-02 京セラ株式会社 全固体型キャパシタ
JP2017073265A (ja) * 2015-10-07 2017-04-13 株式会社豊田中央研究所 複合体及び複合体の製造方法
JP2020155399A (ja) * 2019-03-13 2020-09-24 株式会社東芝 固体電解質材料、電極、電池、電池パック、及び車両
CN114649527A (zh) * 2022-02-24 2022-06-21 南京工业大学 一种四相导体质子导体氧电极材料、制备方法及用途
US11367897B2 (en) 2019-03-13 2022-06-21 Kabushiki Kaisha Toshiba Solid electrolyte material, electrode, battery, battery pack, and vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547044B2 (en) * 2015-09-01 2020-01-28 Worcester Polytechnic Institute Dry powder based electrode additive manufacturing
JP7075137B2 (ja) * 2017-12-25 2022-05-25 学校法人 学習院 リチウムイオン伝導体材料およびその合成方法ならびに二次電池
JP7025695B2 (ja) * 2018-01-31 2022-02-25 Tdk株式会社 誘電体磁器組成物、電子部品および積層セラミックコンデンサ
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
CN111268922A (zh) * 2020-02-14 2020-06-12 北京工业大学 一种改变钙钛矿晶胞参数提高钙钛矿性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (ja) * 1993-03-25 1995-07-04 Ngk Insulators Ltd リチウムイオン伝導体及びリチウム電池のカソード材料
JP2006500311A (ja) * 2002-09-24 2006-01-05 コーニング・インコーポレーテッド 電解質ペロブスカイト
JP2011204389A (ja) * 2010-03-24 2011-10-13 Toyota Motor Corp リチウムイオン伝導体、及び固体リチウム電池
JP2011222415A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp 固体電解質材料、リチウム電池および固体電解質材料の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940069A1 (de) * 1999-08-24 2001-03-08 Basf Ag Verfahren zur elektrochemischen Herstellung eines Alkalimetalls aus wäßriger Lösung
US20060141346A1 (en) * 2004-11-23 2006-06-29 Gordon John H Solid electrolyte thermoelectrochemical system
WO2007075867A2 (en) * 2005-12-19 2007-07-05 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169456A (ja) * 1993-03-25 1995-07-04 Ngk Insulators Ltd リチウムイオン伝導体及びリチウム電池のカソード材料
JP2006500311A (ja) * 2002-09-24 2006-01-05 コーニング・インコーポレーテッド 電解質ペロブスカイト
JP2011204389A (ja) * 2010-03-24 2011-10-13 Toyota Motor Corp リチウムイオン伝導体、及び固体リチウム電池
JP2011222415A (ja) * 2010-04-13 2011-11-04 Toyota Motor Corp 固体電解質材料、リチウム電池および固体電解質材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOSHITAKA ISHIKAWA ET AL.: "Effects of the framework of Li-ADPESSs On Lithium Ion Conductivity", KEY ENGINEERING MATERIALS, vol. 181-182, 2000, pages 171 - 174, XP008133876 *
YOSHIYUKI INAGUMA: "Perovskite-Type Lithium Ion-Conducting Oxides", CERAMICS, vol. 43, no. 7, 2008, pages 540 - 546, XP008175332 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046538A1 (ja) * 2013-09-30 2015-04-02 京セラ株式会社 全固体型キャパシタ
CN105556627A (zh) * 2013-09-30 2016-05-04 京瓷株式会社 全固态电容器
JPWO2015046538A1 (ja) * 2013-09-30 2017-03-09 京セラ株式会社 全固体型キャパシタ
US10115534B2 (en) 2013-09-30 2018-10-30 Kyocera Corporation All-solid-state capacitor with solid electrolyte having a polycrystalline structure
JP2017073265A (ja) * 2015-10-07 2017-04-13 株式会社豊田中央研究所 複合体及び複合体の製造方法
JP2020155399A (ja) * 2019-03-13 2020-09-24 株式会社東芝 固体電解質材料、電極、電池、電池パック、及び車両
US11367897B2 (en) 2019-03-13 2022-06-21 Kabushiki Kaisha Toshiba Solid electrolyte material, electrode, battery, battery pack, and vehicle
JP7293051B2 (ja) 2019-03-13 2023-06-19 株式会社東芝 固体電解質材料、電極、電池、電池パック、及び車両
CN114649527A (zh) * 2022-02-24 2022-06-21 南京工业大学 一种四相导体质子导体氧电极材料、制备方法及用途

Also Published As

Publication number Publication date
JPWO2013140574A1 (ja) 2015-08-03
JP5727092B2 (ja) 2015-06-03
US9553331B2 (en) 2017-01-24
US20140193718A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5727092B2 (ja) 固体電解質材料、固体電解質及び電池
US10892517B2 (en) Solid electrolyte, manufacturing method of solid electrolyte, battery and battery pack
JP6058848B2 (ja) 組電池、電池パック、及び車両
JP6659504B2 (ja) 固体電解質、リチウム電池、電池パック、及び車両
JP5908650B2 (ja) 電池用活物質、非水電解質電池及び電池パック
CN106104866B (zh) 电池组件和电池组
JP6092466B2 (ja) 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
EP2784857A1 (en) Active material for battery, nonaqueous electrolyte battery, battery pack, and method for manufacturing active material for battery
JP2012099287A (ja) 電池用活物質、非水電解質電池及び電池パック
JP2017059339A (ja) 電池用活物質、非水電解質電池及び電池パック
JP6696689B2 (ja) 活物質、電極、非水電解質電池、電池パック、及び車両
WO2015140934A1 (ja) 電池用活物質、非水電解質電池及び電池パック
JP2017045569A (ja) 電池用活物質、非水電解質電池、組電池、電池パック及び自動車
JP2013145759A (ja) 電池用負極、非水電解質電池及び電池パック
JP2015181120A (ja) 固体電解質の製造方法
KR101912517B1 (ko) 활물질, 비수전해질 전지, 전지 팩 및 차량
WO2015140964A1 (ja) 電池用電極材料、非水電解質電池及び電池パック
KR101757981B1 (ko) 활성 물질, 비수 전해질 전지 및 전지 팩
JP6132945B2 (ja) 電池パック及び自動車
JP2014157836A (ja) 非水電解質電池及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505902

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871862

Country of ref document: EP

Kind code of ref document: A1