WO2013139300A1 - 一种重组慢病毒载体制剂 - Google Patents

一种重组慢病毒载体制剂 Download PDF

Info

Publication number
WO2013139300A1
WO2013139300A1 PCT/CN2013/073056 CN2013073056W WO2013139300A1 WO 2013139300 A1 WO2013139300 A1 WO 2013139300A1 CN 2013073056 W CN2013073056 W CN 2013073056W WO 2013139300 A1 WO2013139300 A1 WO 2013139300A1
Authority
WO
WIPO (PCT)
Prior art keywords
lentiviral vector
recombinant lentiviral
vector preparation
recombinant
preparation according
Prior art date
Application number
PCT/CN2013/073056
Other languages
English (en)
French (fr)
Inventor
樊俊蝶
蒋立新
周志文
Original Assignee
北京三诺佳邑生物技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京三诺佳邑生物技术有限责任公司 filed Critical 北京三诺佳邑生物技术有限责任公司
Priority to US14/386,662 priority Critical patent/US9969984B2/en
Priority to EP13764205.4A priority patent/EP2829285B1/en
Publication of WO2013139300A1 publication Critical patent/WO2013139300A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15051Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16051Methods of production or purification of viral material

Definitions

  • the present invention relates to a viral vector preparation, and more particularly to a recombinant lentiviral vector preparation. Background technique
  • the lentiviral vector is a commonly used viral vector, and the lentiviral vector is a viral vector system engineered on the basis of HIV-1 virus, which can efficiently introduce the target gene into animal and human primary cells or cell lines.
  • the lentiviral vector genome is a positive-strand RNA. After the genome enters the cell, the reverse transcriptase carried by itself in the cytoplasm is reversed into DNA to form a DNA pre-integration complex. After entering the nucleus, the DNA is integrated into the cell genome. The integrated DNA transcribes mRNA and returns to the cytoplasm to express the protein of interest.
  • Lentiviral vector-mediated gene expression is sustained and stable because the gene of interest is integrated into the host cell genome and divides as the cell genome divides.
  • lentiviral vectors are efficiently infected and integrated into non-dividing cells. These characteristics make the lentiviral vector comparable to other viral vectors, such as unintegrated adenoviral vectors, adeno-associated viral vectors with low integration rates, and traditional retroviral vectors that integrate only dividing cells.
  • lentiviral vector-mediated tissues or cells in which the target gene is expressed for a long time include brain, liver, muscle, retina, hematopoietic stem cells, bone marrow mesenchymal stem cells, macrophages and the like.
  • lentiviral vectors for therapeutic applications in humans must maintain their structural integrity in order to maintain biological activity.
  • viral vectors for therapeutic applications in humans must maintain their structural integrity in order to maintain biological activity.
  • preparations In order to maintain the structural integrity of the viral vector, such preparations must be maintained and shipped at relatively low temperatures in order to maintain their biological activity.
  • the loss of biological activity of the lentiviral vector occurs mostly during storage storage.
  • the recombinant lentiviral vector carrying the gene of interest is generally prepared as a liquid preparation which is stored at an ultra-low temperature (for example, not higher than -60 ° C), and is cooled at a low temperature. Transport under frozen conditions and thaw before use.
  • an ultra-low temperature for example, not higher than -60 ° C
  • One of the main challenges of temperature stabilization below the freezing point is to prevent physical damage to the structural and functional components during freezing and storage.
  • Lentiviral vector preparations generally include: viral genome-encoded proteins and single- or double-stranded genomes. If the virus contains an envelope protein, it also includes the structure of the lipid bilayer coating. Under ultra-low temperature conditions, proteins are susceptible to denaturation, while lipid bilayers are susceptible to damage during freezing, so in general viral vector preparations should not be preserved for extended periods of time under ultra-low temperature conditions.
  • the preparation is exposed to the body temperature of the organism for a long time before reaching the target organ (for example, human body or other
  • the biological activity of recombinant lentiviral vectors tends to decrease rapidly rapidly at animal temperature or at room temperature, thereby directly affecting the therapeutic effect of recombinant lentiviral vector preparations or allowing preclinical studies and clinical studies. The results are not accurate.
  • the present invention provides a recombinant lentiviral vector preparation, wherein the preparation comprises: a) an effective dose of a recombinant lentiviral vector; b) maintaining the pH of the preparation in the range of 6.0-8.0 of histidine hydrochloride Punching; and c) sugars.
  • the recombinant lentiviral preparation of the present invention greatly enhances the stability of the preparation due to the inclusion of a specific range of the non-conventional component histidine hydrochloride buffer, especially at -80 ° C under ultra-low temperature conditions. It can be stored for a long time, or the medium and low temperature conditions of -20 °C also have the ability to maintain stability for a long time, or repeatedly freeze-thaw during use, and exposure to organic body temperature (for example, 37 ° C) or room temperature for a long time. After that, it is still able to maintain the viral recombinant lentiviral vector activity that meets the requirements for use.
  • Figure 1 shows the stability comparison curves of the formulations of Formulations 2, 6 and Comparative Examples 1-4 at 37 ° C;
  • Figure 2 shows the stability comparison curves of the formulations of Formulas 2, 6 and Comparative Examples 1-4 at 25 ° C;
  • Figure 3 shows the stability comparison curves of the formulations of Formulations 2, 6 and Comparative Examples 1-4 at 4 °C;
  • Figure 4 shows the stability comparison curves of the formulations of Formulas 2, 6 and Comparative Examples 1-4 at -20 °C.
  • Figure 5 shows the stability comparison curves of the formulations of Formulations 2, 6 and Comparative Examples 1-4 at -80 °C;
  • Figure 6 shows the stability of the formulations of Formulations 2, 6 and Comparative Examples 1-4 under repeated freeze-thaw conditions. Compare curves.
  • the recombinant lentiviral vector preparation provided by the present invention comprises:
  • the "viral vector” in the present invention refers to a virus particle which has the ability to self-replicate and has the ability to introduce a nucleic acid molecule into the interior of a host.
  • "Lentiviral vector” refers to a viral vector derived from a primate immunodeficiency virus.
  • the lentiviral vector contains the genetic information required for packaging, transfection, and stable integration, and is a major component of the lentiviral vector system.
  • the lentiviral vector carrying the foreign gene is packaged by the lentiviral packaging plasmid and the cell line to form an infectious virus particle, and the foreign gene is expressed in the cell or living tissue by infecting the cell or the living tissue.
  • "Recombinant” viral vector refers to a viral vector constructed by genetic recombination techniques. A viral vector constructed using DNA encoding the viral genome and packaging cells is contained in a recombinant viral vector.
  • the recombinant lentiviral vector of the present invention can further be pseudotyped by VSV-G.
  • the pseudotype of VSV-G means that the envelope of the carrier contains the surface glycoprotein VSV-G protein of Vesicular stomatitis virus (VSV).
  • VSV Vesicular stomatitis virus
  • the VSV-G protein may be a protein derived from any VSV strain.
  • the VSV-G protein from the Indiana serotype strain J. Virology 39: 519-528 (1981)
  • the VSV-G protein may be a derivative of a natural protein, a modified protein obtained by substitution, deletion, and/or addition of one or more amino acids.
  • the VSV-G pseudotyped vector can be prepared by coexistence with the VSV-G protein when the virus is produced.
  • a VSV-G expression vector expression of a VSV-G gene derived from integration into a host chromosomal DNA is induced, or by expression of VSV-G in a packaging cell, via
  • the virus particles produced by this cell can be pseudotyped by VSV-G.
  • the VSV-G protein is a glycoprotein, it forms a stable 3-mer, which is present on the cell membrane, so it does not cause damage to the carrier particles during the purification process, and can be concentrated at a high concentration by centrifugation (Yang, Y. Et al., Hum Gene Ther: Sep, 6(9), 1203-13. 1995).
  • the recombinant lentiviral vector is a lentiviral vector coated with a vesicular stomatitis virus G protein.
  • the recombinant lentiviral vector of the present invention may further comprise envelope proteins from other viruses.
  • a protein it is preferably a viral envelope protein derived from an infected human cell.
  • the protein is not particularly limited, and examples thereof include a retroviral amphotropic virus hand membrane protein.
  • a retroviral amphotropic virus hand membrane protein As the amphotropic virus envelope protein of such a retrovirus, for example, a envelope protein derived from the mouse leukemia virus (MumMLV) 4070A strain can be used.
  • a envelope protein derived from MuMLV 10A1 for example, pCL-lOAl (Imgenex) (Naviaux, RK et al., J. Virol. 70: 5701-5705 (1996)
  • MuMLV 10A1 for example, pCL-lOAl (Imgenex) (Naviaux, RK et al., J. Virol. 70: 5701-5705 (1996)
  • MuMLV 10A1 for example
  • the protein of the hepadnavirus family may, for example, be an S protein of the hepatitis B virus.
  • the protein may also be formed by fusion of a measles virus glycoprotein with other single chain antibodies (Funke S. et al. Mol Ther 16:1427-36, 2008; Frecha C. et al, Blood, 114:3173-80. 2009).
  • Packaging of lentiviral vectors is typically performed by transient transfection or by cell line packaging.
  • transient transfection it can be used as a human cell strain for packaging cells, including, for example, 293 cells, 293T cells, 293FT cells, 293LTV cells, 293EBNA cells, and other clones isolated from 293 cells; SW480 cells, u87MG cells, HOS cells, C8166 cells, MT-4 cells, Molt-4 cells, HeLa cells, HT1080 cells, TE671 cells, and the like.
  • a cell strain derived from monkeys for example, COS1 cells, COS7 cells, CV-1 cells, BMT10 cells, and the like.
  • calcium phosphate and PEI transfection reagents are commonly used, and some transfection reagents such as Lipofectamine 2000, FuGENE and S93fectin are also frequently used.
  • Lentiviral packaging also uses some lentiviral packaging cell lines, such as the stable cell lines produced using the most prevalent Env glycoprotein, VS VG protein or HIV-1 gag-pol protein.
  • the large-scale lentiviral vector system uses a method of segmenting the genome, and the genes for different accessory functions are localized to different plasmids.
  • the genes for different accessory functions are localized to different plasmids.
  • There are currently four plasmid systems encoding the gag-pol gene, the Rev gene, the VSVG gene, and the SIN transfer gene in four different plasmids, respectively).
  • the three-plasmid system (with the plasmid encoding the Rev gene removed, the gag-pol gene in the gag-pol plasmid uses a codon that is preferred in human cells) and the two-plasmid system (the accessory gene necessary for lentiviral vector packaging is located in the same On one plasmid, these helper genes are single gene sequences; the other is a transgene plasmid;).
  • these helper genes are single gene sequences; the other is a transgene plasmid;).
  • the recombinant lentiviral vector referred to in the present invention can be substantially completely purified.
  • the purification method includes a known purification/separation method such as filter filtration, ion exchange chromatography, ultrafiltration, molecular sieve, nuclease digestion, and filtration sterilization.
  • a high-speed centrifugation method is also employed. For example, the carrier suspension is filtered through a 0.45 ⁇ m filter, and centrifuged at 42500 x g for 90 minutes at 4 ° C to precipitate and concentrate the carrier.
  • the recombinant lentiviral vector is a primate recombinant lentiviral vector, ie, a human immunodeficiency virus (HIV) or a recombinant simian immunodeficiency virus (SIV); Primate recombinant lentiviral vector, ie equine infectious anemia virus (EIAV) or recombinant feline immunodeficiency virus (FIV) or recombinant amniocentesis encephalitis virus (caprine arthritis) -encephalitis virus, CAEV ).
  • EIAV equine infectious anemia virus
  • FV feline immunodeficiency virus
  • CAEV amniocentesis encephalitis virus
  • the recombinant lentiviral vector is a recombinant human immunodeficiency virus vector or a recombinant monkey immunodeficiency virus vector.
  • the "monkey immunodeficiency virus (SIV) vector" referred to in the present invention means a vector which is a sequence necessary for the function of a viral vector in a nucleic acid molecule in a virus particle and which is a sequence derived from the SIV genome.
  • the sequence necessary for the function of the viral vector in the present invention means the R region other than the promoter region of the packaging signal ( ⁇ ), RRE, and 3'LTR which is sequentially 5'LTR from the 5' end. Regional and R region sequences.
  • the SIV vector of the present invention may be modified as long as it conforms to the above definition.
  • sequences necessary for function as a viral vector may be included in sequences other than SIV or sequences other than SIV as long as they are derived from SIV.
  • sequences which can be included for example, it can be cPPT (central polypurine tract), internal promoter (CMV), WPRE (woodchuck hepatitis virus post-transcriptional regulatory element).
  • the simian immunodeficiency virus includes all strains having SIV and subtypes thereof.
  • SIV isolated strain SIVagm, SIVcpz, SIVmac, SIVmnd, SIVsm, SIVsnm, SIVsyk and the like can be exemplified, but are not limited to these strains.
  • the "human immunodeficiency virus (HIV) vector" in the present invention refers to a vector in which a sequence necessary for the function of a viral vector in a nucleic acid molecule in a viral particle is a sequence derived from the genome of HIV.
  • the HIV-1 vector contains the HIV cis-acting sequence required for packaging, reverse transcription and integration, and has a multiple cloning site under the control of a heterologous promoter and a gene of interest inserted at this site.
  • the cis sequence of HIV-1 on the vector plasmid usually includes the LTR at both ends, the cleavage site, and the packaging signal ⁇ .
  • the HIV vector of the present invention may be modified as long as it conforms to the above definition, for example, "a sequence essential for function as a viral vector" as long as it is derived from HIV, other sequences derived from HIV or sequences other than HIV may be included.
  • a sequence essential for function as a viral vector as long as it is derived from HIV, other sequences derived from HIV or sequences other than HIV may be included.
  • an optimal sequence which can be included for example, it can be cPPT (central polypurine tract), endogenous promoter (CMV), or WPRE (woodchuck hepatitis virus posttranscriptional regulatory
  • human immunodeficiency virus includes all strains of HIV and subtypes thereof.
  • HIV includes both HIV-1 and HIV-2 strains.
  • HIV-1 is divided into M, 0, and N subtypes, and M subtype includes A, A2, B, C, D, E, Fl, F2, G, H, J, K subtypes, O subtype And N subtypes are rare.
  • HIV-2 has eight, B, C, D, E, F, and G subtypes, and its biological characteristics are similar to those of HIV-1, but its virulence is weak.
  • the recombinant lentiviral vector can be an SIV or HIV vector carrying any gene of interest.
  • the recombinant lentiviral vector is a recombinant simian immunodeficiency virus vector carrying a human pigment epithelium-derived factor gene or a recombinant human immunodeficiency virus vector carrying a human pigment epithelium-derived factor gene, or a small carrier carrying an interfering HIV virus replication.
  • the recombinant lentiviral vector may be a recombinant monkey carrying epidermal growth factor EGF, fibroblast growth factor FGF2, ciliary cytokine CNTF, GDNF, BDNF, LEDGF, EPO, NT-3, NT-4, RdCVF and the like.
  • Pigment epithelium derived factor a member of the serine protease superfamily, has a highly conserved sequence and a unique molecular structure. It has been studied for its functions such as neurotrophy, inhibition of neovascularization, and anti-tumor. hot spot. Its anti-angiogenic function is particularly important. It plays an important role in retinitis pigmentosa, retinal detachment, and retinal ischemic diseases.
  • the lentiviral vector provides a particularly suitable drug delivery mode by allowing the introduced foreign gene to stably integrate into the chromosome of the dividing cell and to be continuously expressed in the host.
  • SIV-PEDF vector refers to a recombinant SIV vector carrying the PEDF gene.
  • the SIV-PEDF carrier of the present invention is not related to the species and structure as long as it conforms to the above definition.
  • the SIV-PEDF vector can be a SIV-PEDF vector of any of the base sequences mentioned in Patent Application No. 200680012882.7.
  • a recombinant human immunodeficiency virus vector (HIV-PEDF vector) carrying the pigment epithelium-derived factor gene of the present invention refers to a recombinant HIV vector carrying the PEDF gene.
  • the recombinant lentiviral vector is a recombinant simian immunodeficiency virus vector or a recombinant human immunodeficiency virus vector carrying a small RNA fragment that interferes with HIV viral replication.
  • the small RNA fragment (abbreviated as siHIV) which interferes with HIV replication may be one or more selected from the group consisting of SEQ ID Nos. 1-9 mentioned in ZL02156785.9.
  • the recombinant lentiviral vector carries a number of single genes, such as RPE65 and the like. Mutations and deletions of these genes usually lead to some hereditary diseases.
  • the lentiviral vector carries some correct genes to infect specific stem cells, and then returns to the patient, thereby achieving a better therapeutic effect.
  • the recombinant lentiviral vector further carries a central polypeptidic sequence and/or a woodchuck hepatitis virus post-transcriptional regulatory element sequence.
  • a modification to increase the introduction efficiency and expression efficiency of the PEDF gene can be carried out in a HIV or SIV vector for cPPT or WPRE or a constitutive transport element (CTE), an RNA transport element RTE or a Vpx sequence of a helper gene in HIV-1 virus.
  • cPPT was originally a sequence existing in the SIV gene. It has been reported long ago in the HIV virus (R Charneau et al.: J. Virol 65: 2415-2431, 1991), and it is reported that after the introduction of cPPT into the HIV vector, the movement of the vector genome to the nucleus is accelerated, and the efficiency of gene introduction is improved ( A. Sirven et al.: Blood 96: 4103-4110, 2000)born WPRE is a factor that has a function to increase gene expression efficiency (US Patent 6284469: RNA export element and methods of use).
  • cPPT can be positioned in the same manner as the localization of a common lentiviral vector.
  • cPPT can be located between the promoter and the foreign gene, Alternatively, it is located upstream of the RRE sequence, preferably upstream of the non-LTR promoter driving the transcription of the gene carried.
  • the WPRE can be located downstream of the gene of interest such as the PEDF or FGF2 gene.
  • the recombinant lentiviral vector also carries the Vpx gene.
  • the Vpx helper gene enhances the transduction efficiency of bone marrow-like cells such as monocytes, macrophages, and dendritic cells (Goujon C. et al., Gene Ther 13: 991-994 (2006); Goujon C. et al., J Virol 82: 12335-45 (2008); Muhlebach MD et al, Mol Ther 12: 1206-6, 2005; Wolfrum N. et al, Virology 364: 330-41, (2007)).
  • the recombinant lentiviral vector also carries a CTE sequence capable of substituting REV and RRE sequences (AS von Gegerfelt and BK Felber, Virology 232:291-299, 1997; Zolotukhin AS. et al, J Virol. 68:7944-7952.) .
  • the dose of the recombinant lentiviral vector is 2 X 10 6 -2 X 10 1 G transducing units/ml (Tu/ml).
  • the recombinant lentiviral vector is administered at a dose of 5 x 10 6 - 2 10 1 G Tu/ml.
  • the recombinant lentiviral vector has a dose of 5 X 10 6 -5 X 10 8 Tu/ml, preferably a dose of 5 x 10 6 -2 x 10 7 Tu/mL
  • the formulation has a pH in the range of 6.5-7.4.
  • the formulation had a pH of 7.2.
  • the histidine hydrochloride has a molar concentration ranging from 1 to 50 mmol/L.
  • the histidine hydrochloride has a molar concentration ranging from 10 to 50 mmol/L.
  • the histidine hydrochloride molar concentration was 10 mmol/L.
  • the saccharide is selected from at least one of a monosaccharide and a non-reducing disaccharide. More preferably, the saccharide is selected from at least one of glucose, fructose, trehalose and sucrose.
  • the mass percentage of the saccharide content ranges from 2 to 10% (w/v) based on the recombinant lentiviral vector preparation. More preferably, the mass percentage of the saccharide content ranges from 5 to 10% (w/v) based on the recombinant lentiviral vector preparation. Most preferably, the mass percentage of the saccharide content ranges from 10% (w/v) or 5% (w/v) based on the recombinant lentiviral vector preparation.
  • the recombinant lentiviral vector preparation comprises:
  • the dose of the recombinant lentiviral vector preparation component a) is preferably 5 X 10 6 -5 X 10 8 Tu/ml, more preferably 5 X 10 7 -5 X 10 8 Tu/ml.
  • the recombinant lentiviral vector preparation comprises:
  • the dose of the recombinant lentiviral vector preparation component a) is preferably 5 X 10 6 -5 X 10 8 Tu/ml, more preferably 5 X 10 7 -5 X 10 8 Tu/ml.
  • the recombinant lentiviral vector formulation further comprises an isotonicity agent, the isotonic equivalent of the isotonic agent being in the range of 0.6% to 2.7% sodium chloride solution.
  • the osmotic pressure tolerated by the eye is equivalent to 0.6%-2% sodium chloride solution; the intramuscular injection can tolerate 0.45%-2.7% sodium chloride solution; the osmotic pressure requirement molar ratio is 0.9-1.1.
  • serum osmotic pressure value is usually about 285mosm / kg, the range of variation is about 275-300mosm / L, the corresponding NaCl is 0.83% -0.91%, the isotonic agent It is NaCl.
  • Maintaining isotonicity of the recombinant lentiviral vector is beneficial for long-term maintenance of the virus preparation, and avoids disintegration of the viral vector due to low osmotic pressure; on the other hand, the isotonic virus preparation can enter the human body in a painless or substantially painless manner, and is easy Absorbed by the body.
  • the recombinant lentiviral vector preparation further included 2 mmol/L of MgCl 2 .
  • the recombinant lentiviral vector preparation further comprises a surfactant having a mass percentage by volume of 0.005 to 0.015% (w/v) based on the recombinant lentiviral vector preparation.
  • the surfactant is at least one selected from the group consisting of Tween-20, Tween-80, and polyoxyethylene hydrogenated castor oil RH-40.
  • the recombinant lentiviral vector preparation further comprises a preservative in a final amount by weight of 0.001 to 1.0% (w/v) based on the recombinant lentiviral vector preparation.
  • the preservative is phenol having a mass percentage by volume of 0.5 to 1.0% (w/v) based on an aqueous phenol solution.
  • the recombinant lentiviral vector preparation further includes mannitol.
  • the volume percentage of the content is from 0.5 to 30%, preferably from 5 to 25%, based on the recombinant lentiviral vector preparation.
  • the main function of mannitol in the preparation is that mannitol can effectively prevent protein denaturation and protect the viral coat protein when the preparation is stored at a low temperature. Prevent it from being inactivated.
  • mannitol acts as a skeleton, which is advantageous for molding, and also has an effect of speeding up the reconstitution speed; when the preparation is tableted, mannitol is used as a It has no hygroscopicity, fast drying, good stability, and is refreshing and granulating.
  • the recombinant lentiviral vector formulation also includes glycerol.
  • the volume percentage of the content is 5-30%, preferably 10-30%, based on the recombinant lentiviral vector preparation.
  • Glycerol has three alcoholic hydroxyl groups and is excellent in water solubility, which can improve the stability of lentiviral vector preparation in histidine hydrochloride buffer, and glycerol has a certain amphoteric property on the lentiviral vector envelope protein.
  • the amino acid residue forms a protective layer, which improves the stability of the lentiviral vector to some extent.
  • glycerin can also be used as an isotonic regulator, antifreeze, taste masking agent, and is the safest excipient. If the preparation is made into a lyophilized dosage form, it is advantageous for lyophilization of the lentiviral vector preparation. forming.
  • the recombinant lentiviral vector preparation further includes human serum albumin and/or bovine serum albumin.
  • the mass percentage by volume of the content is from 0.5 to 5%, preferably from 1 to 3%, based on the recombinant lentiviral vector preparation.
  • Human albumin binds to the envelope glycoprotein of the lentiviral vector, particularly the vsvg envelope protein, increasing the stability of the lentiviral vector preparation.
  • the recombinant lentiviral vector preparation further includes at least one of histidine, glycine, alanine, and lysine. Preferably, it comprises O. lmM-lOmM histidine.
  • the amino acid can increase the tension between the lentiviral vector envelope protein, especially the vsvg envelope protein and histidine hydrochloride buffer, and increase the hydration level of the lentiviral vector envelope protein, thereby further enhancing the stability of the preparation.
  • the amino acid increases the hydration level of the lentiviral vector envelope protein, reduces the mechanical shear damage of the envelope protein, and promotes the formation of crystallization of the lentiviral vector during lyophilization.
  • the polymerization of lentiviral vectors during lyophilization maintains higher viral activity.
  • the recombinant lentiviral vector preparation further comprises an antioxidant having a mass percentage by volume of 0.01 to 1.0% (w/v) based on the recombinant lentiviral vector preparation.
  • the antioxidant is sodium sulfite or sodium hydrogen sulfite in a mass percentage by volume of 0.1-0.2% (w/v) based on a recombinant lentiviral vector preparation, or based on a recombinant lentiviral vector preparation.
  • Sodium thiosulfate in a volume percentage of 0.1% (w/v).
  • the recombinant lentiviral vector preparation further comprises, based on the recombinant lentiviral vector preparation, a content by volume of 5-50% dimethyl sulfoxide (DMSO) or 2-20% polyprene. DMSO or polyprene can improve the infection efficiency of the preparation and improve the stability.
  • the recombinant lentiviral vector preparation further comprises, based on the recombinant lentiviral vector preparation, a content of 5-10% by mass of a cytokine, which is a cytokine required for growth of hematopoietic stem cells or peripheral blood mononuclear cells. .
  • cytokine which is a cytokine required for growth of hematopoietic stem cells or peripheral blood mononuclear cells.
  • These cytokines increase the concentration of the formulation and increase the stability of the formulation. Wherein the cytokines are, for example, granulocyte colony stimulating factor, IL-3, IL-7, IL-11
  • the dosage of the injection may be a dose commonly used in the art. Up to 300 microliters, typically 1-200 microliters, preferably 50-150 microliters; if the subretinal injection mode is selected, the human injection dose per eye is 50 to 150 microliters, preferably 100 microliters.
  • the effective amount administered to a human subject is generally 2 10 6 - 2 10 1 () Tu / individual.
  • the modified SIV gene transfer vector, the packaging vector, the rev expression vector, and the VSV-G expression vector are obtained by the method of the patent CN200680012882, and the hPEDF fragment is added to the gene transfer vector, wherein the prepared gene transfer vector includes three Species: A gene transfer vector in which a cPPT fragment was added alone, a WPRE fragment was added alone, and a cPPT and WPRE fragment were simultaneously added.
  • Cell line 293T cells from human fetal kidney cells were seeded at approximately 1 ⁇ 10 7 (70-80% per day density) per 15 cm plastic culture in 20 ml D-MEM medium containing 10% fetal bovine serum ( Gibco BRL) The culture was carried out for 24 hours. After 24 hours of culture, the medium was replaced with 10 ml of OPTI-MEM medium (Gibco BRL) and used as a transfected cell.
  • each culture sub-gene transfer vector 10 g, packaging vector 5 g, rev expression vector 2 ⁇ g, VSV-G expression vector 2 ⁇ g dissolved in 1.5 ml of OPTI-MEM medium, add 40 ⁇ ⁇ PLUS Reagent reagent (Invitrogen) was stirred and allowed to stand at room temperature for 15 minutes.
  • a 60 ⁇ l of LIPOFECT AMINE Reagent diluted with 1.5 ml of hydrazine-hydrazine medium was added thereto and stirred, and allowed to stand at room temperature for 15 minutes.
  • the DNA complex was added dropwise to the above-mentioned 15 cm culture sub-cell, carefully shaken and mixed, and incubated at 37 ° C in a 5% CO 2 incubator. Incubate for 3 hours.
  • 13 ml of D-MEM medium containing 20% fetal calf serum was added for culture.
  • the cells were exchanged with fresh 30 ml of DMEM medium containing 10% fetal bovine serum.
  • DMEM medium containing 10% fetal bovine serum.
  • the recovered supernatant was filtered through a 0.45 ⁇ m filter and stored at 4 °C.
  • the supernatant was recovered, filtered through a 0.45 ⁇ m filter, mixed with the carrier recovered the previous day, and concentrated using a high-speed centrifuge.
  • the recovered carrier suspension was added to a sterilized test tube for centrifugation at 42500 G at 4 ° C for 1 hour. This centrifugation was repeated twice and the carrier suspension was concentrated to 500-1000 fold.
  • the carrier was precipitated as a precipitate, and the precipitate was dissolved in D-PBS.
  • the concentrated carrier was collected by column chromatography (GE Healthcare, XK16/100, 4FF (Sepharose 4 Fast Flow), loading flow rate 1.5 ml/min, column bed height 90 cm), and the first peak was collected and collected.
  • the samples were filtered through a 0.22 um filter, a small portion was used for titer determination, and the rest was stored at -80 °C for use.
  • Lentiviral vector titers include functional titers (functional titer: TU/ml) calculated from the number of cells expressing the protein of the gene carried.
  • HEK293T cells were seeded at a certain density (2 x 10 5 /well) in 24-well plates (BD), while ensuring the addition of 0.5 ml of cells per well to D-MEM medium ( Gibco BRL) of 10% fetal bovine serum. The solution was placed in a C0 2 incubator at 37 ° C for 24 hours.
  • the original virus solution carrying the cPPT and WPRE fragments and the D-PBS negative control were prepared by using the OPTI-MEM medium, and the 10-fold diluted virus solution was labeled as the dilution 1 (1/10 original concentration).
  • Immunofluorescence detection is then performed.
  • the specific operation is as follows: Aspirate the supernatant and store D-PBS at 4 ° C. Rinse once, 500 ul / well; Aspirate D-PBS, add iced anhydrous ethanol (-30 ° C), 500 uL / well, 4 ° C for 10 minutes; Absorb absolute ethanol, dry at room temperature for 5 minutes; D-PBS was used to rinse cells at 500 ul/well; lOOul/well primary antibody (Human Serpin Fl/PEDF specific polyclonal goat IgG, R&D, Cat. No. AF1177, 1.5 ug/ml per well) was added and cultured at 37 °C.
  • the box was shaken once every 15 minutes for 1 hour; the primary antibody was aspirated, and the cells were rinsed with D-PBS at room temperature, 500 ul/well for 2 times; D-PBS was discarded, and 200 ul/well of secondary antibody (Alexa Flour) was added.
  • 488 Rabbit Anti-goat IgG, Invitrogen, Cat. No. A-11078 Store in a 37 °C incubator for 1 hour in the dark, shake once every 15 minutes; rinse the cells 500 ⁇ L/well twice with D-PBS at room temperature.
  • Add D-PBS Dulbecco's Phosphate-Buffered Saline placed at room temperature at 300 ul/well at 4 °C.
  • Counting Using a 20 X lens observation with a fluorescence microscope, select a virus liquid sample with a fluorescence cell number of 20 to 80 per field to take a picture, and each hole is photographed at 6 points, and the five-pointed star is selected according to the five-pointed star format method. The vertices and the five points of the five-pointed star have a total of six points for taking pictures.
  • the expression vector obtained in Preparation Example 1 carrying both the cPPT and WPRE fragments had a virus titer of 2 10 1 G TU/ml.
  • virus droplets obtained by expressing the expression vector carrying the cPPT or WPRE fragment alone were simultaneously measured in the same manner as above, and were 1 X 10 8 TU/ml and 3 X 10 8 TU/ml, respectively.
  • a viral vector containing a cPPT and a WPRE fragment simultaneously is exemplified, but is not limited to the use of only the viral vector, and the lentiviral vector preparation described below may be arbitrarily equivalent to the lentiviral vector of the present invention. Replace or modify the viral vector.
  • Preparation Example 2 Preparation and titer determination of HIV lentiviral vector carrying PEDF
  • the cDNA of human retinal pigment epithelial ARPE-19 cell line (purchased from American type culture collection, ATCC) was used as a template, and the following primers were used to amplify the hPEDF CDS sequence:
  • hPEDF-Foword forward primer
  • hPEDF-Reverse reverse primer
  • PCR reaction cycle conditions denaturation at 95 °C for 5 minutes, then at 95 °C, 30 seconds; 60 °C, 1 minute, 72 °C, 45 seconds 40 cycles, and finally 72 °C extension for 10 minutes.
  • the hPEDF sequence was ligated into the pLenti6.3/V5-TOPO® vector (Invitrogen) according to the instructions of the TA clone, and the sequence of the hPEDF was confirmed by sequencing.
  • the HIV lentiviral vector carrying the hPEDF sequence was quantitatively prepared according to the method of Preparation Example 1 and titered, and the virus titer of the HIV lentiviral vector carrying the hPEDF sequence was determined to be 2 10 10 Tu/ml.
  • Preparation Example 3 Preparation of Viral Carrier Preparation
  • Preparation of lentiviral vector preservation solution Measure the buffer solution of 10 mM histidine hydrochloride 150 ml, add 20 g of trehalose, mix and add 10 mM histidine hydrochloride to a volume of 200 ml, adjust the pH to 7.2, wait until use.
  • the 2 x 10 10 TU/ml viral vector obtained in Preparation Example 2 was diluted to 5.4 x 10 7 Tu/ml with D-PBS, and 1 ml was placed in a labeled ultrafiltration tube, and the preservation solution prepared above was added thereto. 15ml. Centrifuge at 3,000 rpm for 3 to 3 minutes at 4 °C, discard the supernatant, and retain 3 ml of liquid. The above-prepared preservation solution of the preparation was further added to 15 ml, centrifuged once again at 3000 rpm/min, and finally the volume of the recombinant lentiviral vector preparation was controlled to be 1 ml.
  • the titer detection method was the same as that in the second preparation example, and the virus titer of the preparation was determined to be 5.4 X 10 7 Tu/ml, which proved that the virus titer was hardly reduced during the prescription replacement using the method.
  • the isotonic virus preparation can enter the human body in a painless or substantially painless manner, and is easily absorbed by the human body. Therefore, the above recombinant lentiviral vector preparation prescriptions 4, 8, and 10 are randomly selected, and the isotonicity equivalent of the isotonic agent is adjusted to be 0.6%-2.7% sodium chloride solution by using the isotonic agent NaCl. The stability of the above prescription. Table 2 Comparative recombinant lentiviral vector preparation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种重组慢病毒载体制剂,其中,所述制剂包括:a)有效剂量的重组慢病毒载体;b)维持所述制剂的pH值范围为6.0-8.0的组氨酸盐酸盐缓冲液;以及C)糖类。本发明所述的重组慢病毒制剂,由于含有了特定范围的非常规成分组氨酸盐酸盐缓冲液,大大加强了所述制剂的稳定性,尤其是其在深冷条件(例如不高于-60°C等)下长时间(例如,超过200天)保存,在较长时间暴露于有机体体温(例如,37°C)或室温后,仍然能够保持符合使用要求的病毒重组慢病毒载体活性。

Description

一种重组慢病毒栽体制剂 本申请要求于 2012 年 3 月 22 日提交中国知识产权局、 申请号为 201210078289.X, 发明名称为 "一种重组慢病毒载体制剂" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种病毒载体制剂, 更具体地, 本发明涉及一种重组慢病毒载 体制剂。 背景技术
随着基因治疗技术的发展,在治疗人类疾病方面病毒载体得到了越来越多 的应用。 其中, 慢病毒载体是常用的病毒载体, 慢病毒载体是在 HIV-1病毒基 础上改造而成的病毒载体系统,它能高效的将目的基因导入动物和人的原代细 胞或细胞系。 慢病毒载体基因组是正链 RNA, 其基因组进入细胞后, 在细胞 浆中被其自身携带的反转录酶反转为 DNA,形成 DNA整合前复合体,进入细 胞核后, DNA整合到细胞基因组中。 整合后的 DNA转录 mRNA, 回到细胞 浆中, 表达目的蛋白。
慢病毒载体介导的基因表达作用持续且稳定,原因是目的基因整合到宿主 细胞基因组中, 并随细胞基因组的分裂而分裂。 另外, 慢病毒载体能有效感染 并整合到非分裂细胞中。 以上特性使慢病毒载体与其它病毒载体相比, 比如不 整合的腺病毒载体、整合率低的腺相关病毒载体、 只整合分裂细胞的传统逆转 录病毒载体, 有很大的优势。 现今, 慢病毒载体介导的目的基因长期表达的组 织或细胞包括脑、 肝脏、 肌肉、 视网膜、 造血干细胞、 骨髓间充质干细胞、 巨 噬细胞等。
然而,慢病毒载体的稳定性很低, 而应用于人体治疗应用的病毒载体必须 维持其结构完整性才能保持生物活性。为了维持病毒载体的结构完整性必须在 相对低温下维持和运送这类制剂以便维持其生物活性。
慢病毒载体生物活性的丧失多发生在贮存保藏阶段。携带目的基因的重组 慢病毒载体一般制成液体制剂超低温 (例如不高于 -60°C ) 下保存, 在低温冷 冻条件下运输, 并在使用前解冻。 而在冷冻点以下的温度稳定的主要挑战之一 就是防止结构性和功能性成分在冷冻期间和保存阶段的物理性破坏。
慢病毒载体制剂一般均包括: 病毒基因组编码的蛋白及单链或双链基因 组。 如病毒含有包膜蛋白的话还包括脂双层包被膜的结构。 在超低温条件下, 蛋白质易受到变性的影响, 而脂双层在冷冻期间则易遭破坏, 因而一般情况下 病毒载体制剂不宜在超低温条件下长久保存。
另外, 但是超低温保存的时间过长(例如, 超过 200天)、 在使用过程中 反复冻融、或者使用不当使所述制剂在达到靶器官之前过长时间地暴露于有机 体体温 (例如人体或其他动物体体温)或室温下, 重组慢病毒载体的生物活性 (一般以病毒滴度来表示 )往往会迅速大幅下降,从而直接影响到重组慢病毒 载体制剂的治疗效果或者使临床前研究以及临床研究的结果不准确。
再者,对于缺乏适当病毒载体的贮存设备的临床环境而言, 病毒制剂的使 用成本对于医院是否愿意采用起着举足轻重的作用。药房和医院这些地方通常 具有 -20°C的冷冻装置而很少具有 -80°C的冷冻装置。 一直以来, 人们都认为病 毒载体的液体制剂只有在超低温才是稳定的。
因此亟需一种稳定性好的重组慢病毒载体制剂, 其在 -80°C超低温条件下 能长时间保存, 或 -20°C的中低温条件也具有长期保持稳定性的能力, 或在使 用过程中反复冻融、 以及在较长时间暴露于有机体体温或室温后,仍然能够保 持符合使用要求的重组慢病毒载体活性。 发明内容
本发明提供一种重组慢病毒载体制剂, 其中, 所述制剂包括: a )有效剂 量的重组慢病毒载体; b ) 维持所述制剂的 pH值范围为 6.0-8.0的组氨酸盐酸 盐緩冲液; 以及 c )糖类。
本发明所述的重组慢病毒制剂,由于含有了特定范围的非常规成分组氨酸 盐酸盐緩冲液, 大大加强了所述制剂的稳定性, 尤其是其在 -80°C超低温条件 下能长时间保存, 或 -20°C的中低温条件也具有长期保持稳定性的能力, 或在 使用过程中反复冻融、 以及在较长时间暴露于有机体体温(例如, 37°C )或室 温后, 仍然能够保持符合使用要求的病毒重组慢病毒载体活性。
附图说明 图 1表示处方 2、 6和对比例 1-4的制剂在 37°C下稳定性比较曲线; 图 2表示处方 2、 6和对比例 1-4的制剂在 25°C下稳定性比较曲线; 图 3表示处方 2、 6和对比例 1-4的制剂在 4°C下稳定性比较曲线; 图 4表示处方 2、 6和对比例 1-4的制剂在 -20°C下稳定性比较曲线; 图 5表示处方 2、 6和对比例 1-4的制剂在 -80°C下稳定性比较曲线; 图 6表示处方 2、 6和对比例 1-4的制剂在反复冻融条件下稳定性比较曲 线。
具体实施方式
本发明提供的重组慢病毒载体制剂包括:
a )有效剂量的重组慢病毒载体;
b ) 维持所述制剂的 pH值范围为 6.0-8.0的组氨酸盐酸盐緩冲液; 以及 c )糖类。
在本发明中的 "病毒载体"是指缺乏自我复制能力, 具有将核酸分子导入 宿主内部的能力的病毒颗粒。 "慢病毒载体" 是指以灵长类免疫缺陷病毒来源 的一种病毒载体,慢病毒载体包含了包装、转染、稳定整合所需要的遗传信息, 是慢病毒载体系统的主要组成部分。携带有外源基因的慢病毒载体在慢病毒包 装质粒、 细胞系的辅助下, 经过病毒包装成为有感染力的病毒颗粒, 通过感染 细胞或活体组织, 实现外源基因在细胞或活体组织中表达。 "重组" 病毒载体 是指通过基因重组技术构建的病毒载体。 利用编码病毒基因组的 DNA和包装 细胞构建的病毒载体包含在重组病毒载体中。
本发明所述重组慢病毒载体可以进一步进行 VSV-G假型化。 VSV-G假型 化是指, 使载体的被膜包含水泡性口炎病毒( Vesicular stomatitis virus; VSV ) 的表面糖蛋白质 VSV-G蛋白而言的。 VSV-G蛋白可以是来源于任意 VSV株 的蛋白。 例如, 可以使用来自 Indiana血清型毒株( J. Virology 39: 519-528 (1981) )的 VSV-G蛋白, 但不仅局限于此。 另外, VSV-G蛋白可以是天然蛋 白质的衍生物, 通过一个或者多个氨基酸发生置换、 缺失、 和 /或增加等得到 的修饰蛋白。 VSV-G假型化载体可以在病毒产生时通过与 VSV-G蛋白共存 来制备。例如,通过 VSV-G表达载体的转染,来自整合入宿主染色体 DNA的 VSV-G基因的表达诱导, 或者通过使 VSV-G在包装细胞内进行表达, 经由 这个细胞产生的病毒颗粒可以被 VSV-G假型化。 由于 VSV-G蛋白质是一种 糖蛋白会形成一种稳定的 3 聚体, 存在于细胞膜上, 因此纯化过程中不会引 起载体粒子的破坏,可以用离心进行高浓度的浓缩( Yang, Y. 等人, Hum Gene Ther: Sep, 6(9), 1203-13. 1995 )。优选地, 所述重组慢病毒载体为水泡性口炎病 毒 G蛋白包被的慢病毒载体。
本发明所述重组慢病毒载体可以进一步含有来自其它病毒的被膜蛋白。例 如, 作为这种蛋白质, 最好是来自感染人类细胞的病毒被膜蛋白。 对这种蛋白 质没有特别的限定, 可例举出逆转录病毒的兼嗜性病毒手皮膜蛋白等。作为这 种逆转录病毒的兼嗜性病毒被膜蛋白, 例如可以使用来自小鼠白血病病毒 ( MuMLV ) 4070A株的被膜蛋白。 另外, 也可以使用来自 MuMLV 10A1的被 膜蛋白 (例如 pCL-lOAl(Imgenex) (Naviaux, R. K. 等, J. Virol. 70:5701-5705 (1996) )。 另外, 作为疱疹病毒科的蛋白, 可以举出例如, 单纯性疱疹病毒的 gB、 gD、 gH、 gp85蛋白, EB病毒的 gp350、 gp220蛋白等。 作为嗜肝病毒科 的蛋白, 可以例举出 B型肝炎病毒的 S蛋白等。 所述被膜蛋白还可为麻疹病 毒糖蛋白与其他单链抗体融合后形成(Funke S.等 Mol Ther 16:1427-36, 2008; Frecha C.等, Blood, 114:3173-80. 2009 ) 。
慢病毒载体的包装通常采用瞬时转染或采用细胞系包装。瞬时转染时可以 用作包装细胞使用的人类细胞株, 例如包括 293 细胞、 293T细胞、 293FT细 胞、 293LTV细胞、 293EBNA细胞及其他的从 293 细胞分离的克隆; SW480 细胞、 u87MG细胞、 HOS细胞、 C8166细胞、 MT-4 细胞、 Molt-4 细胞、 HeLa 细胞、 HT1080 细胞、 TE671 细胞等。 来源于猴子的细胞株, 例如, COS1细 胞、 COS7细胞、 CV-1细胞、 BMT10细胞等。 而且, 通常采用的磷酸钙和 PEI 转染试剂, 还有一些转染试剂如 Lipofectamine2000、 FuGENE和 S93fectin也 被经常使用。
慢病毒的包装也采用一些慢病毒包装细胞系, 如使用最普遍的 Env糖蛋 白、 VS VG蛋白或 HIV- 1 gag-pol蛋白所产生的稳定细胞系。
为了安全起见, 大规模使用的慢病毒载体系统都是采用分割基因组的方 法, 即将起不同辅助功能的基因定位于不同的质粒。 目前有四质粒系统(编码 gag-pol基因、 Rev基因、 VSVG基因、 SIN转移基因分别位于四个不同的质粒)、 三质粒系统(去掉了编码 Rev基因的质粒, 在 gag-pol质粒中 gag-pol基因采 用了在人细胞中偏爱性的密码子)和二质粒系统(慢病毒载体包装所必需的辅 助基因位于同一个质粒上, 这些辅助基因是单一的基因序列; 另一个则是转基 因质粒;)。 也有超过四质粒系统的慢病毒包装系统在使用。
本发明提及的重组慢病毒载体实质上可以进行完全纯化。纯化方法包括过 滤器过滤、 离子交换层析、 超滤、 分子筛、 核酸酶消化、 过滤除菌等己知的纯 化 /分离方法来进行。 通常, 在小规模制备时, 也采用高速离心的方法。 例如 将载体悬液通过 0.45 μ ιη的过滤器进行过滤后, 42500xg、 90分钟, 4°C下进 行离心, 可以对载体进行沉淀和浓缩。
优选地, 所述重组慢病毒载体为灵长类的重组慢病毒载体, 即重组人免疫 缺陷病毒载体 ( human immunodeficiency virus , HIV )或重组猴免疫缺陷病毒 载体 ( simian immunodeficiency virus, SIV ); 或非灵长类的重组慢病毒载体, 即重组马感染性贫血病毒 ( equine infectious anemia virus, EIAV )或重组猫科 免疫缺陷型病毒 ( feline immunodeficiency virus, FIV )或重组羊关节炎脑炎病 毒 ( caprine arthritis-encephalitis virus, CAEV )。
优选地,所述重组慢病毒载体为重组人免疫缺陷病毒载体或重组猴免疫缺 陷病毒载体。 本发明中提及的 "猴免疫缺陷病毒(SIV )载体" 是指在病毒颗 粒中的核酸分子内, 作为病毒载体功能所必需的序列为 SIV基因组由来序列 的载体。 本发明中的作为病毒载体功能所必需的序列是指从 5'端开始顺次为 5'LTR的 R区域、 U5区域、 包装信号 ( φ )、 RRE、 3'LTR的启动子区域以外 的 U3区域和 R区域序列。 本发明中的 SIV载体只要与上述定义相符也可加 以改造, 例如, "作为病毒载体功能所必需的序列" 只要来自 SIV, 其他来自 SIV的序列或者来自 SIV以外的序列也可以包含在内。作为可包含的最适序列 来讲, 例如可以是 cPPT (中央聚嘌呤区 central polypurine tract )、 内部启动子 ( CMV )、 WPRE ( woodchuck hepatitis virus post-transcriptional regulatory element )。
在本发明中,猴免疫缺陷病毒包括有 SIV的所有株以及其亚型。作为 SIV 单离株来说,可以例举出 SIVagm、 SIVcpz, SIVmac、 SIVmnd, SIVsm、 SIVsnm, SIVsyk等, 但并不仅仅限于这些病毒株。 本发明中的 "人免疫缺陷病毒(HIV )载体" 是指病毒颗粒中的核酸分子 内, 作为病毒载体功能所必需的序列为 HIV基因组由来序列的载体。 其中, HIV-1载体含有包装、逆转录和整合所需的 HIV顺式作用序列, 同时具有异源 启动子控制下的多克隆位点及在此位点插入的目的基因。 载体质粒上 HIV-1 的顺式序列通常包括两端的 LTR、剪切位点及包装信号 Ψ等。本发明中的 HIV 载体只要与上述定义相符也可加以改造, 例如, "作为病毒载体功能所必需的 序列" 只要来自 HIV, 其他来自 HIV的序列或者来自 HIV以外的序列也可以 包含在内。 作为可包含的最适序列来讲, 例如可以是 cPPT ( central polypurine tract )、内邵启动子 ( CMV )、 WPRE( woodchuck hepatitis virus posttranscriptional regulatory element )。
在本发明中, 人免疫缺陷病毒包括有 HIV的所有株以及其亚型。 HIV包 括 HIV-1和 HIV-2两种毒株。 其中, HIV-1分为 M、 0、 N亚型组, M亚型组 包括 A、 A2、 B、 C、 D、 E、 Fl、 F2、 G、 H、 J、 K亚型, O亚型和 N亚型艮 少见。 HIV-2有八、 B、 C、 D、 E、 F、 G亚型, 它的生物学特性与 HIV-1相似, 但毒力较弱。
所述重组慢病毒载体可为携带任何目的基因的 SIV或 HIV载体。优选地, 所述重组慢病毒载体为带有人色素上皮衍生因子基因的重组猴免疫缺陷病毒 载体或携带有人色素上皮衍生因子基因的重组人免疫缺陷病毒载体,或为携带 有干涉 HIV病毒复制的小 RNA片段的重组猴免疫缺陷病毒载体或携带有干涉 HIV病毒复制的小 RNA片段的重组人免疫缺陷病毒载体。
所述重组慢病毒载体可为携带有表皮生长因子 EGF、 成纤维细胞生长因 子 FGF2、 睫状细胞因子 CNTF、 GDNF、 BDNF、 LEDGF、 EPO、 NT-3、 NT-4、 RdCVF等基因的重组猴免疫缺陷病毒载体或重组人免疫缺陷病毒载体。
色素上皮衍生因子 (Pigment epithelium derivedfactor, PEDF), 是丝氨酸 蛋白酶超家族成员, 它具有高度保守的序列和独特的分子结构, 因具有神经营 养、抑制新生血管、 抗肿瘤等多种功能而成为研究的热点。 其抗新生血管的功 能尤为重要。 在视网膜色素变性、视网膜脱落、视网膜缺血性疾病中扮演着重 要的角色。慢病毒载体因可使得导入的外源基因稳定整合到分裂细胞的染色体 中, 在宿主内可以持续表达, 因而提供了特别适当的药物传输方式。 带有本发明的色素上皮衍生因子基因的重组猴免疫缺陷病毒载体
( SIV-PEDF载体)是指携带 PEDF基因的重组 SIV载体。本发明的 SIV-PEDF 载体只要符合上述定义, 是与种类以及结构无关的。 SIV-PEDF载体可为专利 申请号为 200680012882.7中提及的任意碱基序列的 SIV-PEDF载体。
带有本发明的色素上皮衍生因子基因的重组人免疫缺陷病毒载体 (HIV-PEDF载体)是指携带 PEDF基因的重组 HIV载体。
优选地,所述重组慢病毒载体为携带有干涉 HIV病毒复制的小 RNA片段 的重组猴免疫缺陷病毒载体或重组人免疫缺陷病毒载体。其中, 所述干涉 HIV 病毒复制的小 RNA片段(可简写为 siHIV )可以为选自 ZL02156785.9中提及 的 SEQ ID Nos.1-9中的一种或几种。
优选地, 所述重组慢病毒载体携带一些单基因, 例如 RPE65等。 这些基 因的突变、缺失通常会导致一些遗传性疾病。通过慢病毒载体携带一些正确的 基因感染特定的干细胞, 再回输病人体内, 从而达到较好的治疗效果。
优选地, 所述重组慢病毒载体还带有中央聚嘌呤序列和 /或土拨鼠肝炎病 毒转录后调控元件序列。进而,在基因转移载体 DNA中,最好进行以提高 PEDF 基因的导入效率以及表达效率的改造。 比如进行提高导入效率的改造例子, 可 以在 HIV或 SIV载体中进行 cPPT或 WPRE或组成性转运元件 ( constitutive transport element, CTE )、 RNA转运元件 RTE或 HIV-1病毒中辅助基因 Vpx 序列的导入。
其中, cPPT原本是存在于 SIV基因纽的一个序列。 在 HIV 病毒中很久 以前就有报道(RCharneau等人 : J.Virol 65: 2415-2431 ,1991 ), 报道指出, 在 HIV载体中导入 cPPT后, 载体基因组向细胞核的移动加快, 基因导入效率 提高 ( A.Sirven等人 : Blood 96:4103-4110, 2000 )„ WPRE是具有提高基因表 达效率功能的因子 ( US Patent 6284469 : RNA export element and methods of use )。 有报道指出在其它的慢病毒载体中, 同时导入 cPPT和 WPRE 两个因 子, 最终可以进一步提高各自的效果 (SC. Barry 等人 : Hum. Gene Ther. 12:1103-1108, 2001 )。
本发明的携带 PEDF基因的 SIV载体中, cPPT可以采用与常见的慢病 毒载体的定位一样的定位。 例如: cPPT 可以定位在启动子与外源基因之间, 或者定位在 RRE序列的上游, 最好是定位在驱动所携带基因转录的上述非 LTR 启动子的上游。 WPRE可以定位在所携带目的基因如 PEDF或者 FGF2 基因的下游。
所述重组慢病毒载体还带有 Vpx基因。 Vpx辅助基因提高对单核细胞、 巨噬细胞和树突细胞等骨髓样细胞的转导效率 (Goujon C.等, Gene Ther 13:991-994(2006); Goujon C.等, J Virol 82:12335-45(2008); Muhlebach MD等, Mol Ther 12:1206-16,2005;Wolfrum N.等, Virology 364:330-41, (2007) )。
所述重组慢病毒载体还带有能够取代 REV和 RRE序列的 CTE序列 ( A. S. von Gegerfelt和 B. K. Felber, Virology 232:291-299, 1997; Zolotukhin AS.等, J Virol. 68:7944-7952. )。
所述重组慢病毒载体的剂量为 2 X 106-2 X 101G转导单位 /毫升 ( Tu/ml )。 所 述重组慢病毒载体的剂量为 5 x 106-2 101GTu/ml。优选地, 所述重组慢病毒载 体的剂量为 5 X 106-5 X 108Tu/ml, 优选剂量为 5 x 106-2 x 107Tu/mL
所述制剂的 pH值范围为 6.5-7.4。 所述制剂的 pH值为 7.2。
所述组氨酸盐酸盐摩尔浓度范围为 l-50mmol/L。 所述组氨酸盐酸盐摩尔 浓度范围为 10-50mmol/L。 所述组氨酸盐酸盐摩尔浓度为 10mmol/L。
所述糖类选自单糖和非还原性二糖中的至少一种。更优选所述糖类选自葡 萄糖、 果糖、 海藻糖和蔗糖中的至少一种。 以重组慢病毒载体制剂为基准, 所 述糖类含量的质量体积百分比范围为 2-10% ( w/v )。 更优选, 以重组慢病毒载 体制剂为基准, 所述糖类含量的质量体积百分比范围为 5-10% ( w/v )。 最优选 以重组慢病毒载体制剂为基准, 所述糖类含量的质量体积百分比范围为 10% ( w/v )或 5% ( w/v )。
所述重组慢病毒载体制剂包括:
a )剂量为 2 X 106-2 101G Tu/ml的带有人色素上皮衍生因子基因的重组猴 免疫缺陷病毒载体;
b )维持所述制剂的 pH值范围为 7.2的 10mmol/L的组氨酸盐酸盐緩冲液; 以及
c ) 以重组慢病毒载体制剂为基准, 含量的质量体积百分比为 10% ( w/v ) 的海藻糖。 其中, 所述重组慢病毒载体制剂组分 a )剂量优选为 5 X 106-5 X 108 Tu/ml, 更优选为 5 X 107-5 X 108 Tu/ml。
所述重组慢病毒载体制剂包括:
a )剂量为 2 X 106-2 101G Tu/ml的带有人色素上皮衍生因子基因的重组猴 免疫缺陷病毒载体;
b )维持所述制剂的 pH值范围为 7.2的 10mmol/L的组氨酸盐酸盐緩冲液; 以及
c ) 以重组慢病毒载体制剂为基准, 含量的质量体积百分比为 5% ( w/v ) 的葡萄糖。
其中,所述重组慢病毒载体制剂组分 a )剂量优选为 5 X 106-5 X 108 Tu/ml, 更优选为 5 X 107-5 X 108Tu/ml。
所述重组慢病毒载体制剂还包括等渗剂,所述等渗剂的氯化钠等渗当量范 围为 0.6%-2.7%氯化钠溶液。 其中, 眼可耐受的渗透压相当于 0.6%-2%氯化钠 溶液; 肌内注射可耐受 0.45%-2.7%的氯化钠溶液; 药典中要求渗透压摩尔浓 度比 0.9-1.1 , 相当于 0.8%-1.1%氯化钠溶液; 血清的渗透压值通常约为 285mosm/kg,其变化范围大约是 275-300mosm/L,对应的 NaCl为 0.83%-0.91%, 所述等渗剂为 NaCl。 维持重组慢病毒载体等渗有利于长期保持病毒制剂, 可 避免因低渗透压造成病毒载体的崩解; 另一方面, 等渗的病毒制剂可以无痛或 基本无痛的方式进入人体, 且易于被人体吸收。
所述重组慢病毒载体制剂还包括为 2mmol/L的 MgCl2
所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质 量体积百分比为 0.005-0.015% ( w/v ) 的表面活性剂。 所述表面活性剂选自吐 温 -20、 吐温 -80和聚氧乙烯氢化蓖麻油 RH-40中的至少一种。
所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,最终含量 的质量体积百分比为 0.001-1.0% ( w/v ) 的防腐剂。 所述防腐剂为以苯酚水溶 液为基准, 含量的质量体积百分比为 0.5-1.0% ( w/v ) 的苯酚。
所述重组慢病毒载体制剂还包括甘露醇。 以重组慢病毒载体制剂为基准, 含量的体积百分比为 0.5-30%,优选 5-25%。 甘露醇在该制剂中起到的主要作 用是在低温保存该制剂时,甘露醇能有效避免蛋白质变性,保护病毒外壳蛋白 防止其失活。 另一方面, 如将该制剂制成冻干剂型, 甘露醇起骨架作用, 有利 于成型, 同时也能起到加快复溶速度的效果; 如将该制剂制成片剂时, 甘露醇 作为赋形剂, 无吸湿性, 干燥快, 稳定性好, 而且爽口、 造粒性好。
所述重组慢病毒载体制剂还包括甘油。 以重组慢病毒载体制剂为基准,含 量的体积百分比为 5-30%, 优选 10-30%。 甘油具有 3个醇羟基, 而且水溶性 极好, 可以提高慢病毒载体制剂在组氨酸盐酸盐緩冲液中的稳定性,且甘油具 有一定的两性性质,对慢病毒载体包膜蛋白上的氨基酸残基形成保护层,在一 定程度上提高慢病毒载体的稳定性。 另外, 甘油在此还可作为等渗调节剂、 防 冻剂、 味觉掩盖剂, 是一种最安全的赋形剂, 如将该制剂制成冻干剂型, 则有 利于慢病毒载体制剂的冻干成型。
所述重组慢病毒载体制剂还包括人血清白蛋白和 /或牛血清白蛋白。 以重 组慢病毒载体制剂为基准, 含量的质量体积百分比为 0.5-5%, 优选 1-3%。 人 血白蛋白能亲和慢病毒载体的包膜糖蛋白, 尤其是 vsvg包膜蛋白, 增加了慢 病毒载体制剂的稳定性。
所述重组慢病毒载体制剂还包括组氨酸、甘氨酸、 丙氨酸和赖氨酸的至少 一种。 优选包括 O. lmM-lOmM的组氨酸。 氨基酸可以增加慢病毒载体包膜蛋 白, 尤其是 vsvg包膜蛋白和组氨酸盐酸盐緩冲液之间的张力, 提高慢病毒载 体包膜蛋白水化水平,使得该制剂稳定性进一步增强。 同时如将该制剂制成冻 干剂型, 因氨基酸提高了慢病毒载体包膜蛋白水化水平, 减轻了包膜蛋白的机 械剪切损伤,促成慢病毒载体在冻干过程中形成结晶, 减少在冻干过程中慢病 毒载体的聚合, 从而保持更高的病毒活性。
所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质 量体积百分比为 0.01-1.0% ( w/v )的抗氧化剂。 所述抗氧化剂为以重组慢病毒 载体制剂为基准, 含量的质量体积百分比为 0.1-0.2% ( w/v ) 的亚硫酸钠或亚 硫酸氢钠,或者以重组慢病毒载体制剂为基准,含量的质量体积百分比为 0.1% ( w/v ) 的硫代硫酸钠。
所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质 量体积百分比为 5-50%二甲基亚砜(DMSO )或 2-20%聚戊二烯(polyprene )。 DMSO或 polyprene可以提高制剂的感染效率, 提高稳定性。 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质 量体积百分比为 5-10%细胞因子,所述细胞因子为造血干细胞或外周血单核细 胞生长所需的细胞因子。 这些细胞因子增加了制剂浓度, 提高制剂的稳定性。 其中,所述细胞因子例如粒细胞集落刺激因子、 IL-3、 IL-7、 IL-11、 SCF、 G-SCF、 GM-SCF等。
如果以注射方式给药本发明所述重组慢病毒载体制剂或是根据受试者体 内环境要求去除生物不相容成分的本发明重组慢病毒载体制剂时,注射用量可 以为本领域常用的剂量, 至多 300微升、 一般 1-200微升、 优选 50-150微升; 如选择视网膜下腔注射方式时, 人每只眼睛一次注射剂量为 50〜150微升, 优 选 100微升。 其中给予人类受试者的有效量一般为 2 106-2 101() Tu/个体。
下面结合实施例进一步说明本发明, 除非特别说明本发明所用到的试剂、 培养基均为市售商品。
制备实施例
制备例一、 携带 PEDF的 SIV慢病毒栽体的制备及滴度测定
1、 携带 PEDF的 SIV慢病毒载体的制备
参照专利 CN200680012882中的方法获得改造后的 SIV基因转移载体、包 装载体、 rev表达载体、 以及 VSV-G表达载体 4种质粒, 并将 hPEDF片段加 入基因转移载体中,其中制备的基因转移载体包括三种:单独加入 cPPT片段、 单独加入 WPRE片段及同时加入 cPPT和 WPRE片段的基因转移载体。
将来自人类胎儿肾细胞的细胞株 293T 细胞按照每一个 15cm塑料培养 大约 1χ107(次日密度为 70-80 % )进行接种,在 20ml含 10 %胎牛血清的 D-MEM 培养基( Gibco BRL ) 中进行 24小时培养。 24小时培养后, 将培养基用 10ml 的 OPTI-MEM培养基进行置换( Gibco BRL ), 作为转染细胞备用。
按照每一个培养亚基因转移载体为 10 g, 包装载体 5 g、 rev表达载体 2 μ g, VSV-G表达载体 2 μ g溶解在 1.5ml的 OPTI-MEM培养基后, 加入 40 μ ΐ 的 PLUS Reagent试剂 (英杰公司 )进行搅拌, 在室温下放置 15 分钟。 在其中加入用 1.5ml 的 ΟΡΉ-ΜΕΜ 培养基稀释的 60 μ 1 的 LIPOFECT AMINE Reagent进行搅拌, 在室温下放置 15 分钟。 将该 DNA复合物滴加到 上述的 15cm培养亚的细胞中, 小心振荡混匀, 在 37°C , 5%C02的孵育器中进 行 3 小时的孵育。在上述培养亚中加入 13ml含 20% 胎牛血清的 D-MEM培 养基进行培养。
转染后的次日,用新鲜的 30ml含 10 %胎牛血清的 DMEM培养基进行交 换培养。 转染两天后, 回收上清, 加入 20ml新鲜培养基。 回收的上清用 0.45 μ ιη 的过滤器进行过滤, 在 4 °C 下保存。 转染三天后, 回收上清, 用 0.45 μ ιη的过滤器进行过滤, 与前一天回收的载体混合, 利用高速离心机进行浓缩 操作。将回收的载体悬液加入到经过灭菌处理的试管中分装,在 42500G, 4°C 下进行 1 小时的离心。这种离心操作重复二次,将载体悬液浓缩成 500倍- 1000 倍。 载体作为沉淀物进行沉淀, 沉淀物用 D-PBS进行溶解。 浓缩后的载体, 经柱层析(GE Healthcare, XK16/100, 填料 4FF ( Sepharose 4 Fast Flow ), 上 样流速 1.5ml/min,柱床高度 90 cm )后,收集第一峰,将收集到的样品经 0.22um 的滤膜过滤分装, 一小部分用于滴度测定, 其余的保存于 -80°C备用。
2、 滴度测定
慢病毒载体滴度包括由表达所携带基因的蛋白的细胞数目计算出的功能 滴度( Functional titer : TU/ml )。 将 HEK293T细胞按照一定的密度 ( 2 x 105/ 孔 )接种 24孔板( BD公司), 同时保证每孔加入 0.5ml细胞与 10 %胎牛血清 的 D-MEM培养基 ( Gibco BRL ) 的混合液, 置于 37°C C02培养箱内培养 24 小时。 分别用 OPTI-MEM培养基稀释上述制备所得同时携带有 cPPT及 WPRE片段的原病毒液及 D-PBS阴性对照 , 10倍比稀释的病毒液分别标示为 稀释液 1 ( 1/10原浓度)、 稀释液 2 ( 1/102原浓度)、 稀释液 3 ( 1/103原浓度)、 稀释液 4 ( 1/104原浓度)、 稀释液 5 ( 1/105原浓度), 10倍比稀释的阴性对照 分别标示为阴性对照 1-5 , 备用。
用 0.5ml/孔的 OPTI-MEM ( Gibco BRL )漂洗细包, 操作轻緩, 以免细月包 脱落。 依照将上述已稀释好的病毒液与阴性对照加入 ΗΕΚ293Τ细胞中, 每种 浓度病毒液或阴性对照重复三孔, 200uL/孔, 做好相应标记。 将已感染有病毒 液的 24孔板置于 37°C C02培养箱内培养。 24小时后进行补液, 加含 20%的 胎牛血清的 DMEM培养基, 200ul/孔。 置于 37 °C C02培养箱内继续培养 24 小时。
随后进行免疫荧光检测。 具体操作为: 吸弃上清, 用 4°C保存的 D-PBS 漂洗一次, 500ul/孔; 吸弃 D-PBS, 加入冰镇无水乙醇(-30°C ), 500uL/孔, 4°C 放置 10分钟; 吸弃无水乙醇, 室温干燥 5分钟; 用室温放置的 D-PBS进行漂 洗细胞 ,500ul/孔; 加入 lOOul/孔的一抗 (Human Serpin Fl/PEDF specific polyclonal goat IgG, R&D, Cat. No. AF1177 , 每孔 1.5ug/ml )放置 37 °C培养箱 1小时, 每隔 15min摇晃一次; 吸弃一抗, 用室温放置的 D-PBS进行漂洗细 胞, 500ul/孔, 共 2次; 吸弃 D-PBS, 加入 200ul/孔的二抗( Alexa Flour 488 Rabbit Anti-goat IgG, Invitrogen, Cat. No. A-11078 ); 避光放置 37 °C培养箱 1 小时,每 15min摇晃一次; 用室温放置的 D-PBS进行漂洗细胞 500ul/孔 共 2 次; 加入室温放置的 D-PBS (杜比可磷酸緩冲盐 Dulbecco's Phosphate-Buffered Saline ) 300ul/孔 4°C放置 。
计数: 使用荧光显微镜的 20 X的镜头观察, 选择每个视野荧光细胞数量 在 20〜80之间的病毒液样品进行拍照,每个孔照 6个点,按照五角星格式法选 择五角星的五个顶点以及五角星正中心共六个点进行拍照计数。
根据公式:病毒液滴度( TU/ml ) =每个视野荧光个数 X稀释倍数 X 345.36, 计算病毒液滴度。
按照上述方法计算可知:制备例一中制得的同时携带 cPPT和 WPRE片段 的表达载体得到的病毒液滴度为 2 101G TU/ml。
按照上述相同的方法同时测定了单独携带 cPPT或 WPRE片段的表达载体 得到的病毒液滴度, 分别为 1 X 108 TU/ml、 3 X 108 TU/ml。
下面在制备慢病毒载体制剂时以含同时携带 cPPT和 WPRE片段的病毒载 体为例,但并不限于仅使用该种病毒载体, 下述慢病毒载体制剂可为本发明的 慢病毒载体经任意等同替换或改造后的病毒载体。 制备例二、 携带 PEDF的 HIV慢病毒栽体的制备及滴度测定
2-1 重组慢病毒基因转移载体 HIV-hPEDF的构建
以人视网膜色素上皮 ARPE-19细胞株 (购自美国模式培养物保藏所 (American type culture collection), 即 ATCC )的 cDNA为模板, 以如下引物 #文 PCR扩增 hPEDF CDS序列:
hPEDF-Foword (正向引物) : atgcaggccctggtgctactcc; hPEDF-Reverse (反向引物) : ttaggggcccctggggtccag。
PCR 反应循环条件: 95 °C变性 5分钟, 然后在 95 °C , 30秒;, 60 °C , 1 分钟 , 72 °C , 45秒 40个循环 , 最后 72 °C延伸 10min。
凝胶回收后将得到的 hPEDF序列按照说明书采用 TA克隆的方法连入 pLenti6.3/V5-TOPO®载体( Invitrogen ), 测序确认连入的 hPEDF序列正确。
2-2携带 hPEDF序列的 HIV慢病毒载体的大量制备
按照制备例 1中的方法大量制备携带 hPEDF序列的 HIV慢病毒载体并进 行滴度测定, 测定得知携带 hPEDF序列的 HIV慢病毒载体的病毒液滴度为 2 1010 Tu/ml。 制备例三、 病毒栽体制剂的制备
(一)处方 2的慢病毒载体制剂的制备
1、 制备慢病毒载体用保存液: 量取緩冲液 10mM组氨酸盐酸盐 150ml, 加 20g海藻糖, 混匀加 10mM组氨酸盐酸盐定容至 200ml,调 PH到 7.2,待用。
2、 制备处方 2的制剂:
将制备例 2 中得到的 2 x 1010 TU/ml的病毒载体用 D-PBS稀释到 5.4 x 107Tu/ml,取 1 ml放置于标记的超滤管中,加入上述制备的保存液至 15ml。 4 °C , 3000rpm/min离心 2-3min, 弃上清, 保留 3ml的液体。 再加入制剂的上述制备 的保存液至 15ml, 3000rpm/min再离心 1次, 最后控制重组慢病毒载体制剂的 体积为 lml。
0.22μιη滤膜过滤后, 无菌分装后, 随意取一样品立即 ( 20min 内)进行 滴度检测。 上述实验过程均应在 0°C的冰上。 其他剩余的样品液氮中速冻后, 直接保存在 -80°C。
3、 处方 2制剂的滴度检测。
滴度检测方法同制备例二中的方法, 测得所述制剂的病毒滴度为 5.4 X 107Tu/ml, 证明使用本方法在进行处方置换过程中病毒滴度几乎无降低。
(二)制备表 1中的其余处方及表 2中的对比例
按照(一)中同样的方法制备表 1中的其余处方及表 2中的对比例, 即将 处方中除緩冲液以外的物质加入到緩冲液中混勾定容调 PH得到病毒载体用保 存液, 再用该保存液进行溶液置换 D-PBS制备得到所述处方制剂。 表 1 本发明重组慢病毒栽体制剂的处方
Figure imgf000017_0001
为了维持重组慢病毒载体等渗利于长期保持病毒制剂 ,避免因低渗透压造 成病毒载体的崩解, 同时, 等渗的病毒制剂可以无痛或基本无痛的方式进入人 体, 且易于被人体吸收, 故随意抽取上述重组慢病毒载体制剂处方 4、 8、 10, 用等渗剂 NaCl调节使所述等渗剂的氯化钠等渗当量范围为 0.6%-2.7%氯化钠 溶液, 以考察上述处方的稳定性。 表 2对比例重组慢病毒栽体制剂
对比例 1 a. 5.4 l07Tu/ml的 SIV-hPEDF
b. lOmM 羟甲基氨基甲烷 Tris
c. 10%海藻糖(w/v )
d. 2mM MgCl2
e. 0.01%Tween80
f. pH7.2
对比例 2 a. 5.4 l07Tu/ml SIV-hPEDF
b. D-PBS
c. 10% 海藻糖(w/v )
d. 0.01%Tween80
e. pH7.2
对比例 3 a. 5.4 l07Tu/ml的 SIV-hPEDF
b. lOmM Tris
c. 5%葡萄糖(w/v )
d. 2mM MgCl2
e. 0.01%吐温 80 ( Tween80 )
f. pH7.2
对比例 4 a. 5.4 l07Tu/ml SIV-hPEDF
b. D-PBS
c. 2.5%或 5%葡萄糖(w/v )
e. 0.01%Tween80
f. pH7.2
效果测试例: 不同温度条件下重组慢病毒制剂活性滴度检测
( 1 ) 37°C条件下不同重组慢病毒载体制剂对重组慢病毒稳定性的影响。 将实施例 1-13和对比例 1-4制备的重组慢病毒载体制剂从 -80°C保存环境 中取出, 立即放入 37°C下水浴。 不同的时间段放入相应的样品 (48h, 36h, 24h, Oh ), 统一进行活性滴度检测。 颗粒滴度的测定, 制备例方法同样进行。 结果如下表 3以及图 1所示:
Figure imgf000019_0001
从表 3可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。
( 2 ) 25 °C条件下不同重组慢病毒载体制剂对重组慢病毒稳定性的影响。 将实施例 1-13和对比例 1-4制备的重组慢病毒载体制剂从 -80 °C保存环境 中取出, 立即放入 25 °C下水浴。 不同的时间段放入相应的样品(8d, 4d, 2d, Oh ), 统一进行活性滴度检测。 颗粒滴度的测定, 制备例方法同样进行。 结果 如下表 4以及图 2所示: 表 4
Figure imgf000020_0001
从表 4可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。
( 3 ) 4°C条件下不同重组慢病毒载体制剂对重组慢病毒稳定性的影响。 将将实施例 1-13和对比例 1-4制备的重组慢病毒载体制剂从 -80°C保存环 境中取出立即放在 4°C下水浴。 不同的时间段放入相应的样品(32d, 16d, 8d, Oh ), 统一进行活性滴度检测。 结果如下表 5以及图 3所示:
Figure imgf000021_0001
从表 5可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。
( 4 ) -20°C条件下不同重组慢病毒载体制剂对重组慢病毒稳定性的影响。 将实施例 1-13和对比例 1-4制备的重组慢病毒载体制剂从 -80 °C保存环境 中取出, 立即保存在 -20 °C下。 不同的时间段放入相应的样品 (360d, 180d, 90d, Oh ), 统一进行活性滴度检测。 结果如下表 6以及图 4所示:
Figure imgf000022_0001
从表 6可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。
( 5 ) -80°C条件下不同重组慢病毒载体制剂对重组慢病毒稳定性的影响。 将实施例 1-13 和对比例 1-4 制备的重组慢病毒载体制剂在 -80 °C下保存 Oh, 180d, 360d, 720d )。统一进行活性滴度检测,从 -80 °C取出后立即放入 37 °C 水浴, 解冻后随即放于冰上进行活性滴度检测。 结果如下表 7以及图 5所示:
Figure imgf000023_0001
从表 7可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。
( 6 )反复冻融对不同重组慢病毒制剂稳定性的影响。
将实施例 1-13和对比例 1-4制备的重组慢病毒载体制剂经无菌过滤分装 后, 将其中一部分样品立即进行滴度检测, 即为冻融前样品的滴度; 另外一部 分样品放入液氮中速冻, 冻 10分钟后取出, 随即放入 37 °C水浴中, 时时晃动, 观察到不同的制剂处方完全解冻后, 立即取出, 记为冻融 1次。 随后又立即放 入液氮中速冻, 冻 10分钟后取出, 随即放入 37 °C水浴中, 时时晃动, 观察到 不同的制剂处方完全解冻后, 立即取出, 记为冻融 2次。 依次循环, 直至冻融 5次、 8次。 将冻融前的样品、 冻融 5次的样品和冻融 8次的样品进行滴度检 测。 结果如下表 8以及图 6所示:
表 8
Figure imgf000024_0001
从表 5可以看出, 实施例处方的稳定性好于对比例处方的稳定性。 同时, 实施例处方 2、 处方 6的处方简单且稳定性远远好于其他实施例处方。

Claims

权利 要求 书
1. 一种重组慢病毒载体制剂, 其特征在于, 所述制剂包括:
a )有效剂量的重组慢病毒载体;
b ) 维持所述制剂的 pH值范围为 6.0-8.0的组氨酸盐酸盐緩冲液; 以及 c )糖类。
2. 根据权利要求 1所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒 载体为水泡性口炎病毒 G蛋白包被的慢病毒载体。
3. 根据权利要求 1或 2所述的重组慢病毒载体制剂, 其中, 所述重组慢 病毒载体还带有选自由中央聚嘌呤序列、 土拨鼠肝炎病毒转录后调控元件序 列、 组成型转运元件序列、 RNA转运元件序列和 HIV-1病毒中辅助基因 Vpx 序列所组成的组中的序列。
4. 根据权利要求 1-3任意一项所述的重组慢病毒载体制剂, 其中, 所述 重组慢病毒载体为重组人免疫缺陷病毒载体、重组猴免疫缺陷病毒载体、重组 马感染性贫血病毒、 重组猫科免疫缺陷型病毒或重组羊关节炎脑炎病毒。
5. 根据权利要求 1-4中任意一项所述的重组慢病毒载体制剂, 其中, 所 述重组慢病毒载体为带有人色素上皮衍生因子基因的重组猴免疫缺陷病毒载 体或携带有干涉 HIV病毒复制的小 RNA片段的重组猴免疫缺陷病毒载体。
6. 根据权利要求 1-5 中任意一项所述的重组慢病毒载体制剂, 其中, 所 述重组慢病毒载体的剂量为 2 106-2 101GTu/ml。
7. 根据权利要求 6所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒 载体的剂量为 5 X 106-2 1010Tu/mL
8. 根据权利要求 1-7 中任意一项所述的重组慢病毒载体制剂, 其中, 所 述制剂的 pH值范围为 6.5-7.4。
9. 根据权利要求 8 所述的重组慢病毒载体制剂, 其中, 所述制剂的 pH 值为 7.2。
10. 根据权利要求 1-9中任意一项所述的重组慢病毒载体制剂, 其中, 所 述组氨酸盐酸盐摩尔浓度范围为 l-50mmol/L。
11. 根据权利要求 10所述的重组慢病毒载体制剂, 其中, 所述组氨酸盐 酸盐摩尔浓度范围为 10-50mmol/L。
12. 根据权利要求 11所述的重组慢病毒载体制剂, 其中, 所述组氨酸盐 酸盐摩尔浓度为 10mmol/L。
13. 根据权利要求 1-12 中任意一项所述的重组慢病毒载体制剂, 其中, 所述糖类选自单糖和非还原性二糖中的至少一种。
14. 根据权利要求 13所述的重组慢病毒载体制剂, 其中, 所述糖类选自 葡萄糖、 果糖、 海藻糖和蔗糖中的至少一种。
15. 根据权利要求 1-14中任意一项所述的重组慢病毒载体制剂, 其中, 以重组慢病毒载体制剂为基准, 所述糖类含量的质量体积百分比范围为 2-10%。
16. 根据权利要求 15所述的重组慢病毒载体制剂, 其中, 以重组慢病毒 载体制剂为基准, 所述糖类含量的质量体积百分比范围为 5-10%。
17. 根据权利要求 16所述的重组慢病毒载体制剂, 其中, 以重组慢病毒 载体制剂为基准, 所述糖类含量的质量体积百分比为 10%或 5%。
18. 根据权利要求 1-17 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂包括:
a )剂量为 5 106-5 108 Tu/ml的带有人色素上皮衍生因子基因的重组猴 免疫缺陷病毒载体;
b )维持所述制剂的 pH值范围为 7.2的 10mmol/L的组氨酸盐酸盐緩冲液; 以及
c ) 以重组慢病毒载体制剂为基准, 含量的质量体积百分比为 10%的海藻 糖。
19. 根据权利要求 1-17 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂包括:
a )剂量为 5 106-5 108 Tu/ml的带有人色素上皮衍生因子基因的重组猴 免疫缺陷病毒载体;
b )维持所述制剂的 pH值范围为 7.2的 10mmol/L的组氨酸盐酸盐緩冲液; 以及
c )以重组慢病毒载体制剂为基准,含量的质量体积百分比为 5%的葡萄糖。
20. 根据权利要求 1-19 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括等渗剂,所述等渗剂的氯化钠等渗当量范围为 0.6%-2.7%氯化钠溶液。
21. 根据权利要求 20所述的重组慢病毒载体制剂, 其中, 所述等渗剂为 NaCL
22. 根据权利要求 1-21 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括为 2mmol/L的 MgCl2
23. 根据权利要求 1-22 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质量体 积百分比为 0.005-0.015%的表面活性剂。
24. 根据权利要求 23所述的重组慢病毒载体制剂, 其中, 所述表面活性 剂选自吐温 -20、 吐温 -80和聚氧乙烯氢化蓖麻油 RH-40中的至少一种。
25. 根据权利要求 1-24中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,最终含量的质 量体积百分比为 0.001-1.0%的防腐剂。
26. 根据权利要求 25所述的重组慢病毒载体制剂, 其中, 所述防腐剂为 以苯酚水溶液为基准, 含量的质量体积百分比为 0.5-1.0%的苯酚。
27. 根据权利要求 1-26中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括甘露醇和 /或甘油。
28. 根据权利要求 1-27 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括人血清白蛋白和 /或牛血清白蛋白。
29. 根据权利要求 1-28 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括组氨酸、甘氨酸、丙氨酸和赖氨酸的至少一种。
30. 根据权利要求 1-29 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,含量的质量体 积百分比为 0.01-1.0%的抗氧化剂。
31. 根据权利要求 30所述的重组慢病毒载体制剂, 其中, 所述抗氧化剂 为以重组慢病毒载体制剂为基准,含量的质量体积百分比为 0.1-0.2%的亚硫酸 钠或亚硫酸氢钠, 或者以重组慢病毒载体制剂为基准,含量的质量体积百分比 为 0.1%的硫代硫酸钠。
32. 根据权利要求 1-31 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,其中含量的质 量体积百分比为 5-50%的二甲基亚砜或含量的质量体积百分比为 2-20%的聚戊
33. 根据权利要求 1-32 中任意一项所述的重组慢病毒载体制剂, 其中, 所述重组慢病毒载体制剂还包括以重组慢病毒载体制剂为基准,其中含量的质 量体积百分比为 5-10%的造血干细胞或外周血单核细胞生长所需的细胞因子。
PCT/CN2013/073056 2012-03-22 2013-03-22 一种重组慢病毒载体制剂 WO2013139300A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/386,662 US9969984B2 (en) 2012-03-22 2013-03-22 Storage stable recombinant lentiviral vector preparation
EP13764205.4A EP2829285B1 (en) 2012-03-22 2013-03-22 Recombinant lentiviral vector preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210078289.X 2012-03-22
CN201210078289.XA CN103316356B (zh) 2012-03-22 2012-03-22 一种重组慢病毒载体制剂

Publications (1)

Publication Number Publication Date
WO2013139300A1 true WO2013139300A1 (zh) 2013-09-26

Family

ID=49185587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073056 WO2013139300A1 (zh) 2012-03-22 2013-03-22 一种重组慢病毒载体制剂

Country Status (4)

Country Link
US (1) US9969984B2 (zh)
EP (1) EP2829285B1 (zh)
CN (1) CN103316356B (zh)
WO (1) WO2013139300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059241A1 (en) 2015-10-02 2017-04-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lentiviral protein delivery system for rna-guided genome editing
WO2017079269A1 (en) 2015-11-04 2017-05-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Igf2bp1 and/or igf2bp3 for treatment
WO2022051555A2 (en) 2020-09-03 2022-03-10 Rampart Bioscience, Inc. Soluble alkaline phosphatase constructs and expression vectors including a polynucleotide encoding for soluble alkaline phosphatase constructs

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20231183T1 (hr) 2013-02-15 2024-01-05 Bioverativ Therapeutics Inc. Optimizirani gen faktora viii
CN104195175A (zh) * 2014-08-05 2014-12-10 哈尔滨医科大学附属第四医院 慢病毒载体介导pedf在抑制肾细胞癌血行转移中的应用
CN106714826A (zh) 2014-09-07 2017-05-24 西莱克塔生物科技公司 用于减弱基因表达调节抗病毒转移载体免疫应答的方法和组合物
CN116162658A (zh) 2015-11-19 2023-05-26 诺华股份有限公司 用于稳定慢病毒制剂的缓冲液
HRP20221089T1 (hr) 2016-02-01 2022-11-25 Bioverativ Therapeutics Inc. Optimizirani geni faktora viii
CN105886534A (zh) * 2016-04-29 2016-08-24 苏州溯源精微生物科技有限公司 一种抑制肿瘤转移的方法
CN105999260B (zh) * 2016-05-13 2019-12-10 四川大学 氢氧化铝凝胶-氯化钠复合免疫佐剂及其制备方法和用途
CN107312799B (zh) * 2017-06-30 2020-05-01 深圳宾德生物技术有限公司 慢病毒载体冻存保护液及其制备方法和应用
CN109157518B (zh) * 2018-09-26 2021-03-12 厚朴生物科技(苏州)有限公司 慢病毒载体冻干保存方法及制剂
CN112080524A (zh) * 2019-06-13 2020-12-15 南京艾德免疫治疗研究院有限公司 一种慢病毒载体冻存保护液的制备方法
EP4038182A1 (en) * 2019-09-30 2022-08-10 Bioverativ Therapeutics Inc. Lentiviral vector formulations
CN110714029A (zh) * 2019-11-06 2020-01-21 无锡生基医药科技有限公司 一种慢病毒载体全封闭生产的方法及系统
CN113549653B (zh) * 2020-04-23 2024-03-22 上海赛比曼生物科技有限公司 用于慢病毒载体长期存贮的组合试剂
CN115960962A (zh) * 2021-10-09 2023-04-14 江苏金斯瑞蓬勃生物科技有限公司 一种用于加强慢病毒载体稳定性的保护剂及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284469B1 (en) 1997-09-18 2001-09-04 The Salk Institute RNA export element and methods of use
WO2008106646A2 (en) * 2007-03-01 2008-09-04 Introgen Therapeutics, Inc Methods and formulations for topical gene therapy
CN101657097A (zh) * 2007-03-01 2010-02-24 先进视觉疗法公司 以炎症为特征的疾病的治疗

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029024A1 (en) * 1998-11-16 2000-05-25 Introgen Therapeutics, Inc. Formulation of adenovirus for gene therapy
US7456009B2 (en) 2000-03-07 2008-11-25 Merck & Co., Inc. Adenovirus formulations
CN1301263C (zh) 2002-12-18 2007-02-21 北京昭衍新药研究中心 一组抗hiv感染及防治艾滋病的核苷酸序列及其应用
US20070148765A1 (en) * 2003-11-19 2007-06-28 Evans Robert K Preservative-containing virus formulations
WO2006060710A2 (en) * 2004-12-02 2006-06-08 Becton, Dickinson And Company Vaccine formulations for intradermal delivery comprising adjuvants and antigenic agents
US20060121055A1 (en) * 2004-12-06 2006-06-08 Becton, Dickinson And Company, Inc. Compositions with enhanced immunogenicity
WO2006090697A1 (ja) 2005-02-23 2006-08-31 Dnavec Corporation Pedfおよびfgf2を含む眼組織細胞におけるアポトーシス変性を伴う疾患の治療薬
EP1859813A1 (en) 2005-02-23 2007-11-28 DNAVEC Research, Inc. Remedy for disease associated with apoptotic degeneration in ocular cell tissue with the use of siv-pedf vector
KR20090122465A (ko) * 2007-03-01 2009-11-30 어드벤스드 비젼 테라피스, 인코포레이티드 염증성 질환의 치료
WO2009056651A1 (en) * 2007-11-02 2009-05-07 Cytos Biotechnology Ag Angiotensin-carrier formulation
US20130028933A1 (en) * 2009-12-28 2013-01-31 Ligocyte Pharmaceuticals, Inc. Methods for stabilizing influenza antigen enveloped virus-based virus-like particle solutions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284469B1 (en) 1997-09-18 2001-09-04 The Salk Institute RNA export element and methods of use
WO2008106646A2 (en) * 2007-03-01 2008-09-04 Introgen Therapeutics, Inc Methods and formulations for topical gene therapy
CN101657097A (zh) * 2007-03-01 2010-02-24 先进视觉疗法公司 以炎症为特征的疾病的治疗

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
A. SIRVEN ET AL., BLOOD, vol. 96, 2000, pages 4103 - 4110
FRECHA C. ET AL., BLOOD, vol. 114, 2009, pages 3173 - 80
FUNKE S. ET AL., MOL THER, vol. 16, 2008, pages 1427 - 36
GOUJON C. ET AL., GENE THER, vol. 13, 2006, pages 991 - 994
GOUJON C. ET AL., J VIROL, vol. 82, 2008, pages 12335 - 45
J. VIROLOGY, vol. 39, 1981, pages 519 - 528
MUHLEBACH M. D. ET AL., MOL THER, vol. 12, 2005, pages 1206 - 16
NAVIAUX, R,K., J. VIROL., vol. 70, 1996, pages 5701 - 5705
P. CHARNEAU ET AL., J. VIROL, vol. 65, 1991, pages 2415 - 2431
SC. BARRY ET AL., HUM. GENE THER., vol. 12, 2001, pages 1103 - 1108
See also references of EP2829285A4 *
VON GEGERFELT A. S.; FELBER B. K., VIROLOGY, vol. 232, 1997, pages 291 - 299
WOLFRUM N. ET AL., VIROLOGY, vol. 364, 2007, pages 330 - 41
YANG, Y ET AL., HUM GENE THER: SEP, vol. 6, no. 9, 1995, pages 1203 - 13
ZHANG, YIZHE ET AL.: "Preparation of Stabilizer of Freeze-dried Adenovirus-based Live HIV Vaccine", CHINESE JOURNAL OF BIOLOGICALS, vol. 20, no. 2, February 2007 (2007-02-01), pages 104 - 106, XP008174388 *
ZOLOTUKHIN A. S. ET AL., J VIROL., vol. 68, pages 7944 - 7952

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017059241A1 (en) 2015-10-02 2017-04-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Lentiviral protein delivery system for rna-guided genome editing
WO2017079269A1 (en) 2015-11-04 2017-05-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Igf2bp1 and/or igf2bp3 for treatment
WO2022051555A2 (en) 2020-09-03 2022-03-10 Rampart Bioscience, Inc. Soluble alkaline phosphatase constructs and expression vectors including a polynucleotide encoding for soluble alkaline phosphatase constructs

Also Published As

Publication number Publication date
EP2829285B1 (en) 2017-10-11
CN103316356B (zh) 2016-08-17
EP2829285A1 (en) 2015-01-28
US20150056696A1 (en) 2015-02-26
EP2829285A4 (en) 2015-11-04
US9969984B2 (en) 2018-05-15
CN103316356A (zh) 2013-09-25

Similar Documents

Publication Publication Date Title
WO2013139300A1 (zh) 一种重组慢病毒载体制剂
US20210317169A1 (en) Stabilized human immunodeficiency virus (hiv) envelope (env) trimer vaccines and methods of using same
JP7162895B2 (ja) Hiv予備免疫化および免疫療法
JP7153332B2 (ja) Hivワクチン接種および免疫療法
CN107312799B (zh) 慢病毒载体冻存保护液及其制备方法和应用
JP2023015407A (ja) 事前の免疫化ステップのないhiv免疫療法
CN109563139B (zh) 稳定的假型化慢病毒颗粒及其用途
JP2023512191A (ja) ポリペプチド、その調製方法およびその使用
Rabinovich et al. A novel, live-attenuated vesicular stomatitis virus vector displaying conformationally intact, functional HIV-1 envelope trimers that elicits potent cellular and humoral responses in mice
JP4959547B2 (ja) Siv−pedfベクターを用いた眼組織細胞におけるアポトーシス変性を伴う疾患の治療薬
Bongard et al. Interference of retroviral envelope with vaccine-induced CD8+ T cell responses is relieved by co-administration of cytokine-encoding vectors
ES2305840T3 (es) Sistema de vectores quimericos.
EP1548101A1 (en) Methods of producing a viral vector comprising a membrane protein that binds to sialic acid as a component of the envelope using neuraminidase derived from gram-positive bacteria
JP2021519069A (ja) 遺伝子改変リンパ球の製造方法
CN102961757A (zh) 携带双链rna靶抗原和中和抗原的假病毒颗粒疫苗
ES2345198T3 (es) Composicion y procedimientos inmunologicos.
Rabinovich et al. A Novel
Vargas Jr Development and application of a novel integrase defective lentiviral episomal vector for selective expression and persistence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386662

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013764205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013764205

Country of ref document: EP