WO2013136694A1 - 無線通信装置及び無線通信方法 - Google Patents
無線通信装置及び無線通信方法 Download PDFInfo
- Publication number
- WO2013136694A1 WO2013136694A1 PCT/JP2013/001168 JP2013001168W WO2013136694A1 WO 2013136694 A1 WO2013136694 A1 WO 2013136694A1 JP 2013001168 W JP2013001168 W JP 2013001168W WO 2013136694 A1 WO2013136694 A1 WO 2013136694A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- header
- unit
- wireless communication
- communication device
- decoding
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/22—Parsing or analysis of headers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1111—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/6325—Error control coding in combination with demodulation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6522—Intended application, e.g. transmission or communication standard
- H03M13/6527—IEEE 802.11 [WLAN]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0047—Decoding adapted to other signal detection operation
- H04L1/005—Iterative decoding, including iteration between signal detection and decoding operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0061—Error detection codes
- H04L1/0063—Single parity check
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03012—Arrangements for removing intersymbol interference operating in the time domain
- H04L25/03019—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
- H04L25/03057—Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
Definitions
- the present disclosure relates to a wireless communication apparatus and a wireless communication method for decoding a header in a packet communication system.
- the header is first demodulated and decoded before the packet data (payload) is demodulated and decoded.
- the header includes control information necessary for demodulating and decoding the payload. After decoding of the header is completed, demodulation of the payload is started.
- Non-Patent Document 1 discloses an LDPC decoding method capable of realizing high throughput.
- payload demodulation does not start until header decoding is complete.
- the receiver receives the received signal including the header, and then performs demodulation of the header and LDPC code. After decryption, a header as control information is acquired. The receiver can start demodulating the payload after obtaining the header.
- decoding algorithms for LDPC codes for example, the “sum-product” method and the “min-sum” method are known.
- the time required for decoding the header becomes long.
- the receiver must temporarily hold the payload received in the buffer until the decoding of the header is completed.
- the size of the buffer required to hold the payload increases.
- the present disclosure has been made in view of the above-described conventional circumstances, and provides a wireless communication device and a wireless communication method that decode a header at high speed and reduce time required for demodulation and decoding of a payload. Objective.
- the present disclosure is a wireless communication apparatus that receives a frame-format signal having a plurality of header sequences, a demodulator that demodulates the plurality of header sequences, and a decoder that decodes the demodulated header sequences.
- a decoding unit that acquires header information.
- the present disclosure is also a wireless communication method for receiving a frame format signal having a plurality of header sequences, the step of demodulating the plurality of header sequences, and decoding the demodulated header sequences to generate the signal Obtaining the header information.
- FIG. 2 is a block diagram showing a modification of the wireless communication apparatus shown in FIG.
- FIG. 6 is a time chart showing a specific example of the reception processing timing of the wireless communication device, (a) an example of operation in the wireless communication device of this embodiment, (b) demodulating the last header sequence (-cs2) included in the header And comparative example when decrypting
- FIG. 8 is a time chart showing a specific example of the reception processing timing of the wireless communication apparatus, (a) an operation example in the wireless communication apparatus of this embodiment, and (b) when the LDPC decoding unit decodes the header,
- Comparative example A block diagram showing composition of a radio communications apparatus of a 4th embodiment 10 is a time chart showing a specific example of the reception processing timing of the wireless communication apparatus in FIG.
- FIG. 10 is a time chart showing a specific example of the reception processing timing of the wireless communication apparatus in FIG. 10 is a flowchart showing a reception processing procedure of the wireless communication apparatus in FIG.
- FIG. 1 shows the format of a physical layer (PHY) frame as a signal used for communication by the wireless communication apparatus of this embodiment. This frame format is used for high-speed decoding of the PHY header.
- PHY physical layer
- the PHY frame shown in FIG. 1 includes fields of “Preamble F1”, “Header F2”, “Payload F3”, and “Beam Refinement field F4”.
- the preamble F1 includes STF (Short Training Field) and CEF (Channel Estimation Field).
- STF and CEF a known sequence that is predefined in the communication system, for example, a “Golay” sequence is used.
- the header F2 includes a known sequence called GI (Guard Interval), a block F21 in which control signals “cs1” and “cs2” are connected, and a block in which control signals “ ⁇ cs1” and “ ⁇ cs2” are connected. F22.
- the header F2 stores information used for communication management.
- the payload F3 has a plurality of blocks, and more specifically includes a plurality of blocks F31 in which GI and data (data) that is an information signal of the data body are connected.
- Cs1 is a series of signals in which control information necessary for demodulation and decoding of the PHY frame is error-correction coded.
- the series cs1 is defined as a “first header series”.
- error correction coding an LDPC code or a turbo code is used. In the present embodiment, description will be made using an LDPC code.
- Cs2 is a signal sequence obtained by scrambling the sequence “cs1”.
- the series “cs2” is defined as a “second header series”.
- the block F21 connecting “GI”, “cs1”, and “cs2” shown in FIG. 1 is defined as a “first header block”.
- “second header block” in which “GI”, “ ⁇ cs1”, and “ ⁇ cs2” are connected is connected to “first header block”.
- the series “ ⁇ cs1” and the series “cs1” have a complementary relationship.
- the series “ ⁇ cs2” and the series “cs2” have a complementary relationship.
- the field of the header F2 is configured to be connected to the field of the first header block F21 and the field of the second header block F22.
- the sequence “ ⁇ cs1” and the sequence “ ⁇ cs2” of the second header block F22 are defined as “third header sequence” and “fourth header sequence”, respectively.
- bit sequence (data body) transmitted from a transmitter as a wireless communication device to a receiver as a wireless communication device is defined as an “information bit”.
- the transmitter performs error correction coding on the “information bits” to be transmitted according to the error correction coding method and the error correction coding rate described in the header F2. Further, the transmitter modulates the error correction code bit obtained by the error correction encoding process according to the modulation method described in the header F2.
- the modulation signal obtained by modulation constitutes “data”, that is, information bits.
- the transmitter transmits a signal frame (PHY frame) including the payload F3 storing “data” to the receiver as the wireless communication device 10 of the present embodiment.
- PHY frame signal frame
- the modulation scheme, error correction coding method (LDPC code), and error correction coding rate described in the header F2 are collectively defined as MCS (Modulation and Coding Scheme).
- a “Beam Refinement field F4” of the PHY frame shown in FIG. 1 is an optional field, and is used as a training field in beam forming, for example.
- the option field is not necessarily used in communication, but is used for training of beam forming between a transmitter and a receiver, for example.
- the transmitter transmits the PHY frame to the receiver by single carrier transmission.
- FIG. 2 shows the configuration of the wireless communication apparatus 10 of the present embodiment.
- the physical layer signal frame included in the wireless signal received by the wireless communication device 10 has the same format as the PHY frame described above. That is, a transmitter (not shown) transmits a radio signal including a PHY frame, and the radio communication device 10 illustrated in FIG. 2 receives the radio signal.
- the radio communication device 10 shown in FIG. 2 can decode the header of the PHY frame of the received signal at high speed.
- the wireless communication device 10 may have a transmitter function.
- the synthesizing unit 15, the demodulating unit 17, the LPDC decoding unit 18, and the header analyzing unit 19 constitute a standby time control unit 100.
- the received signal including the PHY frame is received by the antenna 11 and converted into a baseband signal by the radio unit 12.
- the baseband signal is converted from an analog signal into a digital signal by an A / D (Analog-to-Digital) converter 13.
- the synchronization unit 14 performs synchronization processing using the preamble F1 shown in FIG. 1 in the PHY frame of the digital signal obtained as the conversion result of the A / D conversion unit 13. Specifically, the synchronization unit 14 performs synchronization processing for correcting a carrier frequency shift between the transmitter and the receiver based on the known sequence of the preamble F1. In addition, the synchronization unit 14 performs a synchronization process that corrects each sampling frequency shift between the transmitter and the receiver using the known sequence of the preamble F1.
- the received signal that has been subjected to the synchronization processing in the synchronization unit 14 is input to the synthesis unit 15.
- the combining unit 15 combines the first header block F21 and the second header block F22 shown in FIG. 1 in the PHY frame of the received signal.
- a synthesis algorithm in the synthesis unit 15 for example, known maximum ratio synthesis, equal gain synthesis, and selection synthesis are used.
- the combining unit 15 performs the maximum ratio combining when the change in the radio propagation environment is so small that it can be ignored in one PHY frame.
- the combining unit 15 estimates the propagation environment using the CEF of the preamble F1.
- the synthesizer 15 equalizes the fading fluctuation received in the propagation path by, for example, MMSE (Minimum Mean Square Error) or ZF (Zero Forcing). As a result, the synthesizer 15 can reduce distortion generated in the received signal and suppress the influence of fading fluctuation.
- the synthesizing unit 15 synthesizes the maximum ratio by adding the sequence “cs1” and the sequence “cs2” included in the header F2 after the equalization processing.
- the synthesizer 15 can scramble the sequence “cs1” and the sequence “cs2” by descrambling the sequence “cs2”, and can synthesize a total of four header sequences.
- a sequence obtained by descrambling the sequence “cs2” is “cs2 ′”
- the synthesis in the synthesis unit 15 can be expressed by the following mathematical formula (1). Thereby, the maximum ratio synthesis can be realized.
- cs1 first header sequence
- cs2 ′ second header sequence after descrambling ( ⁇ 1) ⁇
- ⁇ cs1 third header sequence after code inversion ( ⁇ 1) ⁇ ( ⁇ cs2 ′): descrambling and code
- the wireless communication device 10 can obtain a time diversity effect and improve the SNR (Signal to Noise Ratio) of the header.
- the header after the synthesis processing in the synthesis unit 15 is input to the demodulation unit 17.
- the demodulator 17 softly determines the header after the synthesis process.
- the soft decision result (soft decision value) of the demodulator 17 is input to the LDPC decoder 18.
- the LDPC decoding unit 18 performs error correction decoding on the soft decision value output from the demodulation unit 17 using an LDPC (Low Density Parity Check) code.
- LDPC Low Density Parity Check
- a known iterative decoding process such as “Sum-Product” decoding or “Min-Sum” decoding is used.
- the number of iterations of the iterative decoding process in the LDPC decoding unit 18 can be made smaller than the predetermined number of iterations because the combining unit 15 has improved the SNR in the header.
- the predetermined number of iterations represents the number of iterations when the synthesizing unit 15 decodes the payload of the received signal without performing synthesis processing on the header. The reason why the number of iterations in the LDPC decoding unit 18 may be small will be described as follows.
- FIG. 3 is a graph showing a bit error rate after a transmission signal obtained by modulating BPSK (Binary Phase Shift Keying) information bits encoded with LDPC code propagates through AWGN (Additive White Gaussian Channel).
- the horizontal axis represents Eb / NO (Energy, bit, to, noise, power, spectral, density, ratio), that is, the ratio of the energy in bits of the modulation signal to the spectral density of noise
- the vertical axis represents BER (Bit, Error, Rate). That is, it represents the bit error rate.
- FIG. 3 shows the BER characteristics when the number of iterations in the LPDC decoding unit 18 is 3 times and 5 times.
- the required Eb / NO for achieving a predetermined bit error rate is smaller in the number of repetitions of 5 than in the number of repetitions of 3. For this reason, when the LDPC code is decoded, the BER characteristic is improved by increasing the number of decoding iterations. However, when the number of repetitions of the decoding process in the LDPC decoding unit 18 increases, the decoding time in the LDPC decoding unit 18 becomes longer.
- the SNR of the header that is, the Eb / No shown in FIG.
- the BER characteristic is improved by the improvement of Eb / No, so that the number of iteration decoding in the decoding of the header of the LDPC decoding unit 18 can be reduced.
- the LDPC decoding part 18 can decode the header F2 at high speed.
- FIG. 16 is a block diagram illustrating an example of the internal configuration of the LDPC decoding unit 18.
- the LDPC decoding unit 18 illustrated in FIG. 16 includes a decoding calculation unit 31, a parity check unit 32, and a control unit 33.
- the decoding operation unit 31 decodes the soft decision value input to the LDPC decoding unit 18.
- the decoding operation unit 31 outputs a hard decision value that is a result of the decoding process.
- the parity check unit 32 performs a parity check calculation on the hard decision value output from the decoding calculation unit 31.
- the parity check unit 32 checks whether a hard decision value includes a determination error or no determination error by a parity check operation.
- the parity check unit 32 outputs the inspection result to the control unit 33.
- the control unit 33 If there is a determination error, the control unit 33 outputs an instruction to the decoding operation unit 31 to continue the decoding process. If there is no determination error, the control unit 33 outputs an instruction to the decoding operation unit 31 to stop the decoding process.
- the SNR is improved by combining headers, and the number of iteration decoding until it is detected that there is no determination error is reduced. Therefore, with the configuration of the LDPC decoding unit 18 shown in FIG. 16, the LDPC decoding unit 18 can stop the decoding process in the decoding calculation unit 31 at an early stage, thereby reducing the power consumption required for the decoding process of the LDPC decoding unit 18. it can.
- the LDPC decoding unit 18 outputs header information obtained by decoding the header F ⁇ b> 2 of the received signal to the header analysis unit 19.
- the header analysis unit 19 analyzes the MCS included in the header information, and acquires information on the modulation scheme and the error correction coding rate applied to “data” of the payload.
- the header analysis unit 19 outputs the analyzed MCS to the buffer 16, the demodulation unit 17, and the LDPC decoding unit 18 (feedback).
- the buffer 16 stores the signal data of the payload F3 until the header analysis unit 19 completes the MCS analysis. After the MCS is fed back, the buffer 16 starts reading the payload F3 stored in the buffer 16 itself, and outputs the read payload F3 to the demodulator 17. That is, the timing for starting demodulation and decoding of the payload F3 of the received signal is after the timing when the header analysis unit 19 feeds back the analyzed MCS to the buffer 16.
- the demodulator 17 demodulates the payload F3 according to the MCS fed back from the header analyzer 19 to obtain a soft decision value of the payload F3.
- the obtained soft decision value is input to the LDPC decoding unit 18.
- the LDPC decoding unit 18 decodes the soft decision value of the payload F3 according to the error correction coding rate fed back from the header analysis unit 19 and outputs information bits.
- the PHY frame format including four different header sequences (cs1, cs2, -cs1, and -cs2) shown in FIG. 1 in the header F2 is used as an example.
- the number of header sequences included in the header F2 may be two or more.
- the wireless communication device 10 combines a plurality of header sequences in the combining unit 15. Therefore, the SNR of the header is improved. Since the SNR of the header is improved, the LDPC decoding unit 18 can decode the number of iterations in header decoding less than a predetermined number of iterations. Thereby, the time required for decoding the LDPC code of the header can be shortened.
- the header analysis unit 19 can acquire the MCS earlier than the conventional technology. After obtaining the MCS, the header analysis unit 19 feeds back the MCS to the buffer 16, the demodulation unit 17, and the LDPC decoding unit 18. Demodulation of the payload F3 is started in synchronization with the feedback timing.
- the wireless communication apparatus 10 decodes the payload F3 from when the head of the payload F3 of the received signal is input to the buffer 16 until the demodulation of the payload F3 is started. Wait. The signal of the payload F3 received during standby is temporarily stored in the buffer 16 and held.
- the LDPC decoding unit 18 can reduce the waiting time in the buffer 16 by reducing the number of iteration decoding in header decoding. By reducing the waiting time, the memory capacity of the buffer 16 can be reduced.
- FIG. 5 is a time chart showing a specific example of the reception processing timing of the present embodiment.
- a time chart shown in FIG. 5A is an operation example of the wireless communication apparatus 10.
- the time chart shown in FIG. 5B is a comparative example in the case where a predetermined number of iterations is used in header decoding by the LDPC decoding unit 18.
- FIG. 5B is a comparative example for explaining the operation (see FIG. 5A) and effects of the wireless communication device 10 of the present embodiment.
- the wireless communication device 10 is the same as that shown in FIG. Does not work.
- Each unit of the wireless communication device 10 performs the following processing in each section [T1] to [T8] shown in FIG.
- composition (first time, FIGS. 5A and 5B): The composition unit 15 synthesizes the first header sequence (cs1) and the second header sequence (cs2) of the header.
- composition (second time, FIGS. 5A and 5B): The composition unit 15 synthesizes the third header sequence ( ⁇ cs1) and the fourth header sequence ( ⁇ cs2) of the header.
- Header decoding (in the case of the predetermined number of iterations, FIG. 5B):
- the LDPC decoding unit 18 decodes the header F2 by the predetermined number of iterations.
- the number of iterations in the LDPC decoding unit 18 is a predetermined number of iterations, that is, the number of iterations is not reduced, so that the time required for decoding by the LDPC decoding unit 18 becomes long.
- Payload buffering (FIGS. 5A and 5B): The buffer 16 temporarily stores the payload F3 of the received signal after the second combining process of the combining unit 15 (buffering). The buffering is continued until the buffer 16 acquires the MCS from the header analysis unit 19.
- Header decoding (reduction number reduction, FIG. 5A): The LDPC decoding unit 18 decodes the header F2 by an iterative process. The number of iterations in the section [T6] in the LDPC decoding unit 18 is less than the predetermined number of iterations because the header F2 is synthesized by the synthesis unit 15 and the SNR of the header F2 is improved.
- the time required to complete the decoding is shortened, and the buffering of the payload in the buffer 16 is completed in a short time. Accordingly, the memory capacity of the buffer 16 is reduced.
- T7 [T7] Payload demodulation / decoding
- T8 (T7 is FIG. 5A, T8 is FIG. 5B):
- the demodulator 17 outputs the payload output from the buffer 16 according to the MCS acquired by the header analyzer 19.
- F3 is demodulated, and the LDPC decoding unit 18 decodes the demodulation result (soft decision value).
- the wireless communication apparatus 10 shown in FIG. 2 reduces the time length of the section [T6] in FIG. 5A with respect to the section [T4] in FIG. Can be shortened. Therefore, in the section [T5] in FIG. 5A, the time for the buffer 16 to buffer the payload can be shortened, and the memory capacity of the buffer 16 can be reduced.
- FIG. 4 A configuration of a wireless communication device 10B according to a modification is shown in FIG. In this modification, it is possible to reduce the memory capacity used for synthesizing a plurality of header sequences. 4, the same elements as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
- the standby time control unit 100B includes a demodulation unit 17, a synthesis unit 15B, an LDPC decoding unit 18B, and a header analysis unit 19.
- the LDPC decoding unit 18B includes a soft decision value storage unit 21 and an LDPC decoding calculation unit 22.
- the synthesizing unit 15B is connected between the output of the demodulating unit 17 and the input of the LDPC decoding unit 18B.
- a transmitter (not shown) transmits a signal as follows. That is, the transmitter performs BPSK modulation on the header, or ⁇ / 2-shift BPSK (hereinafter referred to as ⁇ / 2-BPSK) modulation that rotates the BPSK signal point by ⁇ / 2 phase for each symbol. .
- the synchronization unit 14 applies a phase rotation of ⁇ / 2 for each symbol to the received signal.
- the signal point output from the synchronization part 14 becomes equivalent to the case where BPSK modulation is used.
- the demodulator 17 demodulates the signal output from the synchronizer 14 and outputs a soft decision value as a demodulation result to the synthesizer 15B.
- the combining unit 15B outputs the soft decision value of the first header sequence (cs1) to the LDPC decoding unit 18B.
- the soft decision value storage unit 21 in the LDPC decoding unit 18B stores the soft decision value of the first header series output from the combining unit 15B.
- the combining unit 15B When the soft decision value of the second header sequence (cs2) is input from the demodulation unit 17, the combining unit 15B reads the soft decision value of the first header sequence from the soft decision value storage unit 21, and the first header sequence and the second header The soft decision values of the series are synthesized. The combining unit 15B outputs the combined soft decision value to the soft decision value storage unit 21. The soft decision value storage unit 21 stores the input soft decision value.
- the soft decision value storage unit 21 reads the soft decision value synthesized from the header sequence.
- the soft decision values of the third header series and the fourth header series are synthesized.
- the combining unit 15B outputs the combined soft decision value to the soft decision value storage unit 21, and the soft decision value storage unit 21 stores the input soft decision value.
- the soft decision value storage unit 21 is a storage element (memory) that is used by the LDPC decoding unit 18B to read the soft decision value repeatedly when decoding the LDPC code by iterative processing.
- the LDPC decoding unit 18B performs row processing and column processing in LDPC decoding in the LDPC decoding calculation unit 22.
- the LDPC decoding calculation unit 22 reads and calculates a soft decision value from the soft decision value storage unit 21 as necessary in row processing or column processing.
- the operations of the header analysis unit 19 and the buffer 16 shown in FIG. 4 are the same as those of the wireless communication apparatus 10 of FIG.
- the combining unit 15B uses a memory for combining the plurality of header sequences. Further, the LDPC decoding unit 18B stores the soft decision value in the memory in the iterative decoding process.
- the combining unit 15B uses the soft decision value storage unit 21 in the LDPC decoding unit 18B for temporarily storing a part of a plurality of header sequences or a combination result, and the soft decision value storage unit 21. Data is being read from or written to. That is, the memory used for the combining process of the combining unit 15B and the memory used for the LDPC decoding of the LDPC decoding unit 18B are shared. Therefore, the memory capacity of the wireless communication device 10B can be reduced compared to the wireless communication device 10.
- the soft decision value ⁇ n is expressed by Equation (2).
- the wireless communication device 10B can share the memory used by the combining unit 15B and the memory used by the LDPC decoding unit 18B. Note that the wireless communication device 10B illustrated in FIG. 4 is compatible with the IEEE802.11ad communication standard.
- FIG. 6 is a block diagram showing a configuration of the wireless communication device 10C in the present embodiment.
- the wireless communication device 10C shown in FIG. 6 the same components as those of the wireless communication device 10 shown in FIG.
- the standby time control unit 100C includes a control unit 23, a demodulation unit 17, an LDPC decoding unit 18, and a header analysis unit 19.
- the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 are the same as the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 in the radio communication apparatus 10 of FIG.
- the wireless communication device 10C illustrated in FIG. 6 receives a PHY frame having the format illustrated in FIG. 1 as a reception signal.
- the synchronization unit 14B specifies the position of the header in the received PHY frame.
- the synchronization unit 14 ⁇ / b> B outputs the reception signal subjected to the synchronization process to the buffer 16.
- the synchronization unit 14B outputs a control signal indicating the specified header position (hereinafter referred to as a header position signal) to the control unit 23.
- the buffer 16 When the header F2 is input from the synchronization unit 14B, the buffer 16 outputs the header F2 to the demodulation unit 17 without buffering.
- the control unit 23 indicates one of the first header sequence (cs1), the second header sequence (cs2), and the third header sequence (-cs1) using the header position signal output from the synchronization unit 14B.
- a control signal (hereinafter referred to as a header sequence control signal) is output.
- control unit 23 may output a control signal indicating any header sequence among the first to third header sequences.
- control unit 23 outputs a header sequence control signal indicating the first header sequence that is most effective in reducing the buffer capacity.
- the demodulator 17 selects and demodulates the header sequence indicated by the header sequence control signal input from the controller 23. Note that the demodulator 17 does not demodulate a header sequence other than the header sequence indicated in the header sequence control signal.
- the demodulator 17 outputs the demodulated header sequence soft decision value to the LDPC decoder 18.
- the LDPC decoding unit 18 decodes using the input soft decision value to obtain a header.
- the header acquired by the LDPC decoding unit 18 is input to the header analysis unit 19.
- the header analysis unit 19 acquires the MCS from the header and feeds back the acquired MCS to the buffer 16 and the demodulation unit 17.
- the buffer 16 outputs the payload signal to the demodulator 17 in synchronization with the timing when the MCS is fed back.
- the demodulator 17 outputs a soft decision value obtained by demodulating the payload to the LDPC decoder 18 in accordance with the fed back MCS.
- the LDPC decoding unit 18 decodes the payload using the soft decision value output from the demodulation unit 17.
- the LDPC decoding unit 18 outputs information bits obtained as a decoding result.
- the synchronization unit 14B performs synchronization processing on the frame of the received signal and specifies the position of each field in the frame.
- the control unit 23 selects whether to demodulate and decode any one of the header sequences from the first header sequence to the third header sequence based on the specified header position. By selecting the control unit 23, the memory capacity required for the buffer 16 can be reduced. The basis for this will be described below.
- FIG. 7 is a time chart of the reception process of the wireless communication device 10C shown in FIG.
- a time chart shown in FIG. 7A is an operation example of the wireless communication device 10C.
- the time chart shown in FIG. 7B shows a comparative example in the case where the payload is demodulated after the header is obtained by demodulating and decoding the last header sequence (-cs2) included in the header F2.
- FIG. 7B is a comparative example for explaining the operation (see FIG. 7A) and effects of the wireless communication device 10C of the present embodiment, and the wireless communication device 10C is the same as that shown in FIG. 7B. Does not work.
- Each part of the wireless communication device 10C performs the following processing in each section [T1] to [T4] shown in FIG.
- FIG. 7A shows the demodulation / decoding timing of each of the three header sequences (cs1, cs2, -cs1) from the first to the third.
- FIG. 7B shows the demodulation / decoding timing of the fourth header sequence ( ⁇ cs2).
- Payload demodulation / decoding (FIGS. 7A and 7B): The demodulation unit 17 demodulates the payload F3, and the LDPC decoding unit 18 decodes the demodulation result of the payload F3.
- the MCS acquisition timing of the header is the latest in the standby time control unit 100C. This maximizes the memory capacity required for payload buffering.
- the wireless communication device 10C demodulates / decodes, for example, the first header sequence (cs1) among the first header sequence (cs1) to the third header sequence (-cs1)
- standby time control is performed.
- the MCS acquisition timing of the header is the earliest. For this reason, the memory capacity used for buffering the payload is minimized.
- the radio communication device 10C demodulates and decodes any header sequence other than the last fourth header sequence (-cs2) to acquire MCS, and demodulates and decodes payload F3 using MCS.
- the memory capacity of the buffer 16 used for F3 buffering can be reduced.
- FIG. 8 is a block diagram showing a configuration of the wireless communication device 10D of the present embodiment.
- the same components as those shown in FIG. 2 or 6 are denoted by the same reference numerals, and the description thereof is omitted.
- the standby time control unit 100D includes a control unit 23B, a synthesis unit 15B, a demodulation unit 17, an LDPC decoding unit 18, and a header analysis unit 19.
- the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 are the same as the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 in the radio communication apparatus 10 of FIG.
- the wireless communication device 10D illustrated in FIG. 8 receives the PHY frame having the format illustrated in FIG. 1 as a reception signal.
- the synchronization unit 14B uses the preamble F1 of the received signal to perform carrier frequency synchronization and sampling clock synchronization processing. Furthermore, after establishing the frame synchronization, the synchronization unit 14B specifies the position of the header in the received PHY frame. In addition, the synchronization unit 14 ⁇ / b> B outputs the reception signal subjected to the synchronization process to the buffer 16. Further, the synchronization unit 14B outputs the header position signal of the identified header to the control unit 23B.
- the control unit 23B controls a control signal (hereinafter referred to as a header sequence combination signal) indicating a combination of two or more header sequences among the three header sequences (cs1, cs2, -cs1) from the first to the third. Is output.
- a header sequence combination signal indicating a combination of two or more header sequences among the three header sequences (cs1, cs2, -cs1) from the first to the third. Is output.
- the synthesizing unit 15B synthesizes a plurality of header sequences specified by the header sequence combination signal output from the control unit 23B among the headers output from the synchronization unit 14B, and outputs the synthesis result to the demodulation unit 17.
- the demodulating unit 17 calculates a soft decision value using the combined header sequence output from the combining unit 15B, and outputs the soft decision value to the LDPC decoding unit 18.
- the LDPC decoding unit 18 decodes the header by iteratively decoding the number of times less than the predetermined number of iterations.
- the LDPC decoding unit 18 outputs the header obtained by the decoding to the header analysis unit 19.
- the header analysis unit 19 acquires MCS from the header. Further, after obtaining the MCS, the header analysis unit 19 feeds back the MCS to the buffer 16, the demodulation unit 17, and the LDPC decoding unit 18.
- the demodulation unit 17 reads the payload from the buffer 16 and demodulates it to calculate the soft decision value of the payload. Further, the LDPC decoding unit 18 decodes the payload based on the soft decision value of the payload output from the demodulation unit 17. Since the demodulation and decoding processes are the same as those in the first embodiment, description thereof is omitted.
- the synthesizing unit 15B according to the header sequence combination signal output from the control unit 23B, a plurality of header sequences to be synthesized, that is, a plurality of header sequences other than the last header sequence ( ⁇ cs2). Select two or more combinations from the header series.
- the combining unit 15B combines a plurality of header sequences selected as a combination. Thereby, the SNR of the header sequence can be improved. Therefore, the LDPC decoding unit 18 can reduce the number of iterations when decoding the LDPC code of the header. Thereby, the time required until header information is obtained by the decoding process in the LDPC decoding unit 18 can be shortened.
- the demodulation and decoding of the header can be completed earlier than in the case of decoding the end header sequence (-cs2). That is, the header decoding can be completed quickly, and the waiting time until the payload demodulation / decoding process is started can be shortened. As a result, the radio communication device 10D can reduce the memory capacity of the buffer 16 used for buffering the payload.
- FIG. 9 is a time chart of the reception process of the wireless communication device 10D shown in FIG.
- the time chart shown in FIG. 9A is an operation example of the wireless communication device 10D.
- the time chart illustrated in FIG. 9B illustrates a comparative example in the case where a predetermined number of iterations is applied in the decoding process of the header F2.
- FIG. 9B is a comparative example for explaining the operation (see FIG. 9A) and effects of the wireless communication device 10D of the present embodiment.
- the wireless communication device 10D is the same as that shown in FIG. 9B. Does not work.
- Each unit of the wireless communication device 10D performs the following processing in each section [T1] to [T7] illustrated in FIG.
- composition (FIGS. 9A and 9B): The composition unit 15B synthesizes a plurality of header sequences selected from the header sequences other than the end among the plurality of header sequences.
- the LDPC decoding unit 18 decodes the header F2 by an iterative process.
- the number of iterations in the LDPC decoding unit 18 of T3 is such that a plurality of header sequences of the header F2 are synthesized by the synthesis unit 15B, so that the SNR of the header F2 is improved and the number of iterations is less than the predetermined number of iterations.
- the time required to complete the decoding is shortened, and the buffering of the payload in the buffer 16 is completed in a short time. Therefore, the memory capacity used in the buffer 16 is reduced.
- Payload buffering (FIGS. 9A and 9B): The buffer 16 buffers the payload until the header analysis unit 19 acquires the MCS by header decoding.
- Header decoding (predetermined number of iterations, FIG. 9B): The LDPC decoding unit 18 decodes the header F2 by an iterative process of the predetermined number of iterations.
- [T7] buffer reduction capacity: Corresponds to the time reduction of the section [T3] with respect to the section [T6].
- the memory capacity used in the buffer 16 can be reduced according to the time reduction. That is, the radio communication device 10D illustrated in FIG. 8 can reduce the memory capacity of the buffer 16.
- ⁇ Fourth embodiment> ⁇ Outline of configuration and operation of wireless communication device> The wireless communication apparatus of this embodiment reduces the probability that a header decoding error will occur even when the SNR of the received signal is low, and reduces the buffer capacity of the payload by completing header decoding early.
- FIG. 10 is a block diagram showing a configuration of the wireless communication device 10E of the present embodiment.
- the same components as those of the wireless communication devices of the above-described embodiments are denoted by the same reference numerals, and description thereof is omitted.
- the standby time control unit 100E includes a synthesis unit 15C, a demodulation unit 17, an LDPC decoding unit 18, and a header analysis unit 19.
- the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 are the same as the operations of the antenna 11, the radio unit 12, and the A / D conversion unit 13 in the radio communication apparatus 10 of FIG.
- the radio communication device 10E illustrated in FIG. 10 receives the PHY frame having the format illustrated in FIG. 1 as a reception signal.
- the initial synchronization unit 14C performs initial synchronization with respect to the carrier frequency offset and the sampling clock frequency offset between the transmitter and the receiver using the preamble F1 of the received signal.
- the initial synchronization unit 14C outputs the signal after the initial synchronization to the tracking unit 24.
- the wireless communication device 10E performs a synchronization tracking process called tracking in order to maintain a correct synchronization state with the transmitter.
- the tracking unit 24 performs tracking processing.
- the known signal sequence “GI” shown in FIG. 1 is included in the boundary position of each field of the received signal. Accordingly, the tracking unit 24 performs tracking processing using “GI” which is a known signal sequence included in the received signal.
- the tracking unit 24 outputs the received signal after tracking to the selection unit 25.
- the selection unit 25 outputs the received signal to the synthesis unit 15C or the buffer 16 according to control by the control unit 23C. The contents of control by the control unit 23C will be described later.
- the synthesis unit 15C has two synthesis functions.
- the first combining function of the combining unit 15C is a function of combining a plurality of header sequences “cs1” and “cs2” in the first header block F21.
- the second synthesizing function of the synthesizing unit 15C is a function for synthesizing a plurality of header sequences “ ⁇ cs1” and “ ⁇ cs2” in the second header block F22.
- the combining unit 15 ⁇ / b> C outputs the combined header to the demodulating unit 17.
- Buffer 16 buffers the payload until MCS is acquired.
- the demodulator 17 performs a soft decision on the received signal and outputs the soft decision value calculated as a result of the soft decision to the LDPC decoding unit 18.
- the LDPC decoding unit 18 decodes the header F2 and the payload F3 based on the soft decision value output from the demodulation unit 17.
- the header analysis unit 19 analyzes the header information obtained by the decoding of the LDPC decoding unit 18 and outputs the analysis result to the control unit 23C.
- the header information analysis includes a header information error detection function.
- the header information error detection function is realized by using, for example, CRC (Cyclic Redundancy Check) coding of header information or a parity check function of an LDPC code.
- the control unit 23C controls the selection unit 25, the synthesis unit 15C, the buffer 16, the demodulation unit 17, and the LDPC decoding unit 18 using the analysis result of the header information.
- reception processing timing> 11 and 12 are time charts showing reception processing of the wireless communication device 10E shown in FIG.
- FIG. 13 is a flowchart showing a reception processing procedure of the wireless communication device 10E shown in FIG.
- FIG. 11 illustrates an operation example of the wireless communication device 10E when no header error is detected as a result of decoding the header using the first header block F21, and will be described with reference to FIG. 13 as necessary.
- Each part of the wireless communication device 10E performs the following processing in each section [T1] to [T8] shown in FIG.
- Tracking 1 The tracking unit 24 performs tracking using “GI” which is a known signal sequence in the first header block F21 (S12).
- Header decoding 1 The demodulator 17 demodulates the header F2 by using the combined result of the plurality of header sequences in the first header block F21.
- the LDPC decoding unit 18 decodes the result of the demodulation process of the header F2 (S14).
- Tracking 2 The tracking unit 24 performs tracking using “GI” which is a known signal sequence in the second header block F22 (S18).
- the header analysis unit 19 performs error detection on the header information obtained by decoding the header F2 in the section [T4] (S15). In FIG. 11, it is assumed that no header error is detected in the section [T7] (S15, NO). Therefore, the control unit 23C causes the combining unit 15C to stop the “combining 2” process in the section [T6] according to the error detection result in the section [T7].
- control unit 23C causes the selection unit 25 to select “cs1” and “cs2” of the first header block in the section [T3], and further selects “cs1” and “cs2” of the first header block. It is made to synthesize
- control unit 23C causes the demodulation unit 17 to demodulate the signal after the first header block synthesis, and causes the LDPC decoding unit 18 to perform LDPC decoding on the result.
- the control unit 23C starts control of the section [T5] and the section [T6] simultaneously with the section [T4]. That is, the control unit 23C causes the tracking unit 24 to start tracking the second header block in the section [T5], and selects the “ ⁇ cs1” and “ ⁇ cs2” of the second header block in the section [T6]. 25, and the synthesis unit 15C synthesizes “ ⁇ cs1” and “ ⁇ cs2” of the second header block.
- the control unit 23C stops the synthesis process in the section [T6] in the synthesis unit 15C.
- control unit 23C causes the demodulation unit 17 and the LDPC decoding unit 18 to demodulate and decode the payload F3 in the section [T8].
- FIG. 12 shows an operation example of the wireless communication device 10E when a header error is detected as a result of decoding the header using the first header block F21, and will be described with reference to FIG. 13 as necessary.
- Each unit of the wireless communication device 10E performs the following processing in each section [T1] to [T11] shown in FIG.
- Tracking 1 The tracking unit 24 performs tracking using “GI” which is a known signal sequence in the first header block F21 (S12).
- Header decoding 1 The demodulator 17 demodulates the header F2 by using the combined result of the plurality of header sequences in the first header block F21.
- the LDPC decoding unit 18 decodes the result of the demodulation process of the header F2 (S14).
- Tracking 2 The tracking unit 24 performs tracking using “GI” which is a known signal sequence in the second header block F22 (S18).
- Header check 1 The header analysis unit 19 performs error detection on the header information obtained by decoding the header F2 in the section [T4] (S15). In FIG. 12, it is assumed that a header error is detected in section [T7] (S15, YES). Therefore, the control unit 23C causes the combining unit 15C to continue the process of “combining 2” in the section [T6] according to the error detection result in the section [T7].
- Header decoding 2 The demodulating unit 17 demodulates the header F2 using the combined result of the plurality of header sequences in the second header block F22.
- the LDPC decoding unit 18 decodes the result of the demodulation process of the header F2 (S20).
- Payload demodulation / decoding The demodulator 17 demodulates the payload F3 in accordance with the MCS included in the header information acquired by the header analyzer 19 (S22).
- the LDPC decoding unit 18 decodes the result of the demodulation processing of the payload F3 (S23).
- Header check 2 The header analysis unit 19 performs error detection on the header information obtained by decoding the header F2 in the section [T8] (S21).
- control unit 23C causes the selection unit 25 to select “cs1” and “cs2” of the first header block in the section [T3], and further selects “cs1” and “cs2” of the first header block. It is made to synthesize
- control unit 23C causes the demodulation unit 17 to demodulate the signal after the first header block synthesis, and causes the LDPC decoding unit 18 to perform LDPC decoding on the result.
- the control unit 23C starts control of the section [T5] and the section [T6] simultaneously with the section [T4]. That is, the control unit 23C causes the tracking unit 24 to start tracking the second header block in the section [T5], and selects the “ ⁇ cs1” and “ ⁇ cs2” of the second header block in the section [T6]. 25, and the synthesis unit 15C synthesizes “ ⁇ cs1” and “ ⁇ cs2” of the second header block.
- the control unit 23C causes the combining unit 15C to continue the combining process in the section [T6]. . Further, the control unit 23C uses the synthesis result of the section [T6] to cause the demodulation unit 17 to demodulate the combined header F2 in the section [T8], and further, the LDPC decoding unit outputs the soft decision value as the demodulation result. 18 to decrypt.
- the control unit 23C When the header analysis unit 19 does not detect a header error from the header decoding result of the section [T8], the control unit 23C temporarily stores the payload F3 in the buffer 16, and the payload F3 is demodulated. 17 and the LDPC decoding unit 18 demodulate and decode.
- control unit 23C causes the demodulation unit 17 and the LDPC decoding unit 18 to stop demodulating and decoding the payload (S24). ).
- the wireless communication device 10E when the wireless communication device 10E as a receiver tracks using the known signal “GI”, if the SNR of the received signal is low, the tracking performance varies for each “GI”.
- the tracking performance variation is specifically the following phenomenon.
- the tracking unit 24 performs tracking processing using the “GI” (hereinafter referred to as the first known sequence) of the first header block, and there is a situation in which the carrier frequency of the receiver and the sample clock frequency are synchronized with the transmitter. is there.
- the tracking unit 24 performs tracking processing using “GI” (hereinafter referred to as a second known sequence) of the second header block, there is a situation in which synchronization is lost if the SNR of the received signal is low.
- the wireless communication device 10E illustrated in FIG. 10 combines the first header sequence (cs1) and the second header sequence (cs2) that are being tracked using the first known sequence. This can be implemented without being affected by the tracking process using the second known sequence.
- the third header sequence (-cs1) and the fourth header sequence (-cs2) are header sequences that have been subjected to tracking processing using the second known sequence. Therefore, the synthesis of the third header sequence and the fourth header sequence reduces the influence of the tracking process using the first known sequence.
- the wireless communication device 10E can be combined with less influence of variations in tracking performance. Therefore, separately performing LDPC decoding using the synthesis result of the first header block and LDPC decoding using the synthesis result of the second header block leads to reducing the possibility that the header decoding result is erroneous.
- the LDPC decoding unit 18 can reduce the number of iterations of processing required for decoding the header to be less than a predetermined number. Thereby, the decoding time required for header decoding using the synthesis result of each header block is shortened. By shortening the decoding time, the memory capacity of the payload storage buffer 16 used by the receiver can be reduced.
- the wireless communication device 10E stops without performing demodulation and decoding of the second header block. As a result, in a situation where the reception environment is relatively good, an effect of reducing the power consumption required for reception on average can be obtained.
- the decision feedback control has a problem that the synchronization performance or equalization performance deteriorates in a situation where the modulation method used for the payload is unknown.
- the payload is buffered until MCS is found.
- the memory capacity used in the buffer 16 increases.
- ⁇ Description of Wireless Communication Device 10F in FIG. 14> In the wireless communication device 10 ⁇ / b> F illustrated in FIG. 14, a decision feedback equalizer 26 is connected between the output of the tracking unit 24 and the input of the selection unit 25. The rest of the configuration is the same as that of the wireless communication device 10E of FIG.
- the decision feedback type equalizer 26 is an equalizer that employs decision feedback type control. That is, the decision feedback equalizer 26 estimates the propagation state of the transmission path between the transmitter and the wireless communication device 10F, eliminates the influence of the distortion of the received signal generated on the transmission path, and is the same as that on the transmission side. Restore the signal. Also, the decision feedback equalizer 26 detects the control error by feeding back the output to the input side, and controls the error to be small. However, since the received signal is processed as an unknown signal, the equalization performance deteriorates under circumstances where the payload modulation scheme is unknown.
- the radio communication device 10F shown in FIG. 14 controls the control unit 23D to give the decision feedback equalizer 26 the MCS obtained by the header analysis unit 19 by decoding the header F2.
- the decision feedback equalizer 26 can know the modulation method of the payload from the MCS input from the control unit 23D. As a result, a control error in the decision feedback equalizer 26 is reduced, and deterioration of equalization performance is prevented.
- the time used by the LDPC decoding unit 18 in decoding the header is shorter than before. Therefore, feedback of MCS from the header analysis unit 19 to the decision feedback equalizer 26 can be performed at an early stage of the payload reception process of the received signal. Thereby, deterioration of equalization performance can be suppressed.
- the wireless communication device 10G illustrated in FIG. 15 includes a determination feedback tracking unit 24B instead of the tracking unit 24 illustrated in FIG.
- Other configurations are the same as those of the wireless communication device 10E of FIG.
- the decision feedback tracking unit 24B controls the tracking of the received signal by decision feedback control. That is, the determination feedback tracking unit 24B performs, for example, synchronous control using a modified Costas loop or synchronous control using a hard decision of “Decision-Feedback-Equalizer”. That is, the decision feedback tracking unit 24B detects the synchronization error by feeding back the output to the input side, and controls the error to be small.
- the received signal is processed as an unknown signal, the synchronization performance deteriorates in a situation where the payload modulation scheme is unknown.
- control is performed so that the control unit 23E gives the MCS obtained by the header analysis unit 19 to the decision feedback tracking unit 24B by decoding the header.
- the decision feedback tracking unit 24B can know the payload modulation scheme from the MCS input from the control unit 23E. Thereby, the control error in the decision feedback tracking unit 24B is reduced, and the deterioration of the synchronization performance is prevented.
- the time required for the LDPC decoding unit 18 to decode the header is shorter than before. Therefore, the MCS feedback from the header analysis unit 19 to the decision feedback tracking unit 24B can be performed in the early stage of the payload reception process of the received signal. As a result, deterioration of the synchronization performance can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Computer Security & Cryptography (AREA)
- Error Detection And Correction (AREA)
- Mobile Radio Communication Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Description
<信号のフレームフォーマット>
本実施形態の無線通信装置が通信に用いる信号としての物理層(PHY)フレームのフォーマットを図1に示す。このフレームフォーマットは、PHYヘッダの高速復号に用いられる。
以下、ヘッダF2に記載されている変調方式、誤り訂正符号化方法(LDPC符号)及び誤り訂正符号化率をまとめてMCS(Modulation and Coding Scheme)と定義する。
本実施形態では、送信機は、PHYフレームを、シングルキャリア伝送により受信機に送信する。
本実施形態の無線通信装置10の構成を図2に示す。無線通信装置10が受信する無線信号に含まれる物理層の信号フレームは、上述したPHYフレームと同じフォーマットである。即ち、図示しない送信機がPHYフレームを含む無線信号を送信し、図2に示す無線通信装置10が無線信号を受信する。
cs2':デスクランブル後の第二ヘッダ系列
(-1)×(-cs1):符号反転後の第三ヘッダ系列
(-1)×(-cs2‘):デスクランブル及び符号反転後の第四ヘッダ系列
バッファ16のメモリ容量が削減可能であることを、図5を用いて説明する。図5は、本実施形態の受信処理タイミングの具体例を示すタイムチャートである。図5(a)に示すタイムチャートが無線通信装置10の動作例である。また、図5(b)に示すタイムチャートは、LDPC復号部18によるヘッダ復号において所定反復回数を用いる場合の比較例である。なお、図5(b)は本実施形態の無線通信装置10の動作(図5(a)参照)及び効果を説明するための比較例であって、無線通信装置10は図5(b)のように動作しない。
上述の無線通信装置10について、更にバッファのメモリ容量を削減するための変形例を説明する。変形例の無線通信装置10Bの構成を図4に示す。本変形例では、複数のヘッダ系列の合成に用いるメモリ容量の削減を可能にする。なお、図4において、図2と同一の要素は同一の符号を付して示し、その説明を省略する。
図4に示すヘッダ解析部19及びバッファ16の動作は、図2の無線通信装置10と同様であるため、説明を省略する。
<無線通信装置の構成及び動作の概要>
図6は、本実施形態における無線通信装置10Cの構成を示すブロック図である。図6に示す無線通信装置10Cにおいて、図2に示す無線通信装置10と同じ構成要素は同一の符号を付し、説明を省略する。
図7は、図6に示す無線通信装置10Cの受信処理のタイムチャートである。図7(a)に示すタイムチャートが無線通信装置10Cの動作例である。また、図7(b)に示すタイムチャートは、ヘッダF2に含まれる最後のヘッダ系列(-cs2)を復調及び復号してヘッダを取得した後にペイロードを復調する場合の比較例を示している。なお、図7(b)は本実施形態の無線通信装置10Cの動作(図7(a)参照)及び効果を説明するための比較例であって、無線通信装置10Cは図7(b)のように動作しない。
<無線通信装置の構成及び動作の概要>
図8は、本実施形態の無線通信装置10Dの構成を示すブロック図である。図8に示す無線通信装置10Dにおいて、図2又は図6に示す構成要素と同一の要素は、同一の符号を付し、その説明を省略する。
図9は、図8に示す無線通信装置10Dの受信処理のタイムチャートである。図9(a)に示すタイムチャートが無線通信装置10Dの動作例である。また、図9(b)に示すタイムチャートは、ヘッダF2の復号処理において、所定反復回数を適用する場合の比較例を示している。なお、図9(b)は本実施形態の無線通信装置10Dの動作(図9(a)参照)及び効果を説明するための比較例であって、無線通信装置10Dは図9(b)のように動作しない。
<無線通信装置の構成及び動作の概要>
本実施形態の無線通信装置は、受信信号のSNRが低い場合でもヘッダ復号誤りが発生する確率を低減し、ヘッダ復号を早期に完了させることで、ペイロードのバッファ容量を削減する。
図11及び図12は、図10に示す無線通信装置10Eの受信処理を示すタイムチャートである。図13は、図10に示す無線通信装置10Eの受信処理手順を示すフローチャートである。
図11は、第一ヘッダブロックF21を用いてヘッダを復号した結果、ヘッダ誤りが検出されなかった場合の無線通信装置10Eの動作例を表し、必要に応じて図13を参照して説明する。
図12は、第一ヘッダブロックF21を用いてヘッダを復号した結果、ヘッダ誤りが検出された場合の無線通信装置10Eの動作例を表し、必要に応じて図13を参照して説明する。
受信信号をトラッキングする場合には、図10に示すトラッキング部24のように、既知系列「GI」を用いたトラッキングが多い。
図14に示した無線通信装置10Fでは、トラッキング部24の出力と、選択部25の入力との間に判定帰還型等化器26が接続されている。それ以外の構成は図10の無線通信装置10Eと同一であり、説明を省略する。
図15に示した無線通信装置10Gは、図10のトラッキング部24の代わりに、判定帰還型トラッキング部24Bを設けた。それ以外の構成は図10の無線通信装置10Eと同一であるため、説明を省略する。
11 アンテナ
12 無線部
13 A/D変換部
14,14B 同期部
14C 初期同期部
15,15B,15C 合成部
16 バッファ
17 復調部
18,18B LDPC復号部
19 ヘッダ解析部
21 軟判定値記憶部
22 LDPC復号演算部
23,23B,23C 制御部
24 トラッキング部
24B 判定帰還型トラッキング部
25 選択部
26 判定帰還型等化器
100,100B,100C,100D,100E 待機時間制御部
Claims (18)
- 複数のヘッダ系列を有するフレームフォーマットの信号を受信する無線通信装置であって、
前記複数のヘッダ系列を復調する復調部と、
前記復調された前記ヘッダ系列を復号して前記信号のヘッダ情報を取得する復号部と、を備える、
無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記複数のヘッダ系列を合成する合成部と、を更に備え、
前記復調部は、
前記合成された前記複数のヘッダ系列を復調する、
無線通信装置。 - 請求項1又は2に記載の無線通信装置であって、
前記ヘッダ系列は、LDPC符号により誤り訂正符号化され、
前記復調部は、
前記誤り訂正符号化された前記ヘッダ系列の軟判定値を算出し、
前記復号部は、
前記算出された前記ヘッダ系列の軟判定値を誤り訂正復号する、
無線通信装置。 - 請求項3に記載の無線通信装置であって、
反復復号により前記ヘッダ情報が取得されるまで前記信号のペイロードを格納するバッファと、を更に備え、
前記復調部は、
前記格納された前記ペイロードを復調して前記ペイロードの軟判定値を算出し、
前記復号部は、
前記算出された前記ペイロードの軟判定値を誤り訂正復号して前記ペイロードを出力する、
無線通信装置。 - 請求項2に記載の無線通信装置であって、
前記復調部は、
前記複数のヘッダ系列を復調して前記複数のヘッダ系列の各軟判定値を算出し、
前記合成部は、
前記算出された前記各軟判定値を合成し、
前記復号部は、
前記合成された軟判定値を誤り訂正復号して前記ヘッダ情報を出力する、
無線通信装置。 - 請求項5に記載の無線通信装置であって、
前記復号部は、
前記算出された前記各軟判定値を格納する軟判定値格納部と、を更に有し、
前記復調部は、
前記複数のヘッダ系列のうち、いずれかのヘッダ系列の軟判定値を前記軟判定値格納部に格納し、
前記合成部は、
前記いずれかのヘッダ系列とは異なるヘッダ系列の軟判定値と前記軟判定値格納部に格納された軟判定値とを合成する、
無線通信装置。 - 請求項1に記載の無線通信装置であって、
前記復調部は、
前記複数のヘッダ系列の先頭から末尾の各ヘッダ系列のうち、前記末尾のヘッダ系列を除くいずれかのヘッダ系列を復調して軟判定値を算出し、
前記復号部は、
前記算出された前記軟判定値を誤り訂正復号して前記ヘッダ情報を出力する、
無線通信装置。 - 請求項2,4~6のうちいずれか一項に記載の無線通信装置であって、
前記合成部は、
前記複数のヘッダ系列の先頭から末尾の各ヘッダのうち、前記末尾のヘッダ系列を除くいずれかのヘッダ系列から2つ以上のヘッダ系列を選択し、前記選択されたヘッダ系列を合成し、
前記復調部は、
前記合成されたヘッダ系列を復調して軟判定値を算出し、
前記復号部は、
前記算出された前記軟判定値を誤り訂正復号して前記ヘッダ情報を出力する、
無線通信装置。 - 請求項8に記載の無線通信装置であって、
所定の第1既知系列を用いて追従同期処理するトラッキング部と、更に備え、
前記合成部は、
前記追従同期処理後の前記複数のヘッダ系列のうち第1ヘッダ系列と第2ヘッダ系列を合成し、
前記復調部は、
前記合成されたヘッダ系列の軟判定値を算出し、
前記復号部は、
前記算出された軟判定値を誤り訂正復号して得られた前記ヘッダ情報に誤りがあるか否かを検出する、
無線通信装置。 - 請求項9に記載の無線通信装置であって、
前記復号部は、
前記ヘッダ情報に誤りが検出されなかった場合、前記ヘッダ情報を基に、前記信号のペイロードを誤り訂正復号する、
無線通信装置。 - 請求項9又は10に記載の無線通信装置であって、
前記トラッキング部は、
前記ヘッダ情報に誤りが検出された場合、前記第1既知系列とは異なる第2既知系列を用いて追従同期処理し、
前記合成部は、
前記追従同期処理後の前記複数のヘッダ系列のうち第3ヘッダ系列と第4ヘッダ系列を合成し、
前記復調部は、
前記合成されたヘッダ系列の軟判定値を算出し、
前記復号部は、
前記算出された軟判定値を誤り訂正復号して得られた前記ヘッダ情報に誤りがあるか否かを検出する、
無線通信装置。 - 請求項11に記載の無線通信装置であって、
前記復号部は、
前記ヘッダ情報に誤りが検出されなかった場合、前記ヘッダ情報を基に、前記信号のペイロードを誤り訂正復号する、
無線通信装置。 - 請求項11又は12に記載の無線通信装置であって、
前記復号部は、
前記ヘッダ情報に誤りが検出された場合、前記受信された前記信号を破棄する、
無線通信装置。 - 請求項10又は12に記載の無線通信装置であって、
前記受信された信号と、所定の変調方式に従って変調された信号とを基に、前記受信された信号を判定帰還型等化する判定帰還型等化部と、を更に備え、
前記ヘッダ情報は、前記所定の変調方式を含み、
前記判定帰還型等化部は、
前記ヘッダ情報に含まれる前記所定の変調方式を基に、前記受信された信号を判定帰還型等化する、
無線通信装置。 - 請求項10又は12に記載の無線通信装置であって、
前記ヘッダ情報は、前記所定の変調方式を含み、
前記トラッキング部は、
前記ヘッダ情報に含まれる前記所定の変調方式を基に、前記信号の受信タイミングのずれを調整する、
無線通信装置。 - 請求項1~15のうちいずれか一項に記載の無線通信装置であって、
前記復号部は、
前記信号のペイロードの復号における反復回数より少ない反復回数で前記信号のヘッダ系列を復号する、
無線通信装置。 - 請求項1~15のうちいずれか一項に記載の無線通信装置であって、
前記復号部は、
パリティチェックの結果、判定誤りがあることを検出した場合には復号処理を継続し、判定誤りがないことを検出した場合には復号処理を停止する、
無線通信装置。 - 複数のヘッダ系列を有するフレームフォーマットの信号を受信する無線通信方法であって、
前記複数のヘッダ系列を復調するステップと、
前記復調された前記ヘッダ系列を復号して前記信号のヘッダ情報を取得するステップと、を備える、
無線通信方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013543071A JP5992916B2 (ja) | 2012-03-13 | 2013-02-27 | 無線通信装置 |
US14/110,382 US9912786B2 (en) | 2012-03-13 | 2013-02-27 | Wireless communication device and method to detect header information errors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012056115 | 2012-03-13 | ||
JP2012-056115 | 2012-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013136694A1 true WO2013136694A1 (ja) | 2013-09-19 |
Family
ID=49160641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001168 WO2013136694A1 (ja) | 2012-03-13 | 2013-02-27 | 無線通信装置及び無線通信方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9912786B2 (ja) |
JP (1) | JP5992916B2 (ja) |
WO (1) | WO2013136694A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067939A1 (ja) * | 2014-10-30 | 2016-05-06 | ソニー株式会社 | 受信装置および方法 |
US10091034B2 (en) | 2016-06-08 | 2018-10-02 | Mitsubishi Electric Corporation | Reception device, reception method, and transmission reception system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9712187B2 (en) * | 2014-12-05 | 2017-07-18 | Samsung Electronics Co., Ltd. | SC-LDPC codes for wireless communication systems: framework and zigzag-window decoder |
US9660760B2 (en) * | 2015-02-02 | 2017-05-23 | Intel IP Corporation | Apparatus, system and method of communicating a wireless transmission according to a physical layer scheme |
JP6761166B2 (ja) * | 2015-07-23 | 2020-09-23 | セントラル硝子株式会社 | ウェットエッチング方法及びエッチング液 |
US9942060B2 (en) * | 2015-08-01 | 2018-04-10 | Intel IP Corporation | Techniques for performing multiple-input and multiple-output training using a beam refinement packet |
EP3340476A1 (en) * | 2016-12-23 | 2018-06-27 | Sequans Communications S.A. | Error correction decoding with configurable parallelism |
WO2018127286A1 (en) * | 2017-01-05 | 2018-07-12 | Huawei Technologies Co., Ltd. | Processing device, communication device and methods thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3194878B2 (ja) * | 1996-12-26 | 2001-08-06 | 松下電器産業株式会社 | データ伝送方法及びデータ伝送システム |
JP2009181656A (ja) * | 2008-01-31 | 2009-08-13 | Fujitsu Ltd | 符号化装置、復号化装置、符号化・復号化装置及び記録再生装置 |
JP2010081014A (ja) * | 2008-09-24 | 2010-04-08 | Panasonic Electric Works Co Ltd | 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置 |
JP2010521929A (ja) * | 2007-03-16 | 2010-06-24 | クゥアルコム・インコーポレイテッド | 通信信号を符号化する方法および装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448633B1 (ko) * | 2002-10-22 | 2004-09-13 | 한국전자통신연구원 | 단일 반송파 주파수 영역 등화기 시스템의 잔여 주파수오차 추적 장치 및 방법 |
US20060172716A1 (en) * | 2003-03-14 | 2006-08-03 | Matsushita Electric Industrail Co., Ltd. | Ofdm reception device and ofdm reception method |
US7362802B2 (en) * | 2003-09-12 | 2008-04-22 | Zarbana Digital Fund Llc | Frequency domain equalizer for wireless commuications system |
JP2005167389A (ja) | 2003-11-28 | 2005-06-23 | Matsushita Electric Ind Co Ltd | 無線受信装置および受信方法 |
US7929994B2 (en) * | 2004-08-11 | 2011-04-19 | Panasonic Corporation | Base station apparatus |
CN102299886B (zh) * | 2004-12-23 | 2017-09-12 | 韩国电子通信研究院 | 用于在无线通信系统中生成和发送帧的装置及方法 |
JP2007060183A (ja) * | 2005-08-24 | 2007-03-08 | Oki Electric Ind Co Ltd | 同期制御装置およびその方法 |
KR100874152B1 (ko) * | 2005-10-14 | 2008-12-15 | 삼성전자주식회사 | 다수의 이종 무선망들을 이용한 동시 데이터 서비스 장치및 방법 |
KR100706618B1 (ko) * | 2005-12-09 | 2007-04-12 | 한국전자통신연구원 | 반복 복호기를 위한 고차변조 방식에 적합한 연판정 디매핑방법 및 그를 이용한 오류 정정 장치 |
JP2009543074A (ja) * | 2006-07-07 | 2009-12-03 | スカイフック ワイヤレス,インク. | Wlan測位装置の位置を推定するためにwlan対応アクセス・ポイントから情報を収集するシステム及び方法 |
WO2008018145A1 (fr) * | 2006-08-10 | 2008-02-14 | Panasonic Corporation | Appareil émetteur-récepteur ofdm |
JP4654298B2 (ja) * | 2006-09-11 | 2011-03-16 | パナソニック株式会社 | Ofdm送信装置およびofdm受信装置 |
JP5559799B2 (ja) * | 2008-10-20 | 2014-07-23 | トムソン ライセンシング | ケーブル伝送システムにおいてプリアンブルを生成する方法および装置 |
US8209590B2 (en) * | 2008-11-05 | 2012-06-26 | Broadcom Corporation | Header encoding/decoding |
US9106364B1 (en) * | 2009-01-26 | 2015-08-11 | Comtech Mobile Datacom Corporation | Signal processing of a high capacity waveform |
-
2013
- 2013-02-27 JP JP2013543071A patent/JP5992916B2/ja not_active Expired - Fee Related
- 2013-02-27 WO PCT/JP2013/001168 patent/WO2013136694A1/ja active Application Filing
- 2013-02-27 US US14/110,382 patent/US9912786B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3194878B2 (ja) * | 1996-12-26 | 2001-08-06 | 松下電器産業株式会社 | データ伝送方法及びデータ伝送システム |
JP2010521929A (ja) * | 2007-03-16 | 2010-06-24 | クゥアルコム・インコーポレイテッド | 通信信号を符号化する方法および装置 |
JP2009181656A (ja) * | 2008-01-31 | 2009-08-13 | Fujitsu Ltd | 符号化装置、復号化装置、符号化・復号化装置及び記録再生装置 |
JP2010081014A (ja) * | 2008-09-24 | 2010-04-08 | Panasonic Electric Works Co Ltd | 変調方法および送信装置ならびにofdm変調方法およびofdm送信装置 |
Non-Patent Citations (1)
Title |
---|
HIROSHI HARADA ET AL.: "Complete Proposal for 802.11ad", IEEE 802.11-10-0498-03-00AD, May 2010 (2010-05-01), pages 1,2,21,22,26 - 30 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016067939A1 (ja) * | 2014-10-30 | 2016-05-06 | ソニー株式会社 | 受信装置および方法 |
US10091034B2 (en) | 2016-06-08 | 2018-10-02 | Mitsubishi Electric Corporation | Reception device, reception method, and transmission reception system |
Also Published As
Publication number | Publication date |
---|---|
JP5992916B2 (ja) | 2016-09-14 |
US20140086229A1 (en) | 2014-03-27 |
JPWO2013136694A1 (ja) | 2015-08-03 |
US9912786B2 (en) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5992916B2 (ja) | 無線通信装置 | |
JP4245602B2 (ja) | デジタル復調装置、デジタル受信装置、デジタル復調装置の制御方法、デジタル復調装置の制御プログラム、及び、この制御プログラムを記録した記録媒体 | |
US20070153942A1 (en) | Method and system for decoding single antenna interference cancellation (SAIC) and redundancy processing adaptation using frame process | |
JP5706527B2 (ja) | 誤り制御符号化コードブックのサブコードブックの生成及び適用 | |
US20090327836A1 (en) | Decoding method for convolution code and decoding device | |
JP2002185437A (ja) | 受信装置 | |
JP2008211542A (ja) | ビタビ復号システムおよびビタビ復号方法 | |
JP5651679B2 (ja) | 差動変調を実施する変調方法及びデバイス、対応する復調方法及びデバイス、信号を送信する方法並びにコンピュータソフトウェア | |
EP2884682B1 (en) | Receiver, method for estimating frequency response of transmission path by receiver | |
CN108206794B (zh) | 通信系统的接收器、集成电路设备及信号解调方法 | |
WO2000033529A1 (fr) | Demodulateur | |
JP4729726B2 (ja) | 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム | |
JP4225797B2 (ja) | 受信方法および装置 | |
JP3991056B2 (ja) | 位相確定装置 | |
JP2004236040A (ja) | 受信方法および装置 | |
JP4780048B2 (ja) | 受信装置および方法 | |
JP2005278111A (ja) | デジタル放送受信装置 | |
JP3052025B2 (ja) | ダイバーシチ無線送受信方式 | |
JP4119400B2 (ja) | 無線送信装置、無線受信装置、無線送信方法及び無線受信方法 | |
JPH04219028A (ja) | 軟判定ビタビ復号方法 | |
JP5480589B2 (ja) | 通信装置、その中継方法及びプログラム | |
JP3356329B2 (ja) | 受信装置 | |
ALSHRAIDEH | MATHEMATICAL DESCRIPTION OF SOFT DECODING TECHNIQUES OF ERROR-CONTROL CODES | |
JP6253121B2 (ja) | 誤り制御符号化コードブックのサブコードブックの生成及び適用 | |
JP4984281B2 (ja) | 誤り訂正装置、受信装置、誤り訂正方法および誤り訂正プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013543071 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14110382 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13761748 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13761748 Country of ref document: EP Kind code of ref document: A1 |