WO2013136384A1 - 締結部材および真空装置 - Google Patents

締結部材および真空装置 Download PDF

Info

Publication number
WO2013136384A1
WO2013136384A1 PCT/JP2012/005778 JP2012005778W WO2013136384A1 WO 2013136384 A1 WO2013136384 A1 WO 2013136384A1 JP 2012005778 W JP2012005778 W JP 2012005778W WO 2013136384 A1 WO2013136384 A1 WO 2013136384A1
Authority
WO
WIPO (PCT)
Prior art keywords
fastening member
head
surface portion
shield
wall
Prior art date
Application number
PCT/JP2012/005778
Other languages
English (en)
French (fr)
Inventor
繁紀 石原
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2014504470A priority Critical patent/JP5865483B2/ja
Publication of WO2013136384A1 publication Critical patent/WO2013136384A1/ja
Priority to US14/481,978 priority patent/US20150034481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to a vacuum apparatus for film-forming a substrate to be processed under vacuum, and relates to a fastening member and a vacuum apparatus for attaching a member to a chamber inner wall of the vacuum apparatus.
  • a film is formed to perform a film forming process on a substrate to be processed such as a silicon wafer, a liquid crystal display substrate, an optical disk or a mini disk.
  • the device is in use.
  • FIG. 6 is a schematic view of a sputtering apparatus used as an example of the film forming apparatus (see Patent Document 1).
  • the gas is used by always keeping the pressure P2 of the gas supplied into the shutter 408 covering the unused target 405 in a relationship of P2> P1 with respect to the pressure of the sputtering gas P1. It flows from the inside of the shutter 408 that covers the target 405 that has not been performed to the inside of the vacuum chamber 401, so that it is possible to prevent the mixed gas from flowing into the sputtering atmosphere and coming into contact with the unused target surface. It is configured.
  • the apparatus of FIG. 6 the apparatus of FIG.
  • reference numerals 412 and 414 denote gas supply nozzles 413, 413, for supplying contamination prevention gas to the space between the target 405 and the shutter 408 and the space between the target 406 and the shunter 408, respectively.
  • 415 is a gas supply valve that controls the gas supply amount from the gas supply nozzles 412 and 414
  • 416 is a pressure gauge that measures the gas pressure in the vacuum chamber
  • 417 is the pressure inside the shutter 408 (hereinafter referred to as the target chamber). It is a pressure gauge to measure.
  • the film adheres to an undesired place such as the inner wall of the vacuum chamber 401.
  • the adhering film accumulates every time the treatment is repeated, and eventually peels off and adversely affects the quality of the film formation. Therefore, it is necessary to periodically remove it by maintenance.
  • a film forming space from the targets 405 and 406 to the substrate 407 is partitioned by a component generally called a shield, and the quality of the film forming is stabilized by periodically exchanging the space.
  • the vicinity of the targets 405 and 406 and the vicinity of the substrate 407 are sectioned by a shield to prevent the sputtered film from adhering to the wall of the vacuum chamber 401.
  • FIG. 7 is a longitudinal sectional view showing a shield fastening structure for fastening the shield from the film formation space side (see Patent Document 2).
  • the second attachment plate 556 is detachable by the second attachment plate mounting bolt 554 and the nut 555 at the center of the surface of the first attachment plate 551 surrounded by the substrate holder 528. Is provided.
  • the front surface 556a of the second deposition preventing plate 556 is located at a height between the front surface 528b and the back surface 528a of the substrate holder 528, and the gap between the second deposition preventing plate 556 and the substrate holder 528
  • the structure is such that the target atoms are unlikely to enter the back surface 528a side.
  • the screw head portion 554a of the bolt 554 is exposed to the film formation space and the sputtered film adheres thereto, the surface roughness is often increased by blasting or thermal spraying in the same manner as the shield. In the case of maintenance, the replacement work can be performed by accessing from the film formation space side.
  • stainless steel is often used as the material of bolts used in such structures because of its good flowability and excellent corrosion resistance, but stainless steel has a low thermal conductivity among metals.
  • seizure galling
  • a technique for coating the threaded part with a lubricant that reduces the friction coefficient is widely used.
  • grease or Teflon registered trademark
  • a coating made of a soft metal such as silver which has a lubricating performance and has a small volatile gas even in a vacuum, is used.
  • solid lubrication means such as silver plating to the screw part and further imparting a surface roughness larger than that of the base material to the screw head part by blasting or the like, a shield fastening structure that suppresses particle generation can be obtained.
  • the shield fastening structure particles are not generated when the shield is fastened with a new bolt and a new screw hole, but silver plating is easy when the bolt once fastened is removed to replace the shield.
  • the peeled silver may accumulate in the female threaded part, or may float in the film formation space and cause contamination such as adhering to the object to be processed. .
  • Patent Document 3 discloses a shield fastening structure in which the shield and the entire screw are coated with molybdenum.
  • FIG. 8 is a cross-sectional view showing the shield fastening structure of Patent Document 3.
  • the shield plate 611 and the screw 612 for fixing the shield plate 611 are covered with the molybdenum coating 613. Therefore, the aluminum film 614 deposited on the surface of the shield plate 611 and the head of the screw 612 can be easily removed by molybdenum coating, so the time for accessing the bolt with a tool can be shortened, and the workability of removal can be improved by coating the screw part. It becomes possible to do.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a fastening member and a vacuum device having the fastening member that are less likely to cause contamination even when repeated removal operations are performed.
  • one aspect of the present invention is a fastening member for attaching a member to a chamber inner wall of a vacuum apparatus, the head upper surface portion, a seat surface portion facing the head upper surface portion, and the head upper surface portion.
  • a head portion having a head side surface portion constituting a side wall between the seat surface portion and a shaft portion provided on the seat surface portion side of the head portion and having a screw portion at an end opposite to the head portion.
  • the threaded portion has at least higher hardness than other portions of the fastening member, and when the member is attached to the inner wall of the chamber by the fastening member, the threaded portion is provided on the inner wall of the chamber. Therefore, the threaded portion is screwed together, and the seat surface portion is configured to press the member against the chamber inner wall.
  • the screw is attached when the member is attached to the inner wall of the chamber by the fastening member. Wear due to the friction between the portion and the female screw portion can be suppressed.
  • the screw part with high hardness has a lower coefficient of thermal expansion than the base material of the fastening member, the thermal expansion itself is also suppressed, and particles are generated from the screw part during the attaching / detaching operation of the fastening member. Can be reduced.
  • FIG. 1 is a schematic view showing the structure of a sputtering apparatus as an example of a vacuum apparatus (for example, a film forming apparatus) including a fastening member of the present invention.
  • an evacuation unit 2 such as a turbo molecular pump is connected to a vacuum vessel 1 made of stainless steel or the like, and can be maintained in a high vacuum environment of 1 ⁇ 10 ⁇ 8 Pa, for example.
  • the vacuum container 1 is provided with a holder 4 for holding the substrate 3 to be processed, and the substrate 3 to be processed is placed thereon to perform a film forming process.
  • Reference numeral 6 denotes a target made of a pure substance or a compound thereof as a raw material for film formation, and is connected to a DC power source (not shown) so that a voltage can be applied, and is insulated from the vacuum vessel 1 through an insulating portion 8 made of alumina or the like. Further, a magnet 7 is provided so that a magnetic field can be applied to the surface of the target 6.
  • the vacuum apparatus to which the fastening member of the present invention can be applied is not limited to that described in this embodiment, and a physical vapor deposition apparatus, a chemical vapor deposition apparatus (CVD), an atomic layer deposition apparatus (ALD), or the like can be used.
  • the vacuum vessel 1 is connected to a gas introduction means (not shown) for supplying a sputtering gas such as argon, for example, and exhausts from the exhaust means 2 while introducing the gas.
  • a gas introduction means for supplying a sputtering gas such as argon, for example, and exhausts from the exhaust means 2 while introducing the gas.
  • a sputtering gas such as argon, for example
  • the sputtering gas is turned into plasma in the vicinity of the target 6 by magnetron discharge, and positive ions in the plasma are accelerated and collide with the target 6 having a negative voltage. Atoms / molecules and the like are released from the target 6 by the collision of the cations, and the metal thus generated reaches the surface of the opposing substrate 3 to deposit a desired film.
  • oxygen or nitrogen is mixed and introduced into the sputtering gas from the gas introducing means, so-called reactive sputtering for depositing a metal nitride film or a metal oxide film
  • a plurality of targets 6 are mounted, and a plurality of targets 6 can be switched and used by a drivable shutter 10, and a plurality of types of films are stacked in one chamber. It is possible to form a film.
  • the film adheres to an undesired place such as the inner wall of the vacuum chamber 1.
  • the adhering film accumulates every time the treatment is repeated, and eventually peels off and adversely affects the quality of the film formation. Therefore, it is necessary to periodically remove it by maintenance.
  • a film forming space from the target to the target object is generally partitioned by a member called a shield, and the quality of the film forming is stabilized by periodically exchanging the space.
  • the vicinity of the target and the vicinity of the substrate 3 to be processed are sectioned by shields 5 and 9, thereby preventing the sputtered film from adhering to the wall of the vacuum chamber 1.
  • the sputtered film adheres to the shield 5 and the shutter 10, regular maintenance is performed, and an operation of removing them and replacing them with new ones is performed.
  • the surfaces of the shields 5 and 9 and the shutter 10 are attached by subjecting the surface roughness to an increase in surface roughness by, for example, blasting or spraying, for example, a 10-point average roughness (Rz) of 10 ⁇ m or more.
  • the film is devised so that it does not easily peel off.
  • FIG. 2A is a cross-sectional view of a fastening member used in a vacuum film forming apparatus as an example of an embodiment of the present invention.
  • FIG. 2B is a perspective view of the fastening member as an example of the embodiment of the present invention.
  • the vacuum film forming apparatus is, for example, the sputtering apparatus shown in FIG. 1, and the fastening members shown in FIGS. 2A and 2B are used for the fastening portions (11 and 12 respectively) of the shields 5 and 9 and the shutter 10 in FIG. .
  • the head 101 includes a head upper surface portion 107, a seat surface portion 111 that faces the head upper surface portion 107, and a head side surface portion 108 that forms a side wall between the head upper surface portion 107 and the seat surface portion 111.
  • the shaft portion 106 is provided on the seat surface portion 111 side of the head portion 101, and has a screw portion (male screw portion) 106 a at an end portion opposite to the head portion 101.
  • the threaded portion 106a is given a hardness that is at least higher than that of other portions of the fastening member.
  • High hardness may also be imparted to the head side surface portion 108 and the seat surface portion 111. High hardness is given to the above-mentioned fastening member by surface hardening processing. Furthermore, it is preferable that at least the head upper surface portion 107 is subjected to a surface roughness treatment that imparts a surface roughness greater than that of the seating surface portion 111. Further, at least the head upper surface portion 107 is preferably subjected to a surface roughness treatment that imparts a surface roughness of 10 ⁇ m or more 10-point average roughness (Rz).
  • a fixing component 103 having a female screw hole 115 is provided at a position where the fixed member 102 is to be fixed.
  • a female screw portion 105a having a shape to be screwed into the screw portion 106a is formed.
  • the member 102 to be fixed is a shield component 102 provided in the vacuum chamber 1 shown in FIG.
  • the shield component 102 faces the shield surface 112 surrounding the head side surface portion 108, the through hole 105 for inserting the fastening member, and the seat surface portion 111 so that the shield component 102 is fixed to the vacuum chamber 1 with the fastening member.
  • the through hole 105 has a first hole 113 larger than the head 101 constituting the shield surface 112 and an opening in the counterbore surface 109, and is provided with a size that is smaller than the head 101 and through which the shaft portion 106 can pass.
  • a second hole portion 114 communicating with the first hole portion 113.
  • the shield surface 112 extends to the upper surface side of the fastening member from the upper end of the head side surface portion 108. Therefore, the surface 110 of the shield component 102 is positioned higher than the head side surface portion 108. As a result, since the head side surface portion 108 does not protrude from the shield surface 112, the hardening process is performed, and the deposition of the film on the head side surface portion 108 where the surface roughness process is not performed is suppressed. Thereby, since the detachment
  • the fastening member is, for example, a stainless steel bolt made of SUS316L made of stainless steel and having an outer diameter of 5 mm.
  • the through hole provided in the shield component 102 (the first hole 113 and the second hole 114).
  • it is also provided on the fixed part 103 made of SUS316L, it is connected to the screw part 105a, so that a force in the compression direction is applied to the shield part 102 and fastened.
  • a hexagon wrench or the like is connected to the head side surface portion 108 to perform the work.
  • the shield component 102 is attached to the inner wall of the chamber 1 via the fixed component 103.
  • the female screw is attached to the inner wall of the chamber 1 (the portion corresponding to 103 in FIG. 2A) without using the fixed component 102.
  • the hole 115 and the internal thread portion 105a may be formed, and the shield component 102 may be directly attached by a fastening member.
  • FIG. 5 is a cross-sectional view of a fastening member in which the female screw hole 115 shown in FIG. 2A is changed to a through-hole. Other shapes are the same as in FIG. 2A.
  • the female screw hole 115 is a through-hole (soaked hole), even if dust is generated from the screw part 106 a or the female screw part 105 a, it can accumulate in the female screw hole 115. Therefore, the film can be discharged outside the film formation space, and the reliability of the film formation apparatus can be improved.
  • the head side surface portion 108 of the screw head portion of the fastening member, the screw portion 106a, the seating surface portion 111, and the female screw portion 105a of the fixed component 103 are subjected to carburizing treatment, and carbon that is inclined in the depth direction.
  • the surface hardness is modified to, for example, about HV700 with respect to the Vickers hardness (hereinafter referred to as HV) 200 of SUS316L which is a base material.
  • HV Vickers hardness
  • a nitriding treatment or an abrasion resistant coating treatment can be used as the surface hardening treatment.
  • the coating process is a process for forming a film made of a material different from the base material on the surface, and known ion plating, sputtering, or the like can be used, and various films such as TiN are applied as the film to be coated. be able to.
  • the abrasion-resistant coating referred to here is a part of the coated film to the other side, such as a so-called solid lubricant such as molybdenum coating, silver plating, or fluorine coating used in Patent Document 3. It does not refer to an object that adheres (to the female screw side when coated on the external thread), but means that the hardness is improved by forming a strong film on the coated surface. Such an abrasion resistant coating is preferred because of its low risk of becoming a source of contamination.
  • the carburizing process for example, a known plasma carburizing process is used.
  • the head upper surface portion 107 of the head 101 is masked so as to be in close contact with the component 150 made of stainless steel. Accordingly, the hardness of the portion other than the head upper surface portion 107 of the fastening member can be increased by the carburizing process, the head upper surface portion 107 can be prevented from being doped with carbon, and the hardness of the head upper surface portion 107 is not increased. Can be maintained at the same level.
  • the threaded portion 106a, the head side surface portion 108, the seating surface portion 111, and the female threaded portion 105a are modified to a high hardness, wear due to friction between the members when the shield component 102 is attached to the fixed component 103 by the fastening member. Can be suppressed. Further, since the coefficient of thermal expansion is lower than that of the base material when the hardness is improved, the thermal expansion itself is also suppressed, and the generation of particles accompanying the work of attaching and detaching the fastening member can be reduced.
  • the top surface 107 of the head 101 is subjected to a roughening process such as alumina blasting, and the surface roughness of the seating surface 111 or more, for example, the surface roughness is a center line average roughness (Ra) of 3.5 ⁇ m.
  • the ten-point average height (Rz) is 20 ⁇ m.
  • the hardness of the head upper surface portion 107 maintains the HV 200 substantially equal to the base material. Therefore, it is possible to efficiently and reproducibly obtain the surface roughness necessary for preventing the attached film from being peeled off.
  • various blasting methods using glass beads, unit price silicon, dry ice, etc. can be used for the blasting treatment.
  • the surface hardening treatment is performed after the surface roughness treatment, the roughness of the surface formed by the surface roughness treatment is reduced by the surface hardening treatment.
  • the surface roughness treatment blasting treatment
  • the surface roughness treatment is performed by a known blast treatment, the necessary surface roughness can be obtained at low cost.
  • the head upper surface portion 107 is masked during the surface hardening process, the surface roughness obtained by the surface roughness process is increased, and there is an effect of reducing the generation of particles.
  • a metal such as aluminum or titanium after the blasting process because a larger surface roughness can be obtained and a film attached from the film formation space is hardly peeled off.
  • a metal such as aluminum or titanium
  • a thermal spraying treatment various methods such as arc spraying as well as plasma spraying can be applied.
  • the surface hardening treatment is easily affected by a high temperature environment.
  • carburizing treatment using stainless steel (for example, SUS316) as a base material it is known that the surface phase undergoes a structural change at 400 ° C. or higher and the hardness decreases.
  • the internal thread portion 105a can be maintained at a low temperature, so that the hardness of the surface of the fastening member can be maintained and the generation of particles can be suppressed.
  • the surface 110 of the shield component 102 is configured to be higher than the head side surface portion 108 of the fastening member, it is possible to suppress the film from adhering to the head side surface portion 108.
  • the opening shape and size of the through hole 105 on the surface 110 of the shield component 102 are arbitrary.
  • a circular opening having a diameter of 13 mm is formed on a hexagon head bolt having a side of 4.6 mm. Provided.
  • the shield part 102 even when the shield part 102 is repeatedly replaced, the parts that come into contact with the tool (such as the head side surface part 108), the seat surface part 111, the head upper surface part 107, the screw part 106a, and the female screw part 105a
  • the detachment of wear powder and deposited film from each part is reduced, and the reliability of the apparatus can be improved.
  • the fastening member since the hardened layer formed on the surface of the fastening member has little wear even if it is repeatedly used, the fastening member can be used repeatedly if the film deposited on the top surface 107 is removed. It is also effective for reduction.
  • the structure in which the shield component 102 (shields 5 and 9) is fastened by the fastening member has been described, but the same applies to the case where other elements (such as the shutter 10) in the chamber 1 are fastened by the fastening member.
  • a fastening structure can be used.
  • the fastening member according to the present invention is not limited to the above-mentioned example, and any screw head shape, thread length, pitch, etc. can be applied.
  • FIG. 4 is a configuration example of a shield fastening structure mounted on the holder 4 that is preferable when the holder 4 for holding the substrate 3 to be processed has a heating mechanism in the apparatus of FIG.
  • reference numeral 301 denotes a heating means such as a nichrome wire embedded in the holder 4, which is controlled to a desired temperature by a power supply means, a temperature sensor, and a temperature control means (not shown) to raise the substrate 3 to be processed. Film formation is performed in a warm state.
  • Reference numeral 303 denotes a shield, which is provided so as to protect a film from adhering to a portion of the upper surface of the holder 4 that is not shielded by the substrate 3 to be processed and a side surface of the holder 4.
  • 302 is a heat insulating component made of alumina, for example, and has a structure capable of reducing heat conduction from the holder 4 to the shield 303.
  • the shield 303 is fastened to the heat insulating component 302 with a fastening structure as shown in FIG. 2A.
  • the shield 303 and the fastening member can be maintained at a lower temperature than the substrate 3 to be processed.
  • the surface layer of stainless steel that has been hardened by coating has a low coefficient of thermal expansion, so cracks may occur due to the difference in coefficient of thermal expansion from the base material in high temperature environments, and stainless steel that has been hardened by carburizing treatment.
  • carbon is desorbed in a high-temperature environment or the metal structure of stainless steel changes and becomes brittle. Therefore, by adopting the configuration shown in FIG. 4, the temperature of the fastening member can be maintained at a low temperature, so that the life of the surface-curing treatment portion of the fastening member can be extended, and a desirable effect for improving the reliability of the apparatus. Can be obtained.
  • the form of the present invention is not limited to the above embodiment, and can be freely changed within the scope of the gist of the invention.
  • the shape of the bolt is not limited to the hexagon shown in the embodiment, but may be an octagon or a quadrangle, and the bolt is provided with a vent hole for venting air between the female screw portion and the male screw portion. It may be done.
  • materials such as titanium and aluminum can be applied to the bolt material.
  • the female thread portion may be inserted with a helicate or the like or may be provided with the vent hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 本発明は、繰り返し取り外し作業を行っても汚染の発生懸念が少ない締結部材及び締結部材を有する真空装置を提供することを目的とする。本発明の一実施形態に係る締結部材は、真空装置のチャンバー内壁に部材を取り付けるための締結部材であって、頭上面部と、前記頭上面部に対向する座面部と、前記頭上面部と前記座面部との間の側壁を構成する頭側面部とを有する頭部と、前記頭部の前記座面部側に設けられ、前記頭部とは反対側の端部にねじ部を有する軸部と、を備え、前記ねじ部は少なくとも前記締結部材の他の部分より高い硬度が付与されており、前記締結部材によって前記部材を前記チャンバー内壁に取り付ける際、前記ねじ部が前記チャンバー内壁に設けられためねじ部に螺合するとともに、前記座面部が前記部材を前記チャンバー内壁に押し付けるように構成されている。

Description

締結部材および真空装置
 本発明は、真空下において被処理基板を成膜処理するための真空装置であって、真空装置のチャンバー内壁に部材を取り付けるための締結部材及び真空装置に関するものである。
 従来、半導体製造工程、液晶表示パネル製造工程、或いはディスク製造工程等の各種の製造工程において、シリコンウエハ、液晶表示基板、光ディスクやミニディスク等の被処理基板の成膜処理を行うために成膜装置が使用されている。
 図6は前記成膜装置の一例として用いられているスパッタ装置の模式図である(特許文献1参照)。図6記載の成膜装置は、使用していないターゲット405を覆うシャッター408内部に供給するガスの圧力P2をスパッタガスP1の圧力に対して常にP2>P1の関係に保つことによって、ガスは使用していないターゲット405を覆うシャッター408内部側から真空室401内側へと流れることになり、スパッタ雰囲気中から混合ガスが流入して未使用中のターゲット表面に接触するのを阻止することができるように構成されている。なお、図6の装置において、412、414は、夫々ターゲット405とシャッター408との間の空間及びターゲット406とシャンター408との間の空間に汚染防止用のガスを供給するガス供給ノズル、413、415はガス供給ノズル412、414からのガス供給量を制御するガス供給弁、416は真空室内のガス圧を測る圧力計、417はシャッター408で覆われた内部(以下ターゲット室という)の圧力を測る圧力計である。
 ところが、前記ターゲット405、406より放出された原子・分子はランダムな方向に飛翔するため、真空室401の内壁など望ましくない場所にも膜が付着することになる。付着した膜は処理を重ねる毎に蓄積し、やがて剥離することで成膜の品質に悪影響を与えることになるため、定期的にメンテナンスにより除去する必要が生じる。
 このため、成膜装置には一般的にシールドと呼ばれる部品によりターゲット405、406から基板407までの成膜空間を区画し、これを定期的に交換することで成膜の品質を安定させている。図6の成膜装置では、ターゲット405、406近傍及び基板407の近傍をシールドにより区間することで、真空室401の器壁にスパッタ膜が付着するのを防いでいる。
 これらのシールド及びシャッター部品の固定に際しては、取り外し・交換の作業性の観点から、成膜空間側内側からボルトで締結する構造を用いることがある。図7は、シールドを成膜空間側から締結するシールド締結構造を示した縦断面図である(特許文献2参照)。図7に示すシールド締結構造では、基板ホルダ528によって囲まれた、第1防着板551の表面中央部に、第2防着板取付ボルト554及びナット555によって第2防着板556が取り外し自在に設けられている。第2防着板556の表面556aは、基板ホルダ528の表面528bと裏面528aとの間の高さに位置しており、第2防着板556と基板ホルダ528との間隙から基板ホルダ528の裏面528a側にターゲット原子が回り込みにくい構造となっている。また、ボルト554のねじ頭部分554aは成膜空間に露出しておりスパッタ膜が付着するため、シールドと同様にブラスト処理や溶射処理により表面粗さを増加させる処理を施すことが多い。なお、メンテナンスの際には成膜空間側からアクセスして交換作業を行うことができる。
 一般にこのような構造に使用されるボルトの材質としては、流通性が良く耐腐食性にも優れていることからステンレス鋼が多く採用されているが、ステンレス鋼は金属の中では低い熱伝導度並びに大きい熱膨張率により、締結時にねじ山に生じる摩擦熱でおねじ・めねじが固着して動かなくなる、いわゆる焼き付き(かじり)と呼ばれる現象が生じやすい。このような焼き付き現象が発生すると、同じトルクで締結を行ってもねじ部の摩擦が大きくなるためパーティクル発生の危険性が大きくなるという問題が生じる。
 上述のような、ねじ部の焼き付きを防止する技術として摩擦係数を低減する潤滑剤をねじ部にコーティングする技術が広く用いられているが、真空装置においてはグリスやテフロン(登録商標)などをコーティングすると、コーティング層から脱ガスが発生し、成膜環境を汚染する危険性があるため、例えば銀などの、潤滑性能を持ちながら真空中でも揮発ガスが少ない軟金属によるコーティングが多く用いられている。
 ねじ部に銀メッキ等の固体潤滑手段を施し、さらにねじ頭部分にブラスト処理等で母材よりも大きい表面粗さを付与することで、パーティクル発生を抑えたシールドの締結構造を得ることができる。
 ところが、上述のシールド締結構造においては、新品のボルトと新品のねじ穴とにより当該シールドを締結する際にはパーティクル発生が起きないが、一度締結したボルトをシールドの交換に取り外すと銀メッキが容易に剥離してしまうため、シールドの交換作業を繰り返すことで剥離した銀がめねじ部に蓄積したり、成膜空間に浮遊したりして被処理体に付着するなどの汚染を生じることがあった。
 一方で、特許文献3には、シールド及びねじ全体をモリブデンでコーティングしたシールド締結構造が開示されている。図8は、特許文献3のシールド締結構造示す断面図である。特許文献3によれば、シールド板611及びシールド板を611固定するためのネジ612が、モリブデン被膜613により覆われている。そのため、モリブデンコーティングによりシールド板611表面及びねじ612頭部分に堆積したアルミ膜614を容易に除去できるため工具でボルトにアクセスするための時間を短縮でき、さらにねじ部のコーティングにより取り外し作業性が改善することが可能となる。
特開平04-202768号公報 特開平11-092913号公報 特開平08-041637号公報
 しかし、特許文献3のシールド締結構造においてもシールド交換作業を繰り返すことによりコーティング膜自体が汚染源となるリスクがあるという問題点があった。また、特許文献3のシールド締結構造においては、ねじ612頭部分の膜除去性が容易に行い得るが、同時にスパッタリング装置使用中にねじ612頭部分から堆積した膜が、スパッタリング装置内に脱落する危険性が大きくなるという問題点があった。しかし、この点を解消するものは未だ知られていない。
 本発明は上記課題に鑑みてなされたもので、繰り返し取り外し作業を行っても汚染の発生懸念が少ない締結部材及び締結部材を有する真空装置を提供することを目的とする。
 上記目的の達成のために、本発明の一態様は、真空装置のチャンバー内壁に部材を取り付けるための締結部材であって、頭上面部と、前記頭上面部に対向する座面部と、前記頭上面部と前記座面部との間の側壁を構成する頭側面部とを有する頭部と、前記頭部の前記座面部側に設けられ、前記頭部とは反対側の端部にねじ部を有する軸部と、を備え、前記ねじ部は少なくとも前記締結部材の他の部分より高い硬度が付与されており、前記締結部材によって前記部材を前記チャンバー内壁に取り付ける際、前記ねじ部が前記チャンバー内壁に設けられためねじ部に螺合するとともに、前記座面部が前記部材を前記チャンバー内壁に押し付けるように構成されていることを特徴とする。
 本発明に係る締結部材によれば、締結部材のねじ部に少なくとも前記締結部材の他の部分より高い硬度が施されているため、前記締結部材により前記部材がチャンバー内壁に取り付けられる際、前記ねじ部と前記めねじ部との摩擦に伴う磨耗を抑制することができる。同時に、高い硬度が施されたねじ部は、締結部材の母材よりも熱膨張率が低下するため、熱膨張自体も抑制することになり、締結部材の脱着作業に伴うねじ部からのパーティクル発生を低減することができる。
本発明の一実施形態に係る締結部材を含む成膜装置の構造を示す概略図である。 本発明の一実施形態に係る締結部材の断面図である。 本発明の一実施形態に係る締結部材の斜視図である。 本発明の一実施形態における部分表面硬化処理の概略を示すための図である。 本発明の一実施形態に係る締結部材を含む別の成膜装置の構造を示す概略図である。 本発明の別の実施形態に係る締結部材の断面図である。 従来技術(特許文献1)の一例であるところのシールド締結構造を示す図である。 従来技術(特許文献2)の一例であるところのシールド締結構造を示す図である。 従来技術(特許文献3)の一例であるところのシールド締結構造を示す図である。
 以下、図面に基づいて本発明の内容を詳細に説明する。図1は本発明の締結部材を含む真空装置(たとえば成膜装置)の一例であるところの、スパッタ装置の構造を示す概略図である。本装置は、ステンレス等で構成された真空容器1にターボ分子ポンプ等の排気手段2が接続され、例えば1×10-8Paの高真空環境に維持することが可能となっている。さらに真空容器1は被処理基板3を保持するためのホルダ4を備えており、被処理基板3がこの上に戴置されて成膜処理が行なわれる。6は成膜の原料となる純物質またはその化合物から成るターゲットであり、電圧を印可できるよう図示されないDC電源が接続され、アルミナ等からなる絶縁部8を介して真空容器1と絶縁された状態となるよう設置されており、さらにターゲット6の表面に磁場を与えることができるよう、マグネット7が設けられる。
 本発明の締結部材を適用可能な真空装置としては、本実施形態に記載したものに限られず、物理蒸着装置や化学蒸着装置(CVD)、原子層堆積装置(ALD)などを用いることができる。
 真空容器1には、例えばアルゴンなどのスパッタ用ガスを供給する、図示されないガス導入手段が接続されており、ガスを導入しつつ排気手段2から排気を行い、DC電源よりターゲット6が負電圧となるよう電力を投入することで、マグネットによってマグネトロン放電が発生する。マグネトロン放電によってターゲット6の近傍にてスパッタ用ガスがプラズマ化され、このプラズマ中の陽イオンが負電圧のターゲット6に加速されて衝突する。この陽イオンの衝突によりターゲット6から原子・分子等が放出され、こうして生成した金属が、対向した基板3表面に到達することで、所望の膜が堆積される。さらに、前記ガス導入手段より、前記スパッタガスに酸素や窒素などを混合して導入すると、金属窒化膜や金属酸化膜を堆積するいわゆる反応性スパッタをおこなうことが可能となる。
 図1の装置では、ターゲット6が複数搭載されており、駆動可能なシャッター10により複数のターゲット6を切り替えて使用することが可能となっており、1つのチャンバーで複数の種類の膜を積層して成膜することが可能となっている。
 ところが、前記ターゲット6より放出された原子・分子はランダムな方向に飛翔するため、真空チャンバー1の内壁など望ましくない場所にも膜が付着することになる。付着した膜は処理を重ねる毎に蓄積し、やがて剥離することで成膜の品質に悪影響を与えることになるため、定期的にメンテナンスにより除去する必要が生じる。
 このため、成膜装置には一般的にシールドと呼ばれる部材によりターゲットから被処理体までの成膜空間を区画し、これを定期的に交換することで成膜の品質を安定させている。図1では、ターゲット近傍及び被処理基板3の近傍をシールド5、9により区間することで、真空チャンバー1の器壁にスパッタ膜が付着するのを防いでいる。その結果シールド5及びシャッター10にはスパッタ膜が付着するため、定期的にメンテナンスを行い、これらを取り外して新品に交換する作業が行われる。また、シールド5、9及びシャッター10の表面は、ブラスト処理や溶射などにより表面粗さを拡大し、例えば十点平均粗さ(Rz)で10μm以上となるような処理が行われることで、付着した膜が容易に剥離しないよう工夫されている。
 図2Aは本発明の実施形態の一例であるところの、真空成膜装置に用いる締結部材の断面図である。また、図2Bは本発明の実施形態の一例であるところの、該締結部材の斜視図である。真空成膜装置は、例えば図1に示すスパッタ装置であり、特に図1におけるシールド5、9、シャッター10の締結部(各々11、12)に、図2Aおよび図2B記載の締結部材が用いられる。
 図2Aおよび図2B記載の締結部材は、図1記載の真空装置のチャンバー1内壁に被固定部材102(例えば、シールド5、9)を取り付けるための締結部材であって、軸部106と頭部101とからなる。頭部101は、頭上面部107と、頭上面部107に対向する座面部111と、頭上面部107と座面部111との間の側壁を構成する頭側面部108とを有する。軸部106は、頭部101の座面部111側に設けられており、頭部101とは反対側の端部にねじ部(おねじ部)106aを有している。ねじ部106aには少なくとも締結部材の他の部分より高い硬度が付与されている。なお、高い硬度は、頭側面部108と座面部111にも付与させてもよい。高い硬度は、表面硬化処理により前記締結部材に付与されている。さらに、少なくとも頭上面部107は、座面部111以上の表面粗さを付与する表面あらさ処理が施されていることが好ましい。更に、少なくとも頭上面部107は、十点平均粗さ(Rz)10μm以上の表面粗さを付与する表面あらさ処理が施されていることが好ましい。
 チャンバー1内壁には、被固定部材102を固定すべき位置にめねじ穴115を有する固定部品103が設けられている。めねじ穴115の内壁面には、ねじ部106aに螺合する形状のめねじ部105aが形成されている。締結部材によって被固定部材102を固定部品103に取り付ける際には、ねじ部106aがめねじ部105aに螺合するとともに、座面部111が被固定部材102を固定部品103に押し付けるように固定する。
 本実施形態において、被固定部材102は、図1記載の真空チャンバー1内に設けられ、薄膜形成に伴う付着物を捕捉するためのシールド部品102である。シールド部品102は、頭側面部108を取り囲むシールド面112と、締結部材でシールド部品102を真空チャンバー1に固定するように、締結部材を挿入するための貫通穴105と、座面部111と対面する座ぐり面109とを備える。貫通穴105は、シールド面112を構成する頭部101より大きい第一の穴部113と、座ぐり面109に開口を持ち、頭部101より小さくかつ軸部106が貫通可能な大きさに設けられ、第一の穴部113に連通している第二の穴部114と、からなる。シールド面112は、頭側面部108の上端よりも締結部材の上面側に延在している。そのため、シールド部品102の表面110は、頭側面部108よりも高い位置となる。その結果、頭側面部108がシールド面112より突出していないことにより、硬化処理が施され、表面あらさ処理が施されていない頭側面部108への膜の堆積が抑制される。これにより、工具を用いて締結部材を取り外す際に頭側面部108からの堆積膜の脱離を抑制できるため、装置の信頼性を向上させることができる。
 締結部材は例えばステンレス鋼であるSUS316L製でねじ部106aの外径が5mmの六角頭ボルトであり、シールド部品102に設けられた貫通穴(第1の穴部113、第2の穴部114)を通じて、同じくSUS316L製の固定部品103に設けられためねじ部105aへ接続することで、シールド部品102に圧縮方向の力を加えて締結する。締結及び取り外しの際には、頭側面部108へ、例えば六角レンチ等を接続し作業を行う。なお、図2Aでは、シールド部品102を、固定部品103を介してチャンバー1の内壁に取り付けているが、固定部品102を介さず、チャンバー1内壁(図2Aの103に相当する部分)にめねじ穴115及びめねじ部105aを形成し、シールド部品102を直接締結部材により取り付けてもよい。また、めねじ部105aとしては、公知のナット等を用いてもよい。
 ここで、シールド部品102を締結する固定部品103に設けられためねじ穴115が、図2Aのように凹形状ではなく、貫通孔(つきぬけたあな)である場合は、めねじ穴115内に磨耗によって発生したゴミが蓄積する可能性が低くなり、さらに好適である。図5は、図2A記載のめねじ穴115が、貫通孔(つきぬけたあな)に変更された形態の締結部材の断面図である。その他の形状は、図2Aと同様である。図5の場合、めねじ穴115が貫通孔(つきぬけたあな)となっているため、万一ねじ部106a又はめねじ部105aからゴミが発生しても、めねじ穴115に蓄積することがなく、成膜空間の外側へ排出することが可能となり、成膜装置の信頼性を向上することができる。
 表面硬化処理として、炭素ドーピング処理による傾斜したステンレス鋼への硬化層形成(いわゆる浸炭処理)を適用することで、複数の締結及び取り外し作業でも剥離がない表面硬化処理を付与することができる。本実施形態では、締結部材のねじ頭部分の頭側面部108、ねじ部106a、座面部111及び固定部品103のめねじ部105aには浸炭処理が施されており、深さ方向に傾斜した炭素濃度でドーピングが施された結果、母材であるSUS316Lのビッカース硬度(以下、HVと表記)200に対して表面の硬度が例えばHV700程度に改質されている。
 表面硬化処理としては、本実施形態で用いる浸炭処理のほか、窒化処理や、耐磨耗性コーティング処理を使用することができる。該コーティング処理は、母材と異なる材質よりなる膜を表面に形成する処理であり、公知のイオンプレーティングやスパッタなどを用いることができ、コーティングされる膜としてはTiNなど種々の膜を適用することができる。
 ただし、ここで言う耐摩耗性コーティングとは、特許文献3で用いられているモリブデンコーティングや、銀メッキ、フッ素コーティングなどのいわゆる固体潤滑剤のように、コーティングされた膜の一部が相手側へ(おねじ部にコーティングした場合はめねじ側へ)付着するような物を指すのではなく、コーティングされた面に強固な皮膜を形成することによって硬度を向上させるものを意味する。このような耐摩耗性コーティングは汚染源となるリスクが少ないため、好ましい。
 前記浸炭処理としては、例えば公知のプラズマ浸炭処理が使用される。本実施形態では、浸炭処理の際に図3に示すように、頭部101の頭上面部107をマスキングするように、ステンレス製の部品150に密着させて処理を行う。これによって、締結部材の頭上面部107以外の部分は浸炭処理によって硬度を高めることができ、頭上面部107には炭素がドープされるのを防ぐことができ、頭上面部107の硬度を高めず母材と同等に維持することができる。
 ねじ部106a、頭側面部108、座面部111、及びめねじ部105aが高い硬度に改質されると、締結部材によりシールド部品102が固定部品103に取り付けられる際、部材同士の摩擦に伴う磨耗を抑制することができる。また、高い硬度に改質されると母材よりも熱膨張率が低下するため、熱膨張自体も抑制することになり、締結部材の脱着作業に伴うパーティクル発生を低減することができる。
 表面硬化処理の後、頭部101の頭上面部107にはアルミナブラストなどの荒らし処理が行われ、座面部111以上の表面粗さ、例えば表面粗さが中心線平均粗さ(Ra)3.5μm、十点平均高さ(Rz)20μmとなるよう構成されている。このように、頭上面部107に対して、十点平均粗さ(Rz)10μm以上の表面粗さを付与する表面あらさ処理を施すと、頭上面部107に付着した膜が剥離しにくく装置の信頼性が向上するという効果がある。一般的に、被処理面の硬度を高いと、表面あらさ処理の効率が悪化する。しかしながら、本実施形態では、図3に示すように前記浸炭処理において頭上面部107が浸炭処理されないように保護を行っているため、前記頭上面部107の硬度は母材とほぼ同等のHV200を維持しており、付着した膜の剥離防止に必要な表面粗さを効率よくかつ再現性良く得ることができる。
 ブラスト処理には、アルミナブラストのほか、ガラスビーズ、単価珪素、ドライアイスなどを用いた種々のブラスト方法を使用することができる。
 表面あらさ処理の後に表面硬化処理を行う場合には、表面あらさ処理で形成した表面の粗さが表面硬化処理により低下してしまう。しかしながら、本実施形態では、表面硬化処理の後に表面あらさ処理(ブラスト処理)を行っているので、表面あらさ処理で形成した表面の粗さが低下しにくいという効果がある。また、表面あらさ処理を公知のブラスト処理により行っているため、低コストで必要な表面粗さを得ることができる。さらに、表面硬化処理の際に頭上面部107をマスキングしているため、表面あらさ処理により得られる表面粗さが大きくなり、パーティクル発生を低減する効果がある。
 ここで、ブラスト処理の後にさらにアルミやチタン等の金属を溶射するとさらに大きな表面粗さを得ることができ、成膜空間から付着する膜が剥離しにくくなるためさらに好ましい。例えば純アルミをプラズマ溶射法により100μm程度付着させると、十点平均粗さRzで約50μmの表面を得ることができる。
 溶射処理としては、プラズマ溶射のほか、アーク溶射など種々の方法を適用することができる。
 真空チャンバー1のめねじ部105aの近傍には、冷却手段として冷却水により冷却するための経路を形成することが好ましい。これにより、熱膨張によるねじ部106a、めねじ部105aの間の摩擦を低減することができ、パーティクルの発生を抑制することができる。また、一般に表面硬化処理は高温環境に影響を受けやすいことが知られている。例えばステンレス鋼(例えばSUS316)を母材とした浸炭処理の場合、400℃以上では表面相が組織変化を起こして硬度が下がることが知られている。さらに、TiNなどのコーティング処理においても、高温環境では母材との熱膨張率の違いにより剥離のリスクが大きくなる。従って、冷却手段を設けることによって、めねじ部分105aを低温に維持することができるため、締結部材表面の硬度を維持し、パーティクルの発生を抑制することができる。
 上記の通り、シールド部品102の表面110は、締結部材の頭側面部108よりも高い位置となるよう構成されているため、該頭側面部108へ膜が付着するのを抑制することができる。シールド部品102の表面110における貫通穴105の開口形状及び大きさは任意であるが、ここでは、図2Bに示すとおり1辺が4.6mmの六角頭ボルトに対して直径13mmの円形の開口を設けている。
 本実施形態に係る構成により、繰り返しシールド部品102の交換作業を行っても、工具が接触する部分(頭側面部108など)、座面部111、頭上面部107、ねじ部106aおよびめねじ部105aの各部から磨耗粉や堆積した膜の脱離が低減され、装置の信頼性を改善することができる。さらに、締結部材の表面に形成された硬化層は繰り返し使用しても磨耗が少ないため、頭上面部107に堆積した膜を除去すれば締結部材を繰り返し使用することも可能であり、装置の運用コスト低減にも効果がある。
 本実施形態では、締結部材によってシールド部品102(シールド5、9)を締結する構造を説明したが、該締結部材によってチャンバー1内の他の要素(シャッター10等)を締結する場合にも、同じ締結構造を用いることができる。
 本発明に係る締結部材としては、上述の例にとどまらず、ねじ頭の形状やねじ部の長さ、ピッチなどは任意のものが適用できる。
 図4は、図1の装置において、被処理基板3を保持するためのホルダ4が加熱機構を備えている場合に好ましい、ホルダ4に搭載するシールド締結構造の構成例である。
 図4において、301はホルダ4内に埋設された、例えばニクロム線などの加熱手段であり、図示しない電力供給手段及び温度センサ、温度制御手段により所望の温度に制御され、被処理基板3を昇温した状態で成膜が行われる。303はシールドであり、ホルダ4上面のうち被処理基板3によって遮蔽されない部分及び該ホルダ4の側面に膜が付着しないように保護するように設けられる。302は例えばアルミナによって作成される断熱部品であり、ホルダ4からシールド303への熱伝導を低減することが可能な構造となっている。シールド303は、図2Aに示すような締結構造で断熱部品302へ締結されている。このような構成を取ることで、前記シールド303および締結部材を被処理基板3よりも低温で維持することができる。
 一般にコーティングにより硬化を行ったステンレスの表面層は熱膨張率が低いため高温環境下では母材との熱膨張率の差よりクラック等を生じるケースがあるほか、浸炭処理によって硬化を行ったステンレス鋼に関しては高温環境下で炭素が脱離したりステンレス鋼の金属組織が変化して脆化する場合がある。従って、図4に示す構成を取ることで、締結部材の温度を低温に維持することができるため、該締結部材の表面硬化処理部の寿命を延ばすことができ、装置の信頼性向上に望ましい効果を得ることができる。
 本発明の形態は、上記の実施例にとどまるものではなく発明の主旨の範囲内で自由に変更が可能である。例えば、ボルトの形状は実施例に示した六角形にとどまらず八角形や四角形などの形状であってもよく、めねじ部とおねじ部の間の空気を抜くためのガス抜き穴がボルトに設けられていても良い。さらにボルト材質においても、チタンやアルミなどの材質を適用することができる。また、めねじ部に関してもヘリサートなどが挿入されたものや前記ガス抜き穴が施されたものであってよい。

Claims (15)

  1.  真空装置のチャンバー内壁に部材を取り付けるための締結部材であって、
     頭上面部と、前記頭上面部に対向する座面部と、前記頭上面部と前記座面部との間の側壁を構成する頭側面部とを有する頭部と、
     前記頭部の前記座面部側に設けられ、前記頭部とは反対側の端部にねじ部を有する軸部と、
     を備え、
     前記ねじ部は少なくとも前記締結部材の他の部分より高い硬度が付与されており、
     前記締結部材によって前記部材を前記チャンバー内壁に取り付ける際、前記ねじ部が前記チャンバー内壁に設けられためねじ部に螺合するとともに、前記座面部が前記部材を前記チャンバー内壁に押し付けるように構成されている
     ことを特徴とする締結部材。
  2.  前記高い硬度は、前記頭側面部と前記座面部にも付与されていることを特徴とする請求項1記載の締結部材。
  3.  前記高い硬度は、表面硬化処理により前記締結部材に付与されていることを特徴とする請求項1記載の締結部材。
  4.  前記締結部材の母材はステンレス鋼であり、前記表面硬化処理は前記ステンレス鋼に炭素をドーピングすることによって硬化させる侵炭処理であることを特長とする請求項3に記載の締結部材。
  5.  前記高い硬度は、前記母材と異なる材質よりなる膜を表面に形成することにより前記締結部材に付与されていることを特徴とする請求項1に記載の締結部材。
  6.  前記頭上面部分には、表面粗さを付与する表面あらさ処理が施されていることを特徴とする請求項1記載の締結部材。
  7.  前記頭上面部分に付与される前記表面粗さは、前記座面部の表面粗さ以上であることを特徴とする請求項6記載の締結部材。
  8.  前記頭上面部分に付与される前記表面粗さは、十点平均粗さ(Rz)10μm以上であることを特徴とする請求項6記載の締結部材。
  9.  前記表面硬化処理の後に行われるブラスト処理によって、前記頭上面部に表面粗さが付与されていることを特徴とする請求項3に記載の締結部材。
  10.  前記ブラスト処理の後に行われる溶射処理によって、前記頭上面部に金属膜が形成されていることを特徴とする請求項9記載の締結部材。
  11.  前記締結部材の前記頭上面部以外には、前記高い硬度を付与する表面硬化処理が施されており、
     前記締結部材の前記頭上面部には、表面粗さを付与する表面あらさ処理が施されている
     ことを特徴とする請求項1記載の締結部材。
  12.  請求項1記載の締結部材を含む、真空チャンバー内に配置された基板上に薄膜を形成する成膜装置であって、
     前記部材は、前記真空チャンバー内に設けられ、前記薄膜形成に伴う付着物を捕捉するためのシールドであり、
     前記シールドは、前記頭側面部を取り囲むシールド面と、前記締結部材で前記シールドを前記真空チャンバーに固定するように前記締結部材を挿入するための貫通穴と、前記座面部と対面する座ぐり面とを備え、
     前記貫通穴は、前記シールド面を構成する前記頭部より大きい第一の穴部と、前記座ぐり面に開口を持ち、前記頭部より小さくかつ前記軸部が貫通可能な大きさに設けられ、前記第一の穴部に連通する第二の穴部と、を有し、
     前記シールド面は、前記頭側面部の上端よりも前記締結部材の上面側に延在しており、
     少なくとも1つの前記請求項1記載の締結部材により、前記シールドが前記真空チャンバーの内壁に取り付けられていることを特徴とする真空装置。
  13.  前記真空チャンバーの内壁に設けられている前記めねじ部にも前記高い硬度が付与されていることを特徴とする請求項12記載の真空装置。
  14.  前記真空チャンバーの内壁に設けられている前記めねじ部が貫通孔であることを特徴とする請求項12記載の真空装置。
  15.  前記真空チャンバーには、前記めねじ部を冷却するための冷却手段が設けられていることを特徴とする請求項12に記載の真空装置。
PCT/JP2012/005778 2012-03-14 2012-09-12 締結部材および真空装置 WO2013136384A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504470A JP5865483B2 (ja) 2012-03-14 2012-09-12 締結部材および真空装置
US14/481,978 US20150034481A1 (en) 2012-03-14 2014-09-10 Fastening member and vacuum device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-057301 2012-03-14
JP2012057301 2012-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/481,978 Continuation US20150034481A1 (en) 2012-03-14 2014-09-10 Fastening member and vacuum device

Publications (1)

Publication Number Publication Date
WO2013136384A1 true WO2013136384A1 (ja) 2013-09-19

Family

ID=49160359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005778 WO2013136384A1 (ja) 2012-03-14 2012-09-12 締結部材および真空装置

Country Status (4)

Country Link
US (1) US20150034481A1 (ja)
JP (1) JP5865483B2 (ja)
TW (1) TWI493065B (ja)
WO (1) WO2013136384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170053784A1 (en) * 2015-08-21 2017-02-23 Applied Materials, Inc. Methods and apparatus for co-sputtering multiple targets

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063347A (ko) * 2015-10-27 2018-06-11 어플라이드 머티어리얼스, 인코포레이티드 Pvd 스퍼터 챔버를 위한 바이어스가능 플럭스 최적화기/콜리메이터
WO2020001775A1 (en) * 2018-06-28 2020-01-02 Applied Materials, Inc. Component for a vacuum chamber, vacuum chamber, and method of manufacturing a degassing hole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323377A (ja) * 2000-03-16 2001-11-22 Applied Materials Inc 半導体ウェーハ処理システムのシャワーヘッドのための上下続きの2つのガスのフェースプレート
JP2008270595A (ja) * 2007-04-23 2008-11-06 Texas Instr Japan Ltd 反応生成物剥離防止構造及びその製作方法、並びに当該構造を用いる半導体装置の製造方法
JP2011256412A (ja) * 2010-06-07 2011-12-22 Tanaka:Kk ステンレス鋼製ねじ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054564Y2 (ja) * 1985-08-29 1993-02-04
JPH04202768A (ja) * 1990-11-30 1992-07-23 Nippon Kentetsu Co Ltd スパッタリング装置のターゲット汚染防止方法
JPH0841637A (ja) * 1994-07-30 1996-02-13 Mitsumi Electric Co Ltd 回転式スパッタリング装置
JP3964966B2 (ja) * 1997-09-22 2007-08-22 芝浦メカトロニクス株式会社 汚損防止手段を備えた成膜装置
JP5026631B2 (ja) * 1999-06-24 2012-09-12 株式会社アルバック スパッタリング装置
US7708834B2 (en) * 2004-11-02 2010-05-04 Tokyo Electron Limited Bolt and plasma processing apparatus provided with same
US8187414B2 (en) * 2007-10-12 2012-05-29 Lam Research Corporation Anchoring inserts, electrode assemblies, and plasma processing chambers
JP2009191339A (ja) * 2008-02-18 2009-08-27 Seiko Epson Corp 成膜装置
JP2011228343A (ja) * 2010-04-15 2011-11-10 Fujifilm Corp ガス供給電極の製造方法
CN201952490U (zh) * 2010-12-06 2011-08-31 中国科学院上海硅酸盐研究所 一种用于镀膜基片的镀膜夹具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323377A (ja) * 2000-03-16 2001-11-22 Applied Materials Inc 半導体ウェーハ処理システムのシャワーヘッドのための上下続きの2つのガスのフェースプレート
JP2008270595A (ja) * 2007-04-23 2008-11-06 Texas Instr Japan Ltd 反応生成物剥離防止構造及びその製作方法、並びに当該構造を用いる半導体装置の製造方法
JP2011256412A (ja) * 2010-06-07 2011-12-22 Tanaka:Kk ステンレス鋼製ねじ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170053784A1 (en) * 2015-08-21 2017-02-23 Applied Materials, Inc. Methods and apparatus for co-sputtering multiple targets
JP2018528330A (ja) * 2015-08-21 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated マルチターゲットを同時スパッタリングするための方法および装置
US10468238B2 (en) * 2015-08-21 2019-11-05 Applied Materials, Inc. Methods and apparatus for co-sputtering multiple targets
US11101117B2 (en) 2015-08-21 2021-08-24 Applied Materials, Inc. Methods and apparatus for co-sputtering multiple targets

Also Published As

Publication number Publication date
JPWO2013136384A1 (ja) 2015-07-30
TWI493065B (zh) 2015-07-21
TW201348605A (zh) 2013-12-01
JP5865483B2 (ja) 2016-02-17
US20150034481A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
US9978569B2 (en) Adjustable process spacing, centering, and improved gas conductance
US9689070B2 (en) Deposition ring and electrostatic chuck for physical vapor deposition chamber
US8968537B2 (en) PVD sputtering target with a protected backing plate
JP4623055B2 (ja) メタル成膜装置におけるメタル膜剥離防止構造及び当該構造を用いる半導体装置の製造方法
US20060159940A1 (en) Corrosion-resistant aluminum component having multi-layer coating
JP5865483B2 (ja) 締結部材および真空装置
KR20170128675A (ko) 다원계 합금 복합 박막 형성공법
JP5283880B2 (ja) 真空成膜装置
TWI681867B (zh) 抗蝕性之金屬與Mo或Mo合金經擴散接合之背板、以及具備該背板之濺鍍靶-背板組件
WO2020090164A1 (ja) 真空処理装置
US20210335582A1 (en) Methods and apparatus for reducing defects in preclean chambers
JP5001672B2 (ja) 締結具とその製造方法
EP2487275B1 (en) Composite shielding
JP7312006B2 (ja) 成膜方法
JP2004084043A (ja) 薄膜堆積用マスク及び薄膜堆積装置
JP2013185212A (ja) バッキングプレート及びその使用方法並びにスパッタリング装置
JP2011074480A (ja) スパッタリング装置
JP2011137215A (ja) 平行平板型プラズマcvd装置
US20130042812A1 (en) Composite shielding
KR20110064590A (ko) 반도체 제조용 스퍼터 장비의 스퍼터링 타겟

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014504470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870935

Country of ref document: EP

Kind code of ref document: A1