WO2013129600A1 - パテ状伝熱材及びその製造方法 - Google Patents

パテ状伝熱材及びその製造方法 Download PDF

Info

Publication number
WO2013129600A1
WO2013129600A1 PCT/JP2013/055494 JP2013055494W WO2013129600A1 WO 2013129600 A1 WO2013129600 A1 WO 2013129600A1 JP 2013055494 W JP2013055494 W JP 2013055494W WO 2013129600 A1 WO2013129600 A1 WO 2013129600A1
Authority
WO
WIPO (PCT)
Prior art keywords
putty
heat transfer
transfer material
group
component
Prior art date
Application number
PCT/JP2013/055494
Other languages
English (en)
French (fr)
Inventor
服部真和
Original Assignee
富士高分子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士高分子工業株式会社 filed Critical 富士高分子工業株式会社
Priority to US14/379,605 priority Critical patent/US20150008361A1/en
Priority to CN201380010544.XA priority patent/CN104136569A/zh
Priority to JP2014502380A priority patent/JP5614909B2/ja
Priority to EP13754252.8A priority patent/EP2821456A4/en
Publication of WO2013129600A1 publication Critical patent/WO2013129600A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a putty-like heat transfer material interposed between a heating element such as a heat-generating electronic component and a heat-dissipating cooler such as a heat sink, and a method for manufacturing the same.
  • Patent Document 1 proposes a composition in which a cured polymer gel and a particulate filler are mixed and filled in a container having an orifice, and the cured gel component extruded from the orifice is not further cured.
  • Patent Document 3 proposes a composition in which 500 to 1,000 parts by weight of the total amount of aluminum nitride and zinc oxide powder are added to 100 parts by weight of liquid silicone.
  • Patent Documents 1 and 2 use a gel, the composition is hard and difficult to extrude from a tube or syringe, and it is difficult to increase the amount of inorganic particle filler added. When added in a large amount, there is a problem that the fluidity is lowered. Since patent document 3 uses liquid silicone, there existed a problem that the self-shape retention in a stationary state was low.
  • the present invention has good fluidity even if the amount of the inorganic particle filler added is large, can be easily extruded from a tube or syringe, and is self-maintained in a stationary state.
  • a putty-like heat transfer material having shape and a method for producing the same.
  • the putty-like heat transfer material of the present invention is a putty-like heat transfer material in which thermally conductive particles are dispersed in an organopolysiloxane, and the organopolysiloxane has an average of 2 or more molecular chains per molecule.
  • a base polymer (a) comprising an organopolysiloxane containing an alkenyl group bonded to a terminal silicon atom, and a crosslinking component comprising an organopolysiloxane containing an average of two or more silicon atoms bonded to a silicon atom in one molecule (b) is a silicone sol in which the crosslinking component (b) is partially crosslinked in an amount of less than 1 mol with respect to 1 mol of the silicon-bonded alkenyl group in the component (a).
  • the method for producing a putty-like heat transfer material of the present invention is a silicone sol obtained by mixing and partially cross-linking components containing the following (a) to (d).
  • the ratio of the crosslinking component of the silicone polymer is reduced to lower the crosslinking density and partially crosslinked to obtain a silicone sol, so that the fluidity is good even when the amount of the inorganic particle filler added is large.
  • the heat conductive particles include at least two inorganic particles having different average particle diameters, and a specific silane compound or a partial hydrolyzate thereof is chemically bonded to the surface of the inorganic particles having a relatively small average particle diameter.
  • the fluidity is good even when the amount of the inorganic particle filler added is large, it is easy to push out from the tube or syringe, and is self-preserving in the stationary state. It is possible to provide a putty-like heat transfer material with shape.
  • FIG. 1A and 1B are schematic cross-sectional views showing an example of using a putty-like heat transfer material in one embodiment of the present invention.
  • FIG. 2A is a schematic explanatory view of a polymer of a putty-like heat transfer material and heat conductive inorganic particles (filler) in one embodiment of the present invention
  • FIG. 2B is a schematic explanatory view of a comparative example.
  • heat conductive particles are dispersed in a partially crosslinked silicone sol.
  • Partial crosslinking is performed by (b) cross-linking component of the method of the present invention: an organopolysiloxane containing hydrogen atoms bonded to an average of two or more silicon atoms in one molecule is a silicon atom-bonded alkenyl group in the component (a). This can be realized by setting the amount to less than 1 mol per mol. The proportion is preferably from 0.1 to 0.8 mol, more preferably from 0.1 mol to less than 0.5 mol.
  • the cross-linking density is lowered, the fluidity is kept good, the putty-like heat transfer material that is easy to push out from a tube or syringe and is self-retaining in a stationary state. it can.
  • the property of fluidity at the time of extrusion from a tube or syringe and the self-holding property in a stationary state after extrusion is useful for workability and efficiency at the time of assembling an electronic component or the like.
  • the silicone sol in the present invention can be confirmed to be a sol by dissolving in a solvent such as xylene, octane, ethyl acetate, dichloroethane, paraffin or the like.
  • solvents are ordinary silicone rubber solvents.
  • gels are insoluble in any solvent and are distinguished from sols.
  • gel is a substance that has changed from a viscous fluid to an elastic solid and generally has a problem of low fluidity.
  • it is a partially crosslinked silicone sol (viscous fluid). The fluidity is good even when the amount of the additive is increased.
  • the putty-like heat transfer material of the present invention has extrudable fluidity and self-holding property. That is, since fluidity
  • the shape stability can be maintained between the heat-generating component and the heat-dissipating material because of the self-holding property in the stationary state.
  • the putty-like heat transfer material of the present invention preferably has a viscosity in the range of 100 Pa ⁇ s to 4,000 Pa ⁇ S at a shear rate of 0.2 to 5.0 / s.
  • a shear rate of 0.2 to 5.0 / s corresponds to a share applied when pushing out from a tube or syringe when mounting an electronic component or the like.
  • a viscosity may become high as days pass in air. Such a property is preferable for self-holding property.
  • the thermally conductive particles of the present invention include inorganic particles having an average particle diameter of 2 ⁇ m or more and inorganic particles having an average particle diameter of less than 2 ⁇ m, and the inorganic particles having an average particle diameter of 2 ⁇ m or more have a total particle size of 100% by mass It is preferable that it is 50 mass% or more. This is because inorganic particles having an average particle diameter of 2 ⁇ m or more can be highly filled.
  • the thermal conductivity of the putty-like heat transfer material of the present invention is preferably 0.2 to 10 W / mK, more preferably 0.3 to 9 W / mK. If it is the said range, the effective thermal conductivity from a heat-emitting component to a thermal radiation material can be maintained.
  • the inorganic particles are preferably at least one particle selected from alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide and silica. This is because they are inexpensive and have high thermal conductivity.
  • the alumina is preferably ⁇ -alumina having a purity of 99.5% by mass or more.
  • the putty-like heat transfer material is preferably stored in a tube or syringe. This is because these are used for mounting electronic components.
  • an inorganic particle pigment is further added to the putty-like heat transfer material. This is because the state of application can be clearly discriminated when colored with an inorganic particle pigment.
  • the putty-like heat transfer material of the present invention can be obtained by mixing and crosslinking the following components (a) to (d).
  • (e) An alkyltrialkoxysilane may be further added to the silicone sol component.
  • the component (a) of the present invention is an organopolysiloxane containing two or more alkenyl groups bonded to silicon atoms in one molecule, and an organopolysiloxane containing two alkenyl groups.
  • Siloxane is the main agent (base polymer component) in the silicone rubber composition of the present invention.
  • This organopolysiloxane has, as an alkenyl group, two alkenyl groups bonded to a silicon atom, such as a vinyl group and an allyl group, having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms.
  • the viscosity is preferably 10 to 1,000,000 mPa ⁇ s at 25 ° C., particularly 100 to 100,000 mPa ⁇ s, from the viewpoint of workability and curability.
  • an organopolysiloxane containing an average of two or more alkenyl groups bonded to a silicon atom at the molecular chain end in one molecule represented by the following general formula (Formula 1) is used.
  • the side chain is a linear organopolysiloxane blocked with a triorganosiloxy group.
  • a viscosity at 25 ° C. of 10 to 1,000,000 mPa ⁇ s is desirable from the viewpoint of workability and curability.
  • the linear organopolysiloxane may contain a small amount of a branched structure (trifunctional siloxane unit) in the molecular chain.
  • an organopolysiloxane containing an alkenyl group bonded to a silicon atom at the end of a molecular chain in an average of two or more molecules is used as a high molecular weight silicone polymer sol and an inorganic particle filler. This is because even if the amount added is large, the fluidity is good, it is easy to push out from a tube or syringe, and it is a putty-like heat transfer material that is self-holding in a stationary state.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group that does not have the same or different aliphatic unsaturated bond
  • R 2 is an alkenyl group
  • k is 0 or a positive integer.
  • the unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond of R 1 for example, those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms are preferable.
  • Alkyl group such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, phenyl Group, tolyl group, xylyl group, aryl group such as naphthyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group, and a part or all of hydrogen atoms of these groups are fluorine, bromine, chlorine, etc.
  • a halogen atom, a cyano group, etc. such as a halogen atom such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, etc. Alkyl group, cyanoethyl group and the like.
  • a halogen atom such as chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, etc.
  • Alkyl group, cyanoethyl group and the like As the alkenyl group for R 2 , for example, an alkenyl group having 2 to 6 carbon atoms, particularly 2 to 3 carbon atoms is preferable. Specifically, a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a hexenyl group. And a cyclohexenyl group, and a
  • k is generally 0 or a positive integer satisfying 0 ⁇ k ⁇ 10,000, preferably 5 ⁇ k ⁇ 2,000, more preferably 10 ⁇ k ⁇ 1.
  • 200 is an integer that satisfies 200.
  • the organopolysiloxane of component (a) 3 or more, usually 3 to 3 alkenyl groups bonded to silicon atoms having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms, such as vinyl groups and allyl groups, are included in one molecule.
  • An organopolysiloxane having 30, preferably about 3 to 20, may be used in combination.
  • the molecular structure may be any of linear, cyclic, branched, and three-dimensional network structures.
  • the main chain is composed of repeating diorganosiloxane units, and both ends of the molecular chain are blocked with triorganosiloxy groups, and the viscosity at 25 ° C. is 10 to 1,000,000 mPa ⁇ s, particularly 100 to 100, 000 mPa ⁇ s linear organopolysiloxane.
  • the alkenyl group is bonded to at least the silicon atom at the end of the molecular chain. Further, it may include those bonded to a silicon atom at the non-terminal end of the molecular chain (in the middle of the molecular chain).
  • each of the silicon atoms at both ends of the molecular chain represented by the following general formula (Chemical Formula 2) has 1 to 3 alkenyl groups (provided that the alkenyl groups bonded to the silicon atoms at the molecular chain ends are When the total number of both ends is less than 3, it has at least one alkenyl group (for example, as a substituent in a diorganosiloxane unit) bonded to a silicon atom at the non-terminal end of the molecular chain (in the middle of the molecular chain).
  • a linear organopolysiloxane having a viscosity at 25 ° C.
  • the linear organopolysiloxane may contain a small amount of a branched structure (trifunctional siloxane unit) in the molecular chain.
  • R 3 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and at least one is an alkenyl group.
  • R 4 is an unsubstituted or substituted monovalent hydrocarbon group that does not have the same or different aliphatic unsaturated bond,
  • R 5 is an alkenyl group, and l and m are 0 or a positive integer.
  • the monovalent hydrocarbon group for R 3 is preferably a group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Alkyl group such as isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl Group, phenylethyl group, aralkyl group such as phenylpropyl group, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group,
  • the monovalent hydrocarbon group for R 4 is preferably one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and the same examples as the specific examples of R 1 can be exemplified, but an alkenyl group is not included. .
  • alkenyl group for R 5 for example, those having 2 to 6 carbon atoms, particularly those having 2 to 3 carbon atoms are preferable, and specific examples thereof are the same as those for R 2 in the above formula (Formula 1), preferably vinyl group It is.
  • l and m are generally 0 or a positive integer satisfying 0 ⁇ l + m ⁇ 10,000, preferably 5 ⁇ l + m ⁇ 2,000, more preferably 10 ⁇ l + m ⁇ 1,200, ⁇ L / (l + m) ⁇ 0.2, preferably an integer satisfying 0.001 ⁇ l / (l + m) 0.1.
  • the organohydrogenpolysiloxane of component (b) of the present invention acts as a cross-linking agent, and an SiH group in this component and an alkenyl group in component (a) undergo an addition reaction. A cured product is formed by (hydrosilylation).
  • the organohydrogenpolysiloxane may be any organohydrogenpolysiloxane as long as it has two or more hydrogen atoms (that is, SiH groups) bonded to silicon atoms in one molecule.
  • the number of silicon atoms in one molecule (that is, the degree of polymerization) is about 2 to 1,000, particularly about 2 to 300, which may be any of linear, cyclic, branched, and three-dimensional network structures. Things can be used.
  • the position of the silicon atom to which the hydrogen atom is bonded is not particularly limited, and may be at the end of the molecular chain or at the non-terminal (midway).
  • Examples of the organic group bonded to a silicon atom other than a hydrogen atom include an unsubstituted or substituted monovalent hydrocarbon group having no aliphatic unsaturated bond similar to R 1 in the general formula (Formula 1). .
  • organohydrogenpolysiloxane of component (b) examples include hydrogenorganosiloxane having the following structure.
  • Ph is an organic group containing at least one of a phenyl group, an epoxy group, an acryloyl group, a methacryloyl group, and an alkoxy group.
  • L is an integer of 0 to 1,000, particularly an integer of 0 to 300, and M is an integer of 1 to 200.
  • Such an organohydrogenpolysiloxane can be obtained by a known method, for example, R 5 SiHCl 2 , (R 5 ) 3 SiCl, (R 5 ) 2 SiCl 2 , (R 5 ) 2 SiHCl (wherein R 5 is A chlorosilane such as a methyl group, an alkyl group such as an ethyl group, or an aryl group such as a phenyl group, or by equilibrating a siloxane obtained by hydrolysis.
  • Platinum group metal-based catalyst The platinum group metal-based catalyst of component (c) of the present invention is blended to cause an addition curing reaction in the composition of the present invention, and is a so-called hydrosilylation catalyst. Any of those known as can be used. Examples of the catalyst include platinum-based, palladium-based, and rhodium-based catalysts.
  • platinum-based catalysts such as platinum, platinum black, and chloroplatinic acid such as H 2 PtCl 6 ⁇ mH 2 O
  • platinum compounds such as K 2 PtCl 6 , KHPtCl 6 ⁇ mH 2 O, K 2 PtCl 4 , K 2 PtCl 4 ⁇ mH 2 O, PtO 2 ⁇ mH 2 O (m is a positive integer)
  • platinum compounds examples thereof include hydrocarbons such as olefins, alcohols, and complexes with vinyl group-containing organopolysiloxanes. These can be used alone or in combination of two or more.
  • the component (d) of the present invention is preferably added in an amount of 100 to 2,000 parts by mass with respect to 100 parts by mass of the silicone rubber layer.
  • the thermal conductivity of the heat dissipation sheet can be in the range of 0.2 to 10 W / mK.
  • the thermally conductive particles are preferably at least one selected from alumina, zinc oxide, magnesium oxide, aluminum nitride, boron nitride, aluminum hydroxide, and silica.
  • Various shapes such as a spherical shape, a scale shape, and a polyhedral shape can be used.
  • the specific surface area of the heat conductive particles is preferably in the range of 0.06 to 10 m 2 / g.
  • the specific surface area is a BET specific surface area, and the measuring method is in accordance with JIS R1626. When using the average particle size, the range of 0.1 to 100 ⁇ m is preferable.
  • the particle diameter is measured by 50% particle diameter by a laser diffraction light scattering method.
  • An example of this measuring instrument is a laser diffraction / scattering particle distribution measuring apparatus LA-950S2 manufactured by Horiba.
  • the thermally conductive particles are preferably used in combination with at least two inorganic particles having different average particle sizes. This is because the heat conductive inorganic particles having a small particle diameter are buried between the large particle diameters and can be filled in a state close to the closest packing, and the heat conductivity is increased.
  • Inorganic particles having a relatively small average particle diameter are R (CH 3 ) a Si (OR ′) 3-a (R is an unsubstituted or substituted organic group having 6 to 20 carbon atoms, R ′ is 1 to 4 carbon atoms) It is preferable to surface-treat with an alkyl group in which a is 0 or 1), or a partial hydrolyzate thereof.
  • silane examples include hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, and dodecyltrimethoxysilane.
  • the said silane compound can be used 1 type or in mixture of 2 or more types.
  • Surface treatment here includes adsorption in addition to covalent bonds.
  • the inorganic particles having a relatively large average particle size are, for example, those having an average particle size of 2 ⁇ m or more. When the total particle size is 100% by mass, it is preferable to add 50% by mass or more.
  • Components other than the components (a) to (d) can be blended in the composition of the present invention as necessary.
  • an inorganic trial pigment such as Bengala, an alkyltrialkoxysilane or the like may be added for the purpose of surface treatment of the filler.
  • FIG. 1A and 1B are schematic cross-sectional views showing an example of using a putty-like heat transfer material in one embodiment of the present invention.
  • a heat-generating component 2 such as a semiconductor mounted on a printed circuit board 1 and a heat sink (heat radiator) 3. Since the air gap 4 is insulated, the putty-like heat transfer material 5 is filled as shown in FIG. 1B for the purpose of filling it.
  • the putty-like heat transfer material 5 is extruded from a tube or a syringe (dispenser) or the like onto the heat generating component 2, and the heat sink (heat radiating body) 3 is pressed and filled thereon. Since the putty-like heat transfer material 5 has a self-holding property in a stationary state, when it is pushed out onto the heat generating component 2, it is held in the shape pushed out on the spot, and the heat sink (heat radiator) 3 is When pressed, it is held in the pressed shape.
  • FIG. 2A is a schematic explanatory view of a polymer of a putty-like heat transfer material and heat conductive inorganic particles (filler) in one embodiment of the present invention
  • FIG. 2B is a schematic explanatory view of a comparative example.
  • FIG. 2B shows an example in which silicone sol molecules 6 and single-particle-diameter thermally conductive inorganic particles 7 are mixed. It is difficult to add a large amount of the heat conductive inorganic particles 7 having a single particle diameter.
  • FIG. 2B shows an example in which silicone sol molecules 6 and single-particle-diameter thermally conductive inorganic particles 7 are mixed. It is difficult to add a large amount of the heat conductive inorganic particles 7 having a single particle diameter.
  • FIG. 2B shows an example in which silicone sol molecules 6 and single-particle-diameter thermally conductive inorganic particles 7 are mixed. It is difficult to add a large amount of the heat conductive inorganic particles 7 having a single
  • the silicone sol molecules 6, the small-diameter thermally conductive inorganic particles 8, the medium-diameter thermally conductive inorganic particles 7, and the large-particle-diameter thermally conductive inorganic particles 9 are provided. Since they are mixed, the thermally conductive inorganic particles are closely packed. Thereby, thermal conductivity can be improved.
  • small to medium particles having a large surface area are surface-treated with a silane coupling agent, so that fluidity can be maintained even when a large amount is added.
  • Self-shape-holding property is obtained by extruding a putty-like heat transfer material from a tube or syringe into a spherical shape with a diameter of about 9 mm on the glass plate surface, immediately after extrusion, 24 hours later, 96 hours later, 168 hours later. Each was evaluated by measuring the diameter of the spherical shape. If each measured value was within ⁇ 1 mm of the diameter immediately after extrusion, it was judged that there was self-retaining property.
  • Example 1 Two-part room temperature curing silicone rubber (two-part RTV) as a silicone component is CF5036 (manufactured by Toray Dow Corning Silicone Co., Ltd.), trade name “CF5036”, Part A (both vinyl group-containing polysiloxane base polymer component (Vi group component)) Pt catalyst component is included, Vi group component is included in the same amount as Vi group component of B solution, and B solution (crosslinking component, which contains hydrogen atoms bonded to an average of 2 or more silicon atoms in one molecule) Polysiloxane (referred to as Si—H group component) and Vi group component containing Si—H group: Vi group at a molar ratio of 1: 1) have a mass ratio of A liquid: B liquid of 7: 3.
  • alumina was weighed as follows with respect to 100 parts by mass of the silicone component.
  • the obtained putty-like heat transfer material was easy to extrude from a tube or syringe and had a self-holding property in a stationary state.
  • the physical properties were as follows. Specific gravity: 3.2 (JIS K6220, 25 ° C) Viscosity: 2,000 Pa ⁇ s (precision rotational viscometer Rotovisco (RV1), 25 ° C, shear rate 1 / s) Thermal conductivity: 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501)) The thermal resistance values were as shown in Table 1 below.
  • the dissolution test of the obtained putty-like heat transfer material was performed.
  • the solvent was xylene, and 2 g of putty-like heat transfer material was collected in 10 ml of xylene and shaken for 5 minutes. As a result, xylene became cloudy and the putty-like heat transfer material was dissolved. From this, it was confirmed that the putty-like heat transfer material of this example was not a gel but a sol.
  • the viscosity change of the putty-like heat transfer material was examined.
  • the viscosity immediately after the putty-like heat transfer material extruded from the tube or syringe was viscosity: 2,000 Pa ⁇ s (precision rotary viscometer, Rotovisco (RV1), 25 ° C., shear rate 1 / s).
  • RV1 Rotary viscometer
  • shear rate 1 / s shear rate
  • the consistency of the putty-like heat transfer material was examined.
  • the penetration was determined in accordance with JIS K2220, measurement temperature: room temperature (23 ° C.), measurement shape: 1/4 cone, test method: immiscible penetration, converted from 1/4 cone.
  • the consistency of the putty-like heat transfer material obtained in Example 1 was 260.
  • the organopolysiloxane containing hydrogen atoms bonded to two or more silicon atoms on average in one molecule of the crosslinking component of the liquid B was 0.2 mol relative to 1 mol of the liquid A silicon atom-bonded alkenyl group.
  • the obtained putty-like heat transfer material was easy to extrude from a tube or syringe and had a self-holding property in a stationary state. Further, it was also dissolved in the same solvent dissolution test as in Example 1.
  • the physical properties were as follows. Viscosity: 1,500 Pa ⁇ s (precision rotational viscometer Rotovisco (RV1), 25 ° C., shear rate 1 / s) Thermal conductivity: 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501))
  • the organopolysiloxane containing hydrogen atoms bonded to two or more silicon atoms on average in one molecule of the crosslinking component of the liquid B was 0.4 mol with respect to 1 mol of the liquid A silicon atom-bonded alkenyl group.
  • the obtained putty-like heat transfer material was easy to extrude from a tube or syringe and had a self-holding property in a stationary state. Further, it was also dissolved in the same solvent dissolution test as in Example 1.
  • the physical properties were as follows. Viscosity: 4,000 Pa ⁇ s (Precision rotational viscometer Rotovisco (RV1), 25 ° C., shear rate 1 / s) Thermal conductivity: 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501))
  • the organopolysiloxane containing hydrogen atoms bonded to two or more silicon atoms on average in one molecule of the crosslinking component of the liquid B was 1.0 mol with respect to 1 mol of the liquid A silicon-bonded alkenyl group. .
  • Viscosity High hardness and cannot be measured (Precision rotational viscometer Rotovisco (RV1), 25 ° C, shear rate 1 / s)
  • Thermal conductivity 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501))
  • the organopolysiloxane containing hydrogen atoms bonded to two or more silicon atoms on average in one molecule of the cross-linking component of the liquid B was 0.13 mol with respect to 1 mol of the liquid A silicon-bonded alkenyl group. .
  • the obtained putty-like heat transfer material was easy to extrude from a tube or syringe and had a self-holding property in a stationary state. Further, it was also dissolved in the same solvent dissolution test as in Example 1.
  • the physical properties were as follows. Viscosity: 1,400 Pa ⁇ s (Precision rotational viscometer Rotovisco (RV1), 25 ° C., shear rate 1 / s) Thermal conductivity: 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501))
  • the organopolysiloxane containing hydrogen atoms bonded to two or more silicon atoms on average in one molecule of the crosslinking component of the B liquid was 0.46 mol per 1 mol of the A liquid silicon atom-bonded alkenyl group. .
  • the obtained putty-like heat transfer material was easy to extrude from a tube or syringe and had a self-holding property in a stationary state. Further, it was also dissolved in the same solvent dissolution test as in Example 1.
  • the physical properties were as follows. Viscosity: 17,000 Pa ⁇ s (precision rotational viscometer Rotovisco (RV1), 25 ° C., shear rate 1 / s) Thermal conductivity: 3.2 W / m ⁇ K (ASTM D2326, hot disk method (TPA-501))

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明のパテ状伝熱材は、オルガノポリシロキサン中に熱伝導性粒子が分散されているパテ状伝熱材であって、前記オルガノポリシロキサンは、1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンからなるベースポリマー(a)と、1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンからなる架橋成分(b)を、前記架橋成分(b)が前記(a)成分中のケイ素原子結合アルケニル基1モルに対して1モル未満の量で部分架橋させたシリコーンゾルである。これにより、無機粒子充填材の添加量を多量にしても流動性が良好であり、チューブ又はシリンジから押し出すことが容易であり、かつ静置状態では自己保形性があるパテ状伝熱材及びその製造方法を提供する。

Description

パテ状伝熱材及びその製造方法
 本発明は発熱性電子部品等の発熱体とヒートシンク等の放熱冷却器の間に介在させるパテ状伝熱材及びその製造方法に関する。
 近年、薄型テレビ、パーソナルコンピューター、デジタルカメラ、エレクトロルミネッセンス(LED)等の電子機器は高性能化が著しく、ますます小さい搭載面積下に多数の発熱性電子部品が高密度に組み込まれるようになってきている。それに伴い、発熱性電子部品の微細な凹凸を埋め、かつヒートシンクに放熱するための伝熱材も高い熱伝導性の要求がある。
 従来、基板上に実装された発熱性電子部品とヒートシンク等の放熱冷却器の間に介在させる伝熱材として、架橋シリコーンゲルを使用したグリースが提案されている(特許文献1)。特許文献2には硬化ポリマーゲルと粒子状充填材を混合してオリフィスを有する容器に充填し、前記オリフィスから押し出された硬化ゲル成分は更なる硬化はしない状態の組成物が提案されている。特許文献3には液状シリコーン100重量部に対し、窒化アルミニウムと酸化亜鉛粉末合計量が500~1,000重量部を添加した組成物が提案されている。
 しかし、特許文献1~2はゲルを使用しているため、組成物は硬くてチューブやシリンジから押し出しにくい問題がある上、無機粒子充填材の添加量を多量にすることは困難であり、万一多量に添加すると流動性が低下するという問題があった。特許文献3は液状シリコーンを使用しているため、静置状態における自己保形性が低いという問題があった。
特許第4796704号公報 米国特許第7208192号明細書 特開平10-110179号公報
 本発明は、前記従来の問題を解決するため、無機粒子充填材の添加量を多量にしても流動性が良好であり、チューブ又はシリンジから押し出すことが容易であり、かつ静置状態では自己保形性があるパテ状伝熱材及びその製造方法を提供する。
 本発明のパテ状伝熱材は、オルガノポリシロキサン中に熱伝導性粒子が分散されているパテ状伝熱材であって、前記オルガノポリシロキサンは、1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンからなるベースポリマー(a)と、1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンからなる架橋成分(b)を、前記架橋成分(b)が前記(a)成分中のケイ素原子結合アルケニル基1モルに対して1モル未満の量で部分架橋させたシリコーンゾルであることを特徴とする。
 本発明のパテ状伝熱材の製造方法は、下記(a)~(d)を含む成分を混合し部分架橋させたシリコーンゾルであることを特徴とする。
(a)ベースポリマー:1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサン100質量部
(b)架橋成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンが、前記(a)成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量
(c)白金系金属触媒:(a)成分に対して質量単位で0.01~1,000ppmの量
(d)熱伝導性粒子:シリコーンゾル100質量部に対して100~2,000質量部
 本発明は、シリコーンポリマーの架橋成分の割合を少なくして架橋密度を下げ部分架橋させてシリコーンゾルとしたことにより、無機粒子充填材の添加量を多量にしても流動性が良好であり、チューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があるパテ状伝熱材を提供できる。さらに、熱伝導性粒子は平均粒子径が異なる少なくとも2つの無機粒子を含み、相対的に平均粒子径の小さな無機粒子の表面には、特定のシラン化合物もしくはその部分加水分解物が化学結合している場合は、シリコーンゾルの効果と相俟って、さらに無機粒子充填材の添加量を多量にしても流動性が良好であり、チューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があるパテ状伝熱材を提供できる。
図1A-Bは本発明の一実施例におけるパテ状伝熱材の使用例を示す模式的断面図である。 図2Aは本発明の一実施例におけるパテ状伝熱材のポリマーと熱伝導性無機粒子(フィラー)の模式的説明図、図2Bは比較例の同模式的説明図である。
 本発明のパテ状伝熱材は、部分架橋させたシリコーンゾル中に熱伝導性粒子が分散されている。部分架橋は、本発明方法の(b)架橋成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンが、前記(a)成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満とすることにより実現できる。好ましくは0.1~0.8モル、さらに好ましくは0.1モル以上0.5モル未満の割合である。すなわち、架橋成分の割合を少なくすることにより、架橋密度を下げ、流動性を良好に保ち、チューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があるパテ状伝熱材にできる。チューブ又はシリンジからの押し出し時には流動性があり、押し出し後の静置態では自己保形性がある性質は、電子部品などの組み立て時の際の作業性、効率性には有用である。
 本発明におけるシリコーンゾルは、例えばキシレン、オクタン、酢酸エチル、ジクロロエタン、パラフィン等の溶媒に溶解することでゾルであることが確認できる。これらの溶媒は通常のシリコーンゴムの溶媒である。一般的な化学辞典によれば、ゲルはどのような溶媒にも溶解しないものであり、ゾルとは区別されている。また、ゲルは粘性流体から弾性固体へと変化した物質であり、一般的に流動性が低いという問題があるが、本発明では部分架橋したシリコーンゾル(粘性流体)であるため、無機粒子充填材の添加量を多量にしても流動性が良好である。
 本発明のパテ状伝熱材は、押し出し可能な流動性があるとともに自己保形性がある。すなわち、せん断力を与えると流動性が良好であるため、チューブ又はシリンジから押し出すことが容易となる。また、一旦チューブ又はシリンジから押し出すと静置状態では自己保形性があるため、発熱部品と放熱材の間で形態安定性を保持できる。
 本発明のパテ状伝熱材は、せん断速度が0.2~5.0/sにおける粘度が100Pa・sから4,000Pa・Sの範囲であることが好ましい。せん断速度が0.2~5.0/sは、電子部品などの実装時にチューブ又はシリンジから押し出す際に掛かるシェアに相当する。また、チューブ又はシリンジから押し出した後、空気中では日数が経過するとともに粘度が高くなっても良い。このような性質は自己保形性にとって好ましい。
 本発明の熱伝導性粒子は平均粒子径が2μm以上の無機粒子と平均粒子径が2μm未満の無機粒子を含み、平均粒子径が2μm以上の無機粒子は、粒子全体を100質量%としたとき50質量%以上であることが好ましい。平均粒子径が2μm以上の無機粒子は高充填できるからである。
 本発明のパテ状伝熱材の熱伝導率は0.2~10W/mKが好ましく、さらに好ましくは0.3~9W/mKの範囲である。前記の範囲であれば、発熱部品から放熱材へ有効な熱伝導性を維持できる。
 前記無機粒子は、アルミナ、酸化亜鉛、酸化マグネシウム、窒化アルミ、窒化ホウ素、水酸化アルミ及びシリカから選ばれる少なくとも一つの粒子が好ましい。これらは安価でかつ熱伝導性が高いからである。同様の理由から、アルミナは純度99.5質量%以上のα-アルミナであるのが好ましい。
 前記パテ状伝熱材はチューブ又はシリンジに収納されているのが好ましい。これらは電子部品の実装に使われているからである。
 前記パテ状伝熱材には、さらに無機粒子顔料が添加されているのが好ましい。無機粒子顔料で着色されていると、塗布の状態が明確に判別できるためである。
 本発明のパテ状伝熱材は、下記(a)~(d)を含む成分を混合し架橋することにより得られる。
(a)ベースポリマー:1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサン100質量部
(b)架橋成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンが、前記(a)成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量
(c)白金系金属触媒:(a)成分に対して質量単位で0.01~1,000ppmの量
(d)熱伝導性粒子:シリコーンゾル(ベースポリマー+架橋成分)100質量部に対して100~2,000質量部
(e)シリコーンゾル成分に対してさらにアルキルトリアルコキシシランを添加しても良い。
(f)シリコーンゾル成分100質量部に対してさらに無機粒子顔料0.5~10質量部添加しても良い。
(a)アルケニル基含有オルガノポリシロキサン
 本発明の(a)成分は、一分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンであり、アルケニル基を2個含有するオルガノポリシロキサンは本発明のシリコーンゴム組成物における主剤(ベースポリマー成分)である。このオルガノポリシロキサンは、アルケニル基として、ビニル基、アリル基等の炭素原子数2~8、特に2~6の、ケイ素原子に結合したアルケニル基を一分子中に2個有する。粘度は25℃で10~1,000,000mPa・s、特に100~100,000mPa・sであることが作業性、硬化性などから望ましい。
 具体的には、下記一般式(化1)で表される1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用する。側鎖はトリオルガノシロキシ基で封鎖された直鎖状オルガノポリシロキサンである。25℃における粘度は10~1,000,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。本発明において、1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンを使用するのは、高分子量のシリコーンポリマーのゾルとし、無機粒子充填材の添加量を多量にしても流動性が良好で、チューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があるパテ状伝熱材とするためである。
Figure JPOXMLDOC01-appb-C000001
 
 式中、R1は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基であり、Rはアルケニル基であり、kは0又は正の整数である。
 ここで、R1の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基としては、例えば、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、並びに、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基、シアノエチル基等が挙げられる。Rのアルケニル基としては、例えば炭素原子数2~6、特に2~3のものが好ましく、具体的にはビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられ、好ましくはビニル基である。
 一般式(1)において、kは、一般的には0≦k≦10,000を満足する0又は正の整数であり、好ましくは5≦k≦2,000、より好ましくは10≦k≦1,200を満足する整数である。
 (a)成分のオルガノポリシロキサンとしては一分子中に例えばビニル基、アリル基等の炭素原子数2~8、特に2~6のケイ素原子に結合したアルケニル基を3個以上、通常、3~30個、好ましくは、3~20個程度有するオルガノポリシロキサンを併用しても良い。分子構造は直鎖状、環状、分岐状、三次元網状のいずれの分子構造のものであってもよい。好ましくは、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された、25℃での粘度が10~1,000,000mPa・s、特に100~100,000mPa・sの直鎖状オルガノポリシロキサンである。
 アルケニル基は少なくとも分子鎖末端のケイ素原子に結合している。さらに分子鎖非末端(分子鎖途中)のケイ素原子に結合しているものを含んでも良い。なかでも下記一般式(化2)で表される分子鎖両末端のケイ素原子上にそれぞれ1~3個のアルケニル基を有し(但し、この分子鎖末端のケイ素原子に結合したアルケニル基が、両末端合計で3個未満である場合には、分子鎖非末端(分子鎖途中)のケイ素原子に結合したアルケニル基を、(例えばジオルガノシロキサン単位中の置換基として))、少なくとも1個有する直鎖状オルガノポリシロキサンであって、上記でも述べた通り25℃における粘度が10~1,000,000mPa・sのものが作業性、硬化性などから望ましい。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
Figure JPOXMLDOC01-appb-C000002
 
 式中、Rは互いに同一又は異種の非置換又は置換の一価炭化水素基であって、少なくとも1個がアルケニル基である。Rは互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換の一価炭化水素基であり、Rはアルケニル基であり、l,mは0又は正の整数である。
 ここで、Rの一価炭化水素基としては、炭素原子数1~10、特に1~6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
 また、Rの一価炭化水素基としても、炭素原子数1~10、特に1~6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。
 Rのアルケニル基としては、例えば炭素数2~6、特に炭素数2~3のものが好ましく、具体的には前記式(化1)のRと同じものが例示され、好ましくはビニル基である。
 l,mは、一般的には0<l+m≦10,000を満足する0又は正の整数であり、好ましくは5≦l+m≦2,000、より好ましくは10≦l+m≦1,200で、0<l/(l+m)≦0.2、好ましくは、0.001≦l/(l+m)0.1を満足する整数である。
(b)オルガノハイドロジェンポリシロキサン
 本発明の(b)成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、この成分中のSiH基と(a)成分中のアルケニル基とが付加反応(ヒドロシリル化)することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよく、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(即ち、重合度)は2~1,000、特に2~300程度のものを使用することができる。
 水素原子が結合するケイ素原子の位置は特に制約はなく、分子鎖の末端でも非末端(途中)でもよい。また、水素原子以外のケイ素原子に結合した有機基としては、前記一般式(化1)のRと同様の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基が挙げられる。
 (b)成分のオルガノハイドロジェンポリシロキサンとしては下記構造のハイドロジェンオルガノシロキサンが例示できる。
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
 上記の式中、Phはフェニル基、エポキシ基、アクリロイル基、メタアクリロイル基、アルコキシ基の少なくとも1種を含む有機基である。Lは0~1,000の整数、特には0~300の整数であり、Mは1~200の整数である。
 このようなオルガノハイドロジェンポリシロキサンは、周知の方法により、例えば、R5SiHCl2、(R53SiCl、(R52SiCl2、(R52SiHCl(式中、R5は、メチル基、エチル基等のアルキル基又はフェニル基等のアリール基である)のようなクロロシランを加水分解縮合するか、加水分解して得られたシロキサンを平衡化することにより得ることができる。
(c)白金族金属系触媒
 本発明の(c)成分の白金族金属系触媒は、本発明の組成物に付加硬化反応を生じさせるために配合されるものであり、所謂ヒドロシリル化反応の触媒として公知であるものはいずれも使用することができる。この触媒としては、白金系、パラジウム系、ロジウム系のものがあるが、コスト等の見地から白金、白金黒、塩化白金酸などの白金系のもの、例えば、H2PtCl6・mH2O,K2PtCl6,KHPtCl6・mH2O,K2PtCl4,K2PtCl4・mH2O,PtO2・mH2O(mは、正の整数)等の白金化合物、これらの白金化合物とオレフィン等の炭化水素、アルコール又はビニル基含有オルガノポリシロキサンとの錯体等を例示することができる。これらは一種単独でも2種以上の組み合わせでも使用することができる。
(d)熱伝導性粒子
 本発明の(d)成分は、シリコーンゴム層100質量部に対して、100~2,000質量部添加するのが好ましい。これにより放熱シートの熱伝導率を0.2~10W/mKの範囲とすることができる。熱伝導粒子としては、アルミナ、酸化亜鉛、酸化マグネシウム、窒化アルミ、窒化ホウ素、水酸化アルミ及びシリカから選ばれる少なくとも一つであることが好ましい。形状は球状、鱗片状、多面体状等様々なものを使用できる。熱伝導性粒子の比表面積は0.06~10m/gの範囲が好ましい。比表面積はBET比表面積であり、測定方法はJIS R1626にしたがう。平均粒子径を用いる場合は、0.1~100μmの範囲が好ましい。粒子径の測定はレーザー回折光散乱法により、50%粒子径を測定する。この測定器は例えば堀場製作所社製のレーザー回折/散乱式粒子分布測定装置LA-950S2がある。
 熱伝導性粒子は平均粒子径が異なる少なくとも2つの無機粒子を併用するのが好ましい。このようにすると大きな粒子径の間に小さな粒子径の熱伝導性無機粒子が埋まり、最密充填に近い状態で充填でき、熱伝導性が高くなるからである。相対的に平均粒子径の小さな無機粒子は、R(CHSi(OR’)3-a(Rは炭素数6~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物、もしくはその部分加水分解物で表面処理するのが好ましい。R(CHSi(OR’)3-a(Rは炭素数6~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物(以下単に「シラン」という。)は、一例としてヘキシルトリメトキシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサドデシルトリメトキシシラン、ヘキサドデシルトリエトキシシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシシラン等がある。前記シラン化合物は、一種又は二種以上混合して使用することができる。ここでいう表面処理とは共有結合のほか吸着なども含む。前記相対的に平均粒子径の大きな無機粒子は、例えば平均粒子径が2μm以上のものをいい、粒子全体を100質量%としたとき50質量%以上添加するのが好ましい。
 (e)その他の成分
 本発明の組成物には、必要に応じて(a)~(d)成分以外の成分を配合することができる。例えばベンガラなどの無機顔料、フィラーの表面処理等の目的でアルキルトリアルコキシシランなどを添加してもよい。
(3)部分架橋
 前記(a)~(c)成分を架橋させ、その後(d)成分を加えて混合する。架橋条件は50~150℃、0.1~1時間の条件であり、好ましい架橋条件は80~100℃、0.2~0.5時間である。尚、(d)成分には場合により(e)成分を加熱処理して加えても良い。
(4)容器充填
 得られた部分架橋シリコーンゾルは、チューブ又はシリンジ(ディスペンサー)等に充填する。これらは電子部品の自動実装に好適な容器である。
 次に図面を用いて説明する。図1A-Bは本発明の一実施例におけるパテ状伝熱材の使用例を示す模式的断面図である。図1Aに示すように、プリント基板1の上に搭載された半導体等の発熱部品2とヒートシンク(放熱体)3の間にはエアーギャップ4が形成される。エアーギャップ4は断熱になってしまうため、これを埋める目的で図1Bに示すようにパテ状伝熱材5を充填する。例えば、発熱部品2の上にチューブ又はシリンジ(ディスペンサー)等からパテ状伝熱材5を押し出し、その上からヒートシンク(放熱体)3を押し付けて充填する。パテ状伝熱材5は静置状態では自己保形性を有するので、発熱部品2の上に押し出されたときはその場で押し出された形状で保持されており、ヒートシンク(放熱体)3を押し付けると押しつけられた形状で保持される。
 図2Aは本発明の一実施例におけるパテ状伝熱材のポリマーと熱伝導性無機粒子(フィラー)の模式的説明図、図2Bは比較例の同模式的説明図である。まず図2Bはシリコーンゾル分子6と単一粒子径の熱伝導性無機粒子7を混合した例である。単一粒子径の熱伝導性無機粒子7は多量に添加することは困難である。これに対して図2Aの場合は、シリコーンゾル分子6と小粒子径の熱伝導性無機粒子8と、中粒子径の熱伝導性無機粒子7と、大粒子径の熱伝導性無機粒子9を混合しているので、熱伝導性無機粒子は最密充填される。これにより熱伝導率を向上できる。加えて表面積の大きい小~中粒子をシランカップリング剤で表面処理していることにより、多量に添加しても流動性を保持できる。
 以下実施例により、本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
<測定方法>
(1)熱伝導率:ホットディスク法(京都電子工業株式会社)熱物性測定装置TPA-501(製品名)
(2)熱伝導性無機粒子の粒子径
 粒子径の測定はレーザー回折光散乱法により、50%粒子径を測定した。この測定器は堀場製作所社製のレーザー回折/散乱式粒子分布測定装置LA-950S2を使用した。
(3)自己保形性
 自己保形性は、パテ状伝熱材をチューブ又はシリンジからガラス板表面に直径約9mmの球形状に押し出し、押し出し直後、24時間後、96時間後、168時間後にそれぞれ前記球形状の直径を計測することにより評価した。それぞれの計測値が押し出し直後の直径の±1mm以内であれば自己保形性があると判断した。
 (実施例1)
<シリコーン成分>
 シリコーン成分として二液室温硬化シリコーンゴム(二液RTV)はCF5036(東レダウコーニングシリコーン社製)商品名“CF5036”のA液(両末端ビニル基含有ポリシロキサンベースポリマー成分(Vi基成分という)とPt触媒成分を含み、Vi基成分はB液のVi基成分と同量含む)と、B液(架橋成分であり1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサン(Si-H基成分という)と、Vi基成分をSi-H基:Vi基をモル比で1:1で含む)をA液:B液の質量比が7:3の割合となるように計量した。A液とB液の全体として、Si-H基はVi基1モルに対して0.3モルであった。なお、“CF5036”には本発明の(a)~(c)成分が予め添加されている。
<熱伝導性無機粒子>
 熱伝導性無機粒子としてアルミナをシリコーン成分100質量部に対して次のとおり計量した。
(1)オクチルトリエトキシシランで表面処理した平均粒子径3μmの球状アルミナ:600質量部
(2)オクチルトリエトキシシランで表面処理した平均粒子径0.3μmの不特定形状のアルミナ:300質量部
(3)シランカップリング剤無処理の平均粒子径20μmの真球上アルミナ:500質量部
<その他の添加剤>
 着色剤顔料として酸化鉄(弁柄)粉末をシリコーン成分100質量部に対して1質量部計量した。
<シリコーンゾルの製造>
 以上のシリコーン成分と着色剤顔料を容器に入れ、撹拌混合器により混合し、その後100℃で0.3時間かけて部分架橋反応させた。その後に熱伝導性無機粒子を投入し撹拌混合器により混合し、シリコーン成分をシリコーンゾルとし、パテ状伝熱材を得た。
 得られたパテ状伝熱材はチューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があった。さらに物性は次のとおりであった。
比重:3.2(JIS K6220,25℃)
粘度:2,000 Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
熱抵抗値は下記表1のとおりであった。
Figure JPOXMLDOC01-appb-T000006
 
 得られたパテ状伝熱材の溶解試験をした。溶剤はキシレンとし、キシレン10mlの中にパテ状伝熱材を2g採取して加え、5分間振とうした。その結果、キシレンは白濁状になり、パテ状伝熱材は溶解した。このことから、本実施例のパテ状伝熱材はゲルではなく、ゾルであることが確認できた。
 次に前記パテ状伝熱材の粘度変化を調べた。チューブ又はシリンジから押し出したパテ状伝熱材の直後の粘度は、前記のとおり粘度:2,000 Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)であったが、24時間後は2,100 Pa・s、96時間後は2,200 Pa・s、168時間後は2,200 Pa・sであった。このことから、本実施例のパテ状伝熱材は、押し出し後、96時間までは粘度は上昇し、それ以降は粘度変化はないことが確認できた。
 次に前記パテ状伝熱材のちょう度を調べた。ちょう度はJIS K2220に準じ、測定温度:室温(23℃)、測定形状:1/4円錐、試験方法:不混和ちょう度、1/4円錐からの換算値で求めた。その結果、実施例1で得られたパテ状伝熱材のちょう度は260であった。
 (実施例2)
 実施例1においてA液:B液=8:2とした以外は実施例1と同様に実験した。B液の架橋成分の1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンは、A液ケイ素原子結合アルケニル基1モルに対して0.2モルであった。
 得られたパテ状伝熱材はチューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があった。また、実施例1と同様の溶剤に対する溶解試験においても溶解した。さらに物性は次のとおりであった。
粘度:1,500 Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
 (実施例3)
 実施例1においてA液:B液=6:4とした以外は実施例1と同様に実験した。B液の架橋成分の1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンは、A液ケイ素原子結合アルケニル基1モルに対して0.4モルであった。
 得られたパテ状伝熱材はチューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があった。また、実施例1と同様の溶剤に対する溶解試験においても溶解した。さらに物性は次のとおりであった。
粘度:4,000Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
 (比較例1)
 実施例1のB液を架橋成分であり1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサン(Si-H基成分)とし、A液:B液=5:5とした以外は実施例1と同様に実験した。B液の架橋成分の1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンは、A液ケイ素原子結合アルケニル基1モルに対して、1.0モルであった。
 得られたものはチューブ又はシリンジから押し出すことは困難であった。さらに物性は次のとおりであった。
粘度:硬度が高く測定不可(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
 (実施例4)
 実施例1においてA液:B液=8.7:1.3とした以外は実施例1と同様に実験した。B液の架橋成分の1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンは、A液ケイ素原子結合アルケニル基1モルに対して、0.13モルであった。
 得られたパテ状伝熱材はチューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があった。また、実施例1と同様の溶剤に対する溶解試験においても溶解した。さらに物性は次のとおりであった。
粘度:1,400Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
 (実施例5)
 実施例1においてA液:B液=5.4:4.6とした以外は実施例1と同様に実験した。B液の架橋成分の1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンは、A液ケイ素原子結合アルケニル基1モルに対して、0.46モルであった。
 得られたパテ状伝熱材はチューブ又はシリンジから押し出すことが容易でかつ静置状態では自己保形性があった。また、実施例1と同様の溶剤に対する溶解試験においても溶解した。さらに物性は次のとおりであった。
粘度:17,000Pa・s(精密回転粘度計 ロトビスコ(RV1),25℃,せん断速度1/s)
熱伝導率:3.2W/m・K(ASTM D2326,ホットディスク法(TPA-501))
1 プリント基板
2 発熱部品
3 ヒートシンク(放熱体)
4 エアーギャップ
5 パテ状伝熱材
6 シリコーンゾル分子
7,8,9 熱伝導性無機粒子

Claims (15)

  1.  オルガノポリシロキサン中に熱伝導性粒子が分散されているパテ状伝熱材であって、
     前記オルガノポリシロキサンは、1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサンからなるベースポリマー(a)と、1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンからなる架橋成分(b)を、前記架橋成分(b)が前記(a)成分中のケイ素原子結合アルケニル基1モルに対して1モル未満の量で部分架橋させたシリコーンゾルであることを特徴とするパテ状伝熱材。
  2.  前記熱伝導性粒子は平均粒子径が異なる少なくとも2つの無機粒子を含み、
     相対的に平均粒子径の小さな無機粒子は、R(CHSi(OR’)3-a(Rは炭素数6~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物、もしくはその部分加水分解物が表面処理されている請求項1に記載のパテ状伝熱材。
  3.  前記パテ状伝熱材は、せん断速度が0.2~5.0/sにおける粘度が100Pa・sから4,000Pa・Sの範囲である請求項1又は2に記載のパテ状伝熱材。
  4.  前記熱伝導性粒子は平均粒子径が2μm以上の無機粒子と平均粒子径が2μm未満の無機粒子を含み、
     前記平均粒子径が2μm以上の無機粒子は、粒子全体を100質量%としたとき50質量%以上である請求項1~3のいずれか1項に記載のパテ状伝熱材。
  5.  前記パテ状伝熱材の熱伝導率は0.2~10W/mKの範囲である請求項1~4のいずれか1項に記載のパテ状伝熱材。
  6.  前記無機粒子が、アルミナ、酸化亜鉛、酸化マグネシウム、窒化アルミ、窒化ホウ素、水酸化アルミ及びシリカから選ばれる少なくとも一つの粒子である請求項1~5のいずれか1項に記載のパテ状伝熱材。
  7.  前記アルミナは、純度99.5質量%以上のα-アルミナである請求項6に記載のパテ状伝熱材。
  8.  前記パテ状伝熱材はチューブ又はシリンジに収納されている請求項1~7のいずれか1項に記載のパテ状伝熱材。
  9.  前記パテ状伝熱材には、さらに無機粒子顔料が添加されている請求項1~8のいずれか1項に記載のパテ状伝熱材。
  10.  前記パテ状伝熱材は、押し出し可能な流動性があるとともに静置状態では自己保形性がある請求項1~9のいずれか1項に記載のパテ状伝熱材。
  11.  前記架橋成分(b)が前記(a)成分中のケイ素原子結合アルケニル基1モルに対して0.1モル以上0.5モル未満の量で部分架橋させている請求項1~10のいずれか1項に記載のパテ状伝熱材。
  12.  請求項1~11のいずれか1項に記載のパテ状伝熱材の製造方法であって、
     下記(a)~(d)を含む成分を混合し部分架橋させたシリコーンゾルであることを特徴とするパテ状伝熱材の製造方法。
    (a)ベースポリマー:1分子中に平均2個以上かつ分子鎖末端のケイ素原子に結合したアルケニル基を含有するオルガノポリシロキサン100質量部
    (b)架橋成分:1分子中に平均2個以上のケイ素原子に結合した水素原子を含有するオルガノポリシロキサンが、前記(a)成分中のケイ素原子結合アルケニル基1モルに対して、1モル未満の量
    (c)白金系金属触媒:(a)成分に対して質量単位で0.01~1,000ppmの量
    (d)熱伝導性粒子:シリコーンゾル100質量部に対して100~2,000質量部
  13.  前記架橋成分(b)が前記(a)成分中のケイ素原子結合アルケニル基1モルに対して0.1モル以上0.5モル未満の量である請求項12に記載のパテ状伝熱材の製造方法。
  14.  前記熱伝導性粒子は平均粒子径が異なる少なくとも2つの無機粒子を含み、
     相対的に平均粒子径の小さな無機粒子は、R(CHSi(OR’)3-a(Rは炭素数6~20の非置換または置換有機基、R’は炭素数1~4のアルキル基、aは0もしくは1)で示されるシラン化合物、もしくはその部分加水分解物が表面処理されている請求項12又は13に記載のパテ状伝熱材の製造方法。
  15.  ベースポリマー(a)のオルガノポリシロキサンが分子鎖両末端のケイ素原子に結合したアルケニル基を含有する請求項12~14のいずれか1項に記載のパテ状伝熱材の製造方法。
PCT/JP2013/055494 2012-03-02 2013-02-28 パテ状伝熱材及びその製造方法 WO2013129600A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/379,605 US20150008361A1 (en) 2012-03-02 2013-02-28 Putty-like heat transfer material and method for producing the same
CN201380010544.XA CN104136569A (zh) 2012-03-02 2013-02-28 油灰状传热材料及其制造方法
JP2014502380A JP5614909B2 (ja) 2012-03-02 2013-02-28 パテ状伝熱材及びその製造方法
EP13754252.8A EP2821456A4 (en) 2012-03-02 2013-02-28 MASTIC TYPE THERMAL TRANSFER MATERIAL AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-046785 2012-03-02
JP2012046785 2012-03-02

Publications (1)

Publication Number Publication Date
WO2013129600A1 true WO2013129600A1 (ja) 2013-09-06

Family

ID=49082791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055494 WO2013129600A1 (ja) 2012-03-02 2013-02-28 パテ状伝熱材及びその製造方法

Country Status (5)

Country Link
US (1) US20150008361A1 (ja)
EP (1) EP2821456A4 (ja)
JP (1) JP5614909B2 (ja)
CN (1) CN104136569A (ja)
WO (1) WO2013129600A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087620A1 (ja) * 2013-12-11 2015-06-18 富士高分子工業株式会社 蓄熱性組成物
WO2017145624A1 (ja) * 2016-02-26 2017-08-31 日立化成株式会社 接着フィルム及びダイシング・ダイボンディングフィルム
JP2020500225A (ja) * 2016-10-12 2020-01-09 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 着色剤を含む熱界面材料
JP2020050701A (ja) * 2018-09-25 2020-04-02 三菱電線工業株式会社 熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び電池モジュール
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
WO2023190440A1 (ja) * 2022-03-29 2023-10-05 デンカ株式会社 二液硬化型組成物セット、硬化物及び電子機器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437873B2 (ja) * 2015-04-15 2018-12-12 信越ポリマー株式会社 押出成形品及びその製造方法並びに押出成形用成形原料及びその製造方法
JP6527031B2 (ja) * 2015-06-19 2019-06-05 株式会社ダイセル 潜熱蓄熱材を含む熱輸送媒体並びに熱輸送用混合液及び熱輸送方法
CN107924908B (zh) 2015-07-13 2020-10-23 莱尔德电子材料(深圳)有限公司 具有定制着色的外表面的热管理和/或emi减轻材料
CN106519700A (zh) * 2015-09-09 2017-03-22 中兴通讯股份有限公司 一种高导热复合界面材料及其制备方法
CN106554626A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 一种高导热石墨烯复合界面材料及其制备方法
CN105838079A (zh) * 2016-04-13 2016-08-10 成都硅宝科技股份有限公司 低油离度导热硅脂组合物及其制备方法
GB2564188B (en) 2017-04-24 2022-02-09 Fuji Polymer Ind Silicone sheet and mounting method using the same
TWI749080B (zh) * 2017-10-11 2021-12-11 美商哈尼威爾國際公司 包含著色劑之熱介面材料
JP6988023B1 (ja) * 2020-09-03 2022-01-05 富士高分子工業株式会社 熱伝導性シリコーン放熱材料
US20230087772A1 (en) * 2020-12-15 2023-03-23 Fuji Polymer Industries Co., Ltd. Thermally conductive liquid composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110179A (ja) 1996-08-09 1998-04-28 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物、熱伝導性材料及び熱伝導性シリコーングリース
JP2002003718A (ja) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP2002327116A (ja) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
US7208192B2 (en) 2002-05-31 2007-04-24 Parker-Hannifin Corporation Thermally or electrically-conductive form-in-place gap filter
WO2007086443A1 (ja) * 2006-01-26 2007-08-02 Momentive Performance Materials Japan Llc 放熱材及びそれを用いた半導体装置
JP2008143980A (ja) * 2006-12-07 2008-06-26 Wacker Asahikasei Silicone Co Ltd 放熱性シリコーンゲル用組成物およびそれを硬化させてなる放熱性シリコーンシート
JP2008184549A (ja) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk 放熱材の製造方法
JP2009256428A (ja) * 2008-04-15 2009-11-05 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び接着構造体並びに半導体装置
JP2009292928A (ja) * 2008-06-04 2009-12-17 Shin-Etsu Chemical Co Ltd 低温加熱時における硬化速度を促進した熱伝導性シリコーン組成物
JP4796704B2 (ja) 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109373A (ja) * 1998-10-02 2000-04-18 Shin Etsu Chem Co Ltd 放熱用シリコーングリース組成物及びそれを使用した半導体装置
US6162663A (en) * 1999-04-20 2000-12-19 Schoenstein; Paul G. Dissipation of heat from a circuit board having bare silicon chips mounted thereon
EP1509567B1 (en) * 2002-05-31 2006-06-14 Dow Corning Toray Silicone Co., Ltd. Thermoconductive curable liquid polymer composition and semiconductor device produced with the use of this composition
DE602004005493T2 (de) * 2003-11-05 2007-11-29 Dow Corning Corp., Midland Wärmeleitfähiges schmierfett und verfahren und vorrichtungen, bei denen das schmierfett verwendet wird
JP4831342B2 (ja) * 2006-12-08 2011-12-07 東洋製罐株式会社 プリフォーム加熱システム
CN101880583B (zh) * 2010-07-02 2013-07-10 公丕桐 一种固液相复合型润滑脂及制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10110179A (ja) 1996-08-09 1998-04-28 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物、熱伝導性材料及び熱伝導性シリコーングリース
JP2002003718A (ja) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
JP4796704B2 (ja) 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法
JP2002327116A (ja) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び半導体装置
US7208192B2 (en) 2002-05-31 2007-04-24 Parker-Hannifin Corporation Thermally or electrically-conductive form-in-place gap filter
WO2007086443A1 (ja) * 2006-01-26 2007-08-02 Momentive Performance Materials Japan Llc 放熱材及びそれを用いた半導体装置
JP2008143980A (ja) * 2006-12-07 2008-06-26 Wacker Asahikasei Silicone Co Ltd 放熱性シリコーンゲル用組成物およびそれを硬化させてなる放熱性シリコーンシート
JP2008184549A (ja) * 2007-01-30 2008-08-14 Momentive Performance Materials Japan Kk 放熱材の製造方法
JP2009256428A (ja) * 2008-04-15 2009-11-05 Shin Etsu Chem Co Ltd 熱伝導性シリコーン組成物及び接着構造体並びに半導体装置
JP2009292928A (ja) * 2008-06-04 2009-12-17 Shin-Etsu Chemical Co Ltd 低温加熱時における硬化速度を促進した熱伝導性シリコーン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821456A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854363B2 (ja) * 2013-12-11 2016-02-09 富士高分子工業株式会社 蓄熱性組成物
US9745498B2 (en) 2013-12-11 2017-08-29 Fuji Polymer Industries Co., Ltd. Heat-storage composition
WO2015087620A1 (ja) * 2013-12-11 2015-06-18 富士高分子工業株式会社 蓄熱性組成物
JP2022027972A (ja) * 2016-02-26 2022-02-14 昭和電工マテリアルズ株式会社 接着フィルム
WO2017145624A1 (ja) * 2016-02-26 2017-08-31 日立化成株式会社 接着フィルム及びダイシング・ダイボンディングフィルム
JPWO2017145624A1 (ja) * 2016-02-26 2018-12-27 日立化成株式会社 接着フィルム及びダイシング・ダイボンディングフィルム
JP7392706B2 (ja) 2016-02-26 2023-12-06 株式会社レゾナック 接着フィルム
JP2020500225A (ja) * 2016-10-12 2020-01-09 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. 着色剤を含む熱界面材料
US11041103B2 (en) 2017-09-08 2021-06-22 Honeywell International Inc. Silicone-free thermal gel
US11072706B2 (en) 2018-02-15 2021-07-27 Honeywell International Inc. Gel-type thermal interface material
JP7075323B2 (ja) 2018-09-25 2022-05-25 三菱電線工業株式会社 熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び電池モジュール
JP2020050701A (ja) * 2018-09-25 2020-04-02 三菱電線工業株式会社 熱伝導性パテ組成物、並びにそれを用いた熱伝導性シート及び電池モジュール
US11373921B2 (en) 2019-04-23 2022-06-28 Honeywell International Inc. Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing
WO2022009486A1 (ja) * 2020-07-07 2022-01-13 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
JP6942907B1 (ja) * 2020-07-07 2021-09-29 富士高分子工業株式会社 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
WO2023190440A1 (ja) * 2022-03-29 2023-10-05 デンカ株式会社 二液硬化型組成物セット、硬化物及び電子機器

Also Published As

Publication number Publication date
CN104136569A (zh) 2014-11-05
JPWO2013129600A1 (ja) 2015-07-30
US20150008361A1 (en) 2015-01-08
EP2821456A1 (en) 2015-01-07
EP2821456A4 (en) 2015-12-16
JP5614909B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5614909B2 (ja) パテ状伝熱材及びその製造方法
JP6531238B2 (ja) 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品
TWI731435B (zh) 熱傳導組成物及使用其之熱傳導性片
TWI743247B (zh) 導熱性聚矽氧組成物及其之硬化物,以及製造方法
JP5854363B2 (ja) 蓄熱性組成物
JP5372388B2 (ja) 熱伝導性シリコーングリース組成物
JP4993135B2 (ja) 熱伝導性シリコーン組成物
JP5304623B2 (ja) 高熱伝導性ポッティング材の選定方法
JP2014208728A (ja) 蓄熱性シリコーン材料及びその製造方法
JP6692512B1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
CN105754346A (zh) 导热性有机硅组合物和固化物以及复合片材
JP2017075202A (ja) 付加一液硬化型熱伝導性シリコーングリース組成物
KR20140133931A (ko) 열전도성 실리콘 조성물
JPWO2016047219A1 (ja) 紫外線増粘型熱伝導性シリコーングリース組成物
WO2022009486A1 (ja) 熱伝導性シリコーンゲル組成物、熱伝導性シリコーンゲルシート及びその製造方法
CN114466905A (zh) 导热性有机硅组合物及其制造方法
TWI824104B (zh) 高熱傳導性聚矽氧組成物及其製造方法
JP7082959B2 (ja) 熱伝導性組成物及びその製造方法
WO2018088417A1 (ja) 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法
KR20160150290A (ko) 방열 성능이 우수한 실리콘 중합체 조성물
JP3758176B2 (ja) 熱伝導性シリコーンゴムおよびその組成物
JP2006143978A (ja) 熱伝導性シリコーン組成物
TWI724816B (zh) 耐熱性導熱性組成物及耐熱性導熱性片
WO2021084787A1 (ja) 熱伝導性グリース及びその製造方法
JP2021055007A (ja) 1液硬化型熱伝導性シリコーン組成物及びその製造方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014502380

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379605

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013754252

Country of ref document: EP