WO2013129009A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2013129009A1
WO2013129009A1 PCT/JP2013/051886 JP2013051886W WO2013129009A1 WO 2013129009 A1 WO2013129009 A1 WO 2013129009A1 JP 2013051886 W JP2013051886 W JP 2013051886W WO 2013129009 A1 WO2013129009 A1 WO 2013129009A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
separator
electrode active
negative electrode
material layer
Prior art date
Application number
PCT/JP2013/051886
Other languages
English (en)
French (fr)
Inventor
美由紀 寺戸
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to BR112014021393-3A priority Critical patent/BR112014021393B1/pt
Priority to MX2014010347A priority patent/MX340420B/es
Priority to RU2014138819/07A priority patent/RU2569670C1/ru
Priority to US14/381,077 priority patent/US10224527B2/en
Priority to EP13754361.7A priority patent/EP2822080B1/en
Priority to KR1020147023837A priority patent/KR101623674B1/ko
Priority to CN201380011569.1A priority patent/CN104205465B/zh
Publication of WO2013129009A1 publication Critical patent/WO2013129009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a secondary battery that can be repeatedly charged and discharged is suitable as a power source for driving these motors, and a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that can be expected to have a high capacity and a high output is attracting attention.
  • the non-aqueous electrolyte secondary battery has, as its constituent elements, a power generation element in which a single battery layer including a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode is laminated.
  • a separator made of a microporous resin sheet in which a nonaqueous electrolyte such as a liquid electrolyte or a gel electrolyte is incorporated.
  • nonaqueous electrolytes contain an organic solvent and a lithium salt as essential components in a lithium ion secondary battery.
  • the separator constituting the electrolyte layer in the single cell layer has a function of holding a non-aqueous electrolyte and ensuring ionic conductivity between the positive electrode and the negative electrode; a function as a partition wall between the positive electrode and the negative electrode; Is required.
  • a thermoplastic resin such as polyolefin is used.
  • a constructed microporous membrane was used.
  • Patent Document 1 For such a problem, for example, in Patent Document 1, by forming a breathable surface protective layer (heat resistant insulating layer) containing inorganic fine particles on at least one surface of a film having a porous structure made of polyolefin or the like, It has been proposed to prevent internal short circuits.
  • a breathable surface protective layer heat resistant insulating layer
  • An object of the present invention is to provide means capable of effectively suppressing the occurrence of misalignment in a stacking process when manufacturing a nonaqueous electrolyte secondary battery.
  • the present inventor has intensively studied to solve the stacking deviation in the above stacking process. As a result, the above problem can be solved by controlling the value of the ratio of the surface roughness of each surface of these two elements constituting the interface between the directly adjacent negative electrode active material layer and the separator within a predetermined range. I found out.
  • the nonaqueous electrolyte secondary battery according to one embodiment of the present invention thus completed includes a positive electrode in which a positive electrode active material layer is formed on the surface of a positive electrode current collector, and a negative electrode active material on the surface of the negative electrode current collector.
  • a single battery layer comprising: a negative electrode in which a material layer is formed; and a separator containing a nonaqueous electrolyte interposed between the positive electrode active material layer and the negative electrode active material layer so as to be in contact with the negative electrode active material layer It has a power generation element.
  • the nonaqueous electrolyte secondary battery has a surface roughness of the surface of the separator on the side in contact with the negative electrode active material layer with respect to the surface roughness of the surface of the negative electrode active material layer on the side of contact with the separator (R zjis (1)).
  • R zjis (2) ratio value (hereinafter, this ratio value is also referred to as “surface roughness ratio”)
  • the dynamic friction coefficient between the negative electrode active material layer and the separator is controlled to a relatively large value.
  • FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention. It is sectional drawing which represented typically the separator with a heat resistant insulating layer which concerns on one Embodiment of this invention.
  • Non-aqueous electrolyte secondary batteries have various forms and structures such as stacked (flat) batteries and wound (cylindrical) batteries, for example, when distinguished by form and structure. In the present invention, any of these forms can be applied. However, according to the present invention, a particularly remarkable effect is manifested in a non-aqueous electrolyte secondary battery having a flat plate (flat) battery structure. sell. Therefore, in the following, a non-aqueous electrolyte secondary battery having a flat plate (flat) battery structure will be described by taking a lithium ion secondary battery as an example.
  • FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate sheet 29 that is an exterior.
  • the power generation element 21 is housed and sealed by using a polymer-metal composite laminate sheet as a battery exterior and joining the entire periphery thereof by thermal fusion.
  • the power generating element 21 includes a negative electrode in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11, a separator 17, and a positive electrode in which the positive electrode active material layer 15 is disposed on both surfaces of the positive electrode current collector 12. It has the structure. Specifically, the negative electrode, the separator, and the positive electrode are laminated in this order so that one negative electrode active material layer 13 and the positive electrode active material layer 15 adjacent to the negative electrode active material layer 13 face each other with the separator 17 therebetween.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the adjacent negative electrode, separator, and positive electrode constitute one single cell layer 19. Therefore, it can be said that the lithium ion battery 10 of the present embodiment has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the negative electrode active material layer 13 is disposed on only one side of the outermost negative electrode current collector located on both outermost layers of the power generation element 21.
  • the arrangement of the negative electrode and the positive electrode is reversed from that in FIG. 1 so that the outermost positive electrode current collector is positioned in both outermost layers of the power generation element 21, and the positive electrode is provided only on one side of the outermost positive electrode current collector.
  • An active material layer may be arranged.
  • the negative electrode active material layers are arranged on both surfaces of the outermost layer (negative electrode) current collector, and are positioned on the outermost layer of the power generation element. It is good also as a structure which does not make the negative electrode active material layer to function.
  • the negative electrode current collector 11 and the positive electrode current collector 12 are attached with a negative electrode current collector plate 25 and a positive electrode current collector plate 27 that are electrically connected to the respective electrodes (positive electrode and negative electrode). These current collector plates (25, 27) are led out of the laminate sheet 29 so as to be sandwiched between the end portions of the laminate sheet 29, respectively.
  • the negative electrode current collector plate 25 and the positive electrode current collector plate 27 are ultrasonically welded to the negative electrode current collector 11 and the positive electrode current collector 12 of each electrode via a negative electrode lead and a positive electrode lead (not shown), respectively, as necessary. Or resistance welding or the like.
  • the lithium ion secondary battery 10 includes a separator 17 on the side in contact with the negative electrode active material layer 13 with respect to the surface roughness (R zjis (1)) of the surface of the negative electrode active material layer 13 on the side in contact with the separator 17.
  • the surface roughness (R zjis ) is a parameter that is also referred to as “ten-point average roughness”, and is measured by a method described in Examples described later.
  • the value of R A may be within the above-mentioned range, but is preferably 0.6 or less, more preferably 0.5 or less, still more preferably 0.4 or less, and particularly preferably 0. .3 or less, and most preferably 0.25 or less.
  • the lower limit value of RA is not particularly limited, but is usually about 0.2 or more from the viewpoint of feasibility.
  • the surface roughness ratio between the positive electrode active material layer and the separator is also controlled.
  • the positive electrode active material layer 15 is in contact with the surface roughness (R zjis (3)) of the surface of the positive electrode active material layer 15 on the side in contact with the separator 17.
  • the coefficient of dynamic friction between the negative electrode active material layer and the separator, and positive electrode active material layer is close to each other, and a configuration in which the slipperiness between the positive and negative electrodes is similar is achieved.
  • the absolute value of slipperiness (dynamic friction coefficient) between the active material layer and the separator is also an important consideration factor. With respect to such parameters, it can be said that a balance between positive and negative electrodes is more preferable from the viewpoint of productivity.
  • R B is not limited as long as within the range described above, but is preferably 0.5 or more, more preferably 0.5 to 1.25, and more preferably from 0.5 to zero. 8, particularly preferably 0.5 to 0.6. In another preferred embodiment, R B is greater than R A. By adopting these configurations, the effects of the present invention can be exhibited more remarkably.
  • the specific method for controlling the values of the surface roughness ratios (R A , R B ) within the above-mentioned preferred ranges, and the technical common sense at the time of filing of the present application can be referred to as appropriate.
  • a method for controlling the surface roughness of the active material layer surface for example, a method of adjusting the particle diameter of the active material contained in the active material layer is exemplified. In this case, when the particle diameter of the active material is increased, the surface roughness of the active material layer surface can be increased.
  • the flatness of the surface of the active material layer may be adjusted by appropriately adjusting the conditions of the press treatment that may be performed when forming the active material layer. There is also a way to control.
  • the BET specific surface area and particle diameter of inorganic particles contained in the heat-resistant insulating layer are used.
  • the method of adjusting is illustrated. In this case, when the BET specific surface area or particle diameter of the inorganic particles contained in the heat-resistant insulating layer is increased, the surface roughness of the separator surface can be increased.
  • the separator when a separator other than a separator with a heat-resistant insulating layer (for example, a resin film) is used as the separator, the surface roughness of the separator surface is reduced by a method of compressing with a rolling roll at a temperature lower than the melting point of the resin. It is possible to control.
  • a separator other than a separator with a heat-resistant insulating layer for example, a resin film
  • the negative electrode has a structure in which the negative electrode active material layer 13 is formed on the surface of the negative electrode current collector 11.
  • the negative electrode current collector 11 is a member for electrically connecting the negative electrode active material layer 13 and the outside, and is made of a conductive material.
  • the form mentioned later about the positive electrode electrical power collector 12 can be employ
  • the negative electrode active material layer 15 includes a negative electrode active material, and may further include a conductive material, a binder, and the like for enhancing electrical conductivity as necessary.
  • the negative electrode active material layer 13 may include an electrolyte.
  • the negative electrode active material is not particularly limited as long as it is made of a material capable of inserting and extracting lithium.
  • the negative electrode active material include metals such as Si and Sn, or metal oxides such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, and SnO 2 , Li 4/3 Ti 5/3 O 4.
  • a composite oxide of lithium and transition metal such as Li 7 MnN, Li—Pb alloy, Li—Al alloy, Li, or natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, Or carbon materials, such as hard carbon, etc. are mentioned preferably.
  • a negative electrode active material contains the element alloyed with lithium.
  • the negative electrode active material may be used alone or in the form of a mixture of two or more.
  • the element alloying with lithium is not limited to the following, but specifically, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, and the like.
  • the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of increasing the capacity, reactivity, and cycle durability of the negative electrode active material. Within such a range, the secondary battery can suppress an increase in the internal resistance of the battery during charging and discharging under high output conditions, and can extract a sufficient current.
  • the negative electrode active material is secondary particles, it can be said that the average particle diameter of the primary particles constituting the secondary particles is desirably in the range of 10 nm to 1 ⁇ m. It is not limited to. However, although depending on the manufacturing method, the negative electrode active material may not be a secondary particle formed by aggregation, agglomeration, or the like.
  • the shape of the negative electrode active material varies depending on the type and manufacturing method, and examples thereof include a spherical shape (powdered shape), a plate shape, a needle shape, a column shape, and a square shape, but are not limited thereto. Any shape can be used without any problems. Preferably, an optimal shape that can improve battery characteristics such as charge / discharge characteristics is appropriately selected.
  • the conductive material is blended for the purpose of improving the conductivity of the active material layer.
  • the electrically conductive material that can be used in the present embodiment is not particularly limited, and conventionally known forms can be appropriately referred to. Examples thereof include carbon blacks such as acetylene black, furnace black, channel black, and thermal black; carbon fibers such as vapor grown carbon fiber (VGCF); and carbon materials such as graphite.
  • VGCF vapor grown carbon fiber
  • graphite graphite
  • the binder is not limited to the following, but heat such as polyvinylidene fluoride (PVDF), carboxymethylcellulose (CMC), polytetrafluoroethylene (PTFE), polyvinyl acetate, and acrylic resin (for example, LSR).
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • PTFE polytetrafluoroethylene
  • acrylic resin for example, LSR
  • thermosetting resins such as plastic resins, polyimides, epoxy resins, polyurethane resins, and urea resins
  • rubber materials such as styrene-butadiene rubber (SBR).
  • R zjis (1) is preferably 3.0 to 10.0 ⁇ m, more preferably 3.0 to 6.0 ⁇ m.
  • the positive electrode has a structure in which a positive electrode active material layer 15 is formed on the surface of the positive electrode current collector 12.
  • the positive electrode current collector 12 is a member for electrically connecting the positive electrode active material layer 15 and the outside, and is made of a conductive material.
  • a conductive material There is no restriction
  • a constituent material of the current collector for example, a metal or a conductive polymer can be employed. Specific examples include iron, chromium, nickel, manganese, titanium, molybdenum, vanadium, niobium, copper, silver, platinum, stainless steel, and carbon, which may form a simple substance, an alloy, or a composite.
  • a structure having a structure in which a conductive filler is dispersed in a base material made of a nonconductive polymer can also be adopted as one form of the current collector.
  • the thickness of the current collector is not particularly limited, but is usually about 1 to 100 ⁇ m.
  • the size of the current collector is determined according to the intended use of the lithium ion secondary battery.
  • the positive electrode active material layer 13 includes a positive electrode active material, and may further include a conductive material, a binder, and the like for increasing electrical conductivity as necessary.
  • the positive electrode active material layer 15 may include an electrolyte.
  • the positive electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and a positive electrode active material usually used for a lithium ion secondary battery can be used.
  • lithium-transition metal composite oxides are preferable.
  • Li—Mn composite oxides such as LiMn 2 O 4
  • Li—Ni composite oxides such as LiNiO 2 , LiNi 0.5 Mn 0.5 O 2, etc.
  • Li—Ni—Mn based composite oxide may be used in combination.
  • the average particle diameter of the positive electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of increasing the capacity, reactivity, and cycle durability of the positive electrode active material. Within such a range, the secondary battery can suppress an increase in the internal resistance of the battery during charging and discharging under high output conditions, and can extract a sufficient current.
  • the positive electrode active material is secondary particles, it can be said that the average particle diameter of the primary particles constituting the secondary particles is desirably in the range of 10 nm to 1 ⁇ m. It is not limited to. However, although it depends on the manufacturing method, the positive electrode active material may not be a secondary particle formed by aggregation, agglomeration, or the like.
  • the shape of the positive electrode active material varies depending on the type and manufacturing method, and examples thereof include a spherical shape (powdered shape), a plate shape, a needle shape, a column shape, and a square shape, but are not limited thereto. Any shape can be used without any problems. Preferably, an optimal shape that can improve battery characteristics such as charge / discharge characteristics is appropriately selected.
  • R zjis (3) is preferably 1.5 to 3.5 ⁇ m, more preferably 2.0 to 3.0 ⁇ m.
  • the separator 17 functions as a spatial partition (spacer) between the negative electrode active material layer 13 and the positive electrode active material layer 15. In addition, it also has a function of incorporating a non-aqueous electrolyte that is a lithium ion transfer medium between the positive and negative electrodes during charging and discharging.
  • the separator 17 incorporates a non-aqueous electrolyte as described above.
  • a non-aqueous electrolyte as described above.
  • a liquid electrolyte and a polymer gel electrolyte can be employ
  • the liquid electrolyte is a lithium salt dissolved in an organic solvent.
  • organic solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propionate (MP), methyl acetate (MA), methyl formate (MF). ), 4-methyldioxolane (4MeDOL), dioxolane (DOL), 2-methyltetrahydrofuran (2MeTHF), tetrahydrofuran (THF), dimethoxyethane (DME), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) ), And ⁇ -butyrolactone (GBL). These solvents may be used alone or as a mixture of two or more.
  • lithium salt is not particularly limited, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiSbF 6, LiAlCl 4, Li 2 B 10 Cl 10, LiI, LiBr, LiCl, LiAlCl, LiHF 2 , Inorganic acid anion salt such as LiSCN, LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiBOB (lithium bisoxide borate), LiBETI (lithium bis (perfluoroethylenesulfonylimide); Li (C 2 And organic acid anion salts such as F 5 SO 2 ) 2 N). These lithium salts may be used alone or in the form of a mixture of two or more.
  • the gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer having lithium ion conductivity.
  • the matrix polymer having lithium ion conductivity include a polymer having polyethylene oxide in the main chain or side chain (PEO), a polymer having polypropylene oxide in the main chain or side chain (PPO), polyethylene glycol (PEG), poly Acrylonitrile (PAN), polymethacrylic acid ester, polyvinylidene fluoride (PVdF), copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), polyacrylonitrile (PAN), poly (methyl acrylate) (PMA), poly (Methyl methacrylate) (PMMA) etc.
  • PEO polymer having polyethylene oxide in the main chain or side chain
  • PPO polymer having polypropylene oxide in the main chain or side chain
  • PEG polyethylene glycol
  • PAN poly Acryl
  • a polymerizable polymer for example, PEO or PPO
  • a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • the nonaqueous electrolyte mentioned above may be contained in the active material layer of the electrode.
  • constituent material of the separator 17 include, for example, a microporous film made of polyolefin such as polyethylene or polypropylene, hydrocarbon such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like. Can be mentioned.
  • a microporous film made of polyolefin such as polyethylene or polypropylene
  • hydrocarbon such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like.
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene
  • FIG. 2 sectional drawing which represented typically the separator with a heat resistant insulating layer which concerns on one Embodiment of this invention is shown.
  • the separator 1 with a heat resistant insulating layer shown in FIG. 2 is formed by forming heat resistant insulating layers (5a, 5b) on both surfaces of a porous substrate layer 3.
  • the porous substrate layer 3 has a configuration of a microporous film made of, for example, polyethylene.
  • the heat-resistant insulating layers (5a, 5b) have a configuration in which alumina (Al 2 O 3 ) particles are connected through, for example, carboxymethyl cellulose (CMC) as a binder.
  • alumina (Al 2 O 3 ) particles are connected through, for example, carboxymethyl cellulose (CMC) as a binder.
  • CMC carboxymethyl cellulose
  • the separator 1 with a heat resistant insulating layer Since the heat resistant insulating layers (5a, 5b) have a porous structure due to gaps formed by the alumina particles, the separator 1 with a heat resistant insulating layer has a porous structure as a whole. Therefore, the separator 1 with a heat-resistant insulating layer functions as a separator having lithium ion conductivity as a whole.
  • each member of the separator with a heat resistant insulating layer in the form shown in FIG. 2 will be described.
  • the porous substrate layer 3 functions as a substrate when the heat-resistant insulating layers (5a, 5b) are formed.
  • the material constituting the porous substrate layer 3 is not particularly limited, but resin materials such as thermoplastic resins and thermosetting resins, metal materials, cellulosic materials, and the like can be used. Among these, it is preferable to use a porous substrate layer made of a resin material (hereinafter also referred to as “resin porous substrate layer”) from the viewpoint of providing a separator with a heat-resistant insulating layer with a shutdown function.
  • Examples of the resin material constituting the resin porous substrate layer include polyethylene (PE), polypropylene (PP), a copolymer obtained by copolymerizing ethylene and propylene (ethylene-propylene copolymer), ethylene or Copolymers obtained by copolymerizing propylene with ethylene and other monomers other than propylene, polystyrene (PS), polyvinyl acetate (PVAc), polyethylene terephthalate (PET), polyvinylidene fluoride (PFDV), polytetrafluoro Ethylene (PTFE), Polysulfone (PSF), Polyethersulfone (PES), Polyetheretherketone (PEEK), Polyimide (PI), Polyamideimide (PAI), Phenol resin (PF), Epoxy resin (EP), Melamine resin (MF), urea tree (UF), alkyd resins, polyurethane (PUR) is. These resins may be used alone or in a mixture of two or more.
  • the resin material constituting the resin porous substrate layer preferably contains a resin having a melting temperature of 120 to 200 ° C. so that the separator with a heat-resistant insulating layer exhibits a shutdown function in a temperature range of 120 to 200 ° C.
  • a resin having a melting temperature of 120 to 200 ° C. so that the separator with a heat-resistant insulating layer exhibits a shutdown function in a temperature range of 120 to 200 ° C.
  • PE polyethylene
  • PP polypropylene
  • a copolymer obtained by copolymerizing ethylene and propylene ethylene-propylene copolymer
  • ethylene or another monomer other than ethylene and propylene and ethylene and propylene It is preferable to use a resin porous substrate layer containing a copolymer obtained by copolymerizing the above.
  • the resin material constituting the resin porous substrate layer contains a resin having a melting temperature of 120 to 200 ° C.
  • a resin having a melting temperature of 120 to 200 ° C. it may be used in combination with a thermoplastic resin or a thermosetting resin having a melting temperature exceeding 200 ° C.
  • the ratio of the resin having a melting temperature of 120 to 200 ° C. in the entire resin porous substrate layer is preferably 50% by mass or more, more preferably 70% or more, and further preferably 90% or more. Particularly preferably, it is 95% or more, and most preferably 100%.
  • a laminate in which two or more layers made of the above materials are laminated may be used as the resin porous substrate layer.
  • a resin porous substrate layer having a three-layer structure of PP / PE / PP may be mentioned. Since the three-layered porous resin substrate layer has a PE melting temperature of 130 ° C., a shutdown function is exhibited when the battery temperature reaches 130 ° C. Even if the battery temperature rises further, the melting temperature of PP is 170 ° C., so that it is possible to prevent the entire surface from being short-circuited, and a separator with higher safety can be obtained.
  • the shape of the resin porous substrate layer is not particularly limited, and a woven fabric, a nonwoven fabric, a microporous membrane, or the like can be used. Among these, a microporous film is preferable from the viewpoint of ensuring high lithium ion conductivity. Further, the porosity of the resin porous substrate layer is preferably 40 to 85%, more preferably 50 to 70%, and further preferably 55 to 60%. By setting the porosity to the above range, sufficient lithium ion conductivity and strength can be ensured.
  • the thickness of the resin porous substrate layer is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 7 to 30 ⁇ m, and particularly preferably 10 to 20 ⁇ m. . If the thickness is 5 ⁇ m or more, the electrolyte retainability is good, and if it is 200 ⁇ m or less, the resistance is difficult to increase excessively.
  • the heat resistant insulating layers (5a, 5b) are disposed on one or both sides of the porous substrate layer and have a function of reinforcing the strength of the separator.
  • the porous substrate layer is a resin porous substrate layer made of a resin material, it also serves to relieve internal stress caused by an increase in battery temperature and suppress deformation due to thermal contraction of the separator.
  • the heat resistant insulating layer includes inorganic particles and a binder.
  • Inorganic particles contribute to the mechanical strength and heat shrinkage suppression effect of the heat-resistant insulating layer.
  • the material used as the inorganic particles is not particularly limited. Examples thereof include silicon, aluminum, zirconium, titanium oxides (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 ), hydroxides and nitrides, and composites thereof.
  • These inorganic particles may be derived from mineral resources such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine and mica, or may be artificially produced. Moreover, only 1 type may be used individually for these inorganic particles, and 2 or more types may be used together. Among these, from the viewpoint of cost, silica (SiO 2 ) or alumina (Al 2 O 3 ) is preferably used, and alumina (Al 2 O 3 ) is more preferably used.
  • the binder has a role of adhering the inorganic particles and the inorganic particles to the resin porous substrate layer.
  • the heat-resistant insulating layer is stably formed, and peeling between the porous substrate layer and the heat-resistant insulating layer is prevented.
  • the binder used for the heat-resistant insulating layer of this embodiment is not particularly limited, and those skilled in the art can appropriately adopt conventionally known binders.
  • PTFE polyvinyl fluoride
  • PVDF polytetrafluoroethylene
  • PTFE polyvinyl fluoride
  • PVDF polytetrafluoroethylene
  • PTFE polyvinyl fluoride
  • methyl acrylate methyl acrylate
  • PVDF polyvinylidene fluoride
  • these compounds only 1 type may be used independently and 2 or more types may be used together.
  • the binder content in the heat-resistant insulating layer is preferably 2 to 20% by mass with respect to 100% by mass of the heat-resistant insulating layer.
  • the binder content is 2% by mass or more, the peel strength between the heat-resistant insulating layer and the porous substrate layer can be increased, and the vibration resistance of the separator can be improved.
  • the binder content is 20% by mass or less, the gaps between the inorganic particles are appropriately maintained, so that sufficient lithium ion conductivity can be ensured.
  • the thickness of one heat-resistant insulating layer is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, and further preferably 3 to 7 ⁇ m.
  • the thickness of the heat-resistant insulating layer is in such a range, it is preferable because sufficient strength can be imparted to the separator with the heat-resistant insulating layer, and the bulk and weight of the separator itself do not become too large.
  • the compositions of the two heat-resistant insulating layers may be the same or different, but are preferably the same from the viewpoint of handling during production.
  • the total thickness of the separator with a heat-resistant insulating layer of this embodiment is not particularly limited as long as sufficient strength can be secured. However, from the viewpoint of making the size of the battery more compact, it is preferable not to be too thick. Specifically, the thickness of the separator with a heat-resistant insulating layer is preferably 10 to 50 ⁇ m, and more preferably 15 to 30 ⁇ m.
  • the manufacturing method of the separator with a heat-resistant insulating layer of the present embodiment is not particularly limited, and can be manufactured by appropriately referring to conventionally known techniques.
  • the manufacturing method of the separator with a heat resistant insulating layer when the resin porous substrate layer is used as the porous substrate layer will be described.
  • polyolefin When producing a microporous membrane of polyolefin as a resin porous substrate, first, polyolefin is dissolved in a solvent such as paraffin, liquid paraffin, paraffin oil, tetralin, ethylene glycol, glycerin, decalin and the like. Thereafter, it can be produced by extruding it into a sheet, removing the solvent, and performing uniaxial stretching and biaxial stretching (simultaneous and sequential).
  • a solvent such as paraffin, liquid paraffin, paraffin oil, tetralin, ethylene glycol, glycerin, decalin and the like.
  • a method for forming a heat-resistant insulating layer on the resin porous substrate will be described.
  • a dispersion liquid in which inorganic particles and a binder are dispersed in a solvent is prepared.
  • the dispersion is applied to one or both surfaces of the resin porous substrate, and the solvent is dried to form a heat resistant insulating layer.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • the coating method is not particularly limited, and examples thereof include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method.
  • the basis weight ratio can be controlled within a predetermined range by adjusting the coating amount of the dispersion liquid on the resin porous substrate. For example, the coating amount can be adjusted so that the basis weight of the heat-resistant insulating layer is about 5 to 20 g / m 2 .
  • the temperature at which the solvent is removed is not particularly limited and can be appropriately set depending on the solvent used.
  • the temperature is preferably 50 to 70 ° C.
  • NMP is used as the solvent
  • the temperature is preferably 70 to 90 ° C.
  • the solvent may be dried under reduced pressure. Further, a part of the solvent may be left without being completely removed.
  • the separator with a heat-resistant insulating layer which is a preferred embodiment of the separator 17 has been described in detail, the technical scope of the present invention is not limited to such a form. In other words, even if the separator has a configuration other than the separator with a heat-resistant insulating layer, the predetermined functions and effects of the present application can be similarly exhibited as long as the requirements specified in the claims are satisfied.
  • R zjis (2) and R zjis (4) are each preferably 1.0 to 4.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m.
  • R zjis (2) and R zjis (4) may be the same or different, but are preferably the same.
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials.
  • a laminate sheet 29 as shown in FIG. 1 can be used.
  • the laminate sheet may be configured as a three-layer structure in which polypropylene, aluminum, and nylon are laminated in this order.
  • a conventionally known metal can case can also be used as an exterior.
  • the surface roughness (R zjis ) of the surface of the member (separator or active material layer) was measured with a laser microscope. Specifically, the surface of 128 ⁇ m ⁇ 100 ⁇ m was observed, and the surface roughness (R zjis ) in the range of 128 ⁇ m was measured from the on-line cross-sectional profile at an arbitrary location.
  • Example 1 (Preparation of negative electrode) Artificial graphite (average particle size: 15 ⁇ m) 96.5% by mass as a negative electrode active material and 3.5% by mass of polyvinylidene fluoride (PVDF) as a binder are dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry. Prepared.
  • PVDF polyvinylidene fluoride
  • This slurry was applied to one side of a 10 ⁇ m thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press.
  • the application amount (weight per unit area) of the solid content (active material and binder) of the negative electrode is 106 g / m 2
  • the slurry application amount and the pressing conditions are set so that the bulk density of the active material layer is 1.35 g / cm 3. It was adjusted.
  • the surface roughness (R zjis (1)) of the surface of the negative electrode active material layer of the negative electrode thus produced was 5.91 ⁇ m.
  • This slurry was applied to one side of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press.
  • the coating amount (weight per unit area) of the solid content (active material, conductive material, and binder) of the positive electrode is 250 g / m 2, and the slurry coating amount so that the bulk density of the active material layer is 3.00 g / cm 3 .
  • press conditions were adjusted.
  • the surface roughness (R zjis (3)) of the positive electrode active material layer of the positive electrode thus produced was 2.46 ⁇ m.
  • a separator with a heat-resistant insulating layer in which heat-resistant insulating layers (thickness: 5 ⁇ m each) were disposed on both surfaces of a polyolefin resin porous film (thickness: 30 ⁇ m) obtained by biaxial stretching was produced.
  • alumina particles BET specific surface area: 5 m 2 / g, average particle size: 0.48 ⁇ m
  • polyethylene as a binder
  • this slurry was applied on a polyolefin resin porous film (thickness: 16 ⁇ m) using a gravure coater, and then dried at 60 ° C. to remove water, thereby preparing a separator with a heat-resistant insulating layer.
  • Example 2 In the heat-resistant insulating layer constituting the separator with the heat-resistant insulating layer, Example 1 described above except that alumina particles which are inorganic particles have a BET specific surface area of 15 m 2 / g and an average particle size of 0.55 ⁇ m. Each member was prepared and prepared by the same method as described above.
  • Example 3 In the heat-resistant insulating layer constituting the separator with the heat-resistant insulating layer, Example 1 described above except that alumina particles which are inorganic particles have a BET specific surface area of 52 m 2 / g and an average particle diameter of 2.8 ⁇ m. Each member was prepared and prepared by the same method as described above.
  • each member was prepared and prepared by the same method as in Example 3 described above, except that the negative electrode active material contained in the negative electrode active material layer had an average particle size of 12 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Abstract

 本発明の非水電解質二次電池は、正極集電体(12)の表面に正極活物質層(15)が形成されてなる正極と、負極集電体(11)の表面に負極活物質層(13)が形成されてなる負極と、正極と負極との間に介在し、非水電解質を内蔵するセパレータ(1)と、を含む単電池層(19)を備える発電要素(21)を有する。セパレータ(1)に接する側の負極活物質層(13)の表面の表面粗さ(Rzjis(1))に対する、負極活物質層(13)に接する側のセパレータ(1)の表面の表面粗さ(Rzjis(2))の比の値RA(=Rzjis(2)/Rzjis(1))が、0.15~0.85である。動摩擦係数が高く得られ、非水電解質二次電池を製造する際の積層工程において、積層ずれの発生を効果的に抑制しうる。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関する。
 近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源としては繰り返し充放電可能な二次電池が適しており、特に高容量、高出力が期待できるリチウムイオン二次電池などの非水電解質二次電池が注目を集めている。
 非水電解質二次電池は、その構成要素として、正極、負極、および正極と負極との間に介在する電解質層を含む単電池層が積層されてなる発電要素を有している。
 電解質層の構成として、例えば、微多孔質樹脂シートからなるセパレータに液体電解質またはゲル電解質といった非水電解質が内蔵されてなるものが知られている。これらの非水電解質は、有機溶媒と、リチウムイオン二次電池においてはリチウム塩とをその必須成分として含む。
 ところで、単電池層の中で電解質層を構成するセパレータは、非水電解質を保持して正極と負極との間のイオン伝導性を確保する機能;正極と負極との間の隔壁としての機能;を併せ持つことが求められる。また、電池が高温となった場合に充放電反応を停止させるために、イオンの移動を遮断する機能を有していることが望ましく、このようなセパレータとして、従来はポリオレフィンなどの熱可塑性樹脂から構成される微多孔膜が用いられていた。
 しかしながら、ポリオレフィンなどの柔らかい材料からなるセパレータを用いた場合、電池製造時に混入した異物片や、電極より剥離した電極活物質層片などがセパレータを貫通し、内部短絡が生じる虞があった。
 このような問題に対し、例えば特許文献1では、ポリオレフィン等からなる多孔質構造を有する膜の少なくとも片面に、無機微粒子を含む通気性を有する表面保護層(耐熱絶縁層)を形成することによって、内部短絡を防ぐことが提案されている。
 ところで、上述したような構成を有する非水電解質二次電池の製造における主要なプロセスとして、電極(正極または負極)とセパレータとを交互に積層することにより複数の単電池層が積層されてなる発電要素を作製する工程(積層工程)がある。この積層工程においては、積層される各要素が面方向にずれないように、積層方向に向かってまっすぐ積層される必要がある。この積層工程において各要素が積層ずれを起こすと、活物質層に含まれる活物質が十分に充放電に利用されない結果として所望の充放電容量が得られない場合がある。
 従来、積層工程におけるこのような積層ずれを抑制するための手段として十分に有効なものは知られていないのが現状である。そして、本発明者の検討によれば、このような積層ずれは、負極活物質層とセパレータとの界面において顕著に発生することが判明した。
特開平11-80395号公報
 本発明は、非水電解質二次電池を製造する際の積層工程において、積層ずれの発生を効果的に抑制しうる手段を提供することを目的とする。
 本発明者は、上記の積層工程における積層ずれを解決するために鋭意検討を行なった。その結果、直接隣接する負極活物質層とセパレータとの界面を構成するこれらの2つの要素の各表面の表面粗さの比の値を所定の範囲内に制御することで上記課題が解決されうることを見出した。
 このようにして完成された本発明の一形態に係る非水電解質二次電池は、正極集電体の表面に正極活物質層が形成されてなる正極と、負極集電体の表面に負極活物質層が形成されてなる負極と、正極活物質層と負極活物質層との間に負極活物質層に接するように介在し、非水電解質を内蔵するセパレータと、を含む単電池層を備える発電要素を有するものである。そして、この非水電解質二次電池は、セパレータに接する側の負極活物質層の表面の表面粗さ(Rzjis(1))に対する、負極活物質層に接する側のセパレータの表面の表面粗さ(Rzjis(2))の比の値(以下、この比の値を「表面粗さ比」とも称する)RA(=Rzjis(2)/Rzjis(1))が、0.15~0.85である。
 本発明の一形態に係る非水電解質二次電池によれば、負極活物質層とセパレータとの間の動摩擦係数が比較的大きい値に制御される。その結果、非水電解質二次電池を製造する際の積層工程において、特に負極活物質層とセパレータとを積層する際の積層ずれの発生が効果的に抑制されうる。
本発明の一実施形態に係るリチウムイオン二次電池を示す模式断面図である。 本発明の一実施形態に係る耐熱絶縁層付セパレータを模式的に表した断面図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 非水電解質二次電池は、たとえば、形態・構造で区別した場合には、積層型(扁平型)電池、巻回型(円筒型)電池などさまざまな形態・構造が存在する。本発明においても、これらのうちの任意の形態が適用可能であるが、本発明によれば、平板積層型(扁平型)電池構造を有する非水電解質二次電池において特に顕著な効果が発現しうる。よって、以下では、平板積層型(扁平型)電池構造を有する非水電解質二次電池について、リチウムイオン二次電池を例に挙げて説明する。
 図1は、本発明の一実施形態に係るリチウムイオン二次電池を示す模式断面図である。
 図1に示すように、本実施形態のリチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装であるラミネートシート29の内部に封止された構造を有する。詳しくは、高分子-金属複合ラミネートシートを電池の外装として用いて、その周辺部の全部を熱融着にて接合することにより、発電要素21を収納し密封した構成を有している。
 発電要素21は、負極集電体11の両面に負極活物質層13が配置された負極と、セパレータ17と、正極集電体12の両面に正極活物質層15が配置された正極とを積層した構成を有している。具体的には、1つの負極活物質層13とこれに隣接する正極活物質層15とが、セパレータ17を介して対向するようにして、負極、セパレータおよび正極がこの順に積層されている。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。
 これにより、隣接する負極、セパレータおよび正極は、1つの単電池層19を構成する。したがって、本実施形態のリチウムイオン電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されている。なお、図1とは負極および正極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面のみに正極活物質層が配置されているようにしてもよい。もちろん、図1に示すように発電要素21の両最外層に負極が位置する場合に、最外層(負極)集電体の両面に負極活物質層を配置して、発電要素の最外層に位置する負極活物質層を機能させない構成としてもよい。
 負極集電体11および正極集電体12には、各電極(正極および負極)と導通される負極集電板25および正極集電板27がそれぞれ取り付けられている。そして、これらの集電板(25、27)はそれぞれ、ラミネートシート29の端部に挟まれるようにしてラミネートシート29の外部に導出されている。負極集電板25および正極集電板27はそれぞれ、必要に応じて負極リードおよび正極リード(図示せず)を介して、各電極の負極集電体11および正極集電体12に超音波溶接や抵抗溶接等により取り付けられていてもよい。
 [表面粗さ比]
 本実施形態に係るリチウムイオン二次電池10は、セパレータ17に接する側の負極活物質層13の表面の表面粗さ(Rzjis(1))に対する、負極活物質層13に接する側のセパレータ17の表面の表面粗さ(Rzjis(2))の比の値として定義される表面粗さ比RA(=Rzjis(2)/Rzjis(1))が、0.15~0.85である点に特徴を有する。
 ここで、表面粗さ(Rzjis)は、「十点平均粗さ」とも称されるパラメータであり、後述する実施例に記載の手法により測定される。RAの値は上述した範囲内のものであればよいが、好ましくは0.6以下であり、より好ましくは0.5以下であり、さらに好ましくは0.4以下であり、特に好ましくは0.3以下であり、最も好ましくは0.25以下である。一方、RAの下限値についても特に制限はないが、実現可能性の観点から、通常は0.2以上程度の値となる。
 このように、RAの値が0.15~0.85の範囲内の値であると、後述する実施例の欄において実証されているように、負極活物質層とセパレータとの間の動摩擦係数が比較的大きい値に制御される。その結果、非水電解質二次電池を製造する際の積層工程において、特に負極活物質層とセパレータとを積層する際の積層ずれの発生が効果的に抑制されうるのである。
 本発明の好ましい実施形態では、上述したRAに加えて、正極活物質層とセパレータとの間の表面粗さ比もまた、制御される。具体的には、本発明の非水電解質二次電池においては、セパレータ17に接する側の正極活物質層15の表面の表面粗さ(Rzjis(3))に対する、正極活物質層15に接する側のセパレータ17の表面の表面粗さ(Rzjis(4))の比の値として定義される表面粗さ比RB(=Rzjis(4)/Rzjis(3))が、0.15~1.5である。
 RBの値が上述した範囲内のものであると、これも後述する実施例の欄において実証されているように、負極活物質層とセパレータとの間の動摩擦係数、および、正極活物質層とセパレータとの間の動摩擦係数が互いに近接した値となり、正負極間で滑りやすさが類似した構成が達成される。一般に、非水電解質二次電池を製造する際の積層工程においては、活物質層とセパレータとの間の滑りやすさ(動摩擦係数)の絶対値も重要な考慮因子であるが、この動摩擦係数のようなパラメータについては、正負極間でバランスが取れていることが生産性の観点からはより好ましいものといえる。なお、RBの値は上述した範囲内のものであればよいが、好ましくは0.5以上であり、より好ましくは0.5~1.25であり、さらに好ましくは0.5~0.8であり、特に好ましくは0.5~0.6である。また、他の好ましい実施形態では、RBがRAよりも大きい。これらの構成とすることにより、本発明の作用効果がより一層顕著に発揮されうる。
 表面粗さ比(RA、RB)の値を上述した好ましい範囲内に制御するための具体的な手法について特に制限はなく、本願の出願時における技術常識が適宜参照されうる。一例として、例えば活物質層表面の表面粗さを制御する手法としては、活物質層に含まれる活物質の粒子径を調節するという方法が例示される。この場合、活物質の粒子径を大きくすると、活物質層表面の表面粗さを大きくすることができる。また、活物質層の表面粗さを制御する他の手法としては、活物質層を形成する際に施されることがあるプレス処理の条件を適宜調節して、活物質層の表面の平坦度を制御する方法もある。
 一方、セパレータ表面の表面粗さを制御する手法としては、後述する耐熱絶縁層付セパレータ(図2を参照)を採用する場合には、耐熱絶縁層に含まれる無機粒子のBET比表面積や粒子径を調節するという方法が例示される。この場合、耐熱絶縁層に含まれる無機粒子のBET比表面積または粒子径を大きくすると、セパレータ表面の表面粗さを大きくすることができる。また、さらに、セパレータとして耐熱絶縁層付セパレータ以外のもの(例えば、樹脂フィルムなど)を用いる場合には、樹脂の融点以下の温度で圧延ロールで圧縮するという方法により、セパレータ表面の表面粗さを制御することが可能である。
 以下、上述したリチウムイオン二次電池の構成要素について説明するが、下記の形態のみには限定されない。
 [負極(負極活物質層)]
 負極は、負極集電体11の表面に負極活物質層13が形成されてなる構造を有する。
 負極集電体11は、負極活物質層13と外部とを電気的に接続するための部材であって、導電性の材料から構成される。集電体の具体的な形態について特に制限はなく、正極集電体12について後述する形態が同様に採用されうる。
 負極活物質層15は負極活物質を含み、必要に応じて電気伝導性を高めるための導電性材料、バインダなどをさらに含みうる。負極活物質層13は電解質を含んでもよい。
 負極活物質は、リチウムを吸蔵・放出可能な材料からなるものであれば特に制限されない。負極活物質の例としては、SiやSnなどの金属、あるいはTiO、Ti23、TiO2、もしくはSiO2、SiO、SnO2などの金属酸化物、Li4/3Ti5/34もしくはLi7MnNなどのリチウムと遷移金属との複合酸化物、Li-Pb系合金、Li-Al系合金、Li、または天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが好ましく挙げられる。また、負極活物質は、リチウムと合金化する元素を含むことが好ましい。リチウムと合金化する元素を用いることにより、従来の炭素系材料に比べて高いエネルギー密度を有する高容量および優れた出力特性の電池を得ることが可能となる。上記負極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
 上記のリチウムと合金化する元素としては、以下に制限されることはないが、具体的には、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等が挙げられる。これらの中でも、容量およびエネルギー密度に優れた電池を構成できる観点から、炭素材料、ならびに/またはSi、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、炭素材料、Si、またはSnの元素を含むことが特に好ましい。これらは1種単独で使用しても良いし、2種以上を併用してもよい。
 負極活物質の平均粒子径は、特に制限されないが、負極活物質の高容量化、反応性、サイクル耐久性の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。このような範囲であれば、二次電池は、高出力条件下での充放電時における電池の内部抵抗の増大が抑制され、充分な電流を取り出しうる。なお、負極活物質が2次粒子である場合には該2次粒子を構成する1次粒子の平均粒子径が10nm~1μmの範囲であるのが望ましいといえるが、本発明では、必ずしも上記範囲に制限されるものではない。ただし、製造方法にもよるが、負極活物質が凝集、塊状などにより2次粒子化したものでなくてもよい。かかる負極活物質の粒径および1次粒子の粒径は、レーザー回折・散乱法により測定されるモード径が採用される。なお、負極活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられるがこれらに限定されるものではなく、いずれの形状であれ問題なく使用できる。好ましくは、充放電特性などの電池特性を向上し得る最適の形状を適宜選択するのが望ましい。
 導電性材料は、活物質層の導電性を向上させることを目的として配合される。本実施形態において用いられうる導電性材料は特に制限されず、従来公知の形態が適宜参照されうる。例えば、アセチレンブラック、ファーネスブラック、チャンネルブラック、サーマルブラック等のカーボンブラック;気相成長炭素繊維(VGCF)等の炭素繊維;グラファイトなどの炭素材料が挙げられる。活物質層が導電性材料を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
 (バインダ)
 バインダとしては、以下に制限されることはないが、ポリフッ化ビニリデン(PVDF)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、およびアクリル樹脂(例えば、LSR)などの熱可塑性樹脂、ポリイミド、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレン-ブタジエンゴム(SBR)などのゴム系材料が挙げられる。
 なお、セパレータ17に接する側の負極活物質層13の表面の表面粗さ(Rzjis(1))の具体的な値について特に制限はなく、上述した規定を満足するように適宜調節されうる。ただし、Rzjis(1)は、好ましくは3.0~10.0μmであり、より好ましくは3.0~6.0μmである。
 [正極(正極活物質層)]
 正極は、正極集電体12の表面に正極活物質層15が形成されてなる構造を有する。
 正極集電体12は、正極活物質層15と外部とを電気的に接続するための部材であって、導電性の材料から構成される。集電体の具体的な形態について特に制限はない。導電性を有する限り、その材料は特に限定されず、一般的なリチウムイオン二次電池に用いられている従来公知の形態が採用されうる。集電体の構成材料としては、例えば、金属や導電性高分子が採用されうる。具体的には、鉄、クロム、ニッケル、マンガン、チタン、モリブデン、バナジウム、ニオブ、銅、銀、白金、ステンレスまたはカーボンが挙げられ、これらは単体、合金または複合体をなしてもよい。なお、非導電性高分子からなる基材に導電性フィラーが分散されてなる構成を有する構造体もまた、集電体の一形態として採用されうる。集電体の厚さは特に限定されないが、通常は1~100μm程度である。集電体の大きさは、リチウムイオン二次電池の使用用途に応じて決定される。
 正極活物質層13は正極活物質を含み、必要に応じて電気伝導性を高めるための導電性材料、バインダなどをさらに含みうる。正極活物質層15は電解質を含んでもよい。
 正極活物質は、特にリチウムの吸蔵放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質が利用されうる。具体的には、リチウム-遷移金属複合酸化物が好ましく、例えば、LiMn24などのLi-Mn系複合酸化物、LiNiO2などのLi-Ni系複合酸化物、LiNi0.5Mn0.52などのLi-Ni-Mn系複合酸化物が挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。
 正極活物質の平均粒子径は、特に制限されないが、正極活物質の高容量化、反応性、サイクル耐久性の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。このような範囲であれば、二次電池は、高出力条件下での充放電時における電池の内部抵抗の増大が抑制され、充分な電流を取り出しうる。なお、正極活物質が2次粒子である場合には該2次粒子を構成する1次粒子の平均粒子径が10nm~1μmの範囲であるのが望ましいといえるが、本発明では、必ずしも上記範囲に制限されるものではない。ただし、製造方法にもよるが、正極活物質が凝集、塊状などにより2次粒子化したものでなくてもよい。かかる正極活物質の粒径および1次粒子の粒径は、レーザ回折・散乱法により測定されるモード径が採用される。なお、正極活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられるがこれらに限定されるものではなく、いずれの形状であれ問題なく使用できる。好ましくは、充放電特性などの電池特性を向上し得る最適の形状を適宜選択するのが望ましい。
 なお、正極活物質層15に含まれうる導電性材料やバインダの具体的な形態については、負極活物質層13について上述した形態が挙げられるため、ここでは詳細な説明を省略する。
 また、セパレータ17に接する側の正極活物質層15の表面の表面粗さ(Rzjis(3))の具体的な値について特に制限はなく、上述した規定を満足するように適宜調節されうる。ただし、Rzjis(3)は、好ましくは1.5~3.5μmであり、より好ましくは2.0~3.0μmである。
 [セパレータ]
 セパレータ17は、負極活物質層13と正極活物質層15との間の空間的な隔壁(スペーサ)として機能する。また、これと併せて、充放電時における正負極間でのリチウムイオンの移動媒体である非水電解質を内蔵する機能をも有する。
 セパレータ17は、上述したように非水電解質を内蔵する。セパレータ17に内蔵される非水電解質の具体的な形態について特に制限はなく、液体電解質および高分子ゲル電解質が採用されうる。
 液体電解質は、有機溶媒にリチウム塩が溶解したものである。有機溶媒としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、エチルメチルカーボネート(EMC)、プロピオン酸メチル(MP)、酢酸メチル(MA)、ギ酸メチル(MF)、4-メチルジオキソラン(4MeDOL)、ジオキソラン(DOL)、2-メチルテトラヒドロフラン(2MeTHF)、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびγ-ブチロラクトン(GBL)などが挙げられる。これらの溶媒は、1種を単独で使用してもよいし、2種以上を組み合わせた混合物として使用してもよい。
 また、リチウム塩としては、特に制限はないが、LiPF6、LiBF4、LiClO4、LiAsF6、LiTaF6、LiSbF6、LiAlCl4、Li210Cl10、LiI、LiBr、LiCl、LiAlCl、LiHF2、LiSCN等の無機酸陰イオン塩、LiCF3SO3、Li(CF3SO22N、LiBOB(リチウムビスオキサイドボレート)、LiBETI(リチウムビス(パーフルオロエチレンスルホニルイミド);Li(C25SO22Nとも記載)等の有機酸陰イオン塩などが挙げられる。これらのリチウム塩は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
 一方、ゲル電解質は、リチウムイオン伝導性を有するマトリックスポリマーに、上記の液体電解質が注入されてなる構成を有する。リチウムイオン伝導性を有するマトリックスポリマーとしては、例えば、ポリエチレンオキシドを主鎖または側鎖に持つポリマー(PEO)、ポリプロピレンオキシドを主鎖または側鎖に持つポリマー(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメタクリル酸エステル、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVdF-HFP)、ポリアクリロニトリル(PAN)、ポリ(メチルアクリレート)(PMA)、ポリ(メチルメタクリレート)(PMMA)などが挙げられる。また、上記のポリマー等の混合物、変成体、誘導体、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらのうち、PEO、PPOおよびそれらの共重合体、PVdF、PVdF-HFPを用いることが望ましい。かようなマトリックスポリマーには、リチウム塩がよく溶解しうる。なお、高分子ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発揮しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合などの重合処理を施せばよい。また、上述した非水電解質は、電極の活物質層中に含まれていてもよい。
 一方、セパレータ17の具体的な構成材料等の形態としては、例えば、ポリエチレンやポリプロピレンといったポリオレフィンやポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素、ガラス繊維などからなる微多孔膜が挙げられる。
 ここで、本発明者の検討によれば、非水電解質二次電池を製造する際の積層工程における負極活物質層とセパレータとの界面での積層ずれの問題が、上述した特許文献1に記載されているような耐熱絶縁層付セパレータを用いた場合に特に顕著に発現することが判明した。そして本実施形態の構成とすることで、このような耐熱絶縁層付セパレータを用いた際の積層ずれの発生も効果的に抑制されうることも見出した。したがって、本発明の好ましい一実施形態では、非水電解質二次電池を構成するセパレータ17として、いわゆる耐熱絶縁層付セパレータが用いられる。以下、セパレータ17が耐熱絶縁層付セパレータである場合の好ましい形態について、説明する。
 図2に、本発明の一実施形態に係る耐熱絶縁層付セパレータを模式的に表した断面図を示す。図2に示す耐熱絶縁層付セパレータ1は、多孔質基体層3の両面に耐熱絶縁層(5a、5b)が形成されてなる。多孔質基体層3は、例えばポリエチレンから構成される微多孔膜の構成を有する。また、耐熱絶縁層(5a、5b)は、例えばバインダであるカルボキシメチルセルロース(CMC)を介してアルミナ(Al23)粒子が連結されてなる構成を有する。耐熱絶縁層(5a、5b)は、アルミナ粒子が形成する隙間により多孔質構造となっているため、耐熱絶縁層付セパレータ1は、全体として多孔質構造を有する。したがって、耐熱絶縁層付セパレータ1は、全体としてリチウムイオン伝導性を有するセパレータとして機能する。以下、図2に示す形態の耐熱絶縁層付セパレータの各部材について、説明する。
 (多孔質基体層)
 図2に示す形態において、多孔質基体層3は、耐熱絶縁層(5a、5b)を形成する際の基体として機能する。多孔質基体層3を構成する材料は、特に制限はないが、熱可塑性樹脂および熱硬化性樹脂などの樹脂材料、金属材料、セルロース系材料などが使用できる。このうち、耐熱絶縁層付セパレータにシャットダウン機能を付与する観点から、樹脂材料からなる多孔質基体層(以下、「樹脂多孔質基体層」とも称する)を用いることが好ましい。
 樹脂多孔質基体層を構成する樹脂材料としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、またはエチレンおよびプロピレンを共重合して得られる共重合体(エチレン-プロピレン共重合体)、エチレンまたはプロピレンとエチレンおよびプロピレン以外の他のモノマーとを共重合してなる共重合体、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリエチレンテレフタラート(PET)、ポリフッ化ビニリデン(PFDV)、ポリテトラフロロエチレン(PTFE)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリアミドイミド(PAI)、フェノール樹脂(PF)、エポキシ樹脂(EP)、メラミン樹脂(MF)、尿素樹脂(UF)、アルキド樹脂、ポリウレタン(PUR)が挙げられる。これらの樹脂は、1種のみが単独で使用されてもよいし、2種以上の混合物として使用されもよい。
 樹脂多孔質基体層を構成する樹脂材料は、耐熱絶縁層付セパレータに120~200℃の温度範囲においてシャットダウン機能を発現させるために、溶融温度が120~200℃である樹脂を含むことが好ましい。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、またはエチレンおよびプロピレンを共重合して得られる共重合体(エチレン-プロピレン共重合体)、エチレンまたはプロピレンとエチレンおよびプロピレン以外の他のモノマーとを共重合してなる共重合体を含む樹脂多孔質基体層を用いることが好ましい。樹脂多孔質基体層を構成する樹脂材料が、溶融温度が120~200℃である樹脂を含む場合、溶融温度が200℃を超える熱可塑性樹脂または熱硬化性樹脂と併用されてもよい。その際の樹脂多孔質基体層全体における溶融温度が120~200℃である樹脂の割合は、好ましくは50質量%以上であり、より好ましくは70%以上であり、さらに好ましくは90%以上であり、特に好ましくは95%以上であり、最も好ましくは100%である。
 また、上述の材料からなる層を2以上積層させた積層体を樹脂多孔質基体層として用いてもよい。一例を挙げると、PP/PE/PPの3層構造の樹脂多孔質基体層が挙げられる。当該3層構造の樹脂多孔質基体層は、PEの溶融温度が130℃であることから、電池温度が130℃に達した場合にシャットダウン機能が発現される。万が一さらに電池温度が上昇した場合であっても、PPの溶融温度が170℃であることから全面短絡に達するのを防ぐことができ、より安全性の高いセパレータとすることができる。
 樹脂多孔質基体層の形状は、特に制限されず、織布、不織布、および微多孔膜などが使用可能である。このうち、高いリチウムイオン伝導性を確保する観点から、微多孔膜であることが好ましい。また、樹脂多孔質基体層の空隙率は、40~85%であることが好ましく、50~70%であることが好ましく、55~60%であることがさらに好ましい。空隙率を上記範囲とすることにより、十分なリチウムイオン伝導性および強度を確保することができる。
 樹脂多孔質基体層の厚さは、特に制限はないが、好ましくは1~200μmであり、より好ましくは5~100μmであり、さらに好ましくは7~30μmであり、特に好ましくは10~20μmである。厚さが5μm以上であれば電解質の保持性が良好であり、200μm以下であれば抵抗が過度に増大しにくい。
 (耐熱絶縁層)
 耐熱絶縁層(5a、5b)は、上記多孔質基体層の片面または両面に配置され、セパレータの強度を補強する機能を有する。特に多孔質基体層が樹脂材料から構成される樹脂多孔質基体層である場合、電池温度が上昇することにより生じる内部応力を緩和し、セパレータの熱収縮による変形等を抑制する役割も果たす。当該耐熱絶縁層は、無機粒子およびバインダを含む。
 無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO2、Al23、ZrO2、TiO2)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO2)またはアルミナ(Al23)を用いることが好ましく、アルミナ(Al23)を用いることがより好ましい。
 バインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離が防止される。
 本形態の耐熱絶縁層に使用されるバインダは、特に制限はなく、従来公知のものを当業者は適宜採用できる。例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
 耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100質量%に対して、2~20質量%であることが好ましい。バインダの含有量が2質量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20質量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
 耐熱絶縁層の1層分の厚さは、好ましくは1~20μmであり、より好ましくは2~10μmであり、さらに好ましくは3~7μmである。耐熱絶縁層の厚さがこのような範囲にあると、耐熱絶縁層付セパレータに十分な強度を付与することができるとともに、セパレータ自体の嵩や重さが大きくなりすぎないため好ましい。
 耐熱絶縁層が多孔質基体層の両面に設けられる場合、2つの耐熱絶縁層の組成は同一であっても異なっていてもよいが、生産時の取り扱いの観点からは同一であることが好ましい。
 本形態の耐熱絶縁層付セパレータの全体の厚さは、十分な強度を確保することができる限りにおいて、特に制限はない。ただし、電池のサイズをよりコンパクトにする観点からは、厚すぎない方が好ましい。具体的には、耐熱絶縁層付セパレータの厚さは、10~50μmであることが好ましく、15~30μmであることがより好ましい。
 本形態の耐熱絶縁層付セパレータの製造方法については、特に制限はなく、従来公知の技術を適宜参照することにより製造されうる。以下、多孔質基体層として樹脂多孔質基体層を用いた場合の耐熱絶縁層付セパレータの製造方法について説明する。
 樹脂多孔質基体としてポリオレフィンの微多孔膜を製造する場合、まずポリオレフィンをパラフィン、流動パラフィン、パラフィン油、テトラリン、エチレングリコール、グリセリン、デカリンなどの溶剤に溶解させる。その後これをシート状に押し出し、溶剤を除き、一軸延伸、二軸延伸(同時、逐次)を行うことによって製造されうる。
 次に、樹脂多孔質基体に耐熱絶縁層を形成する方法について説明する。まず無機粒子およびバインダを溶媒に分散した分散液を調製する。そして分散液を樹脂多孔質基体の一方の面または両面に塗布し、溶媒を乾燥させることによって耐熱絶縁層を形成する。
 この際に用いられる溶媒として、例えば、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミド、シクロヘキサン、ヘキサン、水等が用いられる。バインダとしてポリフッ化ビニリデン(PVDF)を採用する場合には、NMPを溶媒として用いることが好ましい。
 その後、上記分散液を樹脂多孔質基体に塗工する。塗工方法も特に制限はなく、例えば、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。この際、樹脂多孔質基体に対する分散液の塗工量を調節することにより、上述の目付比を所定の範囲に制御することができる。一例を挙げると、耐熱絶縁層の目付が5~20g/m2程度となるように塗工量が調節されうる。
 分散液を塗工した後、溶剤を除去する温度は、特に制限はなく、使用される溶剤によって適宜設定されうる。例えば、水を溶剤として用いた場合には50~70℃であることが好ましく、NMPを溶剤として用いた場合には、70~90℃であることが好ましい。必要により減圧下で溶媒を乾燥させてもよい。また、溶剤を完全に除去せずに、一部残存させてもよい。
 以上、セパレータ17の好ましい実施形態である耐熱絶縁層付セパレータについて詳細に説明したが、本発明の技術的範囲はかような形態のみに限定されるわけではない。言い換えると、耐熱絶縁層付セパレータ以外の構成を有するセパレータであっても、請求項において規定されている要件を満足するものである限り、本願所定の作用効果が同様に発揮されうるのである。
 なお、セパレータ17の表面の表面粗さ(負極活物質層側:Rzjis(2)、正極活物質層側:Rzjis(4))の具体的な値について特に制限はなく、上述した規定を満足するように適宜調節されうる。ただし、Rzjis(2)およびRzjis(4)は、それぞれ、好ましくは1.0~4.0μmであり、より好ましくは1.0~3.0μmである。なお、Rzjis(2)とRzjis(4)とは同一であっても異なっていてもよいが、同一であることが好ましい。
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
 [外装]
 外装としては、図1に示すようなラミネートシート29が用いられうる。ラミネートシートは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。なお、場合によっては、従来公知の金属缶ケースもまた、外装として用いられうる。
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明の技術的範囲は、これらの実施例のみに限定されることはない。
 [各種の測定方法]
 以下の実施例・比較例において、部材表面の表面粗さ(Rzjis)および動摩擦係数は、以下の手法により測定した。
 (表面粗さ(Rzjis)の測定)
 レーザー顕微鏡にて、部材(セパレータまたは活物質層)表面の表面粗さ(Rzjis)を測定した。具体的には、128μm×100μmの表面を観察し、任意箇所の線上断面プロファイルより、128μmの範囲の表面粗さ(Rzjis)を測定した。
 (動摩擦係数の測定)
 JIS No.K7125に規定される摩擦係数測定法に準拠し、セパレータ上に電極(正極または負極)を載せ、さらにその上にすべり片200gを載せて、電極の端部を引張試験機を用いて100mm/minの速度で引張った際の荷重変位を測定した。測定開始部より20~100mmの荷重平均値を動摩擦力とし、すべり片の法線力で除して動摩擦係数を算出した。
 [実施例1]
 (負極の作製)
負極活物質として人造グラファイト(平均粒子径:15μm)96.5質量%、バインダとしてポリフッ化ビニリデン(PVDF)3.5質量%をN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。
 このスラリーを負極集電体となる厚さ10μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の固形分(活物質、およびバインダ)の塗布量(目付)は106g/m2とし、活物質層かさ密度は1.35g/cm3となるようにスラリー塗布量およびプレス条件を調整した。
 このようにして作製された負極の負極活物質層の表面の表面粗さ(Rzjis(1))は5.91μmであった。
 (正極の作製)
 正極活物質としてリチウムコバルト複合酸化物(LiCoO2)を92.2質量%、導電性材料としてアセチレンブラックを4.6質量%、バインダとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。
 このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の固形分(活物質、導電性材料、およびバインダ)の塗布量(目付)は250g/m2とし、活物質層かさ密度は3.00g/cm3となるようにスラリー塗布量およびプレス条件を調整した。
 このようにして作製された正極の正極活物質層の表面の表面粗さ(Rzjis(3))は2.46μmであった。
 (非水電解液の調製)
 エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/Lとなるように溶解させて、非水電解液を調製した。
 (セパレータの作製)
 2軸延伸して得られたポリオレフィン樹脂多孔膜(厚さ:30μm)の両表面に耐熱絶縁層(厚さ:各5μm)が配置されてなる耐熱絶縁層付セパレータを作製した。具体的には、まず、無機粒子であるアルミナ粒子(BET比表面積:5m2/g、平均粒子径:0.48μm)95質量%およびバインダであるポリエチレン5質量%を水に分散させてスラリーを調製した。次いで、このスラリーをポリオレフィン樹脂多孔膜(厚さ:16μm)上にグラビアコーターを用いて塗布した後、60℃で乾燥して水を除去することで、耐熱絶縁層付セパレータを作製した。
 このようにして作製されたセパレータの表面の表面粗さは、両面(Rzjis(2)およびRzjis(4))ともに1.38μmであった。すなわち、セパレータの表面と負極活物質層の表面との表面粗さ比(RA)はRA=Rzjis(2)/Rzjis(1)=1.38/5.91=0.23であった。また、セパレータの表面と正極活物質層の表面との表面粗さ比(RB)はRB=Rzjis(4)/Rzjis(3)=1.38/2.46=0.56であった。さらに、セパレータの表面と負極活物質層の表面との間の動摩擦係数は0.27であり、セパレータの表面と正極活物質層の表面との間の動摩擦係数は0.35であった。
 [実施例2]
 耐熱絶縁層付セパレータを構成する耐熱絶縁層において、無機粒子であるアルミナ粒子としてBET比表面積:15m2/g、平均粒子径:0.55μmのものを用いたこと以外は、上述した実施例1と同様の手法により、各部材を作製・調製した。
 このようにして作製されたセパレータの表面の表面粗さは、両面(Rzjis(2)およびRzjis(4))ともに1.48μmであった。すなわち、セパレータの表面と負極活物質層の表面との表面粗さ比(RA)はRA=Rzjis(2)/Rzjis(1)=1.48/5.91=0.25であった。また、セパレータの表面と正極活物質層の表面との表面粗さ比(RB)はRB=Rzjis(4)/Rzjis(3)=1.48/2.46=0.60であった。さらに、セパレータの表面と負極活物質層の表面との間の動摩擦係数は0.23であり、セパレータの表面と正極活物質層の表面との間の動摩擦係数は0.35であった。
 [実施例3]
 耐熱絶縁層付セパレータを構成する耐熱絶縁層において、無機粒子であるアルミナ粒子としてBET比表面積:52m2/g、平均粒子径:2.8μmのものを用いたこと以外は、上述した実施例1と同様の手法により、各部材を作製・調製した。
 このようにして作製されたセパレータの表面の表面粗さは、両面(Rzjis(2)およびRzjis(4))ともに2.97μmであった。すなわち、セパレータの表面と負極活物質層の表面との表面粗さ比(RA)はRA=Rzjis(2)/Rzjis(1)=2.97/5.91=0.50であった。また、セパレータの表面と正極活物質層の表面との表面粗さ比(RB)はRB=Rzjis(4)/Rzjis(3)=2.97/2.46=1.21であった。さらに、セパレータの表面と負極活物質層の表面との間の動摩擦係数は0.22であり、セパレータの表面と正極活物質層の表面との間の動摩擦係数は0.44であった。
 [比較例]
 負極活物質層に含まれる負極活物質として平均粒子径:12μmのものを用いたこと以外は、上述した実施例3と同様の手法により、各部材を作製・調製した。
 このようにして作製された負極の負極活物質層の表面の表面粗さ(Rzjis(1))は3.34μmであった。すなわち、セパレータの表面と負極活物質層の表面との表面粗さ比(RA)はRA=Rzjis(2)/Rzjis(1)=2.97/3.34=0.89であった。また、セパレータの表面と正極活物質層の表面との表面粗さ比(RB)はRB=Rzjis(4)/Rzjis(3)=2.97/2.46=1.21であった。さらに、セパレータの表面と負極活物質層の表面との間の動摩擦係数は0.19であり、セパレータの表面と正極活物質層の表面との間の動摩擦係数は0.47であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、負極活物質層とセパレータとの表面粗さ比(RA)が所定の範囲内の値であると、負極活物質層とセパレータとの間の動摩擦係数が高い値に制御されることがわかる。このため、本発明の構成とすることで、非水電解質二次電池を製造する際の積層工程において、積層ずれの発生を効果的に抑制しうることが期待される。

Claims (5)

  1.  正極集電体の表面に正極活物質層が形成されてなる正極と、
     負極集電体の表面に負極活物質層が形成されてなる負極と、
     前記正極活物質層と前記負極活物質層との間に前記負極活物質層に接するように介在し、非水電解質を内蔵するセパレータと、
    を含む単電池層を備える発電要素を有する非水電解質二次電池であって、
     前記セパレータに接する側の前記負極活物質層の表面の表面粗さ(Rzjis(1))に対する、前記負極活物質層に接する側の前記セパレータの表面の表面粗さ(Rzjis(2))の比の値RA(=Rzjis(2)/Rzjis(1))が、0.15~0.85である、非水電解質二次電池。
  2.  前記セパレータが、
     多孔質基体層と、
     前記多孔質基体層の片面または両面に形成された無機粒子およびバインダを含む耐熱絶縁層と、
     を備える耐熱絶縁層付セパレータである、請求項1に記載の非水電解質二次電池。
  3.  前記セパレータが前記正極活物質層にも接するように前記正極活物質層と前記負極活物質層との間に介在し、前記セパレータに接する側の正極活物質層の表面の表面粗さ(Rzjis(3))に対する、前記正極活物質層に接する側の前記セパレータの表面の表面粗さ(Rzjis(4))の比の値RB(=Rzjis(4)/Rzjis(3))が、0.15~1.5である、請求項1または2に記載の非水電解質二次電池。
  4.  前記RBが、前記RAよりも大きい、請求項3に記載の非水電解質二次電池。
  5.  前記RBが、0.5以上である、請求項3または4に記載の非水電解質二次電池。
PCT/JP2013/051886 2012-02-28 2013-01-29 非水電解質二次電池 WO2013129009A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112014021393-3A BR112014021393B1 (pt) 2012-02-28 2013-01-29 bateria secundária de eletrólito não aquoso
MX2014010347A MX340420B (es) 2012-02-28 2013-01-29 Batería secundaria de electrolito no acuoso.
RU2014138819/07A RU2569670C1 (ru) 2012-02-28 2013-01-29 Аккумуляторная батарея с неводным электролитом
US14/381,077 US10224527B2 (en) 2012-02-28 2013-01-29 Non-aqueous electrolyte secondary battery
EP13754361.7A EP2822080B1 (en) 2012-02-28 2013-01-29 Non-aqueous electrolyte secondary battery
KR1020147023837A KR101623674B1 (ko) 2012-02-28 2013-01-29 비수전해질 이차 전지
CN201380011569.1A CN104205465B (zh) 2012-02-28 2013-01-29 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-042134 2012-02-28
JP2012042134A JP5910164B2 (ja) 2012-02-28 2012-02-28 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2013129009A1 true WO2013129009A1 (ja) 2013-09-06

Family

ID=49082213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051886 WO2013129009A1 (ja) 2012-02-28 2013-01-29 非水電解質二次電池

Country Status (10)

Country Link
US (1) US10224527B2 (ja)
EP (1) EP2822080B1 (ja)
JP (1) JP5910164B2 (ja)
KR (1) KR101623674B1 (ja)
CN (1) CN104205465B (ja)
BR (1) BR112014021393B1 (ja)
MX (1) MX340420B (ja)
MY (1) MY167670A (ja)
RU (1) RU2569670C1 (ja)
WO (1) WO2013129009A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624251B2 (ja) * 2012-07-30 2014-11-12 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
WO2015034080A1 (ja) * 2013-09-09 2015-03-12 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
US20170092987A1 (en) * 2015-09-24 2017-03-30 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
EP3059793A4 (en) * 2013-10-15 2017-06-28 Sony Corporation Battery, battery pack, electronic device, electric vehicle, electric storage device, and power system
CN107078272A (zh) * 2014-10-23 2017-08-18 赛昂能源有限公司 用于电化学电池的离子传导复合材料
WO2019102883A1 (ja) * 2017-11-21 2019-05-31 マクセルホールディングス株式会社 非水電解質電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179321A (ja) * 2013-03-13 2014-09-25 Samsung Sdi Co Ltd セパレータおよびこれを含むリチウム二次電池
JP6282458B2 (ja) * 2013-12-13 2018-02-21 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電極巻回素子、それを用いた非水電解質二次電池、及び非水電解質二次電池用電極巻回素子の製造方法
JP6566265B2 (ja) * 2016-09-09 2019-08-28 トヨタ自動車株式会社 密閉型二次電池
JP6496762B2 (ja) 2017-03-03 2019-04-03 住友化学株式会社 非水電解液二次電池用セパレータ
RU171277U1 (ru) * 2017-04-19 2017-05-29 Анна Сергеевна Штейнберг Высокомощный литий-ионный аккумулятор
JP6737235B2 (ja) * 2017-05-22 2020-08-05 トヨタ自動車株式会社 電池およびその製造方法
US11094997B2 (en) * 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR102167119B1 (ko) 2017-07-20 2020-10-16 주식회사 엘지화학 이차전지용 전극 제조시스템 및 제조방법
KR102142551B1 (ko) 2017-07-20 2020-08-07 주식회사 엘지화학 이차전지용 전극 제조시스템 및 제조방법
JP6928872B2 (ja) * 2017-11-07 2021-09-01 トヨタ自動車株式会社 非水系二次電池
JP7047465B2 (ja) * 2018-03-02 2022-04-05 三洋電機株式会社 非水電解質二次電池およびその製造方法
EP3796455B1 (en) * 2018-05-17 2024-07-24 NGK Insulators, Ltd. Lithium secondary battery
JP7071697B2 (ja) * 2018-06-01 2022-05-19 トヨタ自動車株式会社 非水電解液二次電池
CN113228398B (zh) * 2018-12-26 2023-06-27 株式会社可乐丽 碱性电池用隔板及其制造方法
US20220094019A1 (en) * 2019-01-04 2022-03-24 Ceigard, LLC Coated microporous membranes, and battery separators, batteries, vehicles, and devices comprising the same
CN111490229A (zh) * 2019-01-25 2020-08-04 株式会社理光 电极及其制造方法,电极元件,电化学元件
RU2722688C1 (ru) * 2019-04-05 2020-06-03 Общество с ограниченной ответственностью "Инэнерджи" Гибкий тонкопленочный положительный электрод и способ его изготовления
JP7371581B2 (ja) * 2020-07-17 2023-10-31 トヨタ自動車株式会社 非水電解質二次電池
EP4333153A1 (en) * 2021-04-26 2024-03-06 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery
KR20240039536A (ko) * 2022-09-19 2024-03-26 주식회사 엘지에너지솔루션 전극조립체, 그의 제조방법 및 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JPH1180395A (ja) 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2005246966A (ja) * 2004-02-06 2005-09-15 Fuji Photo Film Co Ltd 平版印刷版原版積層体
JP2008123954A (ja) * 2006-11-15 2008-05-29 Toyota Motor Corp リチウム二次電池の製造方法およびリチウム二次電池
JP2012238508A (ja) * 2011-05-12 2012-12-06 Hitachi Maxell Energy Ltd 非水二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052718B1 (en) 1998-12-03 2007-08-01 Sumitomo Electric Industries, Ltd. Lithium storage battery
EP1667255B1 (en) * 2003-09-18 2011-04-20 Panasonic Corporation Lithium-ion secondary battery
KR100800968B1 (ko) * 2004-09-11 2008-02-05 주식회사 엘지화학 리튬 이차전지용 실리콘 박막 음극의 성능 개선 방법
KR100821442B1 (ko) * 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지 및 전지모듈
KR100904351B1 (ko) * 2005-11-07 2009-06-23 파나소닉 주식회사 리튬 이차전지용 전극, 리튬 이차전지 및 그 제조법
JP4747804B2 (ja) * 2005-11-25 2011-08-17 パナソニック電工株式会社 燃料電池用セパレータの製造方法
KR100947072B1 (ko) * 2008-03-27 2010-04-01 삼성에스디아이 주식회사 전극조립체 및 이를 구비하는 이차전지
JP2010123383A (ja) * 2008-11-19 2010-06-03 Teijin Ltd 非水系二次電池用セパレータ、その製造方法および非水系二次電池
WO2010074151A1 (ja) 2008-12-24 2010-07-01 三菱樹脂株式会社 電池用セパレータおよび非水系リチウム電池
JP5420938B2 (ja) * 2009-03-13 2014-02-19 帝人株式会社 非水系二次電池用セパレータおよび非水系二次電池
US9184429B2 (en) 2009-08-25 2015-11-10 Asahi Kasei E-Materials Corporation Microporous membrane winding and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172537A (ja) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp リチウムイオン二次電池及びその製造方法
JPH1180395A (ja) 1997-09-09 1999-03-26 Nitto Denko Corp 多孔質膜および非水電解液電池用セパレータ
JP2005246966A (ja) * 2004-02-06 2005-09-15 Fuji Photo Film Co Ltd 平版印刷版原版積層体
JP2008123954A (ja) * 2006-11-15 2008-05-29 Toyota Motor Corp リチウム二次電池の製造方法およびリチウム二次電池
JP2012238508A (ja) * 2011-05-12 2012-12-06 Hitachi Maxell Energy Ltd 非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2822080A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624251B2 (ja) * 2012-07-30 2014-11-12 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JPWO2014021293A1 (ja) * 2012-07-30 2016-07-21 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
WO2015034080A1 (ja) * 2013-09-09 2015-03-12 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
JPWO2015034080A1 (ja) * 2013-09-09 2017-03-02 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
EP3059793A4 (en) * 2013-10-15 2017-06-28 Sony Corporation Battery, battery pack, electronic device, electric vehicle, electric storage device, and power system
US10096812B2 (en) 2013-10-15 2018-10-09 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and power system
CN107078272A (zh) * 2014-10-23 2017-08-18 赛昂能源有限公司 用于电化学电池的离子传导复合材料
US20170092987A1 (en) * 2015-09-24 2017-03-30 Toyota Jidosha Kabushiki Kaisha Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
WO2019102883A1 (ja) * 2017-11-21 2019-05-31 マクセルホールディングス株式会社 非水電解質電池

Also Published As

Publication number Publication date
KR20140121457A (ko) 2014-10-15
EP2822080B1 (en) 2015-12-23
RU2569670C1 (ru) 2015-11-27
MX2014010347A (es) 2014-11-13
BR112014021393B1 (pt) 2021-03-02
KR101623674B1 (ko) 2016-05-23
CN104205465B (zh) 2017-11-10
CN104205465A (zh) 2014-12-10
US10224527B2 (en) 2019-03-05
EP2822080A1 (en) 2015-01-07
MX340420B (es) 2016-07-08
MY167670A (en) 2018-09-21
US20150017510A1 (en) 2015-01-15
JP5910164B2 (ja) 2016-04-27
EP2822080A4 (en) 2015-04-01
JP2013178952A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5910164B2 (ja) 非水電解質二次電池
RU2566741C2 (ru) Токоотвод для биполярной литий-ионной аккумуляторной батареи
CN103918104B (zh) 带耐热绝缘层的隔板
JP5526488B2 (ja) 電気化学デバイス
KR101639923B1 (ko) 내열 절연층을 갖는 세퍼레이터
KR102011906B1 (ko) 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
CN105934847B (zh) 电器件
JP2010160984A (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
WO2013051416A1 (ja) 電気デバイス
KR101838377B1 (ko) 비수 전해액 이차 전지 및 그 제조 방법
CN109478676B (zh) 电极组件及其制造方法
JP2014137985A (ja) 二次電池
CN109565069B (zh) 电极组件及其制造方法
JP2013054966A (ja) 耐熱絶縁層付セパレータ
CN105934840B (zh) 电器件
WO2018207643A1 (ja) 双極型二次電池
CN105934845B (zh) 电器件
JP5999433B2 (ja) 非水電解液二次電池及びその製造方法
JP6958272B2 (ja) 非水電解質二次電池
US9865858B2 (en) Lithium ion secondary battery
JP6102442B2 (ja) リチウムイオン二次電池
JP2013243031A (ja) 非水電解液二次電池
JP7127638B2 (ja) 二次電池およびその製造方法
US20160190539A1 (en) Lithium ion secondary battery
JP2022153190A (ja) リチウムイオン二次電池用電極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013754361

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147023837

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381077

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201405121

Country of ref document: ID

Ref document number: MX/A/2014/010347

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014138819

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014021393

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014021393

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140828