RU171277U1 - Высокомощный литий-ионный аккумулятор - Google Patents
Высокомощный литий-ионный аккумулятор Download PDFInfo
- Publication number
- RU171277U1 RU171277U1 RU2017113552U RU2017113552U RU171277U1 RU 171277 U1 RU171277 U1 RU 171277U1 RU 2017113552 U RU2017113552 U RU 2017113552U RU 2017113552 U RU2017113552 U RU 2017113552U RU 171277 U1 RU171277 U1 RU 171277U1
- Authority
- RU
- Russia
- Prior art keywords
- lithium
- ion battery
- active layer
- negative electrode
- positive electrode
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
- H01M4/12—Processes of manufacture of consumable metal or alloy electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Данное техническое решение относится к аккумуляторным батареям, в частности к литий-ионному аккумулятору с улучшенными эксплуатационными характеристиками. Техническим результатом является расширение арсенала технических средств, а также повышение износостойкости аккумулятора при многократных циклах его перезарядки.Для достижения заявленного результата предлагается конструкция литий-ионного аккумулятора, который содержит отрицательный электрод, включающий электропроводящую подложку с нанесенным на нее активным слоем, и положительный электрод, включающий электропроводящую подложку с нанесенным на нее кремнийсодержащим активным слоем, пористый полимерный сепаратор, пропитанный неводным электролитом и размещенный между активными слоями разноименных электродов, причем отрицательный электрод выполнен из композиционного материала на основе графита и углерода, положительный электрод содержит буферный слой из углеродистого материала, а поверхности сепаратора, обращенные к электродам, имеют различную степень шероховатости.
Description
Данное техническое решение относится к аккумуляторным батареям, в частности к литий-ионному аккумулятору с улучшенными эксплуатационными характеристиками.
УРОВЕНЬ ТЕХНИКИ
Известна литий-ионная батарея (патент RU 127253, опубл. 20.04.2013), состоящая из литий-ионных аккумуляторов, последовательно соединенных в электрическую цепь. Корпуса аккумуляторов, имеющие призматическую форму, отделены друг от друга и от стенок корпуса литий-ионной батареи диэлектрическими проставками и стянуты силовыми шпильками через боковые стенки корпуса батареи. Нижние днища корпусов литий-ионных аккумуляторов установлены на охлаждаемом основании через неэлектропроводящую прокладку. При этом каждая диэлектрическая проставка на боковых сторонах снабжена проушинами под силовые шпильки и буртиками на верхней и боковых сторонах, обеспечивающими фиксацию литий-ионных аккумуляторов в направлениях, перпендикулярных оси сборки аккумуляторов в батарее, а корпус литий-ионной аккумуляторной батареи может быть выполнен из композиционного материала.
Известен также литий-ионный аккумулятор (патент RU 128014, опубл.10.05.2013), содержащий отрицательный электрод, включающий электропроводящую подложку с нанесенным на нее активным слоем, и положительный электрод, включающий электропроводящую подложку с нанесенным на нее кремнийсодержащим активным слоем, сепаратор, пропитанный неводным электролитом и размещенный между активными слоями разноименных электродов, в качестве материала активного слоя положительного электрода использована паста на основе феррофосфата лития, а электропроводящие подложки разноименных электродов выполнены из титановой фольги. В качестве кремнийсодержащего активного слоя отрицательного электрода может быть использован аморфный кремний, а также композиты кремний-углерод или кремний-алюминий.
Известные решения обладают недостаточной эффективностью при использовании данной конструкции батареи в аккумуляторах, которые подвергаются частым циклам перезаряда, что обуславливается повышенным износом аккумулятора при падениях заряда и продолжительном нахождении в этом состоянии.
РАСКРЫТИЕ ПОЛЕЗНОЙ МОДЕЛИ
Технической проблемой, решаемой с помощью заявленного устройства, является устранение недостатков известных аналогов, а также расширение арсенала технических средств данного назначения.
Техническим результатом является расширение арсенала технических средств, а также повышение износостойкости аккумулятора при многократных циклах его перезарядки.
Для достижения заявленного результата предлагается конструкция литий-ионного аккумулятора, который содержит отрицательный электрод, включающий электропроводящую подложку с нанесенным на нее активным слоем, и положительный электрод, включающий электропроводящую подложку с нанесенным на нее кремнийсодержащим активным слоем, пористый полимерный сепаратор, пропитанный неводным электролитом и размещенный между активными слоями разноименных электродов, причем отрицательный электрод выполнен из композиционного материала на основе графита и углерода, положительный электрод содержит буферный слой из углеродистого материала, а поверхности сепаратора, обращенные к электродам, имеют различную степень шероховатости.
ОСУЩЕСТВЛЕНИЕ ПОЛЕЗНОЙ МОДЕЛИ
Конструкция заявленного аккумулятора в своем общем виде соответствует классическому построению литий-ионных аккумуляторных батарей и содержит катод, анод, сепаратор, электролит и герметичный корпус.
Большее влияние на технические параметры аккумуляторной батареи оказывает свойство активного материала, из которого изготавливается отрицательный электрод. Преимущество от использования углеродного материала для его изготовления заключается в достаточно простом формировании поверхности активного слоя на электроде, обладающей большой площадью, что впоследствии положительным образом сказывается на циклах перезарядки аккумулятора. Для увеличения износостойкости аккумулятора предпочтительно использовать дополнительный буферный слой на аноде из углеродистого материала и связующее.
Одним из примеров такого материала может служить смесь графита и углерода, в частности могут применяться углеродные нанотрубки.
В качестве токопроводящей подложки электрода может использоваться стеклоуглерод, фольга из титана, углеродная ткань и т.п. На подложки соответствующих электродов наносится активный слой, в частности для отрицательного электрода может применяться кремнийсодержащий материал и его композитные соединения (кремний-углерод или кремний-алюминий).
Для активного слоя положительного электрода может применяться паста на основе феррофосфата лития LiFePO4. Указанная паста может содержать в своем составе ингредиенты в следующем соотношении, мас.%: феррофосфат лития - 50-95; электропроводная углеродная добавка - 2-45; связующее - 5-15. В качестве связующего может быть использован поливинилиденфторид.
Для буферного слоя положительного электрода может применяться широкая группа углеродных соединений, например углеродные волокна, углеродные нанотрубки, графен, углерод CMK-3 и др. Примерная толщина буферного слоя от 0.7 до 30 Мкм.
Для увеличения износостойкости аккумулятора и сохранения его энергетической эффективности сепаратор предлагается выполнять с поверхностями, имеющими различную степень шероховатости, каждая из которых повернута к соответствующему электроду. Сепаратор может изготавливаться, преимущественно, на основе полипропиленовых или полиэтиленовых смол с образованием пористого тела и иметь следующие диапазоны показателей шероховатости поверхностей:
для положительного электрода – от 0.5 до 0.2 Мкм;
для отрицательного электрода – от 0.35 до 0.5 Мкм.
Claims (1)
- .Литий-ионный аккумулятор, содержащий отрицательный электрод, включающий электропроводящую подложку с нанесенным на нее активным слоем, и положительный электрод, включающий электропроводящую подложку с нанесенным на нее кремнийсодержащим активным слоем, пористый полимерный сепаратор, пропитанный неводным электролитом и размещенный между активными слоями разноименных электродов, причем отрицательный электрод выполнен из композиционного материала на основе графита и углерода, положительный электрод содержит буферный слой из углеродистого материала, а поверхности сепаратора, обращенные к электродам, имеют различную степень шероховатости.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017113552U RU171277U1 (ru) | 2017-04-19 | 2017-04-19 | Высокомощный литий-ионный аккумулятор |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017113552U RU171277U1 (ru) | 2017-04-19 | 2017-04-19 | Высокомощный литий-ионный аккумулятор |
Publications (1)
Publication Number | Publication Date |
---|---|
RU171277U1 true RU171277U1 (ru) | 2017-05-29 |
Family
ID=59032614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017113552U RU171277U1 (ru) | 2017-04-19 | 2017-04-19 | Высокомощный литий-ионный аккумулятор |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU171277U1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU188676U1 (ru) * | 2019-02-27 | 2019-04-22 | Общество с ограниченной ответственностью "БэттериЛАБ" | Литий-ионный аккумулятор |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2432641C1 (ru) * | 2010-05-06 | 2011-10-27 | Сергей Владимирович Заренин | Способ получения взрывобезопасного сепаратора |
RU128014U1 (ru) * | 2012-12-18 | 2013-05-10 | Открытое акционерное общество "Сафоновский завод гидрометеорологических приборов" (ОАО "Сафоновский завод "Гидрометприбор") | Литий-ионный аккумулятор |
US20130273407A1 (en) * | 2010-12-03 | 2013-10-17 | Enerdel, Inc. | Heat resistance layer for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery |
US20150017510A1 (en) * | 2012-02-28 | 2015-01-15 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary battery |
-
2017
- 2017-04-19 RU RU2017113552U patent/RU171277U1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2432641C1 (ru) * | 2010-05-06 | 2011-10-27 | Сергей Владимирович Заренин | Способ получения взрывобезопасного сепаратора |
US20130273407A1 (en) * | 2010-12-03 | 2013-10-17 | Enerdel, Inc. | Heat resistance layer for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery |
US20150017510A1 (en) * | 2012-02-28 | 2015-01-15 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary battery |
RU128014U1 (ru) * | 2012-12-18 | 2013-05-10 | Открытое акционерное общество "Сафоновский завод гидрометеорологических приборов" (ОАО "Сафоновский завод "Гидрометприбор") | Литий-ионный аккумулятор |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU188676U1 (ru) * | 2019-02-27 | 2019-04-22 | Общество с ограниченной ответственностью "БэттериЛАБ" | Литий-ионный аккумулятор |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lach et al. | Applications of carbon in lead-acid batteries: a review | |
CN104916809B (zh) | 一种一体化柔性电极 | |
KR101509413B1 (ko) | 리튬 이온 2차 전지용 부극 및 이것을 이용한 전지 | |
KR101670580B1 (ko) | 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
KR20100014606A (ko) | 최적화된 에너지 저장 장치 | |
MY149961A (en) | Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery | |
KR20140080837A (ko) | 서로 다른 크기의 활물질로 이루어진 복수의 코팅층을 갖는 전극 구조체 및 이를 포함하는 이차전지. | |
JP2013157603A (ja) | リチウムイオンキャパシタ用活性炭、これを活物質として含む電極、及び前記電極を用いるリチウムイオンキャパシタ | |
US9269959B2 (en) | Lithium ion battery electrode | |
KR20190123325A (ko) | 알루미늄 2차 배터리용 흑연질 탄소-기반 캐소드 및 제조 방법 | |
CN103840130A (zh) | 一种防止过放电的锂电池碳负极 | |
Tang et al. | Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode | |
Cheng et al. | Rooting Zn into metallic Na bulk for energetic metal anode | |
KR20220136147A (ko) | 전고체전지 | |
KR20120129569A (ko) | 하이브리드 커패시터 | |
BR112013033882B1 (pt) | acumulador de lítio | |
KR20150128355A (ko) | 3 차원 전극 구조체, 이의 제조 방법 및 이를 포함하는 전지 | |
KR20150016072A (ko) | 리튬이온 커패시터용 양극 및 이를 포함하는 리튬이온 커패시터 | |
RU171277U1 (ru) | Высокомощный литий-ионный аккумулятор | |
RU128014U1 (ru) | Литий-ионный аккумулятор | |
Li et al. | Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries | |
KR101520345B1 (ko) | 입체형 전극 어셈블리 및 이의 제조 방법 | |
WO2014156053A1 (ja) | 非水電解質二次電池用負極及び非水電解質二次電池 | |
JP2012133958A (ja) | 複合キャパシタ負極板及び鉛蓄電池 | |
JP2016178026A (ja) | 蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC91 | Official registration of the transfer of exclusive right (utility model) |
Effective date: 20200901 |
|
QB9K | Licence granted or registered (utility model) |
Free format text: LICENCE FORMERLY AGREED ON 20201110 Effective date: 20201110 |