WO2013128811A1 - 電池パックおよび電池パックの電力量算出方法 - Google Patents

電池パックおよび電池パックの電力量算出方法 Download PDF

Info

Publication number
WO2013128811A1
WO2013128811A1 PCT/JP2013/000711 JP2013000711W WO2013128811A1 WO 2013128811 A1 WO2013128811 A1 WO 2013128811A1 JP 2013000711 W JP2013000711 W JP 2013000711W WO 2013128811 A1 WO2013128811 A1 WO 2013128811A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
internal resistance
current
amount
power
Prior art date
Application number
PCT/JP2013/000711
Other languages
English (en)
French (fr)
Inventor
忠大 吉田
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2014501995A priority Critical patent/JP6138757B2/ja
Priority to CN201380011447.2A priority patent/CN104145190B/zh
Priority to US14/380,781 priority patent/US10078116B2/en
Publication of WO2013128811A1 publication Critical patent/WO2013128811A1/ja
Priority to US16/059,185 priority patent/US10670660B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a battery pack and a battery pack electric energy calculation method.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-51351 describes the following vehicle power supply device. First, based on the open voltage value of the on-vehicle battery and the minimum voltage value of the on-vehicle battery at the time of starting the engine, the square value of the minimum voltage value was integrated from the open voltage value corresponding to the remaining capacity 0 to the fully charged open voltage value. The integrated value S is calculated and a table is created. Further, a coefficient K between the integrated value S and the amount of electric power E of the full charge of the on-vehicle battery is calculated based on the actually measured value and stored.
  • the integrated value S is obtained by referring to the table from the actually measured value of the minimum voltage value described above.
  • the remaining capacity of the in-vehicle battery is calculated as an electric energy (unit Wh) by multiplying the integrated value S by a coefficient K.
  • a battery pack that calculates the power change amount ⁇ E (t) according to the following equation (1), where ⁇ T (t) is the total internal resistance that is the sum of the internal resistances of the battery units.
  • V (t) is the total voltage of all the battery units, and I (t) is the current of the battery units.
  • ⁇ E (t) is the amount of change in power of all the battery units from the reference time 0 to the current time t, and the total internal resistance is the sum of the internal resistances of the battery units.
  • the stored power amount balance or the power change amount is calculated in consideration of the loss component due to the internal resistance of the battery unit. Therefore, the electric energy remaining in the battery pack can be accurately calculated based on the internal resistance data depending on the temperature.
  • battery pack 10 refers to an assembled battery having a plurality of battery units.
  • the “battery unit” refers to one having at least one battery cell 100.
  • the battery cell 100 included in the “battery unit” may include a plurality of single cells having a positive electrode and a negative electrode. Further, the plurality of “battery units” may have different numbers of battery cells 100.
  • the “battery unit” included in the “battery pack 10” is a battery cell 100 having two unit cells connected in parallel will be described.
  • FIG. 1 is a circuit diagram showing a configuration of the battery pack 10 according to the first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of the arithmetic communication unit 400 according to the first embodiment.
  • FIG. 3 is a diagram illustrating the internal resistance with respect to the temperature of the first battery cell according to the first embodiment.
  • the battery pack 10 is provided in a plurality of battery cells 100 connected in series, a voltage / current measuring unit (voltage / current measuring unit 200), a temperature measuring unit (temperature measuring unit 300), and an arithmetic communication unit 400. Calculating means (calculating unit 420).
  • the calculation unit 420 calculates the “first power balance” of the battery cell 100 based on the voltage and current, determines the internal resistance of the battery cell 100 based on the temperature, and determines the internal resistance “based on the current and the internal resistance”.
  • the “second electric energy balance” is calculated. Thereby, the calculation unit 420 calculates the “stored power amount balance” (power amount E (t)) stored in the battery cell 100 based on the first power amount balance of the battery cell 100 and the second power amount balance of the internal resistance. calculate.
  • the battery pack 10 further includes storage means (storage unit 480).
  • the voltage / current measurement unit 200 measures the voltage and current of the battery cell 100.
  • the temperature measuring unit 300 measures the temperature of the battery cell 100.
  • the calculation unit 420 calculates a power change amount that is a change amount of the power amount remaining in the battery cell 100 based on the voltage, current, and temperature of the battery cell 100.
  • the storage unit 480 stores internal resistance data that is data for calculating the internal resistance of the battery cell 100 from the temperature of the battery cell 100.
  • the calculation unit 420 refers to the internal resistance data to determine the internal resistance of the battery cell 100 at the current temperature.
  • the calculation unit 420 sets ⁇ E (t) as the power change amount of all the battery cells 100 from the reference time 0 to the current time t, and R temp (t) as the total internal resistance that is the sum of the internal resistances of the battery units. Then, the power change amount ⁇ E (t) is calculated by the following formula (1).
  • V (t) is the voltage of all the battery cells 100
  • I (t) is the current of the battery cells 100.
  • the “power amount” or “stored power amount balance” is an index indicating the remaining capacity of the battery cell 100 or the like, and is calculated by multiplying the voltage, current, and time. Note that the unit is Wh. Unlike the remaining capacity represented by current and time, “power amount” or “stored power amount balance” considers voltage.
  • the battery pack 10 includes a plurality of battery cells 100.
  • the battery pack 10 includes, for example, N battery cells 100 (Cell1 to CellN). Further, as described above, the battery cell 100 has two single cells.
  • the battery cell 100 is a Li ion secondary battery, for example.
  • the battery cell 100 is a laminate type battery using a laminate film as an exterior material, for example.
  • the plurality of battery cells 100 are each housed in an exterior body (not shown) and packaged in the battery pack 10 in a state of being stacked in a row.
  • the battery cell 100 may be arbitrarily packaged, for example, in a state where a plurality of battery cells 100 are stacked in one row in the thickness direction, or in a state where the stacked battery cells 100 are arranged side by side in a plurality of rows. There may be. Even with such a package, the same effects as those of the first embodiment can be obtained.
  • the plurality of battery cells 100 are connected in series. On the positive electrode side of the battery cell 100, the positive electrode terminal 120 of the battery cell 100 is provided. On the other hand, the negative electrode terminal 140 of the battery cell 100 is provided on the negative electrode side of the battery cell 100. The negative electrode terminal 140 of the battery cell 100 of Cell1 and the positive electrode terminal 120 of the battery cell 100 of Cell2 are connected. Thus, the battery cells 100 are sequentially connected in series, and the negative electrode terminal 140 of the CellN-1 battery cell 100 and the positive electrode terminal 120 of the CellN battery cell 100 are connected.
  • the positive electrode terminal 120 of the battery cell 100 of Cell 1 provided on the highest potential side is connected to the internal positive electrode terminal 160.
  • the negative electrode terminal 140 of the CellN battery cell 100 provided on the lowest potential side is connected to the internal negative electrode terminal 180.
  • the battery pack 10 includes a control circuit 20 in addition to the battery cell 100.
  • the control circuit 20 includes a voltage / current measurement unit 200, a temperature measurement unit 300, an arithmetic communication unit 400, and a switch 500.
  • the control circuit 20 is connected to the battery cells 100 connected in series.
  • the control circuit 20 includes an external positive terminal 720 and an external negative terminal 740 for connection to an external device (not shown).
  • the external positive terminal 720 is connected to the internal positive terminal 160 on the battery cell 100 side via wiring (not shown) in the control circuit 20.
  • the external negative terminal 740 is connected to the internal negative terminal 180 on the battery cell 100 side via a wiring (not shown) in the control circuit 20.
  • the arithmetic communication unit 400 of the control circuit 20 is connected to an external communication terminal 760 for transmitting / receiving signals to / from an external device.
  • a switch 500 for stopping charging or discharging is provided.
  • the switch 500 is a P-channel MOSFET (Metal Oxide Semiconductor Field Effect Transistor), for example.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • two P-channel MOSFETs are provided. Thereby, one MOSFET is used to control charging. On the other hand, the other MOSFET is used to control the discharge.
  • Each MOSFET in the switch 500 is connected to the voltage / current measuring unit 200.
  • the switch 500 is an N-channel MOSFET, the switch 500 is disposed between the internal negative terminal 180 and the external negative terminal 740.
  • the switch 500 may be, for example, an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), a relay, or a breaker.
  • IGBT Insulated Gate Bipolar Transistor
  • the voltage / current measurement unit 200 measures the voltage and current of each of the plurality of battery cells 100.
  • the voltage / current measuring unit 200 is connected to both ends of each battery cell 100 in order to measure a voltage.
  • a resistor 220 having a known resistance value is provided between the internal negative terminal 180 and the external negative terminal 740.
  • the voltage / current measurement unit 200 is connected to both ends of the resistor 220.
  • the calculation for converting the voltage value applied to the resistor 220 into a current value may be performed by the calculation unit 420 in the arithmetic communication unit 400.
  • the voltage / current measurement unit 200 is connected to the measurement result reception unit 460 of the arithmetic communication unit 400. As a result, the voltage and current measurement results measured by the voltage / current measurement unit 200 are transmitted to the measurement result reception unit 460.
  • Temperature measuring unit 300 measures the temperature of battery cell 100.
  • the temperature measurement unit 300 includes a temperature sensor 320.
  • the temperature sensor 320 is, for example, a thermocouple.
  • the temperature measurement unit 300 receives a signal such as a thermoelectromotive force generated by the temperature sensor 320 and calculates a temperature.
  • the calculation unit 420 of the arithmetic communication unit 400 may calculate the temperature from the signal of the temperature sensor 320. In this case, the calculation unit 420 may also serve as the temperature measurement unit 300.
  • the temperature sensor 320 of the temperature measuring unit 300 is provided in contact with the battery cell 100.
  • the temperature sensor 320 is attached to an exterior body (not shown) that houses the battery cell 100.
  • the temperature sensor 320 is provided so as to be in contact with one battery cell 100 among the plurality of battery cells 100, for example.
  • the battery cell 100 to which the temperature sensor 320 is attached is referred to as a “first battery cell” (not shown in the figure).
  • the first battery cell is provided, for example, at a portion considered to be an average temperature in the battery pack 10. Thereby, the temperature of the said 1st battery cell can be estimated with the temperature of the battery pack 10 whole, without measuring the temperature of all the battery cells 100.
  • the temperature measurement unit 300 is connected to the measurement result reception unit 460 of the arithmetic communication unit 400. Thereby, the measurement result of the temperature measured by the temperature measurement unit 300 is transmitted to the measurement result reception unit 460.
  • the arithmetic communication unit 400 includes, for example, a calculation unit 420, a communication unit (communication unit 440), a measurement result reception unit 460, and a storage unit 480.
  • the measurement result reception unit 460 receives the measurement results of the voltage, current, and temperature of the battery cell 100 from the voltage / current measurement unit 200 and the temperature measurement unit 300 as described above. In addition, the measurement result reception unit 460 transmits the received measurement result to the calculation unit 420.
  • the measurement result reception unit 460 may transmit the measurement results of the voltage, current, and temperature of the battery cell 100 to the storage unit 480.
  • the storage unit 480 receives these results and saves them as needed.
  • the storage unit 480 stores internal resistance data that is data for calculating the internal resistance of the battery cell 100 from the temperature of the battery cell 100.
  • FIG. 3 shows the internal resistance with respect to the temperature measured in advance for the first battery cell to which the temperature sensor 320 is attached. Incidentally, the internal resistance of the first battery cell and r s.
  • the internal resistance r s of the first battery cell tends to vary depending on the temperature.
  • the internal resistance of the other battery cell 100 has the same tendency. If cell 100 is a Li-ion rechargeable battery, the internal resistance r s of the first battery cell is in the temperature range in the figure, and has a monotonically decreasing.
  • Storage unit 480 has stored the temperature dependency of the internal resistance r s of the first battery cell which is previously measured as shown in FIG.
  • the storage unit 480 stores a table of the quantified temperature and internal resistance as internal resistance data.
  • the storage unit 480 may store a function of internal resistance with respect to temperature as internal resistance data. This function may be an approximate function fitted to the graph of FIG. Thereby, the calculation part 420 mentioned later can calculate the internal resistance of a 1st battery cell based on the measured temperature of the 1st battery cell currently.
  • the storage unit 480 stores the initial power amount (E 0, which will be described later), which is the power amount of the battery pack 10 at the reference time, when the battery pack 10 is first fully charged. ing.
  • the reference time is set to 0 when the battery pack 10 is fully charged, for example.
  • the current electric energy (E (t)) of the battery pack 10 can be calculated by the electric power calculation method described later.
  • the calculation unit 420 is connected to the measurement result reception unit 460.
  • the calculation unit 420 calculates the amount of change ( ⁇ E (t)) in the amount of power of the battery pack 10 from the measurement results of the voltage, current, and temperature of the battery cell 100 received from the measurement result reception unit 460.
  • calculation unit 420 is connected to the storage unit 480.
  • Calculation unit 420 refers to the internal resistance data stored in storage unit 480 to determine the internal resistance of the first battery cell at the current temperature received from measurement result reception unit 460.
  • the power amount calculation method in the calculation unit 420 will be described later in detail.
  • the calculation unit 420 is provided with a timer (not shown). Thereby, the current time t from the reference time 0 can be obtained.
  • the calculation unit 420 is connected to the communication unit 440.
  • the calculation unit 420 transmits the calculated power change amount or power amount of the battery pack 10 to the communication unit 440.
  • the communication unit 440 transmits a power change amount or a signal based on the power amount to the external device via the external communication terminal 760.
  • the voltage and current of a plurality of battery cells 100 connected in series are measured, and the temperature of the battery cell 100 is measured (S110, measurement step).
  • the current internal resistance of the battery cell 100 is determined based on the temperature of the battery cell 100 (S120).
  • a power change amount ⁇ E (t) that is a change amount of the power amount remaining in the battery cell 100 is calculated (S130, calculation step). Details will be described below.
  • the storage unit 480 stores the internal resistance data of the first battery cell described above in advance. In addition, the storage unit 480 stores the initial power amount E 0 that is the power amount of the battery pack 10 at the reference time when the battery pack 10 is first fully charged as the reference time 0.
  • the voltage / current measuring unit 200 measures the voltage and current of a plurality of battery cells 100 connected in series.
  • the voltage / current measurement unit 200 measures the total voltage of all the battery cells 100 by measuring the voltages at both ends of the plurality of battery cells 100 connected in series.
  • the total voltage is V (t).
  • the voltage / current measurement unit 200 may measure the voltage between the positive electrode terminal 160 and the negative electrode terminal 180 of the battery pack 10 and change the measured voltage to the total voltage V (t).
  • the voltage / current measurement unit 200 measures the current flowing through each battery cell 100 from the voltage across the resistor 220.
  • the current is I (t).
  • the voltage / current measurement unit 200 transmits the total voltage V (t) and current I (t) of the battery cell 100 to the measurement result reception unit 460.
  • the temperature measurement unit 300 measures the temperature of the first battery cell based on a signal from the temperature sensor 320 attached to the first battery cell.
  • the temperature measurement unit 300 transmits the temperature measurement result to the measurement result reception unit 460. As described above, the voltage, current, and temperature of the battery cell 100 are measured (S110).
  • the calculation unit 420 calculates the battery as shown in the following formula (1) based on the total internal resistance R temp (t) determined based on the voltage and current of the battery cell 100 and the temperature of the first battery cell.
  • a power change amount ⁇ E (t) that is a change amount of power remaining in the cell 100 is calculated (S130, calculation step).
  • V (t) is the voltage of all the battery cells 100
  • I (t) is the current of the battery cells 100.
  • the first term on the right side of the formula (1) indicates the amount of charging power supplied to all the battery cells 100 when the battery pack 10 is charged. Moreover, the said 1st term of Formula (1) has shown the discharge electric energy currently discharged from all the battery cells 100, when the battery pack 10 is discharging. Further, the power amount of the first term is referred to as “first power amount balance” of the battery cell 100.
  • the second term on the right side of the formula (1) indicates the amount of power consumed by the internal resistance of all the battery cells 100.
  • the second term is the amount of electric power consumed in both cases where the battery pack 10 is charged and discharged.
  • the electric energy of the second term is referred to as “second electric energy balance” of the internal resistance.
  • the amount of power in the second term is consumed as thermal energy mainly by the internal resistance of the battery cell 100.
  • the calculation unit 420 may store the power change amount ⁇ E (t) in the storage unit 480.
  • the calculation unit 420 reads the initial power amount E 0 from the storage unit 480 of the battery pack 10, and calculates the current power amount E (t) of all the battery cells 100 by the following equation (4) (S140). .
  • This electric energy E (t) is referred to as “accumulated electric energy balance” accumulated in the battery pack 10.
  • the initial electric energy E 0 of the first embodiment is obtained when the battery pack 10 is charged with a constant voltage and a constant current without interposing the discharge between the end of discharge and the full charge when the battery pack 10 is manufactured.
  • the amount of power stored in the battery pack 10 is measured in advance. That is, by calculating the power change amount ⁇ E (t) of the above-described formula (1) until the charge starts at time 0 until the battery is fully charged, the power change amount when the battery is fully charged is the initial power. It is assumed that the amount is E 0 .
  • the “when fully charged” is when the charging current becomes equal to or less than a predetermined reference value.
  • “Discharge end” when the discharge ends is when the total voltage V (t) reaches a predetermined discharge end voltage.
  • the electric energy E (t) (stored electric energy balance) remaining in the battery cell 100 and the electric power change ⁇ E (t) that is the electric power change amount are calculated.
  • the calculation unit 420 receives a temperature measurement result from the measurement result reception unit 460 (S121).
  • the calculation unit 420 reads the internal resistance data from the storage unit 480 (S122).
  • the internal resistance data here is the internal resistance data of the first battery cell as shown in FIG.
  • the calculation unit 420 determines the internal resistance of the battery cell 100 from the temperature of the measurement result based on the internal resistance data read from the storage unit 480.
  • the internal resistance r s (t) of the first battery cell is determined (S123). If the internal resistance data is a table, the internal resistance corresponding to the temperature of the measurement result is determined by reading from the table. On the other hand, when the internal resistance data is a function, the internal resistance is determined by substituting the temperature of the measurement result into the function.
  • the calculation unit 420 determines the total internal resistance R temp (t), which is the sum of the internal resistances of the battery cells 100, based on the above-described internal resistance (S124).
  • the internal resistance of each battery cell 100 connected in series is r k (t) (where k is a natural number from 1 to N). Since the battery cells 100 are connected in series, the total internal resistance R temp (t), which is the sum of the internal resistances r k (t) of the battery cells 100, is obtained by the following formula (2).
  • the internal resistance r s (t) of the first battery cell is all It can be regarded as an average value of the internal resistance r k (t) of the battery cell 100.
  • the total internal resistance R temp (t) can be obtained by the following equation (3).
  • the internal resistance r s (t) of the first battery cell determined in S123 is substituted into the above equation (3).
  • the total internal resistance R temp (t) is determined assuming that the internal resistance r s (t) of the first battery cell is the average value of the internal resistances of all the battery cells 100 (S124).
  • the total internal resistance R temp (t), which is the sum of the internal resistances of the battery cells 100, is determined (S120).
  • the voltage / current measurement unit 200 and the temperature measurement unit 300 measure the voltage, current, and temperature of the battery cell 100.
  • the calculation unit 420 calculates the “first power balance” of the battery cell 100 based on the voltage and current, determines the internal resistance of the battery cell 100 based on the temperature, and determines the internal resistance “based on the current and the internal resistance”.
  • the “second electric energy balance” is calculated. Thereby, the calculation unit 420 calculates the “stored power amount balance” (power amount E (t)) stored in the battery cell 100 based on the first power amount balance of the battery cell 100 and the second power amount balance of the internal resistance. calculate.
  • the storage unit 480 stores internal resistance data for calculating the internal resistance of the battery cell 100 depending on the temperature.
  • the calculation unit 420 refers to the internal resistance data and determines the current internal resistance of the battery cell 100 from the measured current temperature. Thereby, the calculation unit 420 calculates the power change amount ⁇ E (t) of all the battery cells 100 from the reference time 0 to the current time t.
  • the internal resistance of the battery cell 100 depends on the temperature. For example, the internal resistance of the battery cell 100 tends to increase as the temperature decreases. For this reason, when calculating the remaining electric energy E (t) or the electric power change amount ⁇ E (t) when the battery pack 10 is charged or discharged, the loss due to the internal resistance in the second term of the equation (1) Ingredients cannot be ignored. Therefore, the power change amount ⁇ E (t) actually remaining in the battery pack 10 is different from the power change amount in the first term of the formula (1) obtained by simply multiplying the voltage and current of the battery pack 10. Therefore, as in the present embodiment, by considering the loss component of the electric energy due to the internal resistance of the battery cell 100, the electric energy E (t) remaining in the battery pack can be accurately calculated.
  • the electric energy E (t) remaining in the battery pack 10 can be accurately calculated based on the internal resistance data depending on the temperature.
  • the time when the battery pack 10 is first fully charged is set as the reference time 0.
  • the reference time 0 may be set to 0 when the total voltage V (t) reaches the end of discharge for the first time.
  • the initial power amount of the battery pack 10 is set to zero.
  • the reference time 0 may be reset to 0 every time the battery pack 10 reaches the end of discharge. In this case, however, it is desirable to reset both the initial electric energy of the battery pack 10 to zero. Further, the reference time 0 may be reset when the battery pack 10 reaches the end of discharge and the temperature measured by the temperature measurement unit 300 is within a predetermined range.
  • FIG. 6 is a flowchart illustrating an electric energy calculation method according to the second embodiment.
  • the second embodiment is the same as the first embodiment except that in the power calculation method, only S120 that determines the total internal resistance R temp (t) is different. According to the second embodiment, the total internal resistance R temp (t) is corrected in consideration of the deterioration of the battery cell 100. Details will be described below.
  • Storage unit 480 stores internal resistance data of the first battery cell in advance.
  • the storage unit 480 stores the initial power amount E 0 that is the power amount of the battery pack 10 at the reference time when the battery pack 10 is first fully charged as the reference time 0.
  • S120 for determining the total internal resistance R temp (t) is performed by the following method.
  • S125 it is determined whether or not the battery pack 10 is currently fully charged.
  • S130 in FIG. 4 is performed as in the first embodiment.
  • the calculation unit 420 compares the current power amount E (t f ) with the initial power amount E 0 as follows. In this case, the current time is assumed to be t f.
  • the calculation unit 420 compares the current power amount E (t f ) with the initial power amount E 0 as a reference, and calculates the deterioration ratio l by the following equation (5) (S126).
  • ⁇ E (t f ) is 0 when there is almost no deterioration of the battery pack 10. For this reason, the deterioration ratio l is 1. On the other hand, when the deterioration of the battery pack 10 becomes remarkable, ⁇ E (t f ) becomes a value smaller than 0. For this reason, the deterioration ratio l is a value smaller than 1.
  • the calculation unit 420 stores the deterioration ratio l obtained by the above equation (5) in the storage unit 480.
  • the calculation unit 420 corrects the total internal resistance R temp (t) using the deterioration ratio l.
  • the calculation unit 420 corrects the total internal resistance R temp (t) by multiplying the immediately previous total internal resistance R temp (t) by the inverse of the deterioration ratio l (S127).
  • the power change amount ⁇ E (t) is calculated using a value obtained by multiplying the total internal resistance R temp (t) after time t f by 1 / l.
  • the deterioration ratio l is 1, so the total internal resistance R temp (t) is not changed by the above correction.
  • the deterioration ratio l is smaller than 1, so that the total internal resistance R temp (t) becomes a large value by correction considering the deterioration.
  • the calculation unit 420 stores the corrected R temp (t) in the storage unit 480 as needed.
  • the total internal resistance R temp (t) is determined.
  • the following steps are the same as those in the first embodiment.
  • the internal resistance of the battery cell 100 tends to increase. Specifically, it is conceivable that the internal resistance of the battery cell 100 increases due to deterioration of the positive electrode material, the negative electrode material, the electrolyte, or the like of the battery cell 100.
  • the electric energy E (t f ) at the time of full charging is compared with the initial electric energy E 0 .
  • the deterioration ratio l is calculated. Furthermore, based on this deterioration ratio l, the total internal resistance R temp (t) after the full charge is corrected.
  • the second embodiment by correcting the internal resistance changed due to the deterioration of the battery cell 100, it is possible to calculate the accurate electric energy E (t) of the battery pack 10 at any time. it can.
  • FIG. 7 is a circuit diagram showing configurations of the battery pack 10 and the control circuit 20 according to the third embodiment.
  • the third embodiment is the same as the first embodiment except that the control circuit 20 is provided outside the battery pack 10. Details will be described below.
  • control circuit 20 is provided outside the battery pack 10.
  • the control circuit 20 is provided in, for example, a charge / discharge device (not shown) that is independent from the battery pack 10.
  • the control circuit 20 may be provided in a device used when the battery pack 10 is discharged and used.
  • a plurality of battery cells 100 are connected in series to the battery pack 10.
  • the battery pack 10 is provided with a positive electrode terminal 160 and a negative electrode terminal 180 for charging and discharging the battery pack 10.
  • battery cell terminals 130 are provided between the respective battery cells 100.
  • a part of the outer package (not shown) of the battery pack 10 is provided with an insertion port for attaching the temperature sensor 320.
  • the temperature sensor 320 may be attached as a part of the battery pack 10.
  • a terminal (not shown) for the temperature sensor 320 may be provided so as to be exposed from the exterior body of the battery pack 10.
  • the control circuit 20 includes a voltage / current measurement unit 200, a temperature measurement unit 300, an arithmetic communication unit 400, and a switch 500.
  • a positive terminal 620 and a negative terminal 640 of the control circuit 20 are provided on the battery pack 10 side of the control circuit 20.
  • the positive terminal 620 and the negative terminal 640 of the control circuit 20 are connected to the positive terminal 160 and the negative terminal 180 of the battery pack 10 through, for example, wiring (not shown).
  • charging power can be supplied to the battery pack 10 from the control circuit 20 side, and discharging power can be transmitted from the battery pack 10 side to the control circuit 20 side.
  • the measurement terminal 660 of the voltage / current measurement unit 200 is provided on the battery pack 10 side of the control circuit 20.
  • the measurement terminal 660 of the voltage / current measurement unit 200 is connected to the battery cell terminal 130 of the battery pack 10 via wiring (not shown). Thereby, even if the control circuit 20 is provided outside the battery pack 10, the voltage and current of each battery cell 100 can be measured by the voltage / current measuring unit 200.
  • control circuit 20 is provided outside the battery pack 10. Even in such a case, the same effect as the first embodiment can be obtained.
  • FIG. 8 is a flowchart illustrating an electric energy calculation method according to the fourth embodiment.
  • the actual power amount Ee (t) that can be output by the battery cell 100 is calculated based on the stored power amount balance (power amount E (t)) and the electricity amount balance C (t), This is the same as in the first embodiment. Details will be described below.
  • the calculation unit 420 calculates the amount of power E (t) remaining in the battery pack 10, and the communication unit 440 calculates the calculated power change amount ⁇ E (t) or power amount E of the battery pack 10.
  • a signal based on (t) is transmitted to an external device.
  • the calculation unit 420 may calculate, for example, a real power amount (a real power amount E e (t)) accumulated in the battery pack 10 that can be consumed by an external device.
  • the communication unit 440 may transmit a prediction signal based on the actual power amount E e (t) to the external device.
  • the calculation unit 420 calculates the electricity balance C (t) of the battery cell 100 based on the current I (t) by the following formula (6) (S150).
  • the electricity balance C (t) represents the amount of electricity stored in the battery pack 10 at time t.
  • the unit of the electricity balance C (t) is Ah.
  • the calculation unit 420 calculates the real power E e (t) that can be output from the battery cell 100 based on the stored power balance (power amount E (t)) and the electricity balance C (t) by the following equation (7). Is calculated (S160). As shown in Expression (7), the actual electric energy E e (t) is consumed by the internal resistance of the battery cell 100 in the future from the electric energy E (t) (stored electric energy balance) existing in the battery pack. It can be obtained by subtracting the predicted value of electric energy (second term on the right side).
  • Equation (7) is a predicted value of the amount of power consumed by the internal resistance of the battery cell 100 in the future. However, the current total internal resistance R temp (t) is steady, and the battery pack 10 is discharged at the current I (t) until the amount of electricity stored in the battery pack 10 becomes zero. Assumes to continue.
  • ⁇ I 2 (t) R temp (t) is the current power (unit W) consumed by the internal resistance of the battery pack 10.
  • ⁇ C (t) / I (t) is an estimated time (unit h) until the amount of electricity stored in the battery pack 10 becomes zero.
  • the current power consumed by the internal resistance of the battery pack 10 is multiplied by the predicted time until the amount of electricity stored in the battery pack 10 becomes zero.
  • a predicted value (unit Wh) of the amount of power consumed by the internal resistance of the battery cell 100 can be obtained.
  • the portion I (t) may be set as the average current from the reference time 0 to time t.
  • the calculation unit 420 calculates the electric energy E (t) (stored electric energy balance) existing in the battery pack calculated in the first term on the right side, using the second term on the right side, using Equation (7).
  • the actual power amount E e (t) is calculated by adding the predicted value of the power amount consumed by the internal resistance of the battery cell 100 in the future.
  • the communication unit 440 may transmit a prediction signal based on the actual power amount E e (t) to the external device. Accordingly, the external device can predict the amount of power that can be substantially consumed based on the prediction signal in consideration of the amount of power consumed by the internal resistance of the battery pack 10.
  • the actual amount of power that can be consumed in the future by the external device supplied with power from the battery pack 10 (the actual amount of power) is less than the amount of power stored in the battery pack 10. That is, the actual electric energy is an electric energy obtained by subtracting an electric energy consumed in the future by the internal resistance of the battery cell 100 from the electric energy stored in the battery pack.
  • the calculation unit 420 calculates the actual electric energy E e (t) by the equation (7). Therefore, according to the fourth embodiment, it is possible to predict the actual amount of power that can be output by the battery pack 10 in consideration of the amount of power consumed by the internal resistance of the battery pack 10.
  • the calculation unit 420 uses the discharge current when the battery pack is discharged last time or the reference time 0 to time t in the second term on the right side of Equation (7) as I (t). Equation (7) is calculated in place of the discharge current such as the average discharge current.
  • the power calculation device of the battery pack 10 including the control circuit 20 described above is also disclosed.
  • the case where the temperature of only one first battery cell is measured has been described, but the temperature of a plurality of battery cells 100 may be measured and the respective internal resistances may be used.
  • the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
  • the battery cell 100 is a laminate type battery has been described in the above embodiment, the effect of the present invention is similarly obtained when the battery cell 100 is a battery of another form such as a cylindrical type or a square type. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 この電池パック(10)は、直列に接続された複数の電池セル(100)と、電圧電流測定手段(電圧電流測定部(200))と、温度測定手段(温度測定部(300))と、演算通信部(400)内に設けられた算出手段(算出部(420))と、を備えている。算出部(420)は、電圧および電流に基き電池セル(100)の「第1電力量収支」を算出するとともに、温度に基き電池セル(100)の内部抵抗を決定し、電流と前記内部抵抗に基き内部抵抗の「第2電力量収支」を算出する。これにより、算出部(420)は、電池セル(100)の第1電力量収支および内部抵抗の第2電力量収支に基き電池セル(100)に蓄積される「蓄積電力量収支」(電力量E(t))を算出する。

Description

電池パックおよび電池パックの電力量算出方法
 本発明は、電池パックおよび電池パックの電力量算出方法に関する。
 電池の残容量を計算するために、様々な方法が提案されている。
 特許文献1(特開2009-51351号公報)には、以下のような車両用電源装置が記載されている。まず、車載バッテリの開放電圧値、およびエンジン始動時の車載バッテリの極小電圧値に基づき、残容量0に相当する開放電圧値から満充電の開放電圧値まで、極小電圧値の二乗値を積算した積算値Sを計算し、テーブルを作成する。また、当該積算値Sと車載バッテリの満充電の電力量Eとの係数Kを、実測値に基づいて計算し、記憶しておく。そして、車載バッテリ使用時において、まず、上記した極小電圧値の実測値からテーブルを参照して、積算値Sを求める。次いで、当該積算値Sに係数Kをかけることにより、車載バッテリの残容量を電力量(単位Wh)で算出するとされている。
特開2009-51351号公報
 しかし、特許文献1に記載の電力量には、車載バッテリ(本発明における電池パックに相当)の内部抵抗が考慮されていない。このため、本発明者は、上記方法では、正確な残存電力量を得ることができないと考えた。
 本発明によれば、
 直列に接続された複数の電池ユニットと、
 前記電池ユニットの電圧および電流を測定する電圧電流測定手段と、
 前記電池ユニットの温度を測定する温度測定手段と、
 前記電圧および電流に基き前記電池ユニットの第1電力量収支を算出するとともに、前記温度に基き前記電池ユニットの内部抵抗を決定し、前記電流と前記内部抵抗に基き前記内部抵抗の第2電力量収支を算出することによって、前記電池ユニットの前記第1電力量収支および前記内部抵抗の前記第2電力量収支に基き前記電池ユニットに蓄積される蓄積電力量収支を算出する算出手段と、
を備える電池パックが提供される。
 また、本発明によれば、
 直列に接続された複数の電池ユニットと、
 前記電池ユニットの電圧および電流を測定する電圧電流測定手段と、
 前記電池ユニットの温度を測定する温度測定手段と、
 前記電池ユニットの前記電圧、前記電流および前記温度に基づいて、前記電池ユニットに残存した電力量の変化量である電力変化量を算出する算出手段と、
 前記電池ユニットの温度から前記電池ユニットの内部抵抗を算出するためのデータである内部抵抗データを保存する記憶手段と、
を備え、
 前記算出手段は、前記内部抵抗データを参照して、現在の前記温度における前記電池ユニットの内部抵抗を決定し、基準時刻0から現在の時刻tまでにおける全ての前記電池ユニットの前記電力変化量をΔE(t)、前記電池ユニットの内部抵抗の総和である総内部抵抗をRtemp(t)としたとき、下記式(1)により前記電力変化量ΔE(t)を算出する電池パックが提供される。
Figure JPOXMLDOC01-appb-M000001
(ただし、V(t)は全ての前記電池ユニットの合計電圧、I(t)は前記電池ユニットの前記電流である。)
 また本発明によれば、
 直列に接続された複数の電池ユニットの電圧および電流を測定するとともに、前記電池ユニットの温度を測定する測定ステップと、
 前記電池ユニットの前記温度に基づいて、現在の前記電池ユニットの内部抵抗を決定するステップと、
 前記電圧および電流に基き前記電池ユニットの第1電力量収支を算出するとともに、前記温度に基き前記電池ユニットの内部抵抗を決定し、前記電流と前記内部抵抗に基き前記内部抵抗の第2電力量収支を算出することによって、前記電池ユニットの前記第1電力量収支および前記内部抵抗の前記第2電力量収支に基き前記電池ユニットに蓄積される蓄積電力量収支を算出する算出ステップと、
を備える電池パックの電力量算出方法が提供される。
 また本発明によれば、
 直列に接続された複数の電池ユニットの電圧および電流を測定するとともに、前記電池ユニットの温度を測定する測定ステップと、
 前記電池ユニットの前記温度に基づいて、現在の前記電池ユニットの内部抵抗を決定するステップと、
 前記電池ユニットの前記電圧、前記電流および前記温度に基づいて、前記電池ユニットに残存した電力量の変化量である電力変化量を算出する算出ステップと、
を備え、
 前記算出ステップにおいて、
 前記電池ユニットの内部抵抗に基づいて、基準時刻0から現在の時刻tまでにおける全ての前記電池ユニットの前記電力変化量をΔE(t)、前記電池ユニットの内部抵抗の総和である総内部抵抗をRtemp(t)としたとき、上記式(1)により前記電力変化量ΔE(t)を算出する電池パックの電力量算出方法が提供される。
 本発明によれば、電池ユニットの内部抵抗による損失成分を考慮して、蓄積電力量収支または電力変化量を算出する。これにより、温度に依存した内部抵抗データに基づいて、電池パックに残存した電力量を正確に算出することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る電池パックの構成を示す回路図である。 第1の実施形態に係る演算通信部の構成を示す模式図である。 第1の実施形態に係る第1電池セルの温度に対する内部抵抗を示す図である。 第1の実施形態に係る電力量算出方法を示すフローチャートである。 図4におけるS120の詳細を示すフローチャートである。 第2の実施形態に係る電力量算出方法を示すフローチャートである。 第3の実施形態に係る電池パックおよび制御回路の構成を示す回路図である。 第4の実施形態に係る電力量算出方法を示すフローチャートである。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 ここでいう「電池パック10」とは、複数の電池ユニットを有している組電池のことをいう。また、「電池ユニット」とは、少なくとも一つ以上の電池セル100を有しているものをいう。さらに、「電池ユニット」に含まれる電池セル100は、正極および負極等を有する複数の単電池を有していてもよい。また、複数の「電池ユニット」は、それぞれ異なる数量の電池セル100を有していてもよい。以下では、「電池パック10」に含まれる「電池ユニット」は、並列に接続された二つの単電池を有する電池セル100である場合を説明する。
 (第1の実施形態)
 図1~図3を用い、第1の実施形態に係る電池パック10について説明する。図1は、第1の実施形態に係る電池パック10の構成を示す回路図である。図2は、第1の実施形態に係る演算通信部400の構成を示す模式図である。図3は、第1の実施形態に係る第1電池セルの温度に対する内部抵抗を示す図である。この電池パック10は、直列に接続された複数の電池セル100と、電圧電流測定手段(電圧電流測定部200)と、温度測定手段(温度測定部300)と、演算通信部400内に設けられた算出手段(算出部420)と、を備えている。算出部420は、電圧および電流に基き電池セル100の「第1電力量収支」を算出するとともに、温度に基き電池セル100の内部抵抗を決定し、電流と前記内部抵抗に基き内部抵抗の「第2電力量収支」を算出する。これにより、算出部420は、電池セル100の第1電力量収支および内部抵抗の第2電力量収支に基き電池セル100に蓄積される「蓄積電力量収支」(電力量E(t))を算出する。
 また、たとえば、電池パック10は、さらに記憶手段(記憶部480)を備えている。電圧電流測定部200は、電池セル100の電圧および電流を測定する。温度測定部300は、電池セル100の温度を測定する。算出部420は、電池セル100の電圧、電流および温度に基づいて、電池セル100に残存した電力量の変化量である電力変化量を算出する。記憶部480は、電池セル100の温度から電池セル100の内部抵抗を算出するためのデータである内部抵抗データを保存する。ここで、算出部420は、内部抵抗データを参照して、現在の温度における電池セル100の内部抵抗を決定する。次いで、算出部420は、基準時刻0から現在の時刻tまでにおける全ての電池セル100の電力変化量をΔE(t)、電池ユニットの内部抵抗の総和である総内部抵抗をRtemp(t)としたとき、下記式(1)により電力変化量ΔE(t)を算出する。
Figure JPOXMLDOC01-appb-M000002
(ただし、V(t)は全ての電池セル100の電圧、I(t)は電池セル100の電流である。)以下、詳細を説明する。
 ここでいう「電力量」または「蓄積電力量収支」とは、電池セル100等の残容量を示す指標であり、電圧、電流および時間を乗じて算出されるものである。なお、単位Whで表される。「電力量」または「蓄積電力量収支」は、電流と時間とで表される残容量と異なり、電圧を考慮している。
 図1のように、電池パック10は、複数の電池セル100を備えている。具体的には、電池パック10は、たとえば、N個の電池セル100(Cell1~CellN)を備えている。また、上述のように電池セル100は、二つの単電池を有している。具体的には、電池セル100は、たとえば、Liイオン二次電池である。また、電池セル100は、たとえば、ラミネートフィルムを外装材に用いたラミネート型電池である。第1の実施形態における電池パック10では、複数の電池セル100が、それぞれ外装体(不図示)に収納され、一列に積載された状態で電池パック10にパッケージされている。なお、電池セル100のパッケージ様態は、任意で良く、例えば複数の電池セル100をその厚さ方向に1列に積層した状態や、積層した電池セル100を複数列に隣合せに配置した状態であってもよい。このようなパッケージなどであっても第1の実施形態と同様の効果を得ることができる。
 複数の電池セル100は、直列に接続されている。電池セル100の正極側には、電池セル100の正極端子120が設けられている。一方、電池セル100の負極側には、電池セル100の負極端子140が設けられている。Cell1の電池セル100の負極端子140と、Cell2の電池セル100の正極端子120とが接続されている。このように電池セル100は順に直列に接続され、CellN-1の電池セル100の負極端子140と、CellNの電池セル100の正極端子120とが接続されている。
 また、最も高電位側に設けられた、Cell1の電池セル100の正極端子120は、内部正極端子160に接続している。一方、最も低電位側に設けられた、CellNの電池セル100の負極端子140は、内部負極端子180に接続している。
 電池パック10は、電池セル100のほかに、制御回路20を備えている。制御回路20は、電圧電流測定部200、温度測定部300、演算通信部400およびスイッチ500を備えている。
 制御回路20は、直列に接続された電池セル100に接続されている。制御回路20には、外部機器(不図示)と接続するための外部正極端子720および外部負極端子740を備えている。外部正極端子720は、制御回路20内の配線(不図示)を介して、電池セル100側の内部正極端子160に接続している。また、外部負極端子740は、制御回路20内の配線(不図示)を介して、電池セル100側の内部負極端子180に接続している。なお、制御回路20の演算通信部400は、外部機器に信号を送受信するための外部通信端子760に接続している。
 内部正極端子160と外部正極端子720との間には、充電または放電を停止するためのスイッチ500が設けられている。この場合、スイッチ500は、たとえば、PチャネルのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。スイッチ500内には、二つのPチャネルのMOSFETが設けられている。これにより、片方のMOSFETが充電を制御するために用いられる。一方、他方のMOSFETが放電を制御するために用いられる。また、スイッチ500における各々のMOSFETは、電圧電流測定部200に接続している。
 なお、スイッチ500がNチャネルのMOSFETである場合は、スイッチ500は、内部負極端子180と外部負極端子740との間に配置される。その他、スイッチ500は、たとえば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor、IGBT)、リレーまたはブレーカーであってもよい。
 電圧電流測定部200は、複数の電池セル100の各々の電圧および電流を測定する。電圧電流測定部200は、電圧を測定するため、各々の電池セル100の両端に接続している。
 また、内部負極端子180と外部負極端子740との間には、抵抗値が既知の抵抗220が設けられている。電圧電流測定部200は、抵抗220の両端に接続している。これにより、抵抗220にかかる電圧値を測定することにより、上記抵抗値で割った値を電池セル100に流れる電流値として算出する。なお、この抵抗220にかかる電圧値を電流値へ変換するための算出は、演算通信部400における算出部420で行ってもよい。
 電圧電流測定部200は、演算通信部400の測定結果受付部460に接続している。これにより、電圧電流測定部200により測定された電圧および電流の測定結果は、測定結果受付部460に送信される。
 温度測定部300は、電池セル100の温度を測定する。温度測定部300は、温度センサー320を有している。温度センサー320は、たとえば、熱電対である。温度測定部300は、温度センサー320で生じる熱起電力等の信号を受けて温度を算出する。なお、演算通信部400の算出部420が、温度センサー320の信号から温度を算出してもよい。この場合、算出部420は、温度測定部300を兼ねてもよい。
 温度測定部300の温度センサー320は、電池セル100に接するように設けられている。たとえば、温度センサー320は、電池セル100を収容する外装体(不図示)に貼り付けられている。
 温度センサー320は、たとえば、複数の電池セル100のうち一つの電池セル100に接するように設けられている。この温度センサー320が取り付けられた電池セル100を「第1電池セル」(図中符号不図示)とする。第1電池セルは、たとえば、当該電池パック10内で平均的な温度と考えられる部分に設けられている。これにより、全ての電池セル100の温度を測定せずに、当該第1電池セルの温度を電池パック10全体の温度と推定することができる。すなわち、後述するように、温度に依存する第1電池セルの内部抵抗を、電池パック10において直列に接続された全ての電池セル100の内部抵抗の平均値としてみなすことができる。
 温度測定部300は、演算通信部400の測定結果受付部460に接続している。これにより、温度測定部300により測定された温度の測定結果は、測定結果受付部460に送信される。
 次に、図2を用いて、演算通信部400について説明する。演算通信部400は、たとえば、算出部420、通信手段(通信部440)、測定結果受付部460および記憶部480を備えている。
 測定結果受付部460は、上述のように、電圧電流測定部200および温度測定部300から、電池セル100の電圧、電流および温度の測定結果を受け付ける。また、測定結果受付部460は、受け付けた測定結果を算出部420に送信する。
 また、測定結果受付部460は、電池セル100の電圧、電流および温度の測定結果を記憶部480に送信してもよい。記憶部480は、これら結果を受けて、随時保存していく。
 また、記憶部480は、電池セル100の温度から電池セル100の内部抵抗を算出するためのデータである内部抵抗データを保存している。
 ここで、図3は、温度センサー320が取り付けられた第1電池セルに関して、予め測定された温度に対する内部抵抗を示している。なお、第1電池セルの内部抵抗をrとする。
 図3のように、第1電池セルの内部抵抗rは、温度に依存して変化する傾向にある。なお、他の電池セル100の内部抵抗も同じ傾向にある。電池セル100がLiイオン二次電池である場合、第1電池セルの内部抵抗rは、図中の温度範囲において、単調減少となっている。記憶部480は、図3で示されたように予め測定された第1電池セルの内部抵抗rの温度依存性を保存している。
 ここで、記憶部480は、内部抵抗データとして、数値化された温度と、内部抵抗とのテーブルを保存している。記憶部480は、内部抵抗データとして、温度に対する内部抵抗の関数を保存していてもよい。この関数は、図3のグラフにフィッティングさせた近似関数であってもよい。これにより、後述する算出部420は、測定された現在の第1電池セルの温度に基づいて、第1電池セルの内部抵抗を算出することができる。
 さらに、記憶部480は、たとえば、最初に電池パック10が満充電となった時を基準時刻0とし、当該基準時刻における電池パック10の電力量である初期電力量(後述E)を保存している。基準時刻は、たとえば、電池パック10の製造時に、満充電となったときに0にセットされている。これにより、後述する電力算出方法によって、現在の電池パック10の電力量(E(t))を算出することができる。
 算出部420は、測定結果受付部460に接続している。算出部420は、測定結果受付部460から受信した電池セル100の電圧、電流および温度の測定結果から、電池パック10の電力量の変化量(ΔE(t))等を算出する。
 また、算出部420は、記憶部480に接続している。算出部420は、記憶部480に保存された内部抵抗データを参照して、測定結果受付部460から受信した現在の温度における第1電池セルの内部抵抗を決定する。以上、算出部420における電力量算出方法については、詳細を後述する。
 また、算出部420には、タイマー(不図示)が設けられている。これにより、基準時刻0からの現在の時刻tを求めることができる。
 さらに、算出部420は、通信部440に接続している。算出部420は、算出した電池パック10の電力変化量または電力量を通信部440に送信する。また、通信部440は、外部通信端子760を介して、電力変化量または電力量に基づいた信号を外部機器に送信する。
 次に、図4および図5を用い、第1の実施形態に係る電池パック10の電力算出方法について説明する。まず、直列に接続された複数の電池セル100の電圧および電流を測定するとともに、電池セル100の温度を測定する(S110、測定ステップ)。次いで、電池セル100の温度に基づいて、現在の電池セル100の内部抵抗を決定する(S120)。次いで、電池セル100の電圧、電流および温度に基づいて、電池セル100に残存した電力量の変化量である電力変化量ΔE(t)を算出する(S130、算出ステップ)。以下、詳細を説明する。
 電力算出を開始する前に、記憶部480は、予め、上述した第1電池セルの内部抵抗データを保存している。また、記憶部480は、最初に電池パック10が満充電となった時を基準時刻0とし、当該基準時刻における電池パック10の電力量である初期電力量Eを保存している。
 まず、電圧電流測定部200は、直列に接続された複数の電池セル100の電圧および電流を測定する。なお、電圧電流測定部200は、直列に接続された複数の電池セル100の両端の電圧を測定することにより、全ての電池セル100の合計電圧を測定する。ここで、現在の時刻tとしたとき、当該合計電圧をV(t)とする。なお、電圧電流測定部200は、電池パック10の正極端子160および負極端子180の間の電圧を測定し、当該測定電圧を当該合計電圧V(t)に変えて用いてもよい。
 また、電圧電流測定部200は、抵抗220の両端の電圧から各々の電池セル100に流れる電流を測定する。ここで、当該電流をI(t)とする。
 電圧電流測定部200は、電池セル100の合計電圧V(t)および電流I(t)を測定結果受付部460に送信する。
 また、温度測定部300は、第1電池セルに取り付けられた温度センサー320からの信号に基づいて、第1電池セルの温度を測定する。温度測定部300は、温度の測定結果を測定結果受付部460に送信する。以上のようにして、電池セル100の電圧、電流および温度を測定する(S110)。
 次いで、電池セル100の内部抵抗の総和である総内部抵抗Rtemp(t)を決定する(S120)。この処理の詳細は、図5を用いて後述する。
 次いで、算出部420は、電池セル100の電圧並びに電流、および第1電池セルの温度に基づいて決定された総内部抵抗Rtemp(t)に基づいて、下記式(1)のように、電池セル100に残存した電力の変化量である電力変化量ΔE(t)を算出する(S130、算出ステップ)。
Figure JPOXMLDOC01-appb-M000003
(ただし、V(t)は全ての電池セル100の電圧、I(t)は電池セル100の電流である。)
 ここで、式(1)の右辺第1項は、電池パック10が充電されている場合、全ての電池セル100に供給されている充電電力量を示している。また、式(1)の当該第1項は、電池パック10が放電している場合、全ての電池セル100から放電されている放電電力量を示している。また、この当該第1項の電力量を、電池セル100の「第1電力量収支」とする。
 また、式(1)の右辺第2項は、全ての電池セル100の内部抵抗によって消費される電力量を示している。ここで、当該第2項は、電池パック10が充電されている場合および放電している場合の両方の場合において、消費される電力量である。また、この当該第2項の電力量を、内部抵抗の「第2電力量収支」とする。なお、当該第2項の電力量は、主に電池セル100の内部抵抗によって熱エネルギーとして消費される。
 また、電池パック10が充電されている場合、I(t)は正の値である。したがって、電力変化量ΔE(t)は正の値となる。一方、電池パックが放電されている場合、I(t)は負の値である。したがって、電力変化量ΔE(t)は負の値となる。
 このとき、算出部420は、電力変化量ΔE(t)を記憶部480に保存してもよい。
 次いで、算出部420は、電池パック10の記憶部480から初期電力量Eを読み出し、下記式(4)により、現在の全ての電池セル100の電力量E(t)を算出する(S140)。この当該電力量E(t)を、電池パック10に蓄積される「蓄積電力量収支」とする。
Figure JPOXMLDOC01-appb-M000004
 なお、第1の実施形態の初期電力量Eは、電池パック10の製造時において電池パック10を放電終止から満充電までの間に放電を挟むことなく定電圧定電流で充電したときに、電池パック10に蓄えられる電力量として、予め計測されている。つまり、上述した式(1)の電力変化量ΔE(t)を、充電開始を時刻0として満充電になるまでの間計算することにより、満充電になったときの当該電力変化量が初期電力量Eであるとしている。なお、当該「満充電になったとき」は、充電電流が予め定めた基準値以下になったときである。また、放電が終了したとする「放電終止」は、合計電圧V(t)が所定の放電終止電圧になったときである。
 以上のようにして、電池セル100に残存した電力量E(t)(蓄積電力量収支)、および電力量の変化量である電力変化量ΔE(t)を算出する。
 次いで、図5を用い、先の電池セル100の内部抵抗の総和である総内部抵抗Rtemp(t)を決定するステップ(S120)について説明する。
 まず、算出部420は、測定結果受付部460から、温度の測定結果を受信する(S121)。
 次いで、算出部420は、記憶部480から内部抵抗データを読み出す(S122)。ここでの内部抵抗データは、図3で示されたように、第1電池セルの内部抵抗データである。
 次いで、算出部420は、記憶部480から読み出した内部抵抗データに基づいて、測定結果の温度から、電池セル100の内部抵抗を決定する。このとき、上述のように第1電池セルのみの温度を測定している場合、第1電池セルの内部抵抗r(t)を決定する(S123)。また、内部抵抗データがテーブルである場合は、測定結果の温度に対応する内部抵抗をテーブルから読み取ることにより決定する。一方、内部抵抗データが関数である場合は、測定結果の温度を関数に代入して、内部抵抗を決定する。
 次いで、算出部420は、上記した内部抵抗に基づいて、下記のようにして、電池セル100の内部抵抗の総和である総内部抵抗Rtemp(t)を決定する(S124)。
 ここで、電池パック10において、直列に接続された各々の電池セル100の内部抵抗をr(t)とする(ただし、kは1~Nの自然数)。電池セル100は直列に接続されているため、電池セル100の内部抵抗r(t)の総和である総内部抵抗Rtemp(t)は、下記式(2)で求められる。
Figure JPOXMLDOC01-appb-M000005
 温度センサー320が電池パック10内で平均的な温度と考えられる第1電池セルに取り付けられている場合、複数の電池セル100のうち、第1電池セルの内部抵抗r(t)が全ての電池セル100の内部抵抗r(t)の平均値とみなすことができる。
 この場合、総内部抵抗Rtemp(t)は、下記式(3)で求めることができる。
Figure JPOXMLDOC01-appb-M000006
 S123で決定した第1電池セルの内部抵抗r(t)を、上記式(3)に代入する。このようにして、第1電池セルの内部抵抗r(t)が全ての電池セル100の内部抵抗の平均値であるとして、総内部抵抗Rtemp(t)を決定する(S124)。
 以上のようにして、電池セル100の内部抵抗の総和である総内部抵抗Rtemp(t)を決定する(S120)。
 次に、第1の実施形態の効果について、説明する。
 第1の実施形態によれば、電圧電流測定部200および温度測定部300は、電池セル100の電圧、電流および温度を測定する。算出部420は、電圧および電流に基き電池セル100の「第1電力量収支」を算出するとともに、温度に基き電池セル100の内部抵抗を決定し、電流と前記内部抵抗に基き内部抵抗の「第2電力量収支」を算出する。これにより、算出部420は、電池セル100の第1電力量収支および内部抵抗の第2電力量収支に基き電池セル100に蓄積される「蓄積電力量収支」(電力量E(t))を算出する。
 たとえば、記憶部480は、温度に依存する電池セル100の内部抵抗を算出するための内部抵抗データを保存している。算出部420は、この内部抵抗データを参照して、測定した現在の温度から、現在の電池セル100の内部抵抗を決定する。これにより、算出部420は、基準時刻0から現在の時刻tまでにおける全ての電池セル100の電力変化量ΔE(t)を算出する。
 ここで、図3のように、電池セル100の内部抵抗は、温度に依存している。電池セル100の内部抵抗は、たとえば、低温ほど高くなる傾向にある。このため、電池パック10を充電または放電するときの残存した電力量E(t)、または電力変化量ΔE(t)を算出する際には、式(1)の第2項における内部抵抗による損失成分が無視できない。よって、実際に電池パック10に残存した電力変化量ΔE(t)は、単純に電池パック10の電圧と電流を乗じた式(1)の第1項における電力変化量とは異なっている。したがって、本実施形態のように、電池セル100の内部抵抗による電力量の損失成分を考慮することにより、電池パックに残存した電力量E(t)を正確に算出することができる。
 以上のようにして、第1の実施形態によれば、温度に依存した内部抵抗データに基づいて、電池パック10に残存した電力量E(t)を正確に算出することができる。
 なお、上述した第1の実施形態では、最初に電池パック10が満充電となった時を基準時刻0とした。しかし、基準時刻0は、合計電圧V(t)が最初に放電終止に至ったときに0にセットするとしてもよい。ただし、この場合、電池パック10の初期電力量は0とする。また、基準時刻0は、電池パック10が放電終止に至ったとき毎に0にセットしなおすとしてもよい。ただし、この場合、電池パック10の初期電力量も共に0にセットしなおすのが望ましい。また、基準時刻0は、電池パック10が放電終止に至り、且つ、そのときに温度測定部300が測定した温度が所定の範囲内にあるときにセットしなおすなどとしてもよい。
 (第2の実施形態)
 図6を用い、第2の実施形態に係る電池パック10の電力量算出方法について説明する。図6は、第2の実施形態に係る電力量算出方法を示すフローチャートである。第2の実施形態は、電力算出方法において、総内部抵抗Rtemp(t)を決定するS120のみが異なる点を除いて、第1の実施形態と同様である。第2の実施形態によれば、電池セル100の劣化を考慮して、総内部抵抗Rtemp(t)を補正していく。以下詳細を説明する。
 第2の実施形態は、第1の実施形態と同様の電池パック10を用いることができる。なお、記憶部480は、予め、第1電池セルの内部抵抗データを保存している。また、記憶部480は、最初に電池パック10が満充電となった時を基準時刻0とし、当該基準時刻における電池パック10の電力量である初期電力量Eを保存している。
 第2の実施形態の電力量算出方法において、総内部抵抗Rtemp(t)を決定するS120は、以下の方法で行う。
 温度測定結果の受信(S121)から、式(3)により、総内部抵抗Rtemp(t)を決定する(S124)までを、第1の実施形態と同様にして行う。
 次いで、電池パック10が、現在、満充電であるか否かを判定する(S125)。電池パック10が満充電でない場合(S125No)、第1の実施形態と同様に、図4のS130を行う。
 一方、電池パック10が満充電である場合(S125Yes)、算出部420は、下記のようにして、初期電力量Eに対する現在の電力量E(t)を比較する。このとき、現在の時刻はtであるとする。
 算出部420は、初期電力量E0を基準として、現在の電力量E(t)を比較し、下記式(5)により劣化比率lを算出する(S126)。
Figure JPOXMLDOC01-appb-M000007
 なお、電池パック10の劣化がほとんどない場合、ΔE(t)は0である。このため、劣化比率lは1である。一方、電池パック10の劣化が顕著になってきた場合、ΔE(t)は0より小さい値となる。このため、劣化比率lは1より小さい値となる。
 算出部420は、上記式(5)で求められた劣化比率lを記憶部480に保存する。
 次いで、算出部420は、劣化比率lを用いて総内部抵抗Rtemp(t)を補正する。このとき、算出部420は、直前の総内部抵抗Rtemp(t)に劣化比率lの逆数を乗じて、当該総内部抵抗Rtemp(t)を補正する(S127)。具体的には、時刻t以降の総内部抵抗Rtemp(t)を1/l倍した値を使用して、電力変化量ΔE(t)を算出していく。
 なお、電池パック10の劣化がほとんどない場合、劣化比率lは1であるため、総内部抵抗Rtemp(t)は上記補正によって変化しない。一方、電池パック10の劣化が顕著になってきた場合、劣化比率lは1より小さいため、当該劣化を考慮した補正により、総内部抵抗Rtemp(t)は大きい値となる。
 算出部420は、上記補正後のRtemp(t)を、随時、記憶部480に保存していく。
 以上のようにして、総内部抵抗Rtemp(t)を決定する。以下のステップは、第1の実施形態と同様である。
 次に、第2の実施形態の効果について説明する。
 電池パック10を充電または放電を繰り返すことにより、電池パック10に充電することができる満充電電力量は減少していく。それに伴って、電池セル100の内部抵抗は上昇する傾向にある。具体的には、電池セル100の正極材料、負極材料または電解質などが劣化することで、電池セル100の内部抵抗が上昇することが考えられる。
 このような場合、電池セル100の内部抵抗データは、記憶部480に予め保存しておいたものと異なってくることが予想される。
 そこで、第2の実施形態では、電池パック10が満充電となったとき毎に、満充電時の電力量E(t)を初期電力量Eと比較する。これにより、劣化比率lを算出する。さらに、この劣化比率lに基づいて、当該満充電時以降の総内部抵抗Rtemp(t)を補正していく。
 したがって、第2の実施形態によれば、電池セル100の劣化によって変化した内部抵抗を補正していくことにより、随時、正確な電池パック10の電力量E(t)を算出していくことができる。
 (第3の実施形態)
 図7を用い、第3の実施形態について説明する。図7は、第3の実施形態に係る電池パック10および制御回路20の構成を示す回路図である。第3の実施形態は、制御回路20が電池パック10の外側に設けられている点を除いて、第1の実施形態と同様である。以下詳細を説明する。
 図7のように、制御回路20は、電池パック10の外側に設けられている。制御回路20は、たとえば、電池パック10から独立した充放電機器(不図示)等に設けられている。または、制御回路20は、電池パック10を放電して使用する際に用いる使用機器内に設けられていてもよい。
 電池パック10には、第1の実施形態と同様に、複数の電池セル100が直列に接続されている。電池パック10には、電池パック10の充放電を行うための正極端子160および負極端子180が設けられている。そのほか、それぞれの電池セル100の間において、電池セル端子130が設けられている。
 電池パック10の外装体(不図示)の一部には、温度センサー320を取り付けるための挿入口が設けられている。これにより、第1電池セルの温度を外部の温度測定部300により測定することができる。なお、温度センサー320は、電池パック10の一部として取り付けられていてもよい。この場合、温度センサー320用の端子(不図示)が電池パック10の外装体から露出するように設けられていればよい。
 制御回路20は、電圧電流測定部200、温度測定部300、演算通信部400およびスイッチ500を備えている。制御回路20の電池パック10側には、制御回路20の正極端子620および負極端子640が設けられている。制御回路20の正極端子620および負極端子640は、たとえば配線(不図示)を介して、それぞれ電池パック10の正極端子160および負極端子180に接続している。これにより、制御回路20側から電池パック10に充電の電力を供給することができ、また、電池パック10側から制御回路20側に放電の電力を伝達することができる。
 また、制御回路20の電池パック10側には、電圧電流測定部200の測定端子660が設けられている。電圧電流測定部200の測定端子660は、配線(不図示)を介して、電池パック10の電池セル端子130に接続している。これにより、制御回路20が電池パック10の外側に設けられていても、電圧電流測定部200により、それぞれの電池セル100の電圧および電流を測定することができる。
 第3の実施形態によれば、制御回路20が電池パック10の外側に設けられている。このような場合においても、第1の実施形態と同様の効果を得ることができる。
 (第4の実施形態)
 図8を用い、第4の実施形態について説明する。図8は、第4の実施形態に係る電力量算出方法を示すフローチャートである。第4の実施形態は、蓄積電力量収支(電力量E(t))と電気量収支C(t)に基き電池セル100が出力できる実質電力量Ee(t)を算出する点を除いて、第1の実施形態と同様である。以下詳細を説明する。
 上述した第1の実施形態では、算出部420は電池パック10に残存した電力量E(t)を算出し、通信部440は算出した電池パック10の電力変化量ΔE(t)または電力量E(t)に基いた信号を外部機器に送信するとした。第4の実施形態では、この算出部420は、たとえば外部機器が消費できる電池パック10に蓄積された実質の電力量(実質電力量E(t))を算出してもよい。通信部440は、実質電力量E(t)に基いた予測信号を外部機器に送信してもよい。
 図8において、現在、電池パック10を放電しているとする。S140までを行い、現在の全ての電池セル100の電力量E(t)(蓄積電力量収支)を算出する。
 次いで、算出部420は、下記式(6)により、電流I(t)に基き電池セル100の電気量収支C(t)を算出する(S150)。
Figure JPOXMLDOC01-appb-M000008
 式(6)において、電気量収支C(t)は、時刻tにおいて電池パック10に蓄えられた電気量を表す。電気量収支C(t)の単位は、Ahである。また、基準時刻t=0は、第1の実施形態と同様にして、最初に電池パック10が満充電となったときである。また、初期値Cは、電池パック10の電気量収支の初期値である。すなわち、初期値Cは、基準時刻t=0のときに電池パック10に蓄えられている電気量のことである。つまり、電気量収支C(t)は、基準時刻0から時刻tまでの電池パック10の「電気量収支」を示している。
 次いで、算出部420は、下記式(7)により、蓄積電力量収支(電力量E(t))と電気量収支C(t)に基き電池セル100が出力できる実質電力量E(t)を算出する(S160)。式(7)のように、実質電力量E(t)は、電池パックに現存する電力量E(t)(蓄積電力量収支)から、将来的に電池セル100の内部抵抗により消費される電力量の予測値(右辺第2項)を差し引くことより求めることができる。
Figure JPOXMLDOC01-appb-M000009
 式(7)の右辺第2項は、将来的に電池セル100の内部抵抗により消費される電力量の予測値である。ただし、現在の総内部抵抗Rtemp(t)が定常的であり、かつ、電池パック10が、電池パック10に蓄えられた電気量が0になるまで、現在の電流I(t)で放電し続けると仮定している。
 式(7)の右辺第2項のうち、-I(t)Rtemp(t)は、電池パック10の内部抵抗で消費される現在の電力(単位W)である。また、-C(t)/I(t)は、電池パック10に蓄えられた電気量が0になるまでの予測時間(単位h)である。
 式(7)の右辺第2項において、電池パック10の内部抵抗で消費される現在の電力に、電池パック10に蓄えられた電気量が0になるまでの予測時間を乗じることにより、将来的に電池セル100の内部抵抗により消費される電力量の予測値(単位Wh)を求めることができる。
 なお、式(7)の右辺第2項において、I(t)とする部分を基準時刻0から時刻tまでの平均電流とするなどとしてもよい。
 以上のようにして、算出部420は、式(7)により、右辺第1項で算出される電池パックに現存する電力量E(t)(蓄積電力量収支)に、右辺第2項で算出される将来的に電池セル100の内部抵抗により消費される電力量の予測値を加算することにより、実質電力量E(t)を算出する。
 このとき、通信部440は、実質電力量E(t)に基いた予測信号を外部機器に送信してもよい。これにより、外部機器は、この予測信号に基づいて、電池パック10の内部抵抗によって消費される電力量を考慮して、実質的に消費することが出来る電力量を予測することができる。
 第4の実施形態の効果について、説明する。ここで、電池パック10から電力を供給される外部機器が将来的に消費可能な実質の電力量(実質電力量)は、電池パック10に蓄積された電力量よりも少ない。つまり、当該実質電力量は、電池パックに蓄積された電力量から、将来的に電池セル100の内部抵抗により消費される電力量を差し引いた電力量となる。第4の実施形態では、算出部420は、当該実質電力量E(t)を式(7)によって算出する。従って、第4の実施形態によれば、電池パック10の内部抵抗によって消費される電力量を考慮して、電池パック10が出力できる実質電力量を予測することができる。
 なお、上述した第4の実施形態では、説明を簡略化するため、現在、電池パックを放電しているとした。しかし、現在、電池パックを充電しているとしても同様に、第4の実施形態の効果が得られる。ただし、この場合、算出部420は、式(7)の右辺第2項において、I(t)とする部分を、電池パックが前回放電したときの放電電流や、基準時刻0から時刻tまでの平均放電電流などの放電電流に替えて、式(7)を計算する。
 以上の実施形態において、上記した制御回路20を備える電池パック10の電力算出機器も開示されている。
 以上の実施形態においては、一つの第1電池セルのみの温度を測定した場合を説明したが、複数の電池セル100の温度を測定し、それぞれの内部抵抗を用いてもよい。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上記実施形態では電池セル100がラミネート型電池である場合を説明したが、電池セル100が円筒型や角型などの他の形態の電池である場合も、同様に本発明の効果を得ることができる。
 この出願は、2012年2月29日に出願された日本出願特願2012-44635号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  直列に接続された複数の電池ユニットと、
     前記電池ユニットの電圧および電流を測定する電圧電流測定手段と、
     前記電池ユニットの温度を測定する温度測定手段と、
     前記電圧および電流に基き前記電池ユニットの第1電力量収支を算出するとともに、前記温度に基き前記電池ユニットの内部抵抗を決定し、前記電流と前記内部抵抗に基き前記内部抵抗の第2電力量収支を算出することによって、前記電池ユニットの前記第1電力量収支および前記内部抵抗の前記第2電力量収支に基き前記電池ユニットに蓄積される蓄積電力量収支を算出する算出手段と、
    を備える電池パック。
  2.  請求項1に記載の電池パックにおいて、
     前記算出手段は、さらに、前記電流に基き前記電池ユニットの電気量を算出し、前記蓄積電力量収支と前記電気量に基き前記電池ユニットが出力できる実質電力量を算出する電池パック。
  3.  直列に接続された複数の電池ユニットと、
     前記電池ユニットの電圧および電流を測定する電圧電流測定手段と、
     前記電池ユニットの温度を測定する温度測定手段と、
     前記電池ユニットの前記電圧、前記電流および前記温度に基づいて、前記電池ユニットに残存した電力量の変化量である電力変化量を算出する算出手段と、
     前記電池ユニットの温度から前記電池ユニットの内部抵抗を算出するためのデータである内部抵抗データを保存する記憶手段と、
    を備え、
     前記算出手段は、前記内部抵抗データを参照して、現在の前記温度における前記電池ユニットの内部抵抗を決定し、基準時刻0から現在の時刻tまでにおける全ての前記電池ユニットの前記電力変化量をΔE(t)、前記電池ユニットの内部抵抗の総和である総内部抵抗をRtemp(t)としたとき、下記式(1)により前記電力変化量ΔE(t)を算出する電池パック。
    Figure JPOXMLDOC01-appb-M000010
    (ただし、V(t)は全ての前記電池ユニットの合計電圧、I(t)は前記電池ユニットの前記電流である。)
  4.  請求項3に記載の電池パックにおいて、
     前記温度測定手段は、少なくとも前記電池ユニットのうちの一つである第1電池ユニットの温度を測定し、
     前記算出手段は、当該第1電池ユニットの温度から前記内部抵抗データを参照することにより前記第1電池ユニットの前記内部抵抗を特定し、前記電池ユニットの内部抵抗の総和Rtemp(t)を、下記式(3)により算出して、前記電力変化量を算出する電池パック。
    Figure JPOXMLDOC01-appb-M000011
    (ただし、Nは前記電池ユニットの総数、r(t)は前記第1電池ユニットの前記内部抵抗である。)
  5.  請求項3または4に記載の電池パックにおいて、
     前記記憶手段は、最初の満充電時を基準時刻0とし、当該基準時刻における前記電力量である初期電力量を保存し、
     前記算出手段は、前記初期電力量と現在の前記電力変化量との和により、現在の前記電力量を算出する電池パック。
  6.  請求項5に記載の電池パックにおいて、
     前記算出手段は、前記初期電力量を基準に直前の満充電時の前記電力量を比較した劣化比率を算出し、当該劣化比率に基づいて前記総内部抵抗を補正する電池パック。
  7.  請求項6に記載の電池パックにおいて、
     前記算出手段は、直前の前記総内部抵抗に前記劣化比率の逆数を乗じて、当該総内部抵抗を補正する電池パック。
  8.  請求項1または2に記載の電池パックにおいて、
     前記実質電力量に基づいた予測信号を外部機器に送信する通信手段をさらに備える電池パック。
  9.  請求項3~7のいずれか一項に記載の電池パックにおいて、
     前記電力量に基づいた信号を外部機器に送信する通信手段をさらに備える電池パック。
  10.  直列に接続された複数の電池ユニットの電圧および電流を測定するとともに、前記電池ユニットの温度を測定する測定ステップと、
     前記電池ユニットの前記温度に基づいて、現在の前記電池ユニットの内部抵抗を決定するステップと、
     前記電圧および電流に基き前記電池ユニットの第1電力量収支を算出するとともに、前記温度に基き前記電池ユニットの内部抵抗を決定し、前記電流と前記内部抵抗に基き前記内部抵抗の第2電力量収支を算出することによって、前記電池ユニットの前記第1電力量収支および前記内部抵抗の前記第2電力量収支に基き前記電池ユニットに蓄積される蓄積電力量収支を算出する算出ステップと、
    を備える電池パックの電力量算出方法。
  11.  直列に接続された複数の電池ユニットの電圧および電流を測定するとともに、前記電池ユニットの温度を測定する測定ステップと、
     前記電池ユニットの前記温度に基づいて、現在の前記電池ユニットの内部抵抗を決定するステップと、
     前記電池ユニットの前記電圧、前記電流および前記温度に基づいて、前記電池ユニットに残存した電力量の変化量である電力変化量を算出する算出ステップと、
    を備え、
     前記算出ステップにおいて、
     前記電池ユニットの内部抵抗に基づいて、基準時刻0から現在の時刻tまでにおける全ての前記電池ユニットの前記電力変化量をΔE(t)、前記電池ユニットの内部抵抗の総和である総内部抵抗をRtemp(t)としたとき、下記式(1)により前記電力変化量ΔE(t)を算出する電池パックの電力量算出方法。
    Figure JPOXMLDOC01-appb-M000012
    (ただし、V(t)は全ての前記電池ユニットの合計電圧、I(t)は前記電池ユニットの前記電流である。) 
PCT/JP2013/000711 2012-02-29 2013-02-08 電池パックおよび電池パックの電力量算出方法 WO2013128811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014501995A JP6138757B2 (ja) 2012-02-29 2013-02-08 電池パックおよび電池パックの電力量算出方法
CN201380011447.2A CN104145190B (zh) 2012-02-29 2013-02-08 电池组和用于计算电池组的电能的方法
US14/380,781 US10078116B2 (en) 2012-02-29 2013-02-08 Battery pack and method for calculating electric energy of battery pack
US16/059,185 US10670660B2 (en) 2012-02-29 2018-08-09 Battery pack and method for calculating electric energy of battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012044635 2012-02-29
JP2012-044635 2012-02-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/380,781 A-371-Of-International US10078116B2 (en) 2012-02-29 2013-02-08 Battery pack and method for calculating electric energy of battery pack
US16/059,185 Division US10670660B2 (en) 2012-02-29 2018-08-09 Battery pack and method for calculating electric energy of battery pack

Publications (1)

Publication Number Publication Date
WO2013128811A1 true WO2013128811A1 (ja) 2013-09-06

Family

ID=49082028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000711 WO2013128811A1 (ja) 2012-02-29 2013-02-08 電池パックおよび電池パックの電力量算出方法

Country Status (4)

Country Link
US (2) US10078116B2 (ja)
JP (1) JP6138757B2 (ja)
CN (1) CN104145190B (ja)
WO (1) WO2013128811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068916A (ja) * 2015-09-28 2017-04-06 公立大学法人大阪市立大学 二次電池ユニット及びそれを備える二次電池システム
WO2017086400A1 (ja) * 2015-11-19 2017-05-26 株式会社東芝 蓄電池システム、蓄電池装置及び方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128808A1 (ja) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 電池制御システム、電池パック、電子機器および充電機器
JP6298616B2 (ja) * 2013-11-14 2018-03-20 ルネサスエレクトロニクス株式会社 半導体装置、電池パック及び携帯端末
CN106299548A (zh) * 2015-05-28 2017-01-04 西安中兴新软件有限责任公司 一种温度控制方法及装置
CN106324317A (zh) * 2015-07-06 2017-01-11 中兴通讯股份有限公司 电压测量方法及装置
GB2552777B (en) 2016-07-21 2022-06-08 Petalite Ltd A battery charging system and method
US11300624B2 (en) 2017-07-28 2022-04-12 Northstar Battery Company, Llc System for utilizing battery operating data
CN110682831B (zh) * 2018-06-19 2021-05-14 广州汽车集团股份有限公司 一种车载动力电池均衡方法、装置及汽车
KR20200098977A (ko) * 2019-02-13 2020-08-21 주식회사 엘지화학 배터리 셀 고온을 검출하는 배터리 모듈 및 배터리 셀의 고온을 검출하는 방법
KR20210039186A (ko) 2019-10-01 2021-04-09 주식회사 엘지화학 배터리 전력 산출 장치 및 방법
JP7326237B2 (ja) 2020-09-07 2023-08-15 株式会社東芝 複数の電池に関する判定装置、蓄電システム、判定方法及び判定プログラム
US11448709B1 (en) * 2021-03-03 2022-09-20 Semiconductor Components Industries, Llc Battery system for battery degradation estimation
GB2608801B (en) * 2021-07-08 2024-01-10 Equinor Energy As Method for the removal of oxygenates from hydrocarbon fluids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082841A (ja) * 1996-09-05 1998-03-31 Nissan Motor Co Ltd 電気車用電池の残存容量推定方法
JPH11218567A (ja) * 1997-10-30 1999-08-10 Nissan Motor Co Ltd 2次電池の電池特性算出方法および残存容量推定方法
WO2008041471A1 (fr) * 2006-09-29 2008-04-10 Toyota Jidosha Kabushiki Kaisha Véhicule hybride et procédé de commande de déplacement de véhicule hybride

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160380A (en) 1997-02-13 2000-12-12 Nissan Motor Co., Ltd. Method and apparatus of correcting battery characteristic and of estimating residual capacity of battery
JP3807965B2 (ja) * 2001-09-19 2006-08-09 インターナショナル・ビジネス・マシーンズ・コーポレーション インテリジェント電池、電気機器、コンピュータ装置及び電池の劣化度を求める方法
JP2003194897A (ja) * 2001-12-26 2003-07-09 Sanyo Electric Co Ltd 電池の残容量演算方法とパック電池
JP4577274B2 (ja) * 2006-06-06 2010-11-10 株式会社デンソー 車両用電源システム
CN100559205C (zh) 2006-09-07 2009-11-11 长安大学 集中/分布式电动汽车蓄电池组工作参数检测系统
CN101312293B (zh) * 2007-05-22 2011-02-16 深圳市金一泰实业有限公司 一种动力锂电池智能管理系统
JP5073416B2 (ja) 2007-08-27 2012-11-14 株式会社オートネットワーク技術研究所 車両用電源装置
EP2555008A4 (en) * 2010-03-30 2013-08-28 Honda Motor Co Ltd METHOD FOR DETECTING THE BATTERY CAPACITY OF A SECONDARY BATTERY
JP2012002660A (ja) * 2010-06-16 2012-01-05 Toshiba Corp 二次電池装置
CN103645442A (zh) * 2013-12-06 2014-03-19 南车株洲电力机车有限公司 电力机车蓄电池剩余容量的检测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082841A (ja) * 1996-09-05 1998-03-31 Nissan Motor Co Ltd 電気車用電池の残存容量推定方法
JPH11218567A (ja) * 1997-10-30 1999-08-10 Nissan Motor Co Ltd 2次電池の電池特性算出方法および残存容量推定方法
WO2008041471A1 (fr) * 2006-09-29 2008-04-10 Toyota Jidosha Kabushiki Kaisha Véhicule hybride et procédé de commande de déplacement de véhicule hybride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068916A (ja) * 2015-09-28 2017-04-06 公立大学法人大阪市立大学 二次電池ユニット及びそれを備える二次電池システム
WO2017086400A1 (ja) * 2015-11-19 2017-05-26 株式会社東芝 蓄電池システム、蓄電池装置及び方法

Also Published As

Publication number Publication date
CN104145190A (zh) 2014-11-12
US10670660B2 (en) 2020-06-02
US20180372803A1 (en) 2018-12-27
JPWO2013128811A1 (ja) 2015-07-30
CN104145190B (zh) 2017-07-11
JP6138757B2 (ja) 2017-05-31
US10078116B2 (en) 2018-09-18
US20150025825A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6138757B2 (ja) 電池パックおよび電池パックの電力量算出方法
JP4560540B2 (ja) 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置
EP2700966B1 (en) Apparatus and method for estimating battery state
US9071072B2 (en) Available charging/discharging current calculation method and power supply device
US8008891B2 (en) Simple method for accurately determining a state of charge of a battery, a battery management system using same, and a driving method thereof
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
JP6119402B2 (ja) 内部抵抗推定装置及び内部抵抗推定方法
KR102080632B1 (ko) 배터리관리시스템 및 그 운용방법
US8994334B2 (en) Battery state-of-charge calculation device
JP2006112786A (ja) 電池の残容量検出方法及び電源装置
EP2762909A2 (en) Battery management system and driving method thereof
EP2442126A2 (en) Battery management system and method of estimating battery state of charge
US11181584B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP2005049216A (ja) 二次電池の残容量算出方法およびバッテリパック
WO2011135631A1 (ja) 満充電容量補正回路、充電システム、電池パック、及び満充電容量補正方法
US20200018798A1 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP2009133676A (ja) 電池パックおよび充放電方法
EP3901643B1 (en) Apparatus and method for determining abnormality of a battery cell
JP2004271342A (ja) 充放電制御システム
JP5886225B2 (ja) 電池制御装置及び電池制御方法
US10027136B2 (en) Battery and electric bicycle
JP2018197708A (ja) 電流計測回路の故障判断装置
JP5090865B2 (ja) 起電力演算装置および充電状態推定装置
JP6365820B2 (ja) 二次電池の異常判定装置
JP2011061947A (ja) 充電制御装置及び充電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13754822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501995

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13754822

Country of ref document: EP

Kind code of ref document: A1