WO2017086400A1 - 蓄電池システム、蓄電池装置及び方法 - Google Patents

蓄電池システム、蓄電池装置及び方法 Download PDF

Info

Publication number
WO2017086400A1
WO2017086400A1 PCT/JP2016/084162 JP2016084162W WO2017086400A1 WO 2017086400 A1 WO2017086400 A1 WO 2017086400A1 JP 2016084162 W JP2016084162 W JP 2016084162W WO 2017086400 A1 WO2017086400 A1 WO 2017086400A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
internal resistance
resistance value
lead
lead storage
Prior art date
Application number
PCT/JP2016/084162
Other languages
English (en)
French (fr)
Inventor
幸一郎 三浦
英生 山崎
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2017086400A1 publication Critical patent/WO2017086400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments described herein relate generally to a storage battery system, a storage battery device, and a method.
  • lead-acid batteries have been widely used as secondary batteries other than driving batteries mounted on vehicles such as automobiles. This is because the lead-acid battery has a lower price per capacity compared to other secondary batteries and is superior in cost performance, has no memory effect that causes a decrease in battery capacity, and from small currents to large currents For example, the discharge is stable over a wide voltage range.
  • lead-acid batteries are vulnerable to overdischarge, and when overcharged (low SOC [State Of Charge]), internal short circuits and sulfation occur, resulting in a problem that the performance of the battery is greatly reduced and does not recover. .
  • the lead-acid battery has a large charge / discharge current flowing in a vehicle equipped with a so-called idling stop system that stops driving the engine when the vehicle is stopped. There was a risk of it.
  • a storage battery system has been proposed in which a storage battery is connected in parallel to the lead storage battery, and the voltage change of the lead storage battery is suppressed by the parallel connection of the storage batteries.
  • the present invention has been made in view of the above, and in a vehicle equipped with an idling stop system, it is possible to utilize the characteristics of storage batteries connected in parallel, extend the life of lead storage batteries, and effectively use regenerative power.
  • the object is to provide a storage battery system, a storage battery device and a method that can be used.
  • the storage battery system of the embodiment is connected in parallel with a lead storage battery mounted on a vehicle equipped with a power generation device and is capable of storing electric power from the power generation device, and a control SOC managed during normal use in the storage battery device
  • the control SOC range is set so that the voltage value corresponding to the lower limit of the range becomes the open circuit voltage value at the end of discharge of the lead storage battery, and based on the internal resistance value calculated or estimated for the lead storage battery and the storage battery device
  • a control unit that sets the control SOC range to be changeable.
  • FIG. 1 is a schematic configuration block diagram of a vehicle storage battery system according to an embodiment.
  • FIG. 2 is an explanatory diagram of a control SOC range of the lithium ion battery.
  • FIG. 3 is an explanatory diagram (part 1) of the operation at the time of starting the engine.
  • FIG. 4 is an operation explanatory diagram (No. 2) at the time of starting the engine.
  • FIG. 5 is an operation explanatory diagram (part 1) after the engine is started.
  • FIG. 6 is an operation explanatory diagram (part 2) after the engine is started.
  • FIG. 7 is an explanatory diagram of the operation when idling is stopped.
  • FIG. 8 is an explanatory diagram of a modification of the embodiment.
  • FIG. 9 is a schematic configuration block diagram of the vehicle storage battery system of the second embodiment.
  • FIG. 10 is a diagram for explaining the relationship between the SOC of the storage battery and the closed circuit voltage (CCV) of the storage battery.
  • FIG. 11 is a control process flowchart in the case of performing control by detecting internal resistance.
  • FIG. 12 is an explanatory diagram of a calculation example of the internal resistance value during discharge of the lead battery and the lithium ion battery.
  • FIG. 13 is an explanatory diagram of a calculation example of the internal resistance value during charging of the lead battery and the lithium ion battery.
  • FIG. 14 is an explanatory diagram of a specific operation.
  • FIG. 15 is a diagram for explaining the relationship between the SOC of the storage battery, the closed circuit voltage (CCV) of the storage battery, and the temperature.
  • FIG. 16 is a control process flowchart of the ECU when the temperature is detected for control.
  • FIG. 17 is a diagram visualizing a data table representing the relationship between the internal resistance value and the temperature.
  • FIG. 1 is a schematic configuration block diagram of a vehicle storage battery system according to a first embodiment.
  • the vehicle storage battery system 10 is connected in parallel to an alternator 12 that can be driven by an engine 11 and can generate power, a starter 13 that drives the engine 11 at start-up, a lead battery (lead storage battery) 14 as a main battery, and a lead battery 14.
  • the charging state (voltage, charging current, and temperature) of the lithium ion battery (lithium ion storage battery: storage battery device) 15, the in-vehicle electrical component 16, the lead battery 14, and the lithium ion battery 15 as a measured sub battery is measured, and the alternator
  • the ECU 17 is provided separately from a vehicle-mounted ECU (Electronic Control Unit) that performs 12 power generation settings.
  • the voltage applied to the vehicle-mounted electrical component 16 is referred to as a vehicle storage battery system voltage Vsystem.
  • lithium metal compounds include lithium metal compound containing at least one metal element selected from the group consisting of nickel and manganese Li a Ni b Co c Mn d
  • a non-aqueous electrolyte secondary battery including a negative electrode and a non-aqueous electrolyte containing a non-aqueous solvent is configured.
  • a positive electrode provided with a positive electrode active material containing layer represented by lithium manganate (LMO: Lithium Manganese Oxide), that is, LiMn 2 O 4 , a titanium-containing metal composite oxide
  • LMO Lithium Manganese Oxide
  • the non-aqueous electrolyte secondary battery includes a negative electrode including a product and a non-aqueous electrolyte including a non-aqueous solvent.
  • the average particle diameter of primary particles of the lithium titanium oxide is 1 ⁇ m or less, and the specific surface area of the negative electrode layer by the BET method is 3 to 50 m. It is desirable to be in the range of 2 / g.
  • the lithium titanium oxide may be represented by Li 4 + x Ti 5 O 12 (x is ⁇ 1 ⁇ x ⁇ 3) or Li 2 + x Ti 3 O 7 (x is ⁇ 1 ⁇ x ⁇ 3).
  • the titanium-containing metal composite oxide is a metal composite oxide containing at least one element selected from the group consisting of P, V, Sn, Cu, Ni and Fe and Ti. desirable.
  • the lithium ion battery 15 includes a plurality (for example, five) of single battery cells connected in series, and each single battery cell satisfies the following condition when the single battery cells are connected in series.
  • the SOC-OCV characteristics are adjusted.
  • FIG. 2 is an explanatory diagram of a control SOC range of the lithium ion battery.
  • the condition is that during normal use of the lithium ion battery 15 (not only is it controlled not to be in an overdischarged state and an overcharged state, but also a predetermined predetermined battery life is ensured and during the battery life period.
  • the total resistance value of the conductors that electrically connect the single battery cells constituting the lithium ion battery 15 is designed to be smaller than the internal resistance value of the single battery.
  • the internal resistance value as the lithium ion battery 15 is 1 / 1.5 or less of the internal resistance value of the lead battery 14 as the main battery.
  • the voltage of the lead battery 14 is prevented from being 12 V or less at which sulfation that causes deterioration of the lead battery 14 occurs during normal operation.
  • the lithium-ion battery 15 uses a rapid charge / discharge capacity, etc., and the electric power for starting the engine at the time of cold start (cold crank) or dark current that must be supplied to on-vehicle electrical components even when parking is large-capacity lead Since the battery 14 is used, the number of single cells of the lithium ion battery 15 can be reduced and the mass and volume can be reduced, which is effective for cost reduction.
  • the lithium ion battery 15 can be configured by connecting five single cells in series, and the mass and volume can be reduced. The size can be reduced and the cost can be reduced.
  • the alternator 12 can be surely brought into a non-operating state (non-power generation state) while stopping such as waiting for a signal, and while suppressing fuel consumption, a lithium ion battery This is because the mass and volume of 15 are suppressed to contribute to reduction of fuel consumption during traveling.
  • FIG. 3 is an explanatory diagram (part 1) of the operation at the time of starting the engine.
  • FIG. 4 is an operation explanatory diagram (No. 2) at the time of starting the engine.
  • the discharge currents of the lead battery 14 and the lithium ion battery 15 are supplied to the starter 13, and the starter 13 is driven.
  • the engine 11 is started at the time t3 and shifts to the driving state.
  • FIG. 5 is an operation explanatory diagram (part 1) after the engine is started.
  • FIG. 6 is an operation explanatory diagram (part 2) after the engine is started.
  • the time axis is the same as that in FIG.
  • the alternator (ALT) power generation request signal S ALT of the ECU 17 is assumed to be on the power generation side.
  • the alternator (ALT) 12 shifts from the non-power generation state to the power generation state at time t5.
  • the charging current of the lead battery 14 and the lithium ion battery 15 is increased, and the SOC of the lithium ion battery 15 is also gradually increased.
  • the internal resistance value of the lithium ion battery 15 is set smaller than the internal resistance value of the lead battery 14 as described above, the charging current of the lithium ion battery 15 increases and the lithium ion battery 15 is preferentially used. It will be charged.
  • the alternator (ALT) power generation request signal S ALT of the ECU 17 shifts to the power generation stop side.
  • the alternator 12 is in a no power generation state, and the SOC of the lithium ion battery 15 is maintained at the upper limit SOC.
  • the lead battery 14 and the lithium ion battery 15 shift to the discharge state at time t9 and the discharge current starts to increase.
  • FIG. 7 is an explanatory diagram of the operation when idling is stopped.
  • the engine 11 is stopped by the in-vehicle ECU, and the alternator 12 shifts again to the non-power generation state. .
  • the power supply (drive) from the lithium ion battery 15 to the lead battery 14 and the in-vehicle electrical component 16 is given priority.
  • Current supply and charge current supply As a result, the lead battery 14 that is not fully charged is in a charged state, and the lead battery 14 maintains a high SOC state as much as possible.
  • the charging current of the lead battery 14 and the lithium ion battery 15 is increased to be in a charged state, and the SOC of the lithium ion battery 15 is also gradually increased and again increases within the control SOC range.
  • the lithium ion battery 15 as a sub-battery with excellent input performance is preferentially charged over the lead battery 14 as the main battery and the amount of charge is also increased. Therefore, the regenerative energy from the alternator 12 can be efficiently stored as electric energy.
  • the lead battery 14 having a relatively high charging resistance can be charged from the lithium ion battery 15, and the lead battery 14 has a high SOC that is desirable for life. Can be maintained.
  • the power supply to the in-vehicle electrical component 16 is mainly performed from the lithium ion battery 15, so that the lead battery 14 can also be maintained at a high SOC desirable for life.
  • FIG. 8 is an explanatory diagram of a modification of the embodiment. 8 differs from the embodiment of FIG. 1 in that a switch 18 for electrically connecting or disconnecting the lead battery 14 and the lithium ion battery 15 is provided, and that the in-vehicle electrical component 16 is connected at the time of starting the engine.
  • the first in-vehicle electrical component 16A in which the power supply voltage variation is allowed and the second in-vehicle electrical component 16B in which the power supply voltage variation is not permitted even when the engine is started are divided into the first in the open state (off state) of the switch 18. This is the point that power is supplied from the lithium ion battery 15 to the in-vehicle electrical component 16A.
  • FIG. 9 is a schematic configuration block diagram of a vehicle storage battery system according to a second embodiment. 9, parts similar to those in FIG. 1 are denoted by the same reference numerals, and the detailed description thereof is incorporated.
  • the vehicle storage battery system according to the second embodiment differs from the vehicle storage battery system according to the first embodiment in that the voltage measurement sensor 21 that measures the voltage of the lead battery 14 and outputs the voltage measurement signal SvP to the ECU 17, and the lead battery 14.
  • a current measurement sensor 22 that measures the charge current or discharge current of the battery and outputs a current measurement signal ScP to the ECU 17; and the temperature of the lead battery 14 (the temperature of the casing, the terminal temperature, or the ambient temperature of the lead battery 14)
  • a temperature measurement sensor 23 that outputs a measurement signal StP to the ECU 17, a voltage measurement sensor 24 that measures a voltage of the lithium ion battery 15 and outputs a voltage measurement signal SvL to the ECU 17, and measures a charge current or discharge current of the lithium ion battery 15
  • a current measurement sensor 25 for outputting a current measurement signal ScL to the ECU 17; (Temperature of the housing of the lithium ion battery 15, the terminal temperature or ambient temperature) the temperature of the ion battery 15 and the temperature measuring
  • the lead storage battery including the lead battery 14 generally changes its open-circuit voltage (OCV) value and the internal resistance value depending on the environmental temperature (electrolyte temperature). Similarly, the internal resistance value of the lead storage battery also changes due to aging.
  • OCV open-circuit voltage
  • the charge voltage value for maintaining the lead storage battery in a substantially fully charged state is different. More specifically, the voltage for maintaining a full charge needs to be set higher within an appropriate voltage range as the temperature decreases or the aging progresses. On the other hand, the charging voltage for maintaining the full charge as the temperature becomes higher or closer to a new lead-acid battery may be set lower in the appropriate voltage range.
  • FIG. 10 is a diagram illustrating a relationship between the SOC of the storage battery and the closed circuit voltage (CCV) of the storage battery.
  • the lowest SOC value of the lithium ion battery 15 is equal to the voltage (the terminal (closed circuit) voltage of the lithium ion battery 15 is 13.6V). Therefore, the ECU 17 performs control with the upper limit of the control SOC of the lithium ion battery as SOCx.
  • FIG. 11 is a control process flowchart in the case of performing control by detecting internal resistance.
  • FIG. 12 is an explanatory diagram of a calculation example of the internal resistance value during discharge of the lead battery and the lithium ion battery.
  • the ECU 17 closes the closed circuit voltage value (terminal voltage value) V1 (P) of the lead battery 14 before starting the engine and the lead battery 14 whose voltage drops when the engine starts (at the maximum load) as shown in FIG.
  • a circuit voltage value (terminal voltage value) V2 (P) and a discharge current value Id (P) at the start of the engine in the lead battery 14 are detected, and a change during discharge of the lead battery 14 from the V1 (P) and V2 (P).
  • a voltage value ⁇ Vd (P) is calculated. (Step S11).
  • the ECU 17 calculates the internal resistance value R discharge during discharge of the lead battery 14 from the obtained change voltage value ⁇ Vd (P) and maximum load current value Id (P) during discharge of the lead battery 14 according to the equation (1).
  • (P) is calculated (step S12).
  • R discharge (P) ⁇ Vd ( P) / Id (P) ... (1)
  • FIG. 13 is an explanatory diagram of a calculation example of the internal resistance value during charging of the lead battery and the lithium ion battery.
  • the ECU 17 detects the closed circuit voltage value (terminal voltage) V3 (P) of the lead battery 14 and the load current value Ic (P) at the time of charging immediately after the alternator (generator) 12 is operated, and detects the previously detected engine.
  • a change voltage value ⁇ Vc (P) at the time of charging the lead battery 14 is calculated from the closed circuit voltage value (terminal voltage value) V2 (P) of the lead storage battery whose voltage has dropped at the start (at the time of maximum load) (step S13).
  • ECU 17 is from the change voltage value during charging of the resulting lead battery 14 [Delta] Vc (P) and the load current value Ic (P), (2) charge time internal resistance value of the lead battery 14 by formula R charge ( P) is calculated (step S14).
  • R charge (P) ⁇ Vc (P) / Ic (P) (2)
  • the ECU 17 performs the closed circuit voltage value (terminal voltage value) V1 (L) of the lithium ion battery 15 before engine startup as shown in FIG.
  • the closed circuit voltage value (terminal voltage value) V2 (L) of the lithium ion battery 15 that has dropped during the load) and the discharge current value Id (L) at the start of the engine in the lithium ion battery 15 are detected, and V1 (L) And a change voltage value ⁇ Vd (L) at the time of discharging of the lithium ion battery 15 is calculated from V2 (L). (Step S15).
  • the ECU 17 calculates the internal resistance value during discharge of the lithium ion battery 15 from the obtained change voltage value ⁇ Vd (L) and maximum load current value Id (L) during discharge of the lithium ion battery 15 according to the equation (3).
  • R discharge (L) is calculated (step S16).
  • R discharge (L) ⁇ Vd (L) / Id (L) (3)
  • the ECU 17 calculates the internal resistance value R during charging of the lithium ion battery 15 from the obtained change voltage value ⁇ Vc (L) and load current value Ic (L) during charging of the lithium ion battery 15 according to the equation (4).
  • charge (L) is calculated (step S18).
  • R charge (L) ⁇ Vc (L) / Ic (L) (4)
  • the ECU 17 discharges the internal resistance value R discharge (P) and the internal resistance value R charge (P) during discharge of the lead battery 14 and the internal resistance value R discharge (L) during discharge of the lithium ion battery 15. Based on the charging internal resistance value R charge (L), the charge current sharing ratio from the alternator 12 is predicted, and the closed circuit voltage value (terminal voltage) when the lead battery 14 is fully charged is calculated from the charging current sharing ratio. ) Is calculated (step S19).
  • the ECU 17 determines the SOC of the lithium ion battery 15 in which the closed circuit voltage value (terminal voltage) when the lead battery 14 is fully charged is equal to the closed circuit voltage value (terminal voltage) of the lithium ion battery 15. Is adjusted and set to the control upper limit SOC, and the alternator 12 is controlled by the alternator control signal ALT. In parallel with this, the ECU 17 estimates the SOC of the lead battery 14 from the closed circuit voltage value (terminal voltage) and the current integrated value of the lead battery 14, and the alternator 12 operates until the lead battery 14 is fully charged. The alternator control signal ALT is output so as to continue (step S20).
  • FIG. 14 is an explanatory diagram of a specific operation.
  • the ECU 17 estimates the SOC of the lead battery 14 from the terminal voltage measurement value of the lead battery 14 and the measurement value integration of the current sensor, and performs alternate control until the lead battery 14 is fully charged.
  • the signal ALT is in the “power generation” state.
  • the alternator 12 shifts to the power generation state at time t1
  • the charging current flows through the lead battery 14, and the SOC of the lead battery 14 is in a state where the SOC can be regarded as almost 100% at the time t2.
  • the ECU 17 changes the alternator control signal ALT to the “stop” state. Therefore, the alternator 12 shifts to the no power generation state, and the charging current of the lead battery 14 becomes zero.
  • the lead battery 14 can be maintained in a fully charged state.
  • FIG. 15 is a diagram for explaining the relationship among the SOC of the storage battery, the closed circuit voltage (CCV) of the storage battery, and the temperature.
  • lowest SOC value of 15 a SOC L.
  • FIG. 16 is a control process flowchart of the ECU when the temperature is detected for control.
  • the ECU 17 measures the closed circuit voltage value (terminal voltage value) V (P) of the lead battery 14 and the temperature T (P) of the lead battery 14 before starting the engine (step S21).
  • the ECU 17 estimates the internal resistance value R (P) of the lead battery 14 based on the temperature T (P) of the lead battery 14 (step S22).
  • a database, data table, or function representing the relationship between the internal resistance value corresponding to the lead battery 14 stored in advance and the temperature is used.
  • FIG. 17 is a diagram visualizing a data table representing the relationship between the internal resistance value and the temperature.
  • the ECU 17 measures the closed circuit voltage value (terminal voltage value) V (L) of the lithium ion battery 15 and the temperature T (L) of the lithium ion battery 15 before starting the engine. (Step S23).
  • the ECU 17 estimates the internal resistance value R (L) of the lithium ion battery 15 based on the temperature T (L) of the lithium ion battery 15 (step S24).
  • the estimated value of the internal resistance value R (L) a database, a data table, or a function representing the relationship between the internal resistance value and the temperature corresponding to the lithium ion battery 15 stored in advance is used similarly to the lead battery 14.
  • the ECU 17 predicts the charge current sharing ratio from the alternator 12 based on the obtained internal resistance value R (P) of the lead battery 14 and the internal resistance value R (L) of the lithium ion battery 15, and A closed circuit voltage value (terminal voltage) when the lead battery 14 is fully charged is calculated from the charge current sharing ratio (step S25).
  • the ECU 17 determines the SOC of the lithium ion battery 15 in which the closed circuit voltage value (terminal voltage) when the lead battery 14 is fully charged is equal to the closed circuit voltage value (terminal voltage) of the lithium ion battery 15. Is adjusted and set to the control upper limit SOC, and the alternator 12 is controlled by the alternator control signal ALT. In parallel with this, the ECU 17 estimates the SOC of the lead battery 14 from the closed circuit voltage value (terminal voltage) and the current integrated value of the lead battery 14, and the alternator 12 operates until the lead battery 14 is fully charged. The alternator control signal ALT is output so as to continue (step S26).
  • the specific operation is the same as when control is performed based on the internal resistance value.
  • the lead battery 14 can be reliably maintained in a fully charged state. Become.
  • the measured internal resistance value is compared with a preset internal resistance threshold value or threshold values, and the SOC of the lithium ion battery 15 is controlled when the measured internal resistance value exceeds the internal resistance threshold value. It is also possible to configure so as to adjust and set the upper limit SOC.
  • the storage battery system can be operated stably. .
  • the ECU of the storage battery system (storage battery device) of the present embodiment includes a control device such as a CPU, a storage device such as a ROM (Read Only Memory) and a RAM, an external storage device such as an HDD and a CD drive device, a display device, and the like.
  • the display device and an input device such as a keyboard and a mouse are provided, and a hardware configuration using a normal computer is employed.
  • the program executed by the ECU of the storage battery system (storage battery device) is a file in an installable format or an executable format, and is a CD-ROM, flexible disk (FD), CD-R, DVD (Digital Versatile Disk). And the like recorded on a computer-readable recording medium.
  • the program executed by the ECU of the storage battery system (storage battery device) of the present embodiment may be provided by being stored on a computer connected to a network such as the Internet and downloaded via the network. good. Moreover, you may comprise so that the program run by ECU of the storage battery system (storage battery apparatus) of this embodiment may be provided or distributed via networks, such as the internet. Moreover, you may comprise so that the program of ECU of the storage battery system (storage battery apparatus) of this embodiment may be previously incorporated in ROM etc. and provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

実施形態の蓄電池システムは、発電装置を備えた車両に搭載された鉛蓄電池と並列に接続されるとともに発電装置からの電力を蓄電可能な蓄電装置と、蓄電池装置において通常使用時に管理される制御SOC範囲の下限値に相当する電圧値が鉛蓄電池の放電終止時の開路電圧値となるように制御SOC範囲を設定するとともに、鉛蓄電池及び当該蓄電池装置について算出あるいは推定された内部抵抗値に基づいて制御SOC範囲を変更可能に設定する制御部と、を備えるので、アイドリングストップシステムを搭載した車両において、鉛蓄電池の特性を生かすとともに、鉛蓄電池の寿命を延ばし、回生電力を有効利用することができる。

Description

蓄電池システム、蓄電池装置及び方法
 本発明の実施形態は、蓄電池システム、蓄電池装置及び方法に関する。
 従来、自動車等の車両に搭載される駆動用以外の二次電池としては、鉛蓄電池が一般に普及している。
 これは、鉛蓄電池が他の二次電池と比較して容量当たりの価格が安く、コストパフォーマンスに優れている点、電池容量の低下の要因となるメモリ効果が無い点、微小電流から大電流まで広い電圧範囲で放電が安定している点などの理由が挙げられる。
国際公開第2014/038099号 国際公開第2014/038100号 特開2014-200123号公報
 しかしながら、鉛蓄電池は、過放電に弱く、過放電状態(低SOC[State Of Charge])となると、内部短絡やサルフェーションが発生し、電池としての性能が大きく低下し、回復しないという不具合があった。
 上記特性に関連して、鉛蓄電池は、停車時にエンジンの駆動を停止する、いわゆるアイドリングストップシステムを搭載した車両においては、大きな充放電電流が流れるため電池電圧の変動も大きく、劣化が促進されてしまう虞があった。
 これを解決するため、鉛蓄電池に並列に蓄電池を接続し、この並列接続した蓄電池で鉛蓄電池の電圧変動を抑制する蓄電池システムが提案されている。
 しかしながら、鉛蓄電池に並列接続される蓄電池の特性が必ずしもアイドリングストップシステムにおいて適しているとは限らないという問題点があった。
 具体的には、質量、体積が大きくなり、車両の燃費が低下したり、並列接続する蓄電池の容量を十分に生かし切れなかったり、回生電力を有効に利用することができなかったりする虞があった。
 本発明は、上記に鑑みてなされたものであって、アイドリングストップシステムを搭載した車両においては、並列接続する蓄電池の特性を生かすとともに、鉛蓄電池の寿命を延ばし、回生電力を有効利用することが可能な蓄電池システム、蓄電池装置及び方法を提供することにある。
 実施形態の蓄電池システムは、発電装置を備えた車両に搭載された鉛蓄電池と並列に接続されるとともに発電装置からの電力を蓄電可能な蓄電装置と、蓄電池装置において通常使用時に管理される制御SOC範囲の下限値に相当する電圧値が鉛蓄電池の放電終止時の開路電圧値となるように制御SOC範囲を設定するとともに、鉛蓄電池及び当該蓄電池装置について算出あるいは推定された内部抵抗値に基づいて制御SOC範囲を変更可能に設定する制御部と、を備える。
図1は、実施形態の車両用蓄電池システムの概要構成ブロック図である。 図2は、リチウムイオンバッテリの制御SOC範囲の説明図である。 図3は、エンジン始動時の動作説明図(その1)である。 図4は、エンジン始動時の動作説明図(その2)である。 図5は、エンジン始動後の動作説明図(その1)である。 図6は、エンジン始動後の動作説明図(その2)である。 図7は、アイドリングストップ時の動作説明図である。 図8は、実施形態の変形例の説明図である。 図9は、第2実施形態の車両用蓄電池システムの概要構成ブロック図である。 図10は、蓄電池のSOCと蓄電池の閉回路電圧(CCV)との関係を説明する図である。 図11は、内部抵抗を検出して制御を行う場合の制御処理フローチャートである。 図12は、鉛バッテリ及びリチウムイオンバッテリの放電時内部抵抗値の算出例の説明図である。 図13は、鉛バッテリ及びリチウムイオンバッテリの充電時内部抵抗値の算出例の説明図である。 図14は、具体的動作の説明図である。 図15は、蓄電池のSOC、蓄電池の閉回路電圧(CCV)及び温度の関係を説明する図である。 図16は、温度を検出して制御を行う場合のECUの制御処理フローチャートである。 図17は、内部抵抗値と温度との関係を表すデータテーブルを可視化した図である。
 次に図面を参照して実施形態について詳細に説明する。
[1]第1実施形態
 図1は、第1実施形態の車両用蓄電池システムの概要構成ブロック図である。
 車両用蓄電池システム10は、エンジン11に駆動されて発電可能なオルタネータ12と、始動時にエンジン11を駆動するスタータ13と、メインバッテリとしての鉛バッテリ(鉛蓄電池)14と、鉛バッテリ14に並列接続されたサブバッテリとしてのリチウムイオンバッテリ(リチウムイオン蓄電池:蓄電池装置)15と、車載電装品16と、鉛バッテリ14及びリチウムイオンバッテリ15の充電状態(電圧、充電電流及び温度)を測定し、オルタネータ12の発電の設定を行う車両搭載のECU(Electronic Control Unit)とは別個に設けられたECU17と、を備えている。
 図1において車載電装品16に印加される電圧を、車両用蓄電池システム電圧Vsystemと呼ぶものとする。
 ここで、リチウムイオンバッテリ15の構成について説明する。
 リチウムイオンバッテリ15の第1の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=1)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成される。
 また、リチウムイオンバッテリ15の第2の態様としては、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物はLiNiCoMn(但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=2)で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質と、を備えた非水電解質二次電池として構成される。
 またリチウムイオンバッテリ15の第3の態様としては、マンガン酸リチウム(LMO:Lithium Manganese Oxide)、すなわち、LiMnで表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成される。
 また、上記第1の態様及び第2の態様のリチウムイオンバッテリ15を構成する場合にリチウムチタン酸化物の一次粒子の平均粒径が1μm以下で、負極層のBET法による比表面積が3~50m/gの範囲であるようにすることが望ましい。
 さらに、リチウムチタン酸化物は、Li4+xTi12(xは-1≦x≦3)もしくはLi2+xTi(xは-1≦x≦3)で表されるようにするのが望ましい。
 さらにまた、チタン含有金属複合酸化物はP、V、Sn、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素とTiとを含有する金属複合酸化物であるようにするのが望ましい。
 ここで、リチウムイオンバッテリ15は、複数(例えば、5個)の直列接続された単電池セルを備えており、単電池セルを直列接続をしたときに以下の条件を満たすように各単電池セルのSOC-OCV特性が調整されている。
 図2は、リチウムイオンバッテリの制御SOC範囲の説明図である。
 ここで、条件としては、リチウムイオンバッテリ15の通常使用時(過放電状態及び過充電状態とならないように制御するばかりでなく、想定した所定の電池寿命を確保するとともに、当該電池寿命期間中に想定した所定の電池特性[充放電特性、充放電容量等]を維持するために想定した使用を行っている時)におけるSOCの変動許容範囲(充放電制御範囲)を制御SOC範囲とした場合にメインバッテリである鉛バッテリ14の満充電時の開路電圧(OCV:Open Circuit Voltage)の値(例えば、車両用蓄電池システム電圧Vsystem=12.8V)が、サブバッテリであるリチウムイオンバッテリ15の制御SOC範囲のSOC中心値を含む所定のSOC中心範囲内(例えば、SOC=60~70%)に相当する電圧値範囲内に含まれるようにされている。
 また、サブバッテリであるリチウムイオンバッテリ15の制御SOC範囲の下限値、すなわち、放電時の制御下限SOCを(例えば、SOC=30~40%)に相当する電圧値は、メインバッテリである鉛バッテリ14の放電終止時の開路電圧値(例えば、車両用蓄電池システム電圧Vsystem=12.4V)に設定される。これは、リチウムイオンバッテリ15の下限電圧を制御することによりメインバッテリである鉛バッテリ14の劣化が促進しないようにするためである。すなわち、リチウムイオンバッテリ15の電圧が通常使用時であれば常に鉛バッテリ14の放電終止時の開路電圧値以上となるようにするためである。
 さらに、リチウムイオンバッテリ15を構成している単電池セル間を電気的に接続する導電体の合計抵抗値は、単電池の内部抵抗値よりも小さくなるように設計されている。ここで、リチウムイオンバッテリ15としての内部抵抗値はメインバッテリである鉛バッテリ14の内部抵抗値の1/1.5以下とするのが好ましい。
 以上のようなSOC関係及び構成とすることで、通常動作時には鉛バッテリ14の電圧が鉛バッテリ14の劣化の原因となるサルフェーションが発生する12V以下とならないようにされている。
 またサブバッテリとしてのリチウムイオンバッテリ15のSOC変動範囲もSOC中心値を、例えばSOC=60%とした場合に±30%として、制御SOC範囲を30~90%程度(リチウムイオンバッテリ15の開路電圧値範囲は、例えば、車両用蓄電池システム電圧Vsystem=12.4V~13.3Vに相当)とできるのでリチウムイオンバッテリ15の充放電容量及び特性(急速充放電能力等)を有効に利用でき、車両の減速に伴う回生電力の受け入れ性能等を向上することができる。
 さらにリチウムイオンバッテリ15については、急速充放電能力等を利用し、駐車時でも車載電装品に供給しなければならない暗電流や冷間始動(コールドクランク)時にエンジンを始動させる電力は大容量の鉛バッテリ14を利用する構成となっているので、リチウムイオンバッテリ15の単電池の数を少なくでき質量及び体積を小さくできるので、コスト低減に効果的である。
 具体的には、リチウムイオンバッテリ15を構成する単電池の起電圧が2.4Vのものを用いることにより、リチウムイオンバッテリ15は5個の単電池を直列接続した構成にでき、質量及び体積を小さくできコストを低減することができる。
 また、リチウムイオンバッテリ15の容量は、車両用蓄電池システム10が搭載されている車両において予め設計したアイドリングストップ中の平均電流値と、車両の平均アイドリングストップ時間の積(=アイドリングストップ中の平均電流値×平均アイドリングストップ時間)と同じ容量又はそれ以上の容量とされている。このときのリチウムイオンバッテリ15の容量は、鉛バッテリ14の容量の1/2以下とするのが好ましい。
 これは、平均的な走行状態を想定した場合に、信号待ち等の停車中に確実にオルタネータ12を非動作状態(非発電状態)にすることができ、燃料消費を抑制しつつ、リチウムイオンバッテリ15の質量及び体積を抑制して、走行時の燃料消費低減に貢献するためである。
 次に実施形態の動作を説明する。
 まず、エンジン11の始動時の動作を説明する。
 図3は、エンジン始動時の動作説明図(その1)である。
 図4は、エンジン始動時の動作説明図(その2)である。
 時刻t0においてドライバにより図示しないイグニションスイッチが操作されると、時刻t1においてスタータ13に鉛バッテリ14及びリチウムイオンバッテリ15が電気的に接続状態(導通状態)とされる。
 そして、時刻t2において鉛バッテリ14及びリチウムイオンバッテリ15の放電電流が、スタータ13に供給され、スタータ13が駆動される。
 これらの結果、時刻t3においてエンジン11が始動され、駆動状態に移行する。
 次にエンジン11の始動後の動作を説明する。
 図5は、エンジン始動後の動作説明図(その1)である。
 図6は、エンジン始動後の動作説明図(その2)である。
 図6において時間軸は、図4と共通であるものとする。
 初期状態においてECU17のオルタネータ(ALT)発電要求信号SALTは、発電側になっているものとする。
 時刻t4においてエンジン11が駆動状態に移行すると、時刻t5においてオルタネータ(ALT)12は、無発電状態から発電状態に移行する。
 これにより鉛バッテリ14及びリチウムイオンバッテリ15の充電電流が増加し、リチウムイオンバッテリ15のSOCも徐々に増加する。この場合において上述したようにリチウムイオンバッテリ15の内部抵抗値は鉛バッテリ14の内部抵抗値よりも小さく設定されているので、リチウムイオンバッテリ15の充電電流が大きくなり優先的にリチウムイオンバッテリ15が充電されることとなる。
 一方、時刻t6において車両が発進し、車速が徐々に増加し始める。
 そして、充電によりリチウムイオンバッテリ15のSOCが増加し、時刻t7に至ると、今度は充電電流が徐々に減少する。
 そして、時刻t8においてリチウムイオンバッテリ15のSOCが上限SOC(=90~100%)に至ると、ECU17のオルタネータ(ALT)発電要求信号SALTは、発電停止側に移行する。この結果、オルタネータ12は無発電状態となりリチウムイオンバッテリ15のSOCは上限SOCに保持される。
 その後、車載電装品16により電力が消費されることにより、時刻t9において鉛バッテリ14及びリチウムイオンバッテリ15は放電状態に移行し放電電流が増加し始める。
 そして、時刻t10において車両の速度が減少する減速状態が検知されると、ECU17のオルタネータ(ALT)発電要求信号SALTは、発電停止側であるにもかかわらず、オルタネータ12は発電状態へと移行するので、充電電流が徐々に増加し、これに伴いリチウムイオンバッテリ15のSOCも徐々に増加する。
 図7は、アイドリングストップ時の動作説明図である。
 時刻t11において車両の速度が0となる停止状態となり、さらに所定のアイドリングストップ時間が経過した時刻t12に至ると、車載ECUによりエンジン11が停止状態とされオルタネータ12は再び無発電状態へと移行する。
 しかしながら、未だ車載電装品16への電力供給は継続しているので、鉛バッテリ14及びリチウムイオンバッテリ15は、再び放電状態に移行する。
 この場合においてリチウムイオンバッテリ15が十分に充電状態(高SOC状態)にあれば、図7に示すように、リチウムイオンバッテリ15から優先的に鉛バッテリ14及び車載電装品16への電力供給(駆動電流供給及び充電電流供給)がなされる。この結果、満充電状態ではない鉛バッテリ14は充電状態となり可能な限り鉛バッテリ14は高SOC状態を維持する。
 そして、時刻t13においてリチウムイオンバッテリ15のSOCが制御SOC範囲の下限値、すなわち、放電時の最低SOCに至るとメインバッテリである鉛バッテリ14の放電終止時の開路電圧値に至っていることとなるので、再びECU17はオルタネータ発電要求信号SALTを発電側としてエンジン11を始動する。
 これにより鉛バッテリ14及びリチウムイオンバッテリ15の充電電流が増加して充電状態となり、リチウムイオンバッテリ15のSOCも徐々に増加してふたたび制御SOC範囲内で増加することとなる。
 以上の説明のように、本実施形態によれば、入力性能に優れたサブ電池としてのリチウムイオンバッテリ15がメインバッテリである鉛バッテリ14よりも優先的に充電されるとともに充電量も増加されるので、オルタネータ12からの回生エネルギーを効率よく電気エネルギーとして蓄えることができる。
 また、本実施形態によれば、オルタネータ12の非動作中であっても充電抵抗が相対的に高い鉛バッテリ14へリチウムイオンバッテリ15から充電が行え、鉛バッテリ14を寿命的に望ましい高SOCに維持することができる。
 また、本実施形態によれば、車載電装品16への電力供給は主として、リチウムイオンバッテリ15からなされるので、これによっても鉛バッテリ14を寿命的に望ましい高SOCに維持することができる。
 図8は、実施形態の変形例の説明図である。
 図8において図1の実施形態と異なる点は、鉛バッテリ14と、リチウムイオンバッテリ15と、を電気的に接続しあるいは遮断するスイッチ18を設けた点と、車載電装品16を、エンジン始動時においても電源電圧変動が許容される第1車載電装品16Aと、エンジン始動時でも電源電圧変動が許容されない第2車載電装品16Bと、に分け、スイッチ18の開状態(オフ状態)時に第1車載電装品16Aにリチウムイオンバッテリ15から電力を供給するようにした点である。
 このような構成とすることにより、エンジン11の始動時には、スイッチ18を開状態(オフ状態)とし、リチウムイオンバッテリ15からのみスタータ13に電力を供給することができるので、エンジン11始動時の12ボルト電源系統(鉛バッテリ系統)の電圧低下を抑制することが可能となる。
[2]第2実施形態
 図9は、第2実施形態の車両用蓄電池システムの概要構成ブロック図である。
 図9において、図1と同様の部分には、同様の符号を付し、その詳細な説明を援用するものとする。
 第2実施形態の車両用蓄電池システムが第1実施形態の車両用蓄電池システムと異なる点は、鉛バッテリ14の電圧を測定し電圧測定信号SvPをECU17に出力する電圧測定センサ21と、鉛バッテリ14の充電電流あるいは放電電流を測定して電流測定信号ScPをECU17に出力する電流測定センサ22と、鉛バッテリ14の温度(鉛バッテリ14の筐体の温度、端子温度あるいは周囲温度)を測定し温度測定信号StPをECU17に出力する温度測定センサ23と、リチウムイオンバッテリ15の電圧を測定し電圧測定信号SvLをECU17に出力する電圧測定センサ24と、リチウムイオンバッテリ15の充電電流あるいは放電電流を測定して電流測定信号ScLをECU17に出力する電流測定センサ25と、リチウムイオンバッテリ15の温度(リチウムイオンバッテリ15の筐体の温度、端子温度あるいは周囲温度)を測定し温度測定信号StLをECU17に出力する温度測定センサ26と、を備えている点である。
 まず、第2実施形態の原理について説明する。
 鉛バッテリ14を含む鉛蓄電池は、一般的に環境温度(電解液温度)により開放電圧(OCV)値が変化し、内部抵抗値も変化することが知られている。
 同様に、経年劣化によっても鉛蓄電池の内部抵抗値は変化する。
 換言すれば、鉛蓄電池の状態、特に内部抵抗に起因する電圧降下分を考慮すると、鉛蓄電池をほぼ満充電状態に維持するための充電電圧値は異なることとなる。
 より詳細には、温度が低くなるあるいは経年劣化が進むほど、満充電に維持するための電圧は適正電圧範囲内で高めに設定する必要がある。一方、温度が高くなるあるいは新品の鉛蓄電池に近いほど満充電に維持するための充電電圧は、適正電圧範囲内で低めの設定で良いということである。
 したがって、鉛バッテリ14の充電に際しては、当該鉛バッテリ14の状態を正確に把握して適正な充電電圧とするように、制御する必要がある。
 以下、鉛バッテリ14の充電制御について、鉛バッテリ14及びリチウムイオンバッテリ15の内部抵抗値に基づいて制御を行う場合及び鉛バッテリ14及びリチウムイオンバッテリ15の温度に基づいて制御を行う場合のそれぞれについて説明する。
[2.1]内部抵抗値を算出して制御を行う場合
 図10は、蓄電池のSOCと蓄電池の閉回路電圧(CCV)との関係を説明する図である。
 例えば、現在の鉛バッテリ14の内部抵抗値において、鉛バッテリ14を満充電状態(SOC=100%)とするために必要とされる鉛バッテリ14の端子(閉回路)電圧(最低電圧)が13.6Vであるとすると、その電圧と等電位となる(リチウムイオンバッテリ15の端子(閉回路)電圧が13.6Vになる)リチウムイオンバッテリ15の最低SOC値はSOCxとなる。したがって、ECU17はリチウムイオンバッテリの制御SOCの上限をSOCxとして制御を行うこととなる。
 次に鉛バッテリ14及びリチウムイオンバッテリ15の内部抵抗を算出して制御を行う場合のECU17の制御手順について説明する。
 図11は、内部抵抗を検出して制御を行う場合の制御処理フローチャートである。
 図12は、鉛バッテリ及びリチウムイオンバッテリの放電時内部抵抗値の算出例の説明図である。
 まずECU17は、図12に示すような、エンジン始動前の鉛バッテリ14の閉回路電圧値(端子電圧値)V1(P)及びエンジン始動時(最大負荷時)に電圧降下した鉛バッテリ14の閉回路電圧値(端子電圧値)V2(P)と鉛バッテリ14におけるエンジン始動時の放電電流値Id(P)を検出し、V1(P)とV2(P)から鉛バッテリ14の放電時の変化電圧値ΔVd(P)を算出する。(ステップS11)。
 続いて、ECU17は、得られた鉛バッテリ14の放電時の変化電圧値ΔVd(P)及び最大負荷電流値Id(P)から、(1)式により鉛バッテリ14の放電時内部抵抗値Rdischarge(P)を算出する(ステップS12)。
    Rdischarge(P)=ΔVd(P)/Id(P)     …(1)
 図13は、鉛バッテリ及びリチウムイオンバッテリの充電時内部抵抗値の算出例の説明図である。
 ECU17は、オルタネータ(発電機)12が作動した直後に鉛バッテリ14の閉回路電圧値(端子電圧)V3(P)と充電時の負荷電流値Ic(P)を検出し、先に検出したエンジン始動時(最大負荷時)に電圧降下した鉛蓄電池の閉回路電圧値(端子電圧値)V2(P)から鉛バッテリ14の充電時の変化電圧値ΔVc(P)を算出する(ステップS13)。
 続いて、ECU17は、得られた鉛バッテリ14の充電時の変化電圧値ΔVc(P)及び負荷電流値Ic(P)から、(2)式により鉛バッテリ14の充電時内部抵抗値Rcharge(P)を算出する(ステップS14)。
    Rcharge(P)=ΔVc(P)/Ic(P)     …(2)
 ステップS11~ステップS14の処理と並行して、ECU17は、図12に示したようなエンジン始動前のリチウムイオンバッテリ15の閉回路電圧値(端子電圧値)V1(L)及びエンジン始動時(最大負荷時)に電圧降下したリチウムイオンバッテリ15の閉回路電圧値(端子電圧値)V2(L)とリチウムイオンバッテリ15におけるエンジン始動時の放電電流値Id(L)を検出し、V1(L)とV2(L)からリチウムイオンバッテリ15の放電時の変化電圧値ΔVd(L)を算出する。(ステップS15)。
 続いて、ECU17は、得られたリチウムイオンバッテリ15の放電時の変化電圧値ΔVd(L)及び最大負荷電流値Id(L)から、(3)式によりリチウムイオンバッテリ15の放電時内部抵抗値Rdischarge(L)を算出する(ステップS16)。
    Rdischarge(L)=ΔVd(L)/Id(L)     …(3)
 その後、ECU17は、図13に示したようなオルタネータ(発電機)12が作動した直後にリチウムイオンバッテリ15の閉回路電圧値(端子電圧)V3(L)と充電時の負荷電流値Ic(L)を検出し、先に検出したエンジン始動時(最大負荷時)に電圧降下したリチウムイオンバッテリ15の閉回路電圧値(端子電圧値)V2(L)からリチウムイオンバッテリ15の充電時の変化電圧値ΔVc(L)を算出する(ステップS17)。
 続いて、ECU17は、得られたリチウムイオンバッテリ15の充電時の変化電圧値ΔVc(L)及び負荷電流値Ic(L)から、(4)式によりリチウムイオンバッテリ15の充電時内部抵抗値Rcharge(L)を算出する(ステップS18)。
    Rcharge(L)=ΔVc(L)/Ic(L)     …(4)
 続いて、ECU17は、得られた鉛バッテリ14の放電時内部抵抗値Rdischarge(P)及び充電時内部抵抗値Rcharge(P)並びにリチウムイオンバッテリ15の放電時内部抵抗値Rdischarge(L)及び充電時内部抵抗値Rcharge(L)に基づいて、オルタネータ12からの充電電流分担比率を予測し,その充電電流分担比率から鉛バッテリ14の満充電状態の時の閉回路電圧値(端子電圧)を算出する(ステップS19)。
 そして、ECU17は、得られた鉛バッテリ14の満充電状態の時の閉回路電圧値(端子電圧)と、リチウムイオンバッテリ15の閉回路電圧値(端子電圧)が等しくなるリチウムイオンバッテリ15のSOCを制御上限のSOCに調整、設定し、オルタネータ12の制御をオルタネータ制御信号ALTにより行うこととなる。これと並行してECU17は、鉛バッテリ14の閉回路電圧値(端子電圧)及び電流積算値から鉛バッテリ14のSOCを推定して、鉛バッテリ14が満充電状態となるまでオルタネータ12が動作を継続するようにオルタネータ制御信号ALTを出力することとなる(ステップS20)。
 図14は、具体的動作の説明図である。
 例えば、図14に示すように、ECU17は、鉛バッテリ14の端子電圧測定値及び電流センサの測定値積算から鉛バッテリ14のSOCを推定して、鉛バッテリ14が満充電状態になるまでオルタネート制御信号ALTを「発電」状態としている。
 そして、時刻t1において、オルタネータ12が発電状態に移行すると、鉛バッテリ14には、充電電流が流れ、鉛バッテリ14のSOCは、時刻t2において、SOCがほぼ100%と見做せる状態となる。
 この結果、ECU17は、オルタネータ制御信号ALTを「停止」状態に遷移させる。
 したがって、オルタネータ12は、無発電状態に移行し、鉛バッテリ14の充電電流も零となる。
 以上の説明のように、鉛バッテリ14及びリチウムイオンバッテリ15が経年劣化などにより、鉛バッテリ14及びリチウムイオンバッテリ15内部抵抗値が変化している場合でも、内部抵抗値の変化に追従して確実に鉛バッテリ14を満充電状態に維持することが可能となる。
[2.2]温度に基づいて内部抵抗を推定して制御を行う場合
 図15は、蓄電池のSOC、蓄電池の閉回路電圧(CCV)及び温度の関係を説明する図である。
 図15においては、25℃(常温)においてリチウムイオンバッテリ15が鉛バッテリ14を満充電状態(SOC=100%)とするために必要とされる電圧(最低電圧)を得るためのリチウムイオンバッテリ15の最低SOC値=SOCである。
 同様に0℃(低温)における鉛バッテリ14及びリチウムイオンバッテリ15が鉛バッテリ14を満充電状態(SOC=100%)とするために必要とされる電圧(最低電圧)を得るためのリチウムイオンバッテリ15の最低SOC値=SOCである。
 このように、低温の場合に最低充電電圧を高くする必要があるのは、低温になると鉛蓄電池の内部抵抗値が大きくなるためである。
 従って、常温における最低SOC値を維持した状態では、低温においては、リチウムイオンバッテリ15が鉛バッテリ14を満充電状態(SOC=100%)とすることができない。
 このため、リチウムイオンバッテリ15のリチウムイオンバッテリ15を充電するオルタネータの供給電圧も高くする必要がある。
 次に鉛バッテリ14及びリチウムイオンバッテリ15の温度を検出して内部抵抗を推定して制御を行う場合のECU17の制御手順について説明する。
 図16は、温度を検出して制御を行う場合のECUの制御処理フローチャートである。
 まずECU17は、エンジン始動前の鉛バッテリ14の閉回路電圧値(端子電圧値)V(P)及び鉛バッテリ14の温度T(P)を測定する(ステップS21)。
 次にECU17は、鉛バッテリ14の温度T(P)に基づいて鉛バッテリ14の内部抵抗値R(P)を推定する(ステップS22)。
 この内部抵抗値R(P)の推定値には、予め記憶した鉛バッテリ14に対応する内部抵抗値と温度との関係を表すデータベース、データテーブルあるいは関数を用いる。
 図17は、内部抵抗値と温度との関係を表すデータテーブルを可視化した図である。
 図17の例の場合、温度=-10℃の場合の内部抵抗値(≒78mΩ)、温度=0℃の場合の内部抵抗値(≒58mΩ)及び温度=25℃の場合の内部抵抗値(≒23mΩ)が格納されており、その間の温度については、直線で近似した値を用いる。
 ステップS21~ステップS22の処理と並行して、ECU17は、エンジン始動前のリチウムイオンバッテリ15の閉回路電圧値(端子電圧値)V(L)及びリチウムイオンバッテリ15の温度T(L)を測定する(ステップS23)。
 次にECU17は、リチウムイオンバッテリ15の温度T(L)に基づいてリチウムイオンバッテリ15の内部抵抗値R(L)を推定する(ステップS24)。
 この内部抵抗値R(L)の推定値には、鉛バッテリ14と同様に、予め記憶したリチウムイオンバッテリ15に対応する内部抵抗値と温度との関係を表すデータベース、データテーブルあるいは関数を用いる。
 続いて、ECU17は、得られた鉛バッテリ14の内部抵抗値R(P)及びリチウムイオンバッテリ15の内部抵抗値R(L)に基づいて、オルタネータ12からの充電電流分担比率を予測し,その充電電流分担比率から鉛バッテリ14の満充電状態の時の閉回路電圧値(端子電圧)を算出する(ステップS25)。
 そして、ECU17は、得られた鉛バッテリ14の満充電状態の時の閉回路電圧値(端子電圧)と、リチウムイオンバッテリ15の閉回路電圧値(端子電圧)が等しくなるリチウムイオンバッテリ15のSOCを制御上限のSOCに調整、設定し、オルタネータ12の制御をオルタネータ制御信号ALTにより行う。これと並行してECU17は、鉛バッテリ14の閉回路電圧値(端子電圧)及び電流積算値から鉛バッテリ14のSOCを推定して、鉛バッテリ14が満充電状態となるまでオルタネータ12が動作を継続するようにオルタネータ制御信号ALTを出力することとなる(ステップS26)。
 具体的動作については、内部抵抗値に基づいて制御を行う場合と同様となる。
 以上の説明のように、鉛バッテリ14及びリチウムイオンバッテリ15が温度変化により、内部抵抗値が変化している場合であっても、確実に鉛バッテリ14を満充電状態に維持することが可能となる。
[2.3]第2実施形態の変形例
 以上の説明は、経年劣化や環境温度等の変化に対応する鉛バッテリ14及びリチウム委イオンバッテリ15の内部抵抗値の変化にその都度追従する場合のものであったが、通常において内部抵抗値の変化は、徐々にしかおこらない。
 したがって、測定した内部抵抗値と予め設定した内部抵抗しきい値(一または複数)とを比較し、測定した内部抵抗値が内部抵抗しきい値を超えた時点でリチウムイオンバッテリ15のSOCを制御上限のSOCに調整、設定するように構成することも可能である。   
 この構成によれば、周囲温度の多少の内部抵抗値の変化や、経年劣化による多少の内部抵抗値の変化では、制御状態が変更されることはないので、安定して蓄電池システムの運用が行える。
 本実施形態の蓄電池システム(蓄電池装置)のECUは、CPUなどの制御装置と、ROM(Read Only Memory)やRAMなどの記憶装置と、HDD、CDドライブ装置などの外部記憶装置と、ディスプレイ装置などの表示装置と、キーボードやマウスなどの入力装置を備えており、通常のコンピュータを利用したハードウェア構成となっている。
 本実施形態の蓄電池システム(蓄電池装置)のECUで実行されるプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本実施形態の蓄電池システム(蓄電池装置)のECUで実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の蓄電池システム(蓄電池装置)のECUで実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
 また、本実施形態の蓄電池システム(蓄電池装置)のECUのプログラムを、ROM等に予め組み込んで提供するように構成してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (17)

  1.  発電装置を備えた車両に搭載された鉛蓄電池と並列に接続されるとともに前記発電装置からの電力を蓄電可能な蓄電装置と、
     前記蓄電装置において通常使用時に管理される制御SOC範囲の下限値に相当する電圧値が前記鉛蓄電池の放電終止時の開路電圧値となるように前記制御SOC範囲を設定するとともに、前記鉛蓄電池及び当該蓄電装置について算出あるいは推定された内部抵抗値に基づいて前記制御SOC範囲を変更可能に設定する制御部と、
     を備えた蓄電池システム。
  2.  前記制御部は、前記鉛蓄電池及び前記蓄電装置の放電時及び充電時の双方における、前記鉛蓄電池の電圧、前記鉛蓄電池の電流、前記蓄電装置の電圧及び前記蓄電装置の電流に基づいて、前記放電時の前記鉛蓄電池の内部抵抗値、前記放電時の前記蓄電装置の内部抵抗値、前記充電時の前記鉛蓄電池の内部抵抗値及び前記充電時の前記蓄電装置の内部抵抗値を算出して前記制御SOC範囲を設定する、
     請求項1記載の蓄電池システム。
  3.  前記制御部は、前記鉛蓄電池及び前記蓄電装置の温度に基づいて、予め記憶した温度と内部抵抗の関係を表すデータベース、データテーブルあるいは関数に基づいて、前記鉛蓄電池の内部抵抗値及び前記蓄電装置の内部抵抗値を推定し、推定した前記内部抵抗値に基づいて前記制御SOC範囲を設定する、
     請求項1記載の蓄電池システム。
  4.  前記制御部は、前記発電装置に電気的に接続されて、前記鉛蓄電池の電圧および電流積算値に基づいて、前記鉛蓄電池のSOCを推定して、前記鉛蓄電池が満充電状態となるように前記発電装置を制御する、
     請求項1乃至請求項3のいずれか一項記載の蓄電池システム。
  5.  前記蓄電池装置は、複数の直列接続された単電池セルを備え、
     前記直列接続をしたときに、前記制御SOC範囲の下限値に相当する電圧値を満たすように、前記単電池セルのSOC-開路電圧特性が調整されている、
     請求項1乃至請求項4のいずれか一項記載の蓄電池システム。
  6.  前記単電池セル間を接続する導電体の合計抵抗値が前記単電池セルの内部抵抗値よりも低く設定されている、
     請求項5記載の蓄電池システム。
  7.  前記蓄電池装置の内部抵抗値は、前記鉛蓄電池の内部抵抗値よりも低く設定されている、
     請求項1乃至請求項6のいずれか一項記載の蓄電池システム。
  8.  前記蓄電池の内部抵抗値は、前記鉛蓄電池の内部抵抗値の1/1.5以下に設定されている、
     請求項7記載の蓄電池システム。
  9.  前記蓄電池装置の容量は、予め測定した前記車両のアイドリングストップ中の平均電流値×前記車両の平均アイドリングストップ時間で示されるのと同じ容量又はそれ以上の容量とされている、
     請求項1乃至請求項8のいずれか一項記載の蓄電池システム。
  10.  前記蓄電池装置の容量は、前記鉛蓄電池の容量の1/2以下に設定されている、
     請求項9記載の蓄電池システム。
  11.  前記単電池セルは、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物は、
      LiNiCoMn
        (但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=1)
    で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成されている、
     請求項5記載の蓄電池システム。
  12.  前記単電池セルは、コバルト、ニッケルおよびマンガンよりなる群から選択される少なくとも一種類の金属元素を含有するリチウム金属化合物を含みリチウム金属化合物は、
      LiNiCoMn
        (但し、モル比a,b,c及びdは0≦a≦1.1、b+c+d=2)
    で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質と、を備えた非水電解質二次電池として構成される、
     請求項5記載の蓄電池システム。
  13.  前記単電池セルは、
      LiMn
    で表される正極活物質含有層を備えた正極と、チタン含有金属複合酸化物を含む負極と、非水溶媒を含む非水電解質とを備えた非水電解質二次電池として構成される、
     請求項5記載の蓄電池システム。
  14.  車両に搭載される鉛蓄電池と並列に接続可能な蓄電池装置であって、
     前記蓄電池装置の内部抵抗値は、前記鉛蓄電池の内部抵抗値よりも低く設定され、
     前記蓄電池装置において通常使用時に管理される制御SOC範囲に相当する電圧値範囲内に前記通常使用時における前記鉛蓄電池の満充電時の開路電圧値が含まれるように設定されており、
     前記制御SOC範囲の下限値に相当する電圧値が前記鉛蓄電池の放電終止時の開路電圧値となるように設定され、
     前記制御SOC範囲は、前記鉛蓄電池及び当該蓄電池装置について算出あるいは推定された内部抵抗値に基づいて変更可能に設定される、
     蓄電池装置。
  15.  発電装置を備えた車両に搭載された鉛蓄電池と並列に接続されるとともに前記発電装置からの電力を蓄電可能な蓄電装置とを備えた蓄電池システムで実行される方法であって、
     前記蓄電装置において通常使用時に管理される制御SOC範囲の下限値に相当する電圧値が前記鉛蓄電池の放電終止時の開路電圧値となるように前記制御SOC範囲を設定する過程と、
     前記鉛蓄電池及び当該蓄電池装置について算出あるいは推定された内部抵抗値に基づいて前記制御SOC範囲を変更可能に設定する過程と、
     を備えた方法。
  16.  前記制御SOC範囲を変更可能に設定する過程は、前記鉛蓄電池及び前記蓄電装置の放電時及び充電時の双方における、前記鉛蓄電池の電圧、前記鉛蓄電池の電流、前記蓄電装置の電圧及び前記蓄電装置の電流を検出する過程と、
     前記検出された前記鉛蓄電池の電圧、前記鉛蓄電池の電流、前記蓄電装置の電圧及び前記蓄電装置の電流に基づいて、前記放電時の前記鉛蓄電池の内部抵抗値、前記放電時の前記蓄電装置の内部抵抗値、前記充電時の前記鉛蓄電池の内部抵抗値及び前記充電時の前記蓄電装置の内部抵抗値を算出して前記制御SOC範囲を設定する過程と、
     を備えた請求項15記載の方法。
  17.  前記制御SOC範囲を変更可能に設定する過程は、前記鉛蓄電池及び前記蓄電装置の温度を検出する過程と、
     前記検出された温度に基づいて、予め記憶した温度と内部抵抗の関係を表すデータベース、データテーブルあるいは関数に基づいて、前記鉛蓄電池の内部抵抗値及び前記蓄電装置の内部抵抗値を推定し、推定した前記内部抵抗値に基づいて前記制御SOC範囲を設定する過程と、
     を備えた請求項15記載の方法。
PCT/JP2016/084162 2015-11-19 2016-11-17 蓄電池システム、蓄電池装置及び方法 WO2017086400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-226931 2015-11-19
JP2015226931A JP2019017124A (ja) 2015-11-19 2015-11-19 蓄電池装置及び蓄電池システム

Publications (1)

Publication Number Publication Date
WO2017086400A1 true WO2017086400A1 (ja) 2017-05-26

Family

ID=58718979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084162 WO2017086400A1 (ja) 2015-11-19 2016-11-17 蓄電池システム、蓄電池装置及び方法

Country Status (2)

Country Link
JP (1) JP2019017124A (ja)
WO (1) WO2017086400A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092794A1 (ja) * 2017-11-07 2019-05-16 Connexx Systems株式会社 複合電池、それを備えた自動車及び鉄道回生電力貯蔵装置
JP2019158752A (ja) * 2018-03-15 2019-09-19 三菱ロジスネクスト株式会社 バッテリ残存容量表示システム、及び、状態量表示方法
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply
CN114228645A (zh) * 2021-12-21 2022-03-25 深圳市七曜智造科技有限公司 一种车载导航装置的控制方法、系统、计算机设备及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920520A4 (en) 2019-02-01 2022-06-08 Koito Manufacturing Co., Ltd. VEHICLE CLEANER, VEHICLE CLEANER HOLDER AND VEHICLE CLEANER UNIT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252062A (ja) * 2006-03-15 2007-09-27 Yamaha Motor Electronics Co Ltd バッテリの制御装置
JP2007261433A (ja) * 2006-03-28 2007-10-11 Fujitsu Ten Ltd バッテリ制御装置およびバッテリ制御方法
JP2011015516A (ja) * 2009-07-01 2011-01-20 Denso Corp 車載電源装置
WO2012042585A1 (ja) * 2010-09-27 2012-04-05 トヨタ自動車株式会社 電池制御システム
WO2013128811A1 (ja) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 電池パックおよび電池パックの電力量算出方法
JP2014148232A (ja) * 2013-01-31 2014-08-21 Sanyo Electric Co Ltd 車載用蓄電システム、情報端末
JP2014231988A (ja) * 2011-09-27 2014-12-11 三洋電機株式会社 バッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252062A (ja) * 2006-03-15 2007-09-27 Yamaha Motor Electronics Co Ltd バッテリの制御装置
JP2007261433A (ja) * 2006-03-28 2007-10-11 Fujitsu Ten Ltd バッテリ制御装置およびバッテリ制御方法
JP2011015516A (ja) * 2009-07-01 2011-01-20 Denso Corp 車載電源装置
WO2012042585A1 (ja) * 2010-09-27 2012-04-05 トヨタ自動車株式会社 電池制御システム
JP2014231988A (ja) * 2011-09-27 2014-12-11 三洋電機株式会社 バッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置
WO2013128811A1 (ja) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 電池パックおよび電池パックの電力量算出方法
JP2014148232A (ja) * 2013-01-31 2014-08-21 Sanyo Electric Co Ltd 車載用蓄電システム、情報端末

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019092794A1 (ja) * 2017-11-07 2019-05-16 Connexx Systems株式会社 複合電池、それを備えた自動車及び鉄道回生電力貯蔵装置
CN110024212A (zh) * 2017-11-07 2019-07-16 柯耐克斯系统株式会社 复合电池、具备其的机动车及铁道再生电力储存装置
CN110024212B (zh) * 2017-11-07 2022-02-01 柯耐克斯系统株式会社 复合电池、具备其的机动车及铁道再生电力储存装置
JP2019158752A (ja) * 2018-03-15 2019-09-19 三菱ロジスネクスト株式会社 バッテリ残存容量表示システム、及び、状態量表示方法
US10797341B2 (en) 2018-03-16 2020-10-06 Kabushiki Kaisha Toshiba Battery module, battery pack, vehicle, and stationary power supply
CN114228645A (zh) * 2021-12-21 2022-03-25 深圳市七曜智造科技有限公司 一种车载导航装置的控制方法、系统、计算机设备及可读存储介质
CN114228645B (zh) * 2021-12-21 2024-01-02 深圳市七曜智造科技有限公司 一种车载导航装置的控制方法、系统、计算机设备及可读存储介质

Also Published As

Publication number Publication date
JP2019017124A (ja) 2019-01-31

Similar Documents

Publication Publication Date Title
JP6540781B2 (ja) 蓄電装置
US9649950B2 (en) Power supply apparatus
WO2017086400A1 (ja) 蓄電池システム、蓄電池装置及び方法
US8085051B2 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
JP6380171B2 (ja) 電源システム
CN110679056B (zh) 电池充电管理设备和方法
JP6029251B2 (ja) 混合正極材を含む二次電池の充電状態推定装置及び方法
EP2672606B1 (en) Charging-control device and charging-control method
US20130022843A1 (en) Assembled battery and method of controlling assembled battery
JP5191502B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池
US20140375279A1 (en) Lithium ion battery charging method and battery-equipped device
JP4771180B2 (ja) 組電池および組電池の制御システム
JP5262027B2 (ja) 組電池、及び電池システム
CN113853706B (zh) 使用电极的相对劣化程度控制二次电池操作的设备和方法
CN109655753B (zh) 一种电池组soc的估算方法
JP5284029B2 (ja) 組電池パック及び組電池パックの製造方法
JP6327046B2 (ja) 電源システムおよび自動車
JP6337596B2 (ja) 電源システムおよび自動車
JP2014217170A (ja) 蓄電装置
WO2014184861A1 (ja) 電池システム、その電池システムを備える移動体および電力貯蔵システム、および電池システムの制御方法
KR20190028201A (ko) 배터리 충방전 전압 조절 장치 및 방법
JP7131568B2 (ja) 推定装置、推定方法及びコンピュータプログラム
JPWO2016080222A1 (ja) 車載用電池及び車載用電源装置
US20220200312A1 (en) Battery Control Apparatus
JP2017099229A (ja) 車載電源システムの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP