WO2012042585A1 - 電池制御システム - Google Patents

電池制御システム Download PDF

Info

Publication number
WO2012042585A1
WO2012042585A1 PCT/JP2010/066684 JP2010066684W WO2012042585A1 WO 2012042585 A1 WO2012042585 A1 WO 2012042585A1 JP 2010066684 W JP2010066684 W JP 2010066684W WO 2012042585 A1 WO2012042585 A1 WO 2012042585A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
secondary battery
resistance
temperature
terminal voltage
Prior art date
Application number
PCT/JP2010/066684
Other languages
English (en)
French (fr)
Inventor
上木 智善
行広 岡田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080064325.6A priority Critical patent/CN102771003B/zh
Priority to JP2011533027A priority patent/JP5293827B2/ja
Priority to PCT/JP2010/066684 priority patent/WO2012042585A1/ja
Priority to US13/579,304 priority patent/US8947055B2/en
Priority to DE112010005906.3T priority patent/DE112010005906B4/de
Priority to CA2789668A priority patent/CA2789668C/en
Publication of WO2012042585A1 publication Critical patent/WO2012042585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery control system including a lithium ion secondary battery having a positive electrode plate and a negative electrode plate, and a control device that controls charging of the lithium ion secondary battery from a power source.
  • lithium-ion secondary batteries (hereinafter also simply referred to as secondary batteries) that can be charged and discharged have been used as power sources for driving vehicles such as hybrid cars and electric cars.
  • secondary batteries lithium-ion secondary batteries
  • a large charging current such as 5C or 10C is supplied.
  • Patent Document 1 discloses an internal resistance detection step for detecting an internal resistance when charging a lithium ion secondary battery, a constant current charge at a final charge current, and a constant voltage charge at a final charge voltage. And a final charging step of charging the secondary battery, and a method of charging a lithium ion secondary battery is disclosed.
  • the final charging voltage in the final charging step is set to a value obtained by adding the product of the internal resistance of the secondary battery and the final charging current to the set voltage of the secondary battery. For this reason, according to this method, the secondary battery can be charged to the set voltage regardless of the size of the internal resistance. Therefore, according to the technique of Patent Document 1, it is possible to sufficiently charge a secondary battery that has deteriorated and has increased internal resistance.
  • Patent Document 1 discloses a method for charging a secondary battery using constant voltage charging in which the charging current gradually decreases in the vicinity of full charge, and a large current such as the above-described rapid charging or regenerative current charging. This is not applicable when charging a secondary battery.
  • the internal resistance of the secondary battery includes the DC resistance of the secondary battery (resistance due to the electrolyte in the separator, conduction resistance of the current collector, etc.), diffusion resistance of ions in the positive electrode plate, ions in the negative electrode plate Diffusion resistance, positive electrode plate reaction resistance, and negative electrode plate reaction resistance.
  • the negative electrode plate is polarized by the reaction resistance of the negative electrode plate itself. This polarization increases as the product of the reaction resistance of the negative electrode plate and the charging current increases.
  • the potential of the negative electrode plate becomes lower than that of metallic lithium, and there is a possibility that metallic lithium is deposited on the negative electrode plate.
  • the normal reaction resistance in the normal temperature range (20 to 45 ° C.) is sufficiently higher than the DC resistance with respect to the reaction resistance generated in the negative electrode plate.
  • the low temperature reaction resistance increases the low temperature reaction resistance, and there are some that are larger than the DC resistance.
  • the present invention has been made in view of such a problem, and for a secondary battery using a negative electrode plate having a characteristic of increasing reaction resistance in a low temperature region, when the battery temperature is in the low temperature region, rapid charging is performed. Even when charging with a large current such as charging a regenerative current in a vehicle or vehicle, the secondary battery is appropriately charged to a higher inter-terminal voltage while suppressing the deposition of metallic lithium on the negative electrode plate of the secondary battery.
  • a battery control system is provided.
  • a lithium ion secondary battery (hereinafter also simply referred to as a secondary battery) having a positive electrode plate and a negative electrode plate, and a maximum inter-terminal voltage and an allowable charging current that are allowed when the secondary battery is charged are set.
  • the negative electrode plate when was the low temperature range aT l, the negative electrode plate, with a case where the battery temperature T is in the case and the low temperature range aT l of the normal temperature range aT j, when comparing the characteristics occurs the negative electrode plate Regarding the reaction resistance R r (T), the case of the low temperature region AT 1 is large, and the ratio of the reaction resistance R r (T) of the negative electrode plate to the internal resistance R (T) of the secondary battery, In the case of the above low temperature range AT l , the characteristics are large.
  • Voltage storage means for storing the initial maximum terminal voltage V m0 (T) allowed in the initial use of the secondary battery among the maximum terminal voltage V m (T) for each battery temperature T; Resistance storage means for storing an initial internal resistance R 0 (T) generated in the initial use of the secondary battery for at least a predetermined battery temperature T ja within the normal temperature range AT j , and the allowable charging current I m (T) Among the internal resistances of the secondary battery at the timing when the battery temperature T of the secondary battery becomes the predetermined battery temperature Tja.
  • the maximum terminal voltage V m (T) corresponding to the battery temperature T is stored in the voltage storage means.
  • the battery control system described above includes the normal internal resistance R j (T ja ) and the initial internal resistance R 0 (T ja ) of the secondary battery acquired at the timing when the predetermined battery temperature T ja within the normal temperature range AT j is reached.
  • the maximum voltage calculation means at least in the range of the low temperature region AT l is configured such that the maximum inter-terminal voltage V m (T) is changed to the initial maximum inter-terminal voltage V m0 (T) and the differential resistance ⁇ R (T ja ) and the allowable charging current. It is given as a value obtained by adding the product of I m (T).
  • the value of the differential resistance ⁇ R (T ja ) at the predetermined battery temperature T ja in the normal temperature range AT j is obtained although the battery temperature T is a temperature in the low temperature range AT 1 . Used. The reason for this is as follows.
  • the characteristics described above for the secondary battery that is, the reaction resistance R r (T) generated in the negative electrode plate at the battery temperature T, and the reaction resistance R r occupying the internal resistance R (T) of the secondary battery.
  • a negative electrode plate in which the ratio of (T) is larger in the low temperature range AT 1 than in the normal temperature range AT j is used.
  • the internal resistance R (T) of the secondary battery increases due to a change with time or the like, the internal resistance R (T) increases approximately at the same rate in any temperature range.
  • resistance components such as reaction resistance and direct current resistance also increase roughly at the same rate (for example, increase by 30% in the same manner). Accordingly, when compared in terms of absolute values, the increase over time in the low-temperature reaction resistance R rl (T l ) at the temperature T 1 in the low temperature range AT l is equal to the normal reaction at the temperature T j in the normal temperature range AT j . Greater than the increase in resistance R rj (T j ).
  • the maximum voltage calculating means differential resistance ⁇ R at a temperature T l in the low temperature range AT l ( Assuming that the product of T l ) and the allowable charging current I m (T l ) is added to the initial maximum terminal voltage V m0 (T l ), as described above, the differential resistance ⁇ R (T l ) at the temperature T l is Since the absolute value is large, the maximum inter-terminal voltage V m (T l ) obtained here may be too large. Then, the polarization in the negative electrode plate becomes too large, and there is a possibility that metallic lithium is deposited.
  • the maximum voltage calculation means corresponds to the battery temperature T (temperature T l in the low temperature range AT 1 ).
  • the differential resistance ⁇ R (T l ) at a predetermined battery temperature T ja within the normal temperature range AT j having a relatively small value is used, and this and the allowable charging current I m ( the product of the T j), to obtain the initial maximum inter-terminal voltage V m0 (T j) in addition to the maximum terminal voltage V m (T j).
  • the reaction resistance R r (T) in the low temperature range AT 1 (low temperature reaction resistance R rl (T l )) is higher than that in the normal temperature range AT j.
  • the battery temperature T is within the low temperature range AT1 , and charging is performed with a large current such as rapid charging or regenerative current charging in a vehicle. Even when the secondary battery is used, the secondary battery can be appropriately charged to a higher inter-terminal voltage while suppressing the deposition of metallic lithium on the negative electrode plate of the secondary battery.
  • examples of the power source include a DC power supply device, a charger, and an engine or motor that can generate power when a secondary battery is mounted on the vehicle.
  • the negative electrode plate is related to the reaction resistance R r (T) generated in the negative electrode plate when the specific is compared between the case where the battery temperature T is the normal temperature range AT j and the low temperature range AT l.
  • the low temperature reaction resistance R rl occupying the low temperature internal resistance R l (T l ), which is the internal resistance of the secondary battery, at the temperature T l in the low temperature region AT l (T l) ratio R rl of (T l) / R l ( T l) is one having a large characteristic.
  • a negative electrode plate include a negative electrode plate containing natural graphite or artificial graphite as a negative electrode active material.
  • the initial internal resistance R 0 (T) may be stored for at least the predetermined battery temperature T ja within the normal temperature range AT j . Therefore, the whole and the range of normal temperature range AT j, for all temperature range including low temperature range AT l, also include those stored for each battery temperature T.
  • the negative electrode plate has a low temperature reaction resistance R rl (T l ) at a temperature T 1 in the low temperature region AT 1 with respect to the reaction resistance R r (T).
  • the normal internal resistance R j (T j ) which is 7 times or more the normal reaction resistance R rj (T j ) at the temperature T j in the temperature range AT j and is the internal resistance R (T) at the temperature T j .
  • the ratio R rj (T j ) / R j (T j ) of the normal reaction resistance R rj (T j ) is 10% or less and is the internal resistance R (T) at the temperature T 1 Battery control having characteristics, wherein the ratio R rl (T l ) / R l (T l ) of the low temperature reaction resistance R rl (T l ) in the low temperature internal resistance R l (T l ) is 20% or more A system is good.
  • the low temperature reaction resistance R rl (T l ) is higher than the normal reaction resistance R rj (T j ), and the ratio R rj (T j). ) / R j (T j ) is definitely greater than the ratio R rl (T l ) / R l (T l ).
  • the differential resistance ⁇ R (T ja ) at the predetermined battery temperature T ja within the normal temperature range AT j is used by the maximum voltage calculation means.
  • the maximum voltage calculation unit sets the initial maximum terminal voltage V m0 (T) to the maximum terminal.
  • V m0 (T) A battery control system having an inter-voltage V m (T) value is preferable.
  • the negative electrode plate of the secondary battery used in the battery control system described above has a ratio R rj (T j ) / R of the normal reaction resistance R rj (T j ) to the normal internal resistance R j (T j ). compared to j (T j), the ratio R rl (T l) of cold internal resistance R l (T l) accounted low-temperature reaction resistance R rl (T l) / R l (T l) is large.
  • the battery temperature T is at higher than the low temperature range AT l is the value of the initial maximum inter-terminal voltage V m0 (T) between the maximum terminal voltage V m (T).
  • the battery control system includes a resistance acquisition means for acquiring ().
  • the battery control system since the above-described battery control system includes the above-described resistance acquisition unit, the battery control system itself acquires the normal internal resistance R j (T ja ) of the secondary battery and autonomously obtains the maximum inter-terminal voltage V m (T). Can be changed.
  • a charge state detection unit that detects a charge state of the secondary battery, and an open terminal that stores in advance a voltage between open terminals for each charge state related to the secondary battery.
  • Voltage storage means, and open terminal voltage acquisition means for acquiring the open terminal voltage corresponding to the charge state detected by the charge state detection means, wherein the resistance acquisition means is the secondary
  • the predetermined time may be a battery control system comprising a 1.0 seconds.
  • the battery control system includes a charge state detection unit, an open terminal voltage storage unit, and an open terminal voltage acquisition unit.
  • the resistance acquisition unit has the same charging current from the first time to the second time. the when detecting the open terminal voltage of the secondary battery at the first time and the difference between the inter-terminal voltage of the secondary battery at the second time, using the current value of the charging current typically internal resistance R j ( T ja ) is acquired. That is, in the battery control system described above, the normal internal resistance R j (T ja ) of the secondary battery according to the direct current resistance measurement (DC-IR) method can be acquired.
  • DC-IR direct current resistance measurement
  • the internal resistance mainly includes the reaction resistance of the positive electrode plate, the reaction resistance of the negative electrode plate, and the direct current resistance of the secondary battery. In addition, diffusion resistance of ions in the negative electrode plate also appears.
  • the internal resistance obtained according to the DC-IR method is added to the diffusion resistance component in addition to the reaction resistance of the positive electrode plate, the reaction resistance of the negative electrode plate, and the direct current resistance. Value.
  • the differential resistance ⁇ R (T) also has a large value obtained by adding the increase in diffusion resistance, and the maximum inter-terminal voltage of the secondary battery acquired by the maximum voltage acquisition unit also becomes a large value. For this reason, when charging the secondary battery, there is a possibility that the polarization of the negative electrode plate becomes excessively large and metal lithium is deposited on the negative electrode plate.
  • the diffusion resistance occupying the internal resistance can be reduced by setting the above measurement period to 1.0 second or less. It has been found that the ratio can be made sufficiently small.
  • the predetermined time from the first time to the second time, which corresponds to the measurement time is set to 1.0 second or less, so that the ratio of the diffused resistance is sufficient in the resistance acquisition means.
  • a small normal internal resistance R j (T ja ) can be obtained. Therefore, when charging with a large current, the secondary battery can be appropriately charged to a higher inter-terminal voltage while suppressing the deposition of metallic lithium on the negative electrode plate of the secondary battery.
  • DC resistance measurement (DC-IR) method is the amount of change in the voltage between the terminals of the secondary battery that occurs when a constant charging current flows through the secondary battery (specifically, the charge
  • the internal resistance of the secondary battery is calculated using the voltage between the open terminals just before the current starts to flow, the amount of change between the voltages between the terminals after a predetermined time has elapsed since the start of charging, and the current value of the charging current. It is a technique to do.
  • the battery control system further includes current detection means for detecting the current value of the charging current flowing through the secondary battery at a predetermined cycle, and the resistance acquisition means is detected by the current detection means.
  • a battery control system that acquires the normal internal resistance R j (T ja ) when a plurality of current values detected during the period from the first time to the second time among the current values are equal to each other. Is preferred.
  • the internal resistance R j (T ja ) is normally acquired when the current values of the charging currents acquired during the period from the first time to the second time are equal to each other. It is possible to obtain the normal internal resistance R j (T ja ) of the secondary battery more accurately.
  • the battery control system may be configured such that the predetermined time in the resistance acquisition unit is 0.1 seconds or less.
  • the predetermined time from the first time to the second time is set to 0.1 seconds or less. Therefore, when charging with a large current, the metallic lithium on the negative electrode plate of the secondary battery The secondary battery can be appropriately charged to a higher inter-terminal voltage while reliably suppressing the precipitation of.
  • normal internal resistance storage means for storing the normal internal resistance R j (T ja ) of the secondary battery input from the outside at the time of the input.
  • a battery control system provided is preferable.
  • a normal internal resistance R j () of the secondary battery using a DC power supply device or the like installed outside the system (outside the vehicle) at the time of inspection such as vehicle inspection. T ja ) can be measured.
  • the battery control system described above includes the normal internal resistance storage means described above. Therefore, the normal internal resistance R j (T ja ) measured using a device external to the system can be stored in the normal internal resistance storage means and used. As a result, even if a resistance acquisition means is not provided in the battery control system (in the vehicle), it is possible to reliably suppress the deposition of metallic lithium on the negative electrode plate of the secondary battery, usually using the internal resistance R j (T ja ). Meanwhile, the secondary battery can be appropriately charged up to a higher inter-terminal voltage.
  • a method of acquiring the normal internal resistance of the secondary battery from the outside of the battery control system for example, measurement is performed using a device installed outside the battery control system, for example, a DC power supply device, a voltmeter, and an ammeter.
  • a method for obtaining the internal resistance using these external devices for example, a DC-IR method or an AC impedance (AC-IR) method can be cited.
  • FIG. 1 is a perspective view of a vehicle equipped with a battery control system according to Embodiments 1 and 2 and Modification 1.
  • FIG. 1 is a perspective view of a lithium ion secondary battery according to Embodiments 1 and 2 and Modification 1.
  • FIG. It is explanatory drawing of the hybrid vehicle control apparatus of Embodiment 1, 2, and the modification 1.
  • FIG. 6 is a flowchart of the first embodiment and the first modification. 6 is a flowchart of the first embodiment and the first modification. 6 is a flowchart of the first embodiment and the first modification.
  • 2 is an explanatory diagram of Embodiment 1.
  • FIG. 2 is an explanatory diagram of Embodiment 1.
  • FIG. 6 is an explanatory diagram of a second embodiment.
  • Hybrid vehicle control device control device 30 Front motor (power supply) 40 Rear motor (power supply) 50 engine (power) 101, 101A Lithium ion secondary battery 120 Positive electrode plate 130 Negative electrode plate AT j Normal temperature range AT 1 Low temperature range BS1, BS2, BS3 Battery control system Ic Charging current IF Current value I m (T) Allowable charging current P1 First time P2 Second time R (T) Internal resistance R 0 (T) Initial internal resistance R j (T j ) Normal internal resistance R l (T l ) Low temperature internal resistance R r (T) Reaction resistance R rj (T j ) Normal reaction Resistance R rl (T l ) Low temperature reaction resistance SC Charging state T Battery temperature T ja First battery temperature (predetermined battery temperature) T j Temperature (within normal temperature range) Temperature T 1 (within low temperature range) Temperature TM1 Predetermined time V m0 (T) Maximum terminal voltage V m0 (T) Initial maximum terminal voltage VZ Open terminal voltage W1 First battery
  • FIG. 1 shows a perspective view of the vehicle 1.
  • the vehicle 1 includes a plurality of (60 in the first embodiment) lithium ion secondary batteries (hereinafter also simply referred to as secondary batteries) 101, 101, a front motor 30, a rear motor 40, and an engine 50 that form an assembled battery 80. And a hybrid vehicle control device (hereinafter also referred to as an HV control device) 20 that controls charging of the secondary battery 101 from the front motor 30, the rear motor 40, and the engine 50.
  • the vehicle 1 is a hybrid vehicle having a cable 81, an inverter 82, and a vehicle body 89 in addition to these.
  • the battery control system BS1 in the vehicle 1 includes a secondary battery 101, a front motor 30, a rear motor 40, an engine 50, and an HV control device 20.
  • the secondary battery 101 constituting the assembled battery 80 is a lithium ion secondary battery having the positive electrode plate 120 and the negative electrode plate 130.
  • the secondary battery 101 contains an electrode body 110 and an electrolyte (not shown) in a rectangular box-shaped battery case 180.
  • the electrolytic solution is an organic electrolytic solution obtained by adding LiPF 6 as a solute to a mixed organic solvent prepared by adjusting ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate.
  • the battery case 180 of the secondary battery 101 has a battery case body 181 and a sealing lid 182 both made of aluminum.
  • a transparent insulating film (not shown) made of resin and bent in a box shape is interposed between the battery case 180 and the electrode body 110.
  • the sealing lid 182 has a rectangular plate shape, closes the opening of the battery case body 181, and is welded to the battery case body 181.
  • the sealing lid 182 has a positive electrode terminal member 191A and a negative electrode terminal member 192A located at the tip of the positive electrode current collecting member 191 and the negative electrode current collecting member 192 connected to the electrode body 110, respectively. 2 protrudes from the lid surface 182a facing upward.
  • An insulating member 195 made of an insulating resin is interposed between the positive terminal portion 191A or the negative terminal portion 192A and the sealing lid 182 to insulate each other.
  • a rectangular plate-shaped safety valve 197 is also sealed on the sealing lid 182.
  • the electrode body 110 is formed by winding a belt-like positive electrode plate 120 and a negative electrode plate 130 into a flat shape via a belt-like separator (not shown) made of porous polyethylene.
  • the positive electrode plate 120 and the negative electrode plate 130 of the electrode body 110 are joined to a plate-like positive electrode current collector 191 or a negative electrode current collector 192 that are bent in a crank shape.
  • a thin strip-shaped positive electrode plate 120 is a strip-shaped positive electrode current collector foil (not shown) made of aluminum, and a positive electrode active material layer (illustrated) formed on both main surfaces of the positive electrode current collector foil. Not).
  • the thin strip-shaped negative electrode plate 130 has a strip-shaped negative electrode current collector foil (not shown) made of copper and a negative electrode active material layer (not shown) formed on both main surfaces of the negative electrode current collector foil.
  • the negative electrode active material layer includes negative electrode active material particles made of natural graphite.
  • the DC resistance Rd (T) of the secondary battery 101 the diffusion resistance Rs (T) in the positive electrode plate 120, the reaction resistance Rn (T) in the negative electrode plate 130, the reaction resistance Rp (T) of the positive electrode plate 120, and
  • the reaction resistance R r (T) of the negative electrode plate 130 is a function of the battery temperature T.
  • the internal resistance R (T) is also a function of the battery temperature T, which varies with the battery temperature T.
  • the negative electrode plate 130 using the negative electrode active material particles made of natural graphite exhibits the following characteristics with respect to the reaction resistance R r (T). That is, among the reaction resistances R r (T) of the negative electrode plate 130 in the secondary battery 101, the battery temperature T is normal at a temperature T j within a normal temperature range AT j (specifically, a range of 20 to 45 ° C.). Reaction resistance R rj (T j ) is sufficiently smaller than DC resistance Rd (T j ) of secondary battery 101 (R rj (T j ) ⁇ Rd (T j )).
  • the battery temperature T (specifically, -30 to 0 range ° C.) low-temperature range AT l if the temperature T l in the low temperature reaction resistance R rl (T l) is increased, the secondary battery 101 It becomes larger than the direct current resistance Rd (T l ) (R rl (T l )> Rd (T l )).
  • the negative electrode plate 130 has a low temperature reaction resistance R rl (T l ) at a temperature T 1 in the low temperature range AT l and a normal reaction resistance R rj (T j ) at a temperature T j in the normal temperature range AT j .
  • R rl (T l )> R rj (T j ) Specifically, the low-temperature reaction resistance R rl (T l ) has a value that is seven times or more the normal reaction resistance R rj (T j ).
  • the negative electrode plate 130 has a characteristic that the second ratio W2 is larger than the first ratio W1, that is, the reaction resistance is particularly large at a low temperature and occupies the internal resistance of the secondary battery 101. The reaction resistance ratio is also increased.
  • the negative electrode plate 130 is polarized due to the reaction resistance R r (T) of the negative electrode plate 130.
  • the polarization increases as the product of the reaction resistance R r (T) of the negative electrode plate 130 and the charging current increases. Accordingly, when a large current is passed through the secondary battery 101 during charging, the negative electrode plate 130 is largely polarized, and thus the potential of the negative electrode plate 130 may be lower than the potential of metallic lithium. Then, metallic lithium is deposited on the negative electrode plate 130.
  • the negative electrode plate 130 when the magnitude of the charging current to the secondary battery 101 are the same, the negative electrode plate 130, the temperature T l in the low temperature range in AT l than the battery temperature T is a temperature T j within the normal temperature range AT j In this case, large polarization is likely to occur, and metal lithium is likely to precipitate.
  • the HV control device 20 includes a CPU (not shown), a ROM, and a RAM, and includes a microcomputer (hereinafter also referred to as a microcomputer) 21 that operates according to a predetermined program.
  • the HV control device 20 includes a voltage sensor 25 that measures a voltage V between terminals of one secondary battery 101A among the secondary batteries 101 and 101 constituting the assembled battery 80, and the secondary battery 101A (assembled battery 80).
  • a temperature sensor 27 for measuring the battery temperature T of the secondary battery 101A (see FIG. 3).
  • the voltage sensor 25 measures the voltage between the positive electrode terminal portion 191A and the negative electrode terminal portion 192A of the secondary battery 101A (see FIG. 3).
  • the current sensor 26 is a known direct current sensor.
  • the temperature sensor 27 is arranged such that the temperature measuring unit is in contact with the outside of the battery case 180 of the secondary battery 101A.
  • the above-described HV control device 20 can detect the state of the secondary battery 101 (the assembled battery 80), the front motor 30, the rear motor 40, the engine 50, and the inverter 82 directly or via a sensor or the like. Various controls are performed depending on the situation. Therefore, in the battery control system BS1 of the first embodiment, the control of the secondary battery 101 (the assembled battery 80) performed by the HV controller 20 will be described in detail below with reference to the flowcharts of FIGS. .
  • the main routine M1 shown in FIG. 4 is executed. In this main routine M1, steps S14, S15, and S18 indicated by broken lines are steps used in Modification 1 described later, and are not used in Embodiment 1.
  • the initial maximum terminal voltage V m0 (T) of the secondary battery 101A among the maximum terminal voltage V m (T) is previously stored for each battery temperature T.
  • the allowable charging current I m (T) of the secondary battery 101A is stored for each battery temperature T, and the open-circuit voltage VZ of the secondary battery 101A is stored for each charging state SC of the secondary battery 101A.
  • the ROM also stores in advance an initial internal resistance R 0 (T ja ) of the secondary battery 101A at a predetermined first battery temperature T ja within the normal temperature range AT j .
  • step S1 the main routine M1 shown in FIG. 4 will be described.
  • the process proceeds to step S2, the battery temperature T of the secondary battery 101A at that time, the current value IF flowing in the secondary battery 101A, and The inter-terminal voltage V (T) of the secondary battery 101A is measured.
  • the main routine M1 repeats step S2 to step S19 at a predetermined cycle time TC1 (in the first embodiment, every 0.1 second) until the vehicle 1 is keyed off (see step S20 described later). . Therefore, in the first embodiment, the battery temperature T, the current value IF, and the inter-terminal voltage V (T) are measured every cycle time TC (0.1 seconds). Thereafter, the process proceeds to the maximum voltage calculation subroutine of step S30.
  • the maximum voltage calculation subroutine S30 will be described with reference to FIG.
  • the upper limit of the inter-terminal voltage V (T) of the secondary battery 101 (101A) is limited by the maximum inter-terminal voltage V m (T) set in the maximum voltage calculating subroutine S30.
  • This maximum voltage calculating subroutine S30 firstly the battery temperature T measured in step S2 is, than the low temperature range AT l, specifically, low-temperature range maximum temperature T lu (this embodiment is the highest temperature of the low temperature range AT l 1 is determined whether it is higher than 0 ° C.) (step S31).
  • step S34 If YES, that is, if the battery temperature T is higher than the low temperature range maximum temperature Tlu , the process proceeds to step S34. On the other hand, if NO, that is, if the battery temperature T is equal to or lower than the low temperature range maximum temperature Tlu , the process proceeds to step S32.
  • step S32 the normal internal resistance of the secondary battery 101A at a predetermined first battery temperature T ja (20 ° C. in the first embodiment) which is already in the normal temperature range AT j and which is already in the normal temperature range AT j by the resistance acquisition subroutine S40 described later. It is determined whether or not R j (T ja ) has been acquired.
  • step S34 If NO, that is, if the normal internal resistance R j (T ja ) has not yet been acquired in the resistance acquisition subroutine S40, the process proceeds to step S34. On the other hand, if YES, that is, if the normal internal resistance R j (T ja ) has already been acquired, the process proceeds to step S33, and the maximum inter-terminal voltage V m (T) is changed to the initial maximum inter-terminal voltage V m0 (T). Is set to a value obtained by adding a product ( ⁇ R (T ja ) ⁇ I m (T)) of a differential resistance ⁇ R (T ja ) and an allowable charging current I m (T), which will be described later.
  • V m (T) V m0 (T) + ⁇ R (T ja ) ⁇ I m (T).
  • step S34 the maximum inter-terminal voltage V m (T) is set to the initial maximum inter-terminal voltage V m0 (T) stored in advance in the ROM of the microcomputer 21. After the setting, the maximum voltage calculation subroutine S30 is terminated and the process returns to the main routine M1.
  • step S3 of the main routine M1 shown in FIG. 4 the allowable charging current I m (T) for the charging current Ic flowing through the secondary battery 101 is set from the battery temperature T measured in step S2. As a result, the charging current Ic larger than the allowable charging current I m (T) is prevented from flowing through the secondary battery 101.
  • the allowable charging current I m (T) specifically corresponds to the battery temperature T at each point in time among the allowable charging currents I m (T) stored in advance in the ROM for each battery temperature T. Select.
  • step S4 the state of charge SC (SOC value) of the secondary battery 101A at that time is detected.
  • the HV control device 20 separately installs a secondary battery 101A with a known charge state SC in the vehicle 1, and then the value of the discharge current flowing through the secondary battery 101A and the value of the charging current Ic. Based on this history, the charging state SC of the secondary battery 101A is calculated. Therefore, in step S4, this value is read.
  • step S5 the voltage VZ between the open terminals of the secondary battery 101A corresponding to the detected charging state SC is acquired.
  • the voltage corresponding to the detected charging state SC of the secondary battery 101A is selected from among the open-circuit voltages VZ stored in advance for each value of the charging state SC in the ROM, and at that time The voltage between open terminals is VZ.
  • step S6 it is determined whether or not an inversion flag F1 described later is set. If YES, that is, if the reverse flag F1 is set, the process proceeds to step S11. On the other hand, if NO, that is, if the inversion flag F1 is reset, the process proceeds to step S7.
  • step S7 the battery temperature T acquired (measured) in step S2 is a predetermined first battery temperature T ja within the range of the normal temperature range AT j (20 ° C. ⁇ T ⁇ 45 ° C.) (in the first embodiment, for example) Whether it is 20 ° C.) or not.
  • NO that is, when the battery temperature T is not the first battery temperature T niv proceeds to step S19 by skipping steps S8 ⁇ S10.
  • YES that is, if the battery temperature T is the first battery temperature T niv, the process proceeds to step S8.
  • the first embodiment shows an example in which the process of step S8 and the like is performed when the battery temperature T is a predetermined first battery temperature Tja within the normal temperature range AT j .
  • the battery temperature T is within the normal temperature range AT j
  • the process may be performed in step S8 or the like, and the normal internal resistance may be calculated for any temperature in the resistance acquisition subroutine S40, which will be described later, and used.
  • step S8 using the current value IF of the secondary battery 101A acquired (measured) in step S2, it is determined whether or not the operation of the secondary battery 101A has changed (reversed) from discharging to charging. If NO, that is, if the operation of the secondary battery 101A is not reversed from discharging to charging, the process proceeds to step S19. On the other hand, if YES, that is, if the battery is reversed from discharging to charging, the process proceeds to step S9.
  • step S9 the battery temperature T, current value IF, and open-terminal voltage VZ at the timing immediately after the operation of the secondary battery 101A obtained in step S2 is reversed from discharging to charging (first time P1) are set.
  • the first time battery temperature T1, the first time current value IF1, and the first time open circuit voltage VZ1 are stored, respectively.
  • the inversion flag F1 is set to the microcomputer 21 (step S10), and it progresses to step S19.
  • step S6 if the reverse flag F1 is set in step S6 (YES), that is, the timing (second time P2) of the next cycle time TC1 after 0.1 second has elapsed since the reverse flag F1 was set.
  • step S11 it is determined whether the battery temperature T at the second time P2 is the same as the first time battery temperature T1 stored in step S9, that is, 0.1 seconds before. If NO, that is, if the battery temperature T at the second time P2 is different from the first time battery temperature T1, the process proceeds to step S17. On the other hand, if YES, that is, if the battery temperature T at the second time P2 is the same as the first time battery temperature T1, the process proceeds to step S12.
  • step S12 it is determined whether or not the current value IF at the second time P2 measured in step S2 is the same as the first time current value IF1 at the first time P1 stored in step S10. If NO, that is, if the current value IF at the second time P2 is different from the first time current value IF1, the process proceeds to step S17. On the other hand, if YES, that is, if the current value IF at the second time P2 has the same magnitude as the first time current value IF1 (see the explanatory diagram shown in FIG. 7), the process proceeds to the resistance acquisition subroutine of step S40.
  • the resistance acquisition subroutine S40 uses a pseudo direct current resistance measurement (DC-IR) method, and the normal internal resistance R j of the secondary battery 101 when the battery temperature T is the first battery temperature T ja (20 ° C.). It is a resistance acquisition means for acquiring (T ja ).
  • the main routine M1 executes the battery temperature T, the current value IF, and the inter-terminal voltage V (T) (the open terminal voltage associated therewith) at step S2 every predetermined cycle time TC1 (0.1 second). VZ) is being measured and detected.
  • the resistance acquisition subroutine S40 of the first embodiment when the current value IF measured at the second time P2 after a predetermined time TM1 (0.1 second) is the same size as the first time current value IF1. From the change in the voltage between the terminals of the secondary battery 101A flowing during this time (the differential voltage ⁇ V (T ja ) described below) and the current value IF (first time current value IF1), the first battery temperature T ja The normal internal resistance R j (T ja ) of the secondary battery 101A is obtained.
  • step S41 the terminal voltage at the second time P2 of the terminal voltage V (T ja) V (T ja) ( between the second time the terminal voltage V (T ja) 2) Then, the difference obtained by subtracting the first time opening voltage VZ1 stored 0.1 seconds before in step S9 is calculated, and this is defined as the differential voltage ⁇ V (T ja ) at the first battery temperature T ja .
  • step S42 the calculated differential voltage ⁇ V (T ja ) and the stored first time current value IF1 are stored in the RAM as a pair.
  • n indicating the stored number of pairs is incremented by one (step S43).
  • step S44 it is determined whether or not the number n is smaller than 64. If YES, that is, if the number n is smaller than 64, the resistance acquisition subroutine S40 is terminated and the process returns to the main routine M1.
  • the reason for calculating the normal internal resistance R j (T ja ) with a small error is that the number of pairs of the differential voltage ⁇ V (T ja ) and the first time current value IF1 is insufficient.
  • the normal internal resistance R at the first battery temperature T ja is obtained from the 64 pairs of differential voltage ⁇ V (T ja ) and the first time current value IF1.
  • j (T ja ) is calculated (step S45). Specifically, as shown in FIG. 8, a graph with the horizontal axis representing the first time current value IF1 and the vertical axis representing the difference voltage ⁇ V (T ja ) is plotted on the first time current value IF1 and the difference voltage ⁇ V (T ja ) Dot a coordinate point indicating the combination with). Then, an approximate straight line of a plurality of coordinate points is obtained using the least square method.
  • the inclination of the approximate straight line is defined as a normal internal resistance R j (T ja ) of the new secondary battery 101 at the first battery temperature T ja .
  • a new normal internal resistance R j (T ja ) at the first battery temperature T ja is obtained.
  • step S15 of the main routine M1 it is determined whether or not the normal internal resistance R j (T ja ) of the secondary battery 101A at the first battery temperature T ja is newly acquired (updated) in the above-described resistance acquisition subroutine S40. To do. If NO, that is, if the normal internal resistance R j (T ja ) has not been updated in the resistance acquisition subroutine S40, step S16 is skipped and the process proceeds to step S17. On the other hand, if YES, that is, if the normal internal resistance R j (T ja ) is updated, the process proceeds to step S16.
  • step S16 the differential resistance ⁇ R (T ja ) of the secondary battery 101A when the battery temperature T is the first battery temperature T ja is acquired.
  • a value (R 0 (T ja )) corresponding to the first battery temperature T ja among the initial internal resistances R 0 (T) stored in advance in the ROM is used. .
  • step S32 of the maximum voltage calculation subroutine S30 described above “YES” is selected in step S32 of the maximum voltage calculation subroutine S30 described above, and the process proceeds to step S33. That is, using the differential resistance ⁇ R (T ja ), the initial maximum terminal voltage V m0 (T), and the allowable charging current I m (T), the maximum terminal-to-terminal for the secondary battery 101 in the low temperature range AT 1 is used.
  • the voltage V m (T) can be set.
  • step S17 the inversion flag F1 is reset, and the process proceeds to step S19.
  • step S19 it is determined whether or not the vehicle 1 has been keyed off. Here, if NO, the process proceeds to step S20, and if YES, the process proceeds to step S21.
  • step S20 whether or not a predetermined cycle time TC1 (0.1 second) has elapsed from the measurement of the battery temperature T, current value IF, and inter-terminal voltage V (T) of the secondary battery 101A performed in step S2. Determine. If NO, that is, if the predetermined cycle time TC1 has not elapsed since the previous measurement, the process returns to step S19, and steps S19 and S20 are repeated (that is, wait until the cycle time TC1 elapses). On the other hand, if YES, that is, if the cycle time TC1 has elapsed from the measurement in step S2, the process returns to step S2, and steps S2 to S20 are repeated. On the other hand, in step S21, the inversion flag F1 is reset regardless of whether or not the inversion flag F1 is set, and the main routine M1 is terminated.
  • a predetermined cycle time TC1 0.1 second
  • the HV control device 20 is the control device
  • the front motor 30, the rear motor 40, and the engine 50 are the power source
  • the allowable charging current I m (T) is the allowable charging current
  • the initial state of the secondary battery 101A The maximum inter-terminal voltage V m0 (T) is set for each battery temperature T, and the initial internal resistance R 0 (T ja ) of the secondary battery 101A at the first battery temperature T ja within the normal temperature range AT j is set to the secondary battery 101A.
  • the microcomputer 21 of the HV control device 20 which stores each Corresponds to voltage storage means, resistance storage means, current storage means and open-terminal voltage storage means, respectively.
  • the resistance acquisition subroutine S40 is the resistance acquisition means
  • step S16 of the main routine M1 is the difference acquisition means
  • the maximum voltage calculation subroutine S30 is the maximum voltage calculation means
  • step S5 is the charge state detection means
  • step S6 is the open terminal. Each corresponds to the voltage acquisition means.
  • the battery control system BS1 has the normal internal resistance R j of the secondary battery 101A acquired at the timing when the first battery temperature T ja (for example, 20 ° C.) in the normal temperature range AT j is reached.
  • Step S16 is provided for obtaining a differential resistance ⁇ R (T ja ) between (T ja ) and the initial internal resistance R 0 (T ja ).
  • the maximum voltage calculation subroutine S30 when the battery temperature T is within the range of the low temperature range AT1, converts the maximum inter-terminal voltage V m (T) into the initial maximum inter-terminal voltage V m0 (T) and the differential resistance ⁇ R ( It is given as a value obtained by adding the product of T ja ) and allowable charging current I m (T).
  • the maximum inter terminal voltage V m (T) is a constant value that remains in the initial maximum inter-terminal voltage V m0 (T) Compared with the case where the charging of the secondary battery is controlled, it is possible to suppress a decrease in the charging amount of the secondary battery 101A due to an increase in internal resistance due to deterioration or the like.
  • the differential resistance ⁇ R facing the battery temperature T (temperature T l in the low temperature range AT 1 ) in the maximum voltage calculation subroutine S30.
  • the differential resistance ⁇ R (T ja ) at the first battery temperature T ja in the normal temperature range AT j that is a relatively small value compared to this is used.
  • the product of this and the allowable charging current I m (T) is added to the initial maximum terminal voltage V m0 (T) to obtain the maximum terminal voltage V m (T).
  • the maximum inter-terminal voltage V m (T) is set to a value larger than the initial maximum inter-terminal voltage V m0 (T), even if the internal resistance of the secondary battery increases due to aging, the secondary battery A decrease in the charge amount of the battery 101A can be suppressed.
  • the maximum inter-terminal voltage V m (T) does not become a large value, and the deposition of metallic lithium accompanying polarization in the negative electrode plate 130 cannot occur.
  • the negative electrode plate 130 having a characteristic temperature T l in the low-temperature reaction resistance R rl in low temperature range AT l (T l) is to increase than the case of the normal temperature range AT j
  • the battery temperature T is within the low temperature range AT1 , and rapid charging or charging of the regenerative current in the vehicle is performed.
  • the secondary battery 101 (101A) is appropriately charged to a higher inter-terminal voltage while suppressing the deposition of metallic lithium on the negative electrode plate 130 of the secondary battery 101A. Can do.
  • the battery temperature T is at higher than the low temperature range AT l is the value of the initial maximum inter-terminal voltage V m0 (T) between the maximum terminal voltage V m (T) .
  • V m0 the initial maximum inter-terminal voltage between the maximum terminal voltage V m (T) .
  • the battery control system BS1 since the battery control system BS1 includes the above-described resistance acquisition subroutine S30, the battery control system BS1 itself acquires the normal internal resistance R j (T ja ) of the secondary battery 101 (101A), and the maximum terminal voltage V m (T) can be changed autonomously.
  • the battery control system BS1 detects the current value IF of the charging current Ic having the same magnitude as the first time P1 and the second time P2, the first time release of the secondary battery 101A at the first time P1.
  • a normal internal resistance R j (T ja ) is obtained using the value IF1). That is, in the battery control system BS1 described above, the normal internal resistance R j (T ja ) of the secondary battery 101 (101A) according to the DC-IR method can be acquired.
  • an initial secondary battery A that has just been manufactured is prepared, and the battery temperature T is set to the normal temperature range AT j by the DC-IR method.
  • the time (measurement period) from when the charging current Ic starts to flow until the voltage between the terminals of the secondary battery A is measured by the DC-IR method is 0.1 seconds, 1.0 seconds, 10.0 seconds. And 20.0 seconds, respectively.
  • Table 1 shows the normal internal resistance of the secondary battery A (secondary battery A before an accelerated deterioration test described later) in each measurement period.
  • the normal internal resistance of the secondary battery A increases as the measurement period becomes longer. This is because the reaction resistance Rp (T j ) of the positive electrode plate 120, the reaction resistance R r (T j ) of the negative electrode plate 130, and the secondary battery immediately after the charging current Ic starts to flow through the secondary battery A.
  • the DC resistance Rd (T j ) of A (secondary battery 101) mainly occurs, but thereafter, the diffusion resistance Rs (T j ) of ions in the positive electrode plate 120 and the ions in the negative electrode plate 130 are gradually increased.
  • the diffused resistance Rn (T j ) also appears.
  • the normal internal resistance obtained by the DC-IR method includes the reaction resistance Rp (T j ) of the positive electrode plate 120, the reaction resistance R r (T j ) of the negative electrode plate 130, and the direct current resistance Rd ( in addition to T j), because the diffusion resistance Rs in each electrode 120,130 (T j), the component of Rn (T j) applied.
  • the normal internal resistance of the secondary battery A after the accelerated deterioration test is also increased as the measurement period becomes longer as in the initial case. It can be seen that there is a tendency similar to the initial normal internal resistance before the accelerated deterioration test.
  • the differential resistance ⁇ R before and after the accelerated degradation test (the difference obtained by subtracting the normal internal resistance after the accelerated degradation test from the one before the accelerated degradation test) is 0.8 m ⁇ when the measurement period is 0.1 second, and at 1.0 seconds. It is 2.0 m ⁇ at 1.3 m ⁇ and 10.0 seconds, and 2.6 m ⁇ at 20.0 seconds. From this, it can be seen that the differential resistance ⁇ R increases as the measurement period becomes longer.
  • each secondary battery B and C in a charged state of SOC 60% in a temperature environment of ⁇ 5 ° C. is first processed at a constant current of 2C for 1.0 second and at a constant current of 6C.
  • the battery is continuously charged for 0 second and at a constant current of 10 C for 1.0 second.
  • the discharge is continuously performed for 1.0 second at a constant current of 2C, 1.0 second at a constant current of 6C, and 1.0 second at a constant current of 10C, Thereafter, a rest period of 10.0 seconds is performed.
  • Such a charge / discharge pulse cycle test was repeated 10 times.
  • the capacities of the secondary batteries B and C were measured again. Specifically, the discharge capacity when discharged to 2.5 V with a constant (1 C) discharge current in a temperature environment of 25 ° C. was measured in the same manner as the method performed before the charge / discharge pulse cycle test. . And about each secondary battery B and C, the capacity
  • the capacity maintenance ratio of the secondary battery B is 99.4%, which is a high capacity maintenance ratio of 99% or more, whereas the capacity maintenance ratio of the secondary battery C is 90.0%. It can be seen that it is significantly lower than the secondary battery B.
  • the large charge in the charge / discharge pulse cycle test in the low temperature range AT 1 Due to charging with current, large polarization occurs in the negative electrode plate.
  • the potential of the negative electrode plate may be lower than that of metallic lithium. For this reason, it is considered that metallic lithium was deposited on the negative electrode plate, and the capacity of the secondary battery C was reduced by that amount after the charge / discharge pulse cycle test.
  • the internal resistance of the secondary battery A for various measurement periods was measured by the DC-IR method (see Table 1), but the equation (V m (T)) used in the maximum voltage calculation subroutine S30 described above was used.
  • V m (T) the equation used in the maximum voltage calculation subroutine S30 described above was used.
  • the initial maximum inter-terminal voltage V m0 ( ⁇ 5) is 4.12 V as described above.
  • the maximum terminal voltage V m ( ⁇ 5) is 4.176 V when the measurement period is 0.1 seconds, 4.21 V when the measurement period is 1.0 seconds, and 4 when the measurement period is 10.0 seconds. In the case of .260V and 20.0 seconds, it is 4.302V (see Table 1).
  • an initial secondary battery having the same configuration as that used for the secondary batteries B and C is prepared, and the above-described accelerated deterioration test performed on the secondary battery A is performed.
  • Five secondary batteries (secondary batteries D to H) having deteriorated more than C were prepared. Then, the capacities of these secondary batteries D to H were measured in the same manner as the secondary batteries B and C.
  • the maximum inter-terminal voltage V m ( ⁇ 5) was set as follows, and a charge / discharge pulse cycle test similar to the secondary batteries B and C was performed. That is, the maximum terminal voltage V m ( ⁇ 5) of the secondary battery D, the secondary battery E, the secondary battery F, the secondary battery G, and the secondary battery H is set to 4.12V, 4.18V, 4.21V, The voltage was set to 4.26 V and 4.30 V, respectively (see Table 2). Then, as with the secondary batteries B and C, the charge / discharge pulse cycle test was repeated 10 times for the secondary batteries D to H.
  • the secondary batteries D to H have been subjected to the same accelerated deterioration test as the secondary battery A, and the internal resistance thereof is almost the same as the value after the accelerated deterioration test of the secondary battery A. it is conceivable that.
  • the capacity maintenance rate of the secondary battery D is 99.4%
  • the capacity maintenance rate of the secondary battery E is 99.4%
  • the capacity maintenance rate of the secondary battery F is 99.2%.
  • the capacity retention rate was 99% or more.
  • the capacity maintenance rate of the secondary battery G was slightly low at 98.6%
  • the capacity maintenance rate of the secondary battery H was 80.0%, which greatly reduced the capacity.
  • the predetermined time TM1 between the first time P1 and the second time P2 corresponding to the above-described measurement period is 1.0 second or less (specifically, Therefore, in the resistance acquisition subroutine S40, the normal internal resistance R j (T ja ) with a sufficiently small proportion of the diffused resistance can be acquired. Therefore, when charging with a large current, the secondary battery 101 (101A) is appropriately charged to a high inter-terminal voltage while suppressing the deposition of metallic lithium on the negative electrode plate 130 of the secondary battery 101 (101A). can do.
  • the predetermined time TM1 is set to 0.1 second, so that the metal on the negative electrode plate 130 of the secondary battery 101 (101A) is charged when charging with a large current.
  • the secondary battery 101 (101A) can be charged to an appropriate inter-terminal voltage while reliably suppressing lithium deposition.
  • Modification 1 Modification 1 of the present invention will be described with reference to the drawings.
  • the cycle time TC2 is set to 0.02 seconds shorter than the cycle time TC1 (0.1 seconds) of the first embodiment
  • FIG. 4 is different from the first embodiment described above in that steps S13, S14, and S18 indicated by broken lines are added. Therefore, differences from the first embodiment will be mainly described, and description of the same parts as those of the first embodiment will be omitted or simplified. In addition, about the same part as Embodiment 1, the same effect is produced. In addition, the same contents are described with the same numbers.
  • steps S11 to S20 including steps different from those in the first embodiment in the main routine M1 shown in FIG. 4 will be described below, and the description of the rest will be omitted.
  • step S11 it is determined whether or not the battery temperature T acquired in step S2 in the current cycle is the same as the first time battery temperature T1 stored in step S9 described above. . If NO, that is, if the battery temperature T of the current cycle is different from the first time battery temperature T1, the process proceeds to step S17. On the other hand, if YES, that is, if the battery temperature T is the same as the first time battery temperature T1, the process proceeds to step S12.
  • step S12 in the current cycle, it is determined whether or not the current value IF measured in step S2 is the same as the first time current value IF1 stored in step S9. If NO, that is, if the current value IF of the current cycle is different from the first time current value IF1, the process proceeds to step S17. On the other hand, if YES, that is, if the current value IF is the same as the inverted current value IF1, the process proceeds to step S13 indicated by a broken line in FIG.
  • step S14 it is determined whether or not the number m is smaller than six. If YES, that is, if the number m is smaller than 6 (m ⁇ 6), the process proceeds to step S19. This is because the predetermined time TM1 (0.1 second as in the first embodiment) has not elapsed immediately after the operation of the secondary battery 101A is reversed from discharging to charging.
  • the normal internal resistance R j (T ja ) of the secondary battery 101A at the first battery temperature T ja (20 ° C.) is acquired.
  • step S15 it is determined whether or not the normal internal resistance R j (T ja ) is newly acquired (updated) in the above-described resistance acquisition subroutine S40. Proceed to S17. On the other hand, if YES, the process proceeds to step S16.
  • step S16 the differential resistance ⁇ R (T ja ) of the secondary battery 101A when the battery temperature T is the first battery temperature T ja is acquired. Further, as in the first embodiment, in step S17, the inversion flag F1 is reset, and the process proceeds to step S18 indicated by a broken line.
  • the current value IF differs from the post-inversion current value IF1 until the predetermined time TM1 (0.1 seconds) elapses, or the battery temperature T is equal to the first battery temperature. and when changed from T niv, if you perform a resistance acquisition subroutine S40, in order to clear the number of times m.
  • the battery control system BS2 is acquired in a period from immediately after the operation of the secondary battery 101A is reversed from discharging to charging until a time after a predetermined time TM1 (0.1 second) has elapsed.
  • the current values IF of the plurality of charging currents Ic are equal to each other, the normal internal resistance R j (T ja ) is acquired in the resistance acquisition subroutine S30. Therefore, an error due to current fluctuation is suppressed, and the secondary battery 101 is more accurate.
  • the normal internal resistance R j (T ja ) can be obtained.
  • the normal internal resistance R j (T ja ) is measured by itself.
  • the input time point input from the outside is used.
  • the second embodiment differs from the first embodiment described above in that it includes normal internal resistance storage means for storing the normal internal resistance R j (T ja ) of the secondary battery 101 in FIG. That is, the HV control device 20 in the battery control system BS3 according to the second modification is configured so that the normal internal resistance R j (T ja ) of the secondary battery 101 input from the outside can be stored in the microcomputer 21. Has been.
  • the measurement of the internal resistance R j (T ja ) is specifically performed as follows. First, the secondary battery 101 is temporarily removed from the vehicle 1 (battery control system BS3) at the timing of vehicle inspection or the like. Then, using the DC power supply device 210, the voltmeter 220, and the ammeter 230 (see FIG. 9) installed outside the battery control system BS3, the normal internal resistance R j ( T ja ) is measured. At this time, the secondary battery 101 is measured under the first battery temperature T ja (20 ° C.) environment.
  • the secondary battery 101 is loaded back into the vehicle 1, and the normal internal resistance R j (T ja ) of the secondary battery 101 at the acquired first battery temperature T ja (20 ° C.) is determined by a known method using the microcomputer 21. Are input (written) into a RAM (not shown).
  • the maximum inter-terminal voltage V m (T) of the secondary battery 101 is set in the vehicle 1 using the normal internal resistance R j (T ja ) of the secondary battery 101. be able to.
  • the negative electrode plate 130 of the secondary battery 101 is normally used by using the internal resistance R j (T ja ) even if the battery control system BS3 does not include a resistance acquisition unit.
  • the secondary battery 101 can be appropriately charged up to a high inter-terminal voltage while reliably suppressing the deposition of metallic lithium.
  • the present invention has been described according to the first and second embodiments and the first modified embodiment.
  • the present invention is not limited to the above-described embodiments and the like, and can be appropriately changed without departing from the gist thereof. Needless to say, it can be applied.
  • a negative electrode plate containing natural graphite is used as the negative electrode active material.
  • a negative electrode plate containing graphite other than natural graphite or artificial graphite may be used as the negative electrode active material.
  • an example is shown in which only the initial internal resistance R 0 (T) for the predetermined battery temperature T ja in the normal temperature range AT j is stored in the resistance storage means.
  • the entire temperature range AT j or the entire temperature range including the low temperature range AT 1 may be stored for each battery temperature T.
  • the internal resistance R j (T ja ) is usually measured by the DC-IR method, but may be measured by using an AC impedance (AC-IR) method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 低温域で反応抵抗が増大する特性を有する負極板を用いた二次電池について、その電池温度が少なくとも低温域内にあるときに大きな電流で充電をする場合に、この二次電池の負極板上に金属リチウムの析出を抑制しつつ、より高い端子間電圧まで適切に二次電池を充電しうる電池制御システムを提供することを課題とする。電池制御システムは、リチウムイオン二次電池と制御装置とを備え、電圧記憶手段と、抵抗記憶手段と、電流記憶手段と、所定電池温度Tjaの通常内部抵抗R(Tja)と、所定電池温度の初期内部抵抗R(Tja)との差分である差分抵抗ΔR(Tja)を得る差分取得手段と、少なくとも電池温度Tが低温域内であるとき、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)に、差分抵抗ΔR(Tja)と許容充電電流I(T)との積を加えた値とする最大電圧算出手段とを備える。

Description

電池制御システム
 本発明は、正極板及び負極板を有するリチウムイオン二次電池と、電源からそのリチウムイオン二次電池への充電を制御する制御装置とを備える電池制御システムに関する。
 近年、ハイブリッド自動車、電気自動車などの車両の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に二次電池ともいう)が利用されている。ところで、このような二次電池に急速充電したり、ハイブリッド車や電気自動車等の二次電池を搭載した車両において回生電流を充電に用いたりする場合、例えば、5C,10Cなど大きな充電電流を流すことがある。
 ところで、二次電池の経年劣化などによって、二次電池の内部抵抗が大きくなると、同じ大きさの充電電流を二次電池に流した場合でも、二次電池の内部抵抗が大きくなった分、初期(劣化前,内部抵抗増大前)に比べ端子間電圧が高くなる。従って、これとは逆に、二次電池の最大端子間電圧を一定の値に設定して二次電池の充電を行う場合には、二次電池の内部抵抗の値が大きい程、端子間電圧が高くなり、より早く最大端子間電圧に到達してしまい、それ以上充電できなくなる。そのため、内部抵抗の増大した二次電池では、内部抵抗が小さかった時点に比して、その二次電池に充電できる電気量が少なくなってしまう。
 これに対し、特許文献1には、リチウムイオン二次電池を充電するときに内部抵抗を検出する内部抵抗検出工程と、最終充電電流で定電流充電を、最終充電電圧で定電圧充電を行って、二次電池に充電する最終充電工程とを備えるリチウムイオン二次電池の充電方法が開示されている。この技術では、最終充電工程の最終充電電圧を、二次電池の設定電圧に二次電池の内部抵抗と最終充電電流との積を加算した値に設定している。このため、この手法によれば、内部抵抗の大小に関係なく、二次電池を設定電圧まで充電することができる。従って、この特許文献1の技術によれば、劣化し内部抵抗が増大した二次電池についても十分に充電することができる。
特開2002-142379号公報
 しかしながら、特許文献1は、満充電付近で徐々に充電電流が小さくなる定電圧充電を用いた二次電池の充電方法を開示するものであり、前述の急速充電や回生電流の充電など、大きな電流で二次電池に充電する場合には適用できない。
 しかも、二次電池の内部抵抗には、二次電池の直流抵抗(セパレータ中の電解液による抵抗や集電体などの導通抵抗等)、正極板中のイオンの拡散抵抗、負極板中のイオンの拡散抵抗、正極板の反応抵抗、及び、負極板の反応抵抗が含まれる。このため、充電の際、負極板では、負極板自身の反応抵抗によって負極板に分極が生じる。この分極は、負極板の反応抵抗と充電電流との積が大きいほど大きくなる。しかるに、充電の際、大きな電流を流すことにより負極板に大きな分極が生じると、負極板の電位が金属リチウムの電位よりも低くなり、負極板上に金属リチウムが析出する虞がある。
 また、黒鉛等の負極活物質を用いた負極板の中には、この負極板に生じる反応抵抗に関し、通常温度域(20~45℃)における通常反応抵抗は、直流抵抗に比しても十分小さいが、低温域(-30~0℃)となると低温反応抵抗が大きくなり、直流抵抗に比しても大きくなるものがある。
 そこで、このような特性の負極板を用いた二次電池に低温域で充電するにあたり、充電する電気量を増やすべく、特許文献1に倣って低温域の内部抵抗を用い、これと許容充電電流(例えば、5C,10C)との積を、設定電圧に加えて最大端子間電圧として充電を行うことが考えられる。しかしながら、上述のように、低温域での負極板の反応抵抗が大きいために、負極板に大きな分極が生じて、金属リチウムが析出し易くなる虞がある。このため、特に最大端子間電圧を高い値に変更して充電量を増やすことが行い難かった。
 本発明は、かかる問題に鑑みてなされたものであって、低温域で反応抵抗が増大する特性を有する負極板を用いた二次電池について、その電池温度が低温域内にあるときで、急速充電や車両における回生電流の充電など、大きな電流で充電をする場合でも、この二次電池の負極板上に金属リチウムの析出を抑制しつつ、より高い端子間電圧まで適切に二次電池を充電しうる電池制御システムを提供する。
 本発明の一態様は、正極板及び負極板を有するリチウムイオン二次電池(以後、単に二次電池ともいう)と、上記二次電池の充電時に許容する最大端子間電圧及び許容充電電流を設定して、電源から上記二次電池への充電を制御する制御装置と、を備える電池制御システムであって、電池温度Tについて、20~45℃を通常温度域ATとし、-30~0℃を低温域ATとしたとき、上記負極板は、電池温度Tが上記通常温度域ATの場合と上記低温域ATの場合とで、その特性を比較したときに、上記負極板に生じる反応抵抗R(T)に関し、上記低温域ATの場合が大きく、かつ、上記二次電池の内部抵抗R(T)に占める上記負極板の上記反応抵抗R(T)の割合に関し、上記低温域ATの場合が大きい、特性を有してなり、上記最大端子間電圧V(T)のうち、上記二次電池の使用初期に許容する初期最大端子間電圧Vm0(T)を、上記電池温度T毎に記憶する電圧記憶手段と、上記二次電池の使用初期に生じる初期内部抵抗R(T)を、少なくとも上記通常温度域AT内の所定電池温度Tjaについて記憶する抵抗記憶手段と、上記許容充電電流I(T)を、上記電池温度T毎に記憶する電流記憶手段と、上記二次電池の上記電池温度Tが上記所定電池温度Tjaとなったタイミングでの、上記二次電池の内部抵抗のうち、上記通常温度域AT内の温度Tにおける通常内部抵抗R(Tja)と、上記抵抗記憶手段に記憶されていた、対応する上記所定電池温度Tjaにおける上記初期内部抵抗R(Tja)との差分である差分抵抗ΔR(Tja)を得る差分取得手段と、少なくとも上記電池温度Tが上記低温域AT内であるとき、この電池温度Tに対応する上記最大端子間電圧V(T)を、上記電圧記憶手段に記憶されていた上記初期最大端子間電圧Vm0(T)に、上記差分抵抗ΔR(Tja)と上記電流記憶手段に記憶されていた上記許容充電電流I(T)との積を加えた値とする最大電圧算出手段と、を備える電池制御システムである。
 上述の電池制御システムは、通常温度域AT内の所定電池温度Tjaとなったタイミングで取得した二次電池の通常内部抵抗R(Tja)と初期内部抵抗R(Tja)との間の差分抵抗ΔR(Tja)を得る差分取得手段を備えている。また、最大電圧算出手段は、少なくとも低温域ATの範囲について、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)に差分抵抗ΔR(Tja)と許容充電電流I(T)との積を加えた値で与える。
 従って、上述の電池制御システムによれば、電池温度Tが少なくとも低温域AT内にあるとき、最大端子間電圧V(T)を初期最大端子間電圧Vm0(T)のままの一定値として二次電池の充電を制御する場合に比して、劣化などに伴う内部抵抗の増大による二次電池の充電量の減少を抑制できる。
 しかも、特許文献1のように内部抵抗と電流との積ではなく、内部抵抗の増大分である差分抵抗ΔR(T)と許容充電電流I(T)との積を得て、これを初期最大端子間電圧Vm0(T)に加えているので、内部抵抗の増大分に応じた適切な最大端子間電圧V(T)とすることができる。
 その上、差分抵抗ΔR(T)として、電池温度Tは低温域AT内の温度であるのに、通常温度域AT内の所定電池温度Tjaにおける差分抵抗ΔR(Tja)の値を用いている。この理由は以下である。
 この電池制御システムでは、二次電池に前述した特性、即ち、電池温度Tにおける負極板に生じる反応抵抗R(T)、及び、二次電池の内部抵抗R(T)に占める反応抵抗R(T)の割合が、通常温度域ATのものよりも低温域ATのものの方が大きい負極板を用いている。
 ところで、経時変化等により二次電池の内部抵抗R(T)が増大する場合、いずれの温度域でも、概略、同じ割合で内部抵抗R(T)が増大する。また、内部抵抗R(T)のうち、反応抵抗、直流抵抗などの各抵抗成分についても、概略、同じ割合で増大(例えば、同様に30%増大)する。従って、絶対値で比較すると、低温域AT内の温度Tでの低温反応抵抗Rrl(T)における経時的な増大分は、通常温度域AT内の温度Tでの通常反応抵抗Rrj(T)における増大分よりも大きい。つまり、内部抵抗R(T)の増大分を示す差分抵抗ΔR(T)に関して、低温域AT内の温度Tにおける差分抵抗ΔR(T)は、通常温度域AT内の温度Tにおける差分抵抗ΔR(T)よりも大きな値となる。
 ここでもし、電池温度Tが低温域AT内の温度Tであった場合において、本電池制御システムと異なり、最大電圧算出手段で、低温域AT内の温度Tにおける差分抵抗ΔR(T)と許容充電電流I(T)との積を、初期最大端子間電圧Vm0(T)に加えたとすると、上述したように温度Tにおける差分抵抗ΔR(T)が絶対値として大きいために、ここで得られる最大端子間電圧V(T)が、大きな値となり過ぎる虞がある。すると、負極板における分極が大きくなり過ぎ、金属リチウムの析出が生じる虞がある。このように、電池温度Tが低温域AT内にある場合(T=T)には、低温域AT内の温度Tにおける差分抵抗ΔR(T)をそのまま採用して、最大端子間電圧V(T)を増大させるのは好ましくない場合がある。
 そこで、本電池制御システムでは、最大電圧算出手段において、電池温度Tが低温域AT内の温度Tである場合には、その電池温度T(低温域AT内の温度T)に対応する差分抵抗ΔR(T)に代えて、相対的に小さな値となる通常温度域AT内の所定電池温度Tjaにおける差分抵抗ΔR(Tja)を用い、これと許容充電電流I(T)との積を、初期最大端子間電圧Vm0(T)に加えて最大端子間電圧V(T)を得る。このため、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)よりも大きな値とすることで、経時変化により二次電池の内部抵抗が増加した場合でも、二次電池の充電量の減少を抑制できる一方、最大端子間電圧V(T)が大きな値となり過ぎることがなく、負極板における分極に伴う金属リチウムの析出の虞も生じ得ない。
 このように、上述の電池制御システムでは、低温域ATでの反応抵抗R(T)(低温反応抵抗Rrl(T))が、通常温度域ATの場合よりも増大する特性を有する負極板を用いた二次電池において、その内部抵抗が経時的に増加した場合で、電池温度Tが低温域AT内にあり、急速充電や車両における回生電流の充電など、大きな電流で充電をするときでも、この二次電池の負極板上に金属リチウムの析出を抑制しつつ、より高い端子間電圧まで適切に二次電池を充電することができる。
 なお、電源としては、例えば、直流電源装置や、充電器や、二次電池が車載されている場合の、発電可能なエンジンやモータが挙げられる。
 また、負極板は、電池温度Tが通常温度域ATの場合と低温域ATの場合とで、その特定を比較したときに、負極板に生じる反応抵抗R(T)に関し、低温域ATの場合が大きく、かつ、二次電池の内部抵抗R(T)に占める負極板の反応抵抗R(T)の割合に関し、低温域ATの場合が大きい特性を有してなるものである。即ち、二次電池の内部抵抗R(T)の一部をなす、負極板に生じる反応抵抗R(T)に関し、低温域AT内の温度Tにおける低温反応抵抗Rrl(T)が、通常温度域AT内の温度Tにおける通常反応抵抗Rrj(T)よりも大きい特性を有しているものである。その上、通常温度域AT内の温度Tにおける、二次電池の内部抵抗である通常内部抵抗R(T)に占める、通常反応抵抗Rrj(T)の割合Rrj(T)/R(T)に比して、低温域AT内の温度Tにおける、二次電池の内部抵抗である低温内部抵抗R(T)に占める、低温反応抵抗Rrl(T)の割合Rrl(T)/R(T)が大きい特性を有しているものである。このような負極板としては、例えば、負極活物質として天然黒鉛や人造黒鉛を含む負極板が挙げられる。
 また、抵抗記憶手段としては、初期内部抵抗R(T)を、少なくとも通常温度域AT内の所定電池温度Tjaについて記憶すれば良い。従って、通常温度域ATの範囲全体や、低温域ATを含む全温度域について、電池温度T毎に記憶するものも含まれる。
 さらに、上述の電池制御システムであって、前記負極板は、前記反応抵抗R(T)に関し、前記低温域AT内の温度Tにおける低温反応抵抗Rrl(T)が、前記通常温度域AT内の温度Tにおける通常反応抵抗Rrj(T)の7倍以上の値となり、上記温度Tにおける前記内部抵抗R(T)である通常内部抵抗R(T)に占める、上記通常反応抵抗Rrj(T)の割合Rrj(T)/R(T)が、10%以下であり、上記温度Tにおける上記内部抵抗R(T)である低温内部抵抗R(T)に占める、上記低温反応抵抗Rrl(T)の割合Rrl(T)/R(T)が、20%以上である、特性を有する電池制御システムとすると良い。
 上述の電池制御システムでは、負極板が上述の特性を有しているので、低温反応抵抗Rrl(T)が通常反応抵抗Rrj(T)よりも、また、割合Rrj(T)/R(T)が割合Rrl(T)/R(T)よりも確実に大きい。このため、このような負極板を用いた二次電池について充電制御を行うので、最大電圧算出手段で、通常温度域AT内の所定電池温度Tjaにおける差分抵抗ΔR(Tja)を用いることで、特に負極板における反応抵抗の増大分の寄与を確実に除外した最大端子間電圧V(T)を得ることができる。従って、電池温度Tが少なくとも低温域ATにおいて、適切な最大端子間電圧V(T)を得て、二次電池を充電することができる。
 さらに、上述のいずれかの電池制御システムであって、前記最大電圧算出手段は、前記電池温度Tが前記低温域ATより高いときには、前記初期最大端子間電圧Vm0(T)を前記最大端子間電圧V(T)の値とする電池制御システムとすると良い。
 前述したように、上述の電池制御システムに用いる二次電池の負極板は、通常内部抵抗R(T)に占める通常反応抵抗Rrj(T)の割合Rrj(T)/R(T)に比して、低温内部抵抗R(T)に占める低温反応抵抗Rrl(T)の割合Rrl(T)/R(T)が大きい。このため、二次電池を充電するにあたり、低温域ATより高い電池温度Tで充電する場合には、低温域AT内の電池温度Tで充電する場合よりも、二次電池の内部抵抗の上昇が少ないため、最大端子間電圧V(T)の値に初期最大端子間電圧Vm0(T)を用いても、内部抵抗の経時的な上昇による電池容量の減少分はわずかであると考えられる。
 そこで、上述の電池制御システムでは、電池温度Tが低温域ATより高いときには、初期最大端子間電圧Vm0(T)を最大端子間電圧V(T)の値とする。これにより、電池温度Tが低温域ATよりも高いときには、最大端子間電圧V(T)を変えずに済み、システムをより簡単にすることができる。
 さらに、上述のいずれかの電池制御システムであって、前記二次電池の前記電池温度Tが前記所定電池温度Tjaとなった場合に、上記二次電池の前記通常内部抵抗R(Tja)を取得する抵抗取得手段を備える電池制御システムとすると良い。
 上述の電池制御システムでは、上述の抵抗取得手段を備えるので、電池制御システム自身で二次電池の通常内部抵抗R(Tja)を取得して、最大端子間電圧V(T)を自律的に変更をすることができる。
 さらに、上述の電池制御システムであって、前記二次電池の充電状態を検知する充電状態検知手段と、上記二次電池に関する各充電状態毎の開放端子間電圧を予め記憶してなる開放端子間電圧記憶手段と、上記充電状態検知手段で検知した上記充電状態から、これに対応する上記開放端子間電圧を取得する開放端子間電圧取得手段と、を備え、前記抵抗取得手段は、上記二次電池の充電期間のうち、上記二次電池の動作が放電から充電に変わった直後の第1時刻から所定時間経過後の第2時刻まで、同じ大きさの充電電流を検知した場合に、上記第1時刻における上記二次電池の上記充電状態に対応する上記開放端子間電圧と、上記第2時刻における上記二次電池の端子間電圧との差と、上記充電電流の電流値とを用いて、前記通常内部抵抗R(Tja)を取得する手段であり、上記所定時間を、1.0秒以下としてなる電池制御システムとすると良い。
 上述の電池制御システムは、充電状態検知手段、開放端子間電圧記憶手段及び開放端子間電圧取得手段を備え、抵抗取得手段では、上述の第1時刻から第2時刻まで、同じ大きさの充電電流を検知した場合に、第1時刻における二次電池の開放端子間電圧と第2時刻における二次電池の端子間電圧との差と、充電電流の電流値とを用いて通常内部抵抗R(Tja)を取得する。即ち、上述の電池制御システムでは、直流抵抗測定(DC-IR)法に準じた二次電池の通常内部抵抗R(Tja)を取得することができる。
 ところで、DC-IR法に準じて二次電池の内部抵抗を取得するにあたって、充電開始後、充電電流を流した状態での二次電池の端子間電圧を測定するまでの時間(以下、測定期間という)が長くなると、得られる内部抵抗が大きくなる。二次電池に充電電流を流し始めた直後は、内部抵抗として、前述した正極板の反応抵抗、負極板の反応抵抗及び二次電池の直流抵抗が主に生じるが、その後徐々に、正極板中及び負極板中におけるイオンの拡散抵抗も現れる。このため、測定期間が長いと、DC-IR法に準じて取得した内部抵抗に、正極板の反応抵抗、負極板の反応抵抗及び直流抵抗の他に、拡散抵抗の成分が加わり相対的に大きな値となる。すると、差分抵抗ΔR(T)にも、拡散抵抗の増加分が加わった大きな値となり、最大電圧取得手段で取得する二次電池の最大端子間電圧も大きな値になってしまう。このため、二次電池を充電する際に、負極板の分極が大きくなりすぎて、負極板に金属リチウムが析出してしまう虞がある。
 これに対し、本発明者らの研究によれば、DC-IR法で二次電池の内部抵抗を測定するにあたり、上述の測定期間を1.0秒以下にすれば、内部抵抗に占める拡散抵抗の割合を十分小さくできることが判ってきた。
 かくして、上述の電池制御システムでは、測定時間に相当する、第1時刻から第2時刻までの間の所定時間を1.0秒以下とするので、抵抗取得手段において、拡散抵抗分の割合が十分小さい通常内部抵抗R(Tja)を取得することができる。従って、大きな電流で充電をするにあたり、この二次電池の負極板上への金属リチウムの析出を抑制しつつ、より高い端子間電圧まで適切に二次電池を充電することができる。
 なお、直流抵抗測定(DC-IR)法とは、二次電池に、一定の大きさの充電電流を流したときに生じる、二次電池の端子間電圧の変化量(具体的には、充電電流を流し始める直前の開放端子間電圧と、充電開始から所定時間経過後の端子間電圧との間の変化量)と、充電電流の電流値とを用いて、二次電池の内部抵抗を算出する手法である。
 さらに、上述の電池制御システムであって、前記二次電池に流れる前記充電電流の前記電流値を所定の周期で検知する電流検知手段を備え、前記抵抗取得手段は、上記電流検知手段が検知した上記電流値のうち、前記第1時刻から前記第2時刻までの期間に検知した複数の電流値が互いに等しい場合に、前記通常内部抵抗R(Tja)を取得する電池制御システムとするのが好ましい。
 上述の電池制御システムでは、第1時刻から第2時刻までの期間に取得した充電電流の電流値が互いに等しい場合に通常内部抵抗R(Tja)を取得するので、電流の変動による誤差を抑えて、より正確な二次電池の通常内部抵抗R(Tja)を取得することができる。
 さらに、上述の電池制御システムであって、前記抵抗取得手段における上記所定時間を、0.1秒以下としてなる電池制御システムとすると良い。
 ところで、前述の所定時間を1.0秒よりもさらに短くすると、取得(算出)した通常内部抵抗R(T)に含まれる、正極板中及び負極板中におけるイオンの拡散抵抗の割合をさらに小さくすることができる。上述の電池制御システムでは、第1時刻から第2時刻までの間の所定時間を0.1秒以下とするので、大きな電流で充電をするにあたり、この二次電池の負極板上への金属リチウムの析出を確実に抑制しつつ、より高い端子間電圧まで適切に二次電池を充電することができる。
 または、前述のいずれかの電池制御システムであって、外部から入力された、上記入力の時点での前記二次電池の前記通常内部抵抗R(Tja)を記憶する通常内部抵抗記憶手段を備える電池制御システムとすると良い。
 例えば、車両に電池制御システムを搭載した場合には、車検時などの点検時に、そのシステムの外部(車両の外部)に設置した直流電源装置等を用いて二次電池の通常内部抵抗R(Tja)を測定することができる。
 ところで、上述の電池制御システムでは、上述の通常内部抵抗記憶手段を備える。従って、システムの外部の装置を用いて測定した通常内部抵抗R(Tja)を通常内部抵抗記憶手段に記憶させ、これを利用することができる。これにより、電池制御システム内(車両内)に抵抗取得手段を備えなくても、通常内部抵抗R(Tja)を用いて二次電池の負極板上に金属リチウムの析出を確実に抑制しつつ、より高い端子間電圧まで適切に二次電池を充電することができる。
 なお、電池制御システムの外部から二次電池の通常内部抵抗を取得する手法としては、例えば、電池制御システムの外部に設置した装置、例えば、直流電源装置、電圧計及び電流計を用いて測定する手法が挙げられる。さらに具体的には、これらの外部の装置を用いて、通常内部抵抗を取得する手法としては、例えば、DC-IR法や交流インピーダンス(AC-IR)法が挙げられる。
実施形態1,2,変形形態1にかかる電池制御システムを搭載した車両の斜視図である。 実施形態1,2,変形形態1のリチウムイオン二次電池の斜視図である。 実施形態1,2,変形形態1のハイブリッド自動車制御装置の説明図である。 実施形態1,変形形態1のフローチャートである。 実施形態1,変形形態1のフローチャートである。 実施形態1,変形形態1のフローチャートである。 実施形態1の説明図である。 実施形態1の説明図である。 実施形態2の説明図である。
20 ハイブリッド自動車制御装置(制御装置)
30 フロントモータ(電源)
40 リアモータ(電源)
50 エンジン(電源)
101,101A リチウムイオン二次電池
120 正極板
130 負極板
AT 通常温度域
AT 低温域
BS1, BS2, BS3 電池制御システム
Ic 充電電流
IF 電流値
(T) 許容充電電流
P1 第1時刻
P2 第2時刻
R(T) 内部抵抗
(T) 初期内部抵抗
(T) 通常内部抵抗
(T) 低温内部抵抗
(T) 反応抵抗
rj(T) 通常反応抵抗
rl(T) 低温反応抵抗
SC 充電状態
T 電池温度
ja 第1電池温度(所定電池温度)
 (通常温度域内の)温度
 (低温域内の)温度
TM1 所定時間
(T) 最大端子間電圧
m0(T) 初期最大端子間電圧
VZ 開放端子間電圧
W1 第1割合(割合Rrj(T)/R(T))
W2 第2割合(割合Rrl(T)/R(T))
ΔR(T) 差分抵抗
ΔV(T) 差分電圧(第1時刻における開放端子間電圧と、第2時刻における端子間電圧との差)
 (実施形態1)
 次に、本発明の実施形態1について、図面を参照しつつ説明する。まず、本実施形態1にかかる電池制御システムBS1を用いる車両1について説明する。図1に車両1の斜視図を示す。
 この車両1は、組電池80をなす、複数(本実施形態1では60個)のリチウムイオン二次電池(以下、単に二次電池ともいう)101,101、フロントモータ30、リアモータ40、エンジン50、及び、これらフロントモータ30、リアモータ40及びエンジン50から二次電池101への充電を制御するハイブリッド自動車制御装置(以下、HV制御装置ともいう)20を有する。また、この車両1は、これらの他に、ケーブル81、インバータ82及び車体89を有するハイブリッド自動車である。なお、この車両1における電池制御システムBS1は、二次電池101、フロントモータ30、リアモータ40、エンジン50及びHV制御装置20を含む。
 このうち、組電池80をなす二次電池101は、正極板120及び負極板130を有するリチウムイオン二次電池である。この二次電池101は、図2に示すように、電極体110及び電解液(図示しない)を矩形箱状の電池ケース180に収容している。このうち、電解液は、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを調整した混合有機溶媒に、溶質としてLiPFを添加した有機電解液である。
 また、二次電池101の電池ケース180は、共にアルミニウム製の電池ケース本体181及び封口蓋182を有する。なお、この電池ケース180と電極体110との間には、樹脂からなり、箱状に折り曲げた、透明な絶縁フィルム(図示しない)が介在させてある。
 このうち封口蓋182は矩形板状であり、電池ケース本体181の開口を閉塞して、この電池ケース本体181に溶接されている。この封口蓋182には、電極体110と接続している正極集電部材191及び負極集電部材192のうち、それぞれ先端に位置する正極端子部191A及び負極端子部192Aが貫通しており、図2中、上方に向く蓋表面182aから突出している。これら正極端子部191A或いは負極端子部192Aと封口蓋182との間には、それぞれ絶縁性の樹脂からなる絶縁部材195が介在し、互いを絶縁している。さらに、この封口蓋182には矩形板状の安全弁197も封着されている。
 また、電極体110は、帯状の正極板120及び負極板130を、多孔質のポリエチレンからなる帯状のセパレータ(図示しない)を介して扁平形状に捲回してなる。なお、この電極体110の正極板120及び負極板130はそれぞれ、クランク状に屈曲した板状の正極集電部材191又は負極集電部材192と接合されている。この電極体110のうち、薄板帯状の正極板120は、帯状でアルミニウムからなる正極集電箔(図示しない)と、この正極集電箔の両主面上に形成された正極活物質層(図示しない)とを有する。
 一方、薄板帯状の負極板130は、帯状で銅からなる負極集電箔(図示しない)と、この負極集電箔の両主面上に形成された負極活物質層(図示しない)とを有する。このうち、負極活物質層は、天然黒鉛からなる負極活物質粒子を含む。
 ところで、電池温度Tにおける二次電池101の内部抵抗R(T)には、二次電池101の直流抵抗Rd(T)(セパレータ中の電解液による抵抗や集電部材191,192などの導通抵抗等)、正極板120中のイオンの拡散抵抗Rs(T)、負極板130中のイオンの拡散抵抗Rn(T)、正極板120の反応抵抗Rp(T)、及び、負極板130の反応抵抗R(T)が含まれる。具体的には、R(T)=Rd(T)+Rs(T)+Rn(T)+Rp(T)+R(T)で表せる。なお、これら二次電池101の直流抵抗Rd(T)、正極板120中の拡散抵抗Rs(T)、負極板130中の反応抵抗Rn(T)、正極板120の反応抵抗Rp(T)及び負極板130の反応抵抗R(T)は、電池温度Tの関数である。このため、内部抵抗R(T)もまた、電池温度Tによって変化する、電池温度Tの関数である。
 ところで、天然黒鉛からなる負極活物質粒子を用いた負極板130は、その反応抵抗R(T)に関し、以下の特性を示す。即ち、二次電池101における負極板130の反応抵抗R(T)のうち、電池温度Tが通常温度域AT(具体的には、20~45℃の範囲)内の温度Tにおける通常反応抵抗Rrj(T)は、二次電池101の直流抵抗Rd(T)に比して十分小さい(Rrj(T)<Rd(T))。一方、電池温度Tが低温域AT(具体的には、-30~0℃の範囲)内の温度Tとなると、低温反応抵抗Rrl(T)が大きくなり、二次電池101の直流抵抗Rd(T)に比しても大きくなる(Rrl(T)>Rd(T))。
 また、この負極板130は、低温域AT内の温度Tにおける低温反応抵抗Rrl(T)が、通常温度域AT内の温度Tにおける通常反応抵抗Rrj(T)よりも大きい特性を有している(Rrl(T)>Rrj(T))。具体的には、低温反応抵抗Rrl(T)が、通常反応抵抗Rrj(T)の7倍以上の値となっている。
 その上、通常温度域AT内の温度Tにおける、二次電池101の内部抵抗である通常内部抵抗R(T)に占める、通常反応抵抗Rrj(T)の第1割合W1(=Rrj(T)/R(T))が10%以下であるのに対し、低温域AT内の温度Tにおける、二次電池の内部抵抗である低温内部抵抗R(T)に占める、低温反応抵抗Rrl(T)の第2割合W2(=Rrl(T)/R(T))が20%以上である。このように、負極板130は、第1割合W1に比して、第2割合W2の方が大きくなる特性、即ち、低温になると反応抵抗が特に大きくなり、二次電池101の内部抵抗に占めるその反応抵抗の割合も大きくなる特性を有している。
 ところで、二次電池101を充電する際、負極板130の反応抵抗R(T)によって負極板130には分極が生じる。また、この分極は、負極板130の反応抵抗R(T)と充電電流との積が大きいほど大きくなる。従って、充電の際、二次電池101に大きな電流を流すと負極板130に大きな分極が生じるので、負極板130の電位が金属リチウムの電位よりも低くなる場合がある。すると、負極板130上に金属リチウムが析出する。つまり、二次電池101への充電電流の大きさが同じ場合、負極板130では、電池温度Tが通常温度域AT内の温度Tの場合よりも低温域AT内の温度Tの場合の方が、大きな分極が生じ易く、金属リチウムが析出し易い。
 次いで、電池制御システムBS1のHV制御装置20について説明する。このHV制御装置20は、図示しないCPU、ROM及びRAMを含み、所定のプログラムによって作動するマイクロコンピュータ(以下、マイコンともいう)21を有している。また、このHV制御装置20は、組電池80をなす二次電池101,101のうち1つの二次電池101Aの端子間電圧Vを測定する電圧センサ25と、二次電池101A(組電池80)を流れる直流電流の大きさを測定する電流センサ26と、二次電池101Aの電池温度Tを測定する温度センサ27とを有する(図3参照)。このうち、電圧センサ25は、二次電池101Aの正極端子部191Aと負極端子部192Aとの間の電圧を測定する(図3参照)。また、電流センサ26は、公知の直流電流センサである。また、温度センサ27は、その測温部が二次電池101Aの電池ケース180の外側に接触して配置されている。
 上述のHV制御装置20は、二次電池101(組電池80)、フロントモータ30、リアモータ40、エンジン50及びインバータ82の状態を直接或いはセンサ等を介して検知可能となっており、各部の状況に応じて様々な制御を行う。そこで、本実施形態1の電池制御システムBS1において、HV制御装置20で行う二次電池101(組電池80)の制御について、図4,5,8のフローチャートを参照しつつ、以下に詳述する。なお、本実施形態1では、図4に示すメインルーチンM1を実行する。なお、このメインルーチンM1のうち、破線で示すステップS14,S15,S18は、後述する変形形態1で用いるステップであり、本実施形態1では用いない。
 また、マイコン21のROM(図示しない)には、予め、最大端子間電圧V(T)のうち、二次電池101Aの初期最大端子間電圧Vm0(T)を電池温度T毎に、二次電池101Aの許容充電電流I(T)を電池温度T毎に、二次電池101Aの開放端子間電圧VZを二次電池101Aの充電状態SC毎に、それぞれ記憶している。また、このROMには、予め、通常温度域AT内の所定の第1電池温度Tjaにおける二次電池101Aの初期内部抵抗R(Tja)も記憶している。
 まず、図4に示すメインルーチンM1について説明する。車両1の作動が開始(キーオン)されると(ステップS1でYES)、ステップS2に進み、当該時点での二次電池101Aの電池温度T、二次電池101Aに流れている電流値IF、及び、二次電池101Aの端子間電圧V(T)をそれぞれ測定する。なお、このメインルーチンM1は、車両1がキーオフされるまで、所定のサイクル時間TC1(本実施形態1では、0.1秒毎)で、ステップS2からステップS19を繰り返す(後述するステップS20参照)。このため、本実施形態1では、そのサイクル時間TC(0.1秒)毎に、電池温度T、電流値IF及び端子間電圧V(T)が測定される。その後、ステップS30の最大電圧算出サブルーチンに進む。
 最大電圧算出サブルーチンS30について図5を参照しつつ説明する。この最大電圧算出サブルーチンS30で設定された最大端子間電圧V(T)によって、二次電池101(101A)の端子間電圧V(T)の上限が制限される。
 この最大電圧算出サブルーチンS30では、まずステップS2で測定した電池温度Tが、低温域ATよりも、具体的には、低温域ATの最高温度である低温域最高温度Tlu(本実施形態1では、0℃)よりも高いか否かを判別する(ステップS31)。
 ここで、YES、即ち電池温度Tが低温域最高温度Tluよりも高い場合には、ステップS34に進む。一方、NO、即ち電池温度Tが低温域最高温度Tlu以下の場合には、ステップS32に進む。
 前述した負極板130を用いた二次電池101A(101)を充電する場合、その電池温度Tが低いと、相対的に負極板130に大きな分極が生じ易い。そこで、本実施形態1では、電池温度Tが低温域最高温度Tluよりも高い場合には、最大端子間電圧V(T)にマイコン21のROM(図示しない)に記憶した初期最大端子間電圧Vm0(T)を用いることにして、電池制御システムBS1のシステムをより簡単にする。
 ステップS32では、後述する抵抗取得サブルーチンS40により、既に通常温度域AT内の、後述する所定の第1電池温度Tja(本実施形態1では、20℃)における二次電池101Aの通常内部抵抗R(Tja)を取得したか否かを判別する。
 ここで、NO、即ち、未だ抵抗取得サブルーチンS40において、通常内部抵抗R(Tja)を取得していない場合には、ステップS34に進む。一方、YES、即ち既に通常内部抵抗R(Tja)を取得している場合には、ステップS33に進み、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)に、後述する差分抵抗ΔR(Tja)と許容充電電流I(T)との積(ΔR(Tja)×I(T))を加えた値に設定する。つまり、最大端子間電圧V(T)を、V(T)=Vm0(T)+ΔR(Tja)×I(T)に設定する。設定後、最大電圧算出サブルーチンS30を終了して、メインルーチンM1に戻る。
 一方、ステップS31で、電池温度Tが低温域最高温度Tluよりも高い場合、及び、ステップS32で、未だ抵抗取得サブルーチンS40において、通常内部抵抗R(Tja)を取得していない場合には、ステップS34で、最大端子間電圧V(T)を、マイコン21のROMに予め記憶した初期最大端子間電圧Vm0(T)に設定する。設定後、最大電圧算出サブルーチンS30を終了して、メインルーチンM1に戻る。
 図4に示すメインルーチンM1のステップS3では、ステップS2で測定した電池温度Tから、二次電池101に流す充電電流Icについての許容充電電流I(T)を設定する。これにより、二次電池101に許容充電電流I(T)よりも大きな充電電流Icが流れるのを防止する。なお、許容充電電流I(T)としては、具体的には、電池温度T毎にROMに予め記憶した許容充電電流I(T)のうち、各時点での電池温度Tに対応したものを選択する。
 次いで、ステップS4では、当該時点での二次電池101Aの充電状態SC(SOCの値)を検知する。具体的には、HV制御装置20は別途、充電状態SCが既知の二次電池101Aを車両1に搭載して以降、二次電池101Aに流れた放電電流の値、及び、充電電流Icの値の履歴に基づいて、二次電池101Aの充電状態SCを算出している。そこで、ステップS4では、この値を読み込む。
 その後、ステップS5では、検知した充電状態SCから、これに対応する二次電池101Aの開放端子間電圧VZを取得する。具体的には、ROMに充電状態SCの値毎に予め記憶してあった開放端子間電圧VZのうち、検知した二次電池101Aの充電状態SCに対応したものを選択して、そのときの開放端子間電圧VZとする。
 続いて、ステップS6では、後述する反転フラグF1がセットされているか否かを判別する。ここで、YES、即ち反転フラグF1がセットされている場合、ステップS11に進む。一方、NO、即ち反転フラグF1がリセットされている場合には、ステップS7に進む。
 ステップS7では、ステップS2で取得(測定)した電池温度Tが通常温度域ATの範囲(20℃≦T≦45℃)内の所定の第1電池温度Tja(本実施形態1では、例えば20℃とする)か否かを判別する。ここで、NO、即ち電池温度Tが第1電池温度Tjaでない場合には、ステップS8~S10をスキップしてステップS19に進む。一方、YES、即ち電池温度Tが第1電池温度Tjaである場合には、ステップS8に進む。
 なお、本実施形態1では、電池温度Tが通常温度域ATの範囲内の所定の第1電池温度Tjaであるときに、ステップS8等の処理を行う例を示す。しかし、例えば、電池温度Tが、通常温度域AT内であって、第1電池温度Tja以外の所定の温度(例えば、第2電池温度(=30℃)、第3電池温度(=40℃)等)である場合も同様に、ステップS8等で処理を行い、後述する抵抗取得サブルーチンS40で、いずれかの温度について通常内部抵抗を算出して、これを用いるようにしても良い。
 ステップS8では、ステップS2で取得(測定)した二次電池101Aの電流値IFを用いて、二次電池101Aの動作が、放電から充電に変わった(反転した)か否かを判別する。ここで、NO、即ち二次電池101Aの動作が放電から充電へ反転していない場合には、ステップS19に進む。一方、YES、即ち放電から充電に反転した場合には、ステップS9に進む。
 ステップS9では、ステップS2で得た二次電池101Aの動作が放電から充電に反転した直後のタイミング(第1時刻P1とする)での、電池温度T、電流値IF及び開放端子間電圧VZをそれぞれ第1時刻電池温度T1、第1時刻電流値IF1及び第1時刻開放電圧VZ1として記憶する。そして、マイコン21に反転フラグF1をセットして(ステップS10)、ステップS19に進む。
 一方、ステップS6において、反転フラグF1がセットされていた場合(YES)には、即ち、反転フラグF1をセットしてから、0.1秒経過した次のサイクル時間TC1のタイミング(第2時刻P2とする)の場合には、ステップS11に進み、第2時刻P2における電池温度TがステップS9で記憶した、即ち0.1秒前の第1時刻電池温度T1と同じかどうかを判別する。ここで、NO、即ち第2時刻P2の電池温度Tが第1時刻電池温度T1と異なる場合には、ステップS17に進む。一方、YES、即ち第2時刻P2の電池温度Tが第1時刻電池温度T1と同じ場合には、ステップS12に進む。
 ステップS12では、ステップS2で測定した第2時刻P2での電流値IFが、ステップS10で記憶した第1時刻P1の第1時刻電流値IF1と同じ大きさかどうかを判別する。ここで、NO、即ち第2時刻P2の電流値IFが第1時刻電流値IF1と異なる大きさの場合には、ステップS17に進む。一方、YES、即ち第2時刻P2の電流値IFが第1時刻電流値IF1と同じ大きさの場合には(図7に示す説明図を参照)、ステップS40の抵抗取得サブルーチンに進む。
 次いで、抵抗取得サブルーチンS40について図6を参照して説明する。なお、この抵抗取得サブルーチンS40は、擬似的な直流抵抗測定(DC-IR)法を用いて、電池温度Tが第1電池温度Tja(20℃)における二次電池101の通常内部抵抗R(Tja)を取得する抵抗取得手段である。なお、メインルーチンM1は、前述したように、所定のサイクル時間TC1(0.1秒)毎にステップS2で電池温度T、電流値IF及び端子間電圧V(T)(それに伴う開放端子間電圧VZ)を測定・検知している。そこで、本実施形態1の抵抗取得サブルーチンS40では、所定時間TM1(0.1秒)あけた第2時刻P2に測定した電流値IFが、第1時刻電流値IF1と同じ大きさである場合に、この間に流れた二次電池101Aの端子間電圧の変化分(次述する差分電圧ΔV(Tja))、及び、電流値IF(第1時刻電流値IF1)から、第1電池温度Tjaにおける二次電池101Aの通常内部抵抗R(Tja)を取得する。
 さらに具体的には、まず、ステップS41で、端子間電圧V(Tja)のうち第2時刻P2における端子間電圧V(Tja)(第2時刻端子間電圧V(Tja)2)から、ステップS9で0.1秒前に記憶した第1時刻開放電圧VZ1を引いた差を算出して、これを第1電池温度Tjaにおける差分電圧ΔV(Tja)とする。
 続いて、ステップS42では、算出した差分電圧ΔV(Tja)と、記憶していた第1時刻電流値IF1とを、1対としてRAMに記憶する。
 次いで、記憶した対の数を示すnを1つインクリメントする(ステップS43)。そして、ステップS44では、その数nが64よりも小さいか否かを判別する。ここで、YES、即ち数nが64よりも小さい場合、抵抗取得サブルーチンS40を終了し、メインルーチンM1に戻る。誤差の小さな通常内部抵抗R(Tja)を算出するのには、差分電圧ΔV(Tja)と第1時刻電流値IF1との対の数が不足しているためである。
 一方、NO、即ち数nがn=64となった場合には、64対の差分電圧ΔV(Tja)と第1時刻電流値IF1とから、第1電池温度Tjaのおける通常内部抵抗R(Tja)を算出する(ステップS45)。具体的には、図8に示すように、横軸を第1時刻電流値IF1、縦軸を差分電圧ΔV(Tja)としたグラフに、第1時刻電流値IF1と差分電圧ΔV(Tja)との組合せを示す座標点を打点する。そして、最小二乗法を用いて複数の座標点の近似直線を得る。そして、この近似直線の傾きを、第1電池温度Tjaにおける、新たな二次電池101の通常内部抵抗R(Tja)とする。かくして、第1電池温度Tjaにおける新たな通常内部抵抗R(Tja)が得られたことになる。
 続いて、ステップS46では、数nをn=0にし、抵抗取得サブルーチンS40を終了し、メインルーチンM1に戻ってステップS15に進む。
 メインルーチンM1のステップS15では、上述の抵抗取得サブルーチンS40において、第1電池温度Tjaにおける二次電池101Aの通常内部抵抗R(Tja)を新たに取得(更新)したか否かを判別する。ここで、NO、即ち抵抗取得サブルーチンS40において通常内部抵抗R(Tja)を更新していない場合、ステップS16をスキップしてステップS17に進む。一方、YES、即ち通常内部抵抗R(Tja)を更新した場合には、ステップS16に進む。
 次いで、ステップS16では、電池温度Tが第1電池温度Tjaにおける、二次電池101Aの差分抵抗ΔR(Tja)を取得する。この差分抵抗ΔR(Tja)は、具体的には、抵抗取得サブルーチンS40で取得した、第1電池温度Tjaにおける通常内部抵抗R(Tja)から、第1電池温度Tjaにおける初期内部抵抗R(Tja)を引いた差である(ΔR(Tja)=R(Tja)-R(Tja))。なお、初期内部抵抗R(Tja)には、ROMに予め記憶した初期内部抵抗R(T)のうち、第1電池温度Tjaに対応した値(R(Tja))を用いる。
 このようにして、差分抵抗ΔR(Tja)を取得したことで、これ以降、前述した最大電圧算出サブルーチンS30のステップS32においてYESが選択され、ステップS33に進むことになる。即ち、差分抵抗ΔR(Tja)と、初期最大端子間電圧Vm0(T)と、許容充電電流I(T)とを用いて、低温域ATにおける二次電池101についての最大端子間電圧V(T)を設定することができるようになる。
 続いて、ステップS17では、反転フラグF1をリセットして、ステップS19に進む。そして、ステップS19では、車両1がキーオフされたか否かを判定する。ここで、NOであれば、ステップS20に進む一方、YESであれば、ステップS21に進む。
 ステップS20では、ステップS2で行った、二次電池101Aの電池温度T、電流値IF及び端子間電圧V(T)の測定から所定のサイクル時間TC1(0.1秒)経過したか否かを判別する。ここで、NO、即ち先の測定から所定のサイクル時間TC1経過していない場合、ステップS19に戻り、ステップS19とステップS20とを繰り返す(即ち、サイクル時間TC1が経過するまで待つ)。一方、YES、即ちステップS2の測定からサイクル時間TC1経過した場合には、ステップS2に戻り、ステップS2からステップS20までを繰り返す。一方、ステップS21では、反転フラグF1がセットされているか否かに拘わらず、反転フラグF1をリセットして、メインルーチンM1を終了する。
 なお、本実施形態1では、HV制御装置20が制御装置に、フロントモータ30、リアモータ40及びエンジン50が電源に、許容充電電流I(T)が許容充電電流に、二次電池101Aの初期最大端子間電圧Vm0(T)を電池温度T毎に、通常温度域AT内の第1電池温度Tjaにおける二次電池101Aの初期内部抵抗R(Tja)を、二次電池101Aの許容充電電流I(T)を電池温度T毎に、二次電池101Aの開放端子間電圧VZを二次電池101Aの充電状態SC毎に、それぞれ記憶しているHV制御装置20のマイコン21が電圧記憶手段、抵抗記憶手段、電流記憶手段及び開放端子間電圧記憶手段に、それぞれ対応する。また、抵抗取得サブルーチンS40が抵抗取得手段に、メインルーチンM1のステップS16が差分取得手段に、最大電圧算出サブルーチンS30が最大電圧算出手段に、ステップS5が充電状態検知手段に、ステップS6が開放端子間電圧取得手段に、それぞれ対応する。
 以上より、本実施形態1にかかる電池制御システムBS1は、通常温度域AT内の第1電池温度Tja(例えば20℃)となったタイミングで取得した二次電池101Aの通常内部抵抗R(Tja)と初期内部抵抗R(Tja)との間の差分抵抗ΔR(Tja)を得るステップS16を備えている。また、最大電圧算出サブルーチンS30は、電池温度Tが低温域ATの範囲内にある場合、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)に差分抵抗ΔR(Tja)と許容充電電流I(T)との積を加えた値で与える。
 従って、この電池制御システムBS1によれば、電池温度Tが低温域AT内にある場合、最大端子間電圧V(T)を初期最大端子間電圧Vm0(T)のままの一定値として二次電池の充電を制御する場合に比して、劣化などに伴う内部抵抗の増大による二次電池101Aの充電量の減少を抑制できる。
 しかも、特許文献1のように内部抵抗と電流との積ではなく、内部抵抗の増大分である差分抵抗ΔR(Tja)と許容充電電流I(T)との積を得て、これを初期最大端子間電圧Vm0(T)に加えているので、内部抵抗の増大分に応じた適切な最大端子間電圧V(T)とすることができる。
 その上、電池制御システムBS1では、電池温度Tが低温域ATである場合に、最大電圧算出サブルーチンS30において、その電池温度T(低温域AT内の温度T)に対向する差分抵抗ΔR(T)ではなく、これに比して相対的に小さな値となる通常温度域AT内の第1電池温度Tjaにおける差分抵抗ΔR(Tja)を用いる。そして、これと許容充電電流I(T)との積を、初期最大端子間電圧Vm0(T)に加えて最大端子間電圧V(T)を得る。このため、最大端子間電圧V(T)を、初期最大端子間電圧Vm0(T)よりも大きな値とすることで、経時変化により二次電池の内部抵抗が増加した場合でも、二次電池101Aの充電量の減少を抑制できる。その一方で、最大端子間電圧V(T)が大きな値となり過ぎることがなく、負極板130における分極に伴う金属リチウムの析出も生じ得ない。
 以上より、上述の電池制御システムBS1では、低温域AT内の温度Tでの低温反応抵抗Rrl(T)が、通常温度域ATの場合よりも増大する特性を有する負極板130を用いた二次電池101(101A)において、その二次電池101の内部抵抗が経時的に増加した場合でも、電池温度Tが低温域AT内であり、急速充電や車両における回生電流の充電など、大きな電流で充電をする場合でも、この二次電池101Aの負極板130上に金属リチウムの析出を抑制しつつ、より高い端子間電圧まで適切に二次電池101(101A)を充電することができる。
 また、二次電池101Aに、上述した特性、即ち低温反応抵抗Rrl(T)が、通常反応抵抗Rrj(T)の7倍以上の値となり、第1割合W1(=Rrj(T)/R(T))が10%以下であり、第2割合W2(=Rrl(T)/R(T))が20%以上である特性を有する負極板130を用いている。
 上述の電池制御システムBS1では、このような負極板130を用いた二次電池101(101A)について充電制御を行うので、特に負極板130における反応抵抗の増大分の寄与を確実に除外した最大端子間電圧V(T)を得ることができる。このため、電池温度Tが低温域ATにおいて、適切な最大端子間電圧V(T)を得て、二次電池101(101A)を充電することができる。
 また、電池制御システムBS1に用いる二次電池101の負極板130は、前述したように、第1割合W1(=Rrj(T)/R(T))に比して、第2割合W2(=Rrl(T)/R(T))が大きい。このため、二次電池101を充電するにあたり、低温域ATより高い電池温度Tで充電する場合には、低温域AT内の電池温度Tで充電する場合よりも、二次電池101の内部抵抗の上昇が少ないため、最大端子間電圧V(T)に初期最大端子間電圧Vm0(T)を用いても、内部抵抗の経時的な上昇による電池容量の減少分はわずかであると考えられる。
 そこで、本実施形態1にかかる電池制御システムBS1では、電池温度Tが低温域ATより高いときには、初期最大端子間電圧Vm0(T)を最大端子間電圧V(T)の値とする。これにより、電池温度Tが低温域ATよりも高いときには、最大端子間電圧V(T)を変えずに済み、システムをより簡単にすることができる。
 また、電池制御システムBS1では、上述の抵抗取得サブルーチンS30を備えるので、電池制御システムBS1自身で二次電池101(101A)の通常内部抵抗R(Tja)を取得して、最大端子間電圧V(T)を自律的に変更をすることができる。
 また、電池制御システムBS1は、第1時刻P1と第2時刻P2と、同じ大きさの充電電流Icの電流値IFを検知した場合に、第1時刻P1における二次電池101Aの第1時刻開放端子間電圧VZ1と第2時刻P2における二次電池101Aの第2時刻端子間電圧V(Tja)2との差分電圧ΔV(Tja)と、充電電流Icの電流値IF(第1時刻電流値IF1)とを用いて通常内部抵抗R(Tja)を取得する。即ち、上述の電池制御システムBS1では、DC-IR法に準じた二次電池101(101A)の通常内部抵抗R(Tja)を取得することができる。
 ところで、DC-IR法を用いて、二次電池の通常内部抵抗R(T)を取得するにあたり、充電開始から電圧を測定するまでの時間(測定期間)と通常内部抵抗R(T)との関係について検証した。
 具体的には、実施形態1と同様の二次電池101のうち、製造して間もない初期の二次電池Aを用意して、DC-IR法で、電池温度Tが通常温度域AT内の25℃(T=25℃)における内部抵抗(通常内部抵抗)を測定した。このとき、DC-IR法で、充電電流Icを流し始めてから二次電池Aの端子間電圧を測定するまでの時間(測定期間)を、0.1秒、1.0秒、10.0秒及び20.0秒に変えてそれぞれ測定した。各測定期間における二次電池A(後述する加速劣化試験前の二次電池A)の通常内部抵抗を表1に示す。
 
Figure JPOXMLDOC01-appb-T000001
 
 表1によれば、測定期間が長くなるにつれて、二次電池Aの通常内部抵抗が大きくなることが判る。この理由としては、二次電池Aに充電電流Icを流し始めた直後は、前述した正極板120の反応抵抗Rp(T)、負極板130の反応抵抗R(T)及び二次電池A(二次電池101)の直流抵抗Rd(T)が主に生じるが、その後徐々に、前述した正極板120中のイオンの拡散抵抗Rs(T)、及び、負極板130中のイオンの拡散抵抗Rn(T)も現れる。このため、測定期間が長いと、DC-IR法で取得した通常内部抵抗に、正極板120の反応抵抗Rp(T)、負極板130の反応抵抗R(T)及び直流抵抗Rd(T)の他に、各電極120,130中の拡散抵抗Rs(T),Rn(T)の成分が加わるからである。
 続いて、二次電池Aについて加速劣化試験を行った。具体的には、図示しない直流電源装置を用いて、二次電池Aを60℃の温度環境下、2.5~4.1Vの電圧範囲で4Cの定電流で充電及び放電を交互に1000回繰り返した。この加速劣化試験を行った二次電池Aについて、加速劣化試験前と同様にして、電池温度T(T)=25℃でDC-IR法を用いて内部抵抗(通常内部抵抗)を測定した。加速劣化試験後の二次電池Aの結果も表1に示す。
 表1によれば、加速劣化試験後の二次電池Aの通常内部抵抗も、初期の場合と同様、測定期間が長くなるのに伴って、二次電池Aの通常内部抵抗が大きくなっており、加速劣化試験前の初期の通常内部抵抗と同様の傾向にあることが判る。また、加速劣化試験前後の差分抵抗ΔR(加速劣化試験後の通常内部抵抗から加速劣化試験前のものを引いた差)は、測定期間が0.1秒では0.8mΩ、1.0秒では1.3mΩ、10.0秒では2.0mΩ、20.0秒では2.6mΩである。このことから、測定期間が長くなるのに伴って、差分抵抗ΔRもまた大きくなっていることが判る。
 次いで、二次電池101の最大端子間電圧と電池容量との関係について検証した。具体的には、まず、二次電池101のうち、製造して間もない初期の二次電池2つ(二次電池B及び二次電池C)を用意した。
 まず、これら二次電池B,Cの容量を測定した。具体的には、4.1V(満充電電圧)にした各二次電池B,Cを、25℃の温度環境下で、一定(1C)の放電電流で、2.5Vまで放電させたときの放電容量をそれぞれ測定した。
 次に、二次電池B,Cについて、充放電パルスサイクル試験を実施した。この充放電パルスサイクル試験では、-5℃の温度環境下、SOC60%の充電状態にした各二次電池B,Cについて、まず2Cの定電流で1.0秒間、6Cの定電流で1.0秒間、10Cの定電流で1.0秒間、連続して充電を行う。そして、10.0秒間の休止時間を挟んで、2Cの定電流で1.0秒間、6Cの定電流で1.0秒間、10Cの定電流で1.0秒間、連続して放電を行い、その後、10.0秒間の休止時間を行う。このような充放電パルスサイクル試験を10回繰り返した。
 なお、この充放電パルスサイクル試験の際、電池温度T=-5℃における最大端子間電圧V(-5)を、二次電池Bと二次電池Cとで異なる値に設定した。具体的には、二次電池Bの最大端子間電圧V(-5)を4.12V、二次電池Cの最大端子間電圧V(-5)を4.18Vにそれぞれ設定した(表2参照)。
 充放電パルスサイクル試験の後、再度、各二次電池B,Cの容量を測定した。具体的には、充放電パルスサイクル試験の前に行った手法と同様、25℃の温度環境下で、一定(1C)の放電電流で、2.5Vまで放電させたときの放電容量を測定した。そして、各二次電池B,Cについて、充放電パルスサイクル試験の前後での、容量維持率(%)をそれぞれ算出した。具体的には、各二次電池B,Cについて、充放電パルスサイクル試験後の放電容量を、充放電パルスサイクル試験前の放電容量で割った商を百分率で示す。
 各二次電池B,Cの容量維持率(%)を表2に示す。
 
Figure JPOXMLDOC01-appb-T000002
 
 表2によれば、二次電池Bの容量維持率が99.4%で、99%以上の高い容量維持率であるのに対し、二次電池Cの容量維持率が90.0%となり、二次電池Bより大きく下回っていることが判る。
 最大端子間電圧V(-5)を、4.12Vとした二次電池Bに比べて高い4.18Vとした二次電池Cでは、低温域ATでの充放電パルスサイクル試験における大きな充電電流での充電により、負極板に大きな分極が生じる。この際に、負極板の電位が金属リチウムの電位よりも低下することがある。このために、負極板に金属リチウムが析出し、その分、充放電パルスサイクル試験後に二次電池Cの容量が低下したと考えられる。
 従って、本実施形態1の二次電池101では、劣化の進行による内部抵抗の上昇が生じていない初期の段階においては、最大端子間電圧を4.12Vとするのが適切であることが判る。そこで、この値を、電池温度T=-5℃における、二次電池101(二次電池A~H)の初期最大端子間電圧Vm0(-5)とする。
 前述したように、二次電池Aについて、DC-IR法で様々な測定期間についての内部抵抗を測定したが(表1参照)、前述した最大電圧算出サブルーチンS30で用いる式(V(T)=Vm0(T)+ΔR(Tja)×I(T))における差分抵抗ΔR(Tja)を算出するのに、どの程度の長さの測定期間を用いれば良いかについて検討する。なお、二次電池A~Cの、電池温度T=-5℃における許容充電電流I(-5)はいずれも12C(=70A)である。これと、表1に記載した、二次電池Aにおける各時間についての差分抵抗ΔR(Tja)、及び、最大電圧算出サブルーチンS30で用いる式(V(T)=Vm0(T)+ΔR(Tja)×I(T))を用いて、-5℃における二次電池Aの最大端子間電圧V(-5)を算出する。
 ここで、初期最大端子間電圧Vm0(-5)は、前述したように、4.12Vである。すると、最大端子間電圧V(-5)は、測定期間が0.1秒の場合には4.176V、1.0秒の場合には4.211V、10.0秒の場合には4.260V、及び、20.0秒の場合には4.302Vである(表1参照)。
 ところで、二次電池B,Cに用いたのと同様の構成を有する初期の二次電池を用意し、二次電池Aに対して行った前述の加速劣化試験を行って、二次電池B,Cよりも劣化を進行させた5つの二次電池(二次電池D~H)を用意した。そして、二次電池B,Cと同様にして、これら二次電池D~Hの容量を測定した。
 容量測定後、二次電池D~Hについて、最大端子間電圧V(-5)を以下のように設定して、二次電池B,Cと同様の充放電パルスサイクル試験を行った。即ち、二次電池D、二次電池E、二次電池F、二次電池G及び二次電池Hの最大端子間電圧V(-5)を4.12V、4.18V、4.21V、4.26V及び4.30Vにそれぞれ設定した(表2参照)。その上で、二次電池B,Cと同様、二次電池D~Hについて充放電パルスサイクル試験を10回繰り返した。なお、二次電池D~Hは、既に二次電池Aと同様の加速劣化試験を行ったものであり、その内部抵抗は二次電池Aの加速劣化試験後の値とほぼ同じになっていると考えられる。
 さらに、充放電パルスサイクル試験の後、充放電パルスサイクル試験の前に行った手法と同様にして、再度、各二次電池D~Hの容量を測定し、各二次電池D~Hについて、充放電パルスサイクル試験の前後での容量維持率(%)を、二次電池B,Cと同様にしてそれぞれ算出した各二次電池D~Hの容量維持率(%)を表2に示す。
 表2によれば、二次電池Dの容量維持率が99.4%、二次電池Eの容量維持率が99.4%、二次電池Fの容量維持率が99.2%となり、いずれも99%以上の高い容量維持率であった。これに対し、二次電池Gの容量維持率は98.6%とやや低く、さらに二次電池Hの容量維持率は80.0%となって、容量が大きく低下した。このことから、二次電池Dのほか、二次電池E,F、即ち、測定期間を1.0秒以下にして測定した通常内部抵抗を用いて最大端子間電圧を設定した二次電池では、上述の充放電パルスサイクル試験を行っても、高い容量を維持できる(維持率99%以上)ことが判る。これは、DC-IR法で二次電池の内部抵抗を測定するにあたり、測定期間を短くすると、通常内部抵抗に含まれる拡散抵抗の寄与を十分小さくして、内部抵抗の値として小さな値を得ることができる。このため、計算される最大端子間電圧を比較的低い値に抑えることで、大きな充電電流Icが二次電池101(二次電池E,F)に流れて、負極板130に分極が生じたとしても、負極板の電位が金属リチウムに比して低くなって、金属リチウムが析出するのを抑制することができたためと考えられる。
 以上より、本実施形態1にかかる電池制御システムBS1では、上述の測定期間に相当する、第1時刻P1から第2時刻P2までの間の所定時間TM1を1.0秒以下(具体的には0.1秒)としたので、抵抗取得サブルーチンS40において、拡散抵抗分の割合が十分小さい通常内部抵抗R(Tja)を取得することができる。従って、大きな電流で充電をするにあたり、この二次電池101(101A)の負極板130上への金属リチウムの析出を抑制しつつ、高い端子間電圧まで適切に二次電池101(101A)を充電することができる。
 加えて、所定時間TM1をさらに短い0.1秒以下としたことで、取得(算出)した通常内部抵抗R(Tja)に含まれる拡散抵抗分の割合をさらに小さくすることができた。従って、電池制御システムBS1では、充電電流Icを流す所定時間TM1を0.1秒としたことで、大きな電流で充電をするにあたり、この二次電池101(101A)の負極板130上への金属リチウムの析出を確実に抑制しつつ、適切な端子間電圧まで二次電池101(101A)を充電することができる。
 (変形形態1)
 次に、本発明の変形形態1について、図面を参照しつつ説明する。なお、本変形形態1にかかる電池制御システムBS2では、メインルーチンM1において、サイクル時間TC2を実施形態1のサイクル時間TC1(0.1秒)よりも短い0.02秒としている点、及び、図4中に破線で示すステップS13,S14,S18を加えている点で、上述した実施形態1とは異なる。そこで、実施形態1と異なる点を中心に説明し、実施形態1と同様の部分の説明は省略または簡略化する。なお、実施形態1と同様の部分については同様の作用効果を生じる。また、同内容のものには同番号を付して説明する。
 この電池制御システムBS2について、図4に示すメインルーチンM1のうち、実施形態1とは異なるステップを含むステップS11からステップS20について以下に説明し、それ以外については説明を省略する。
 具体的には、まず、実施形態1と同じく、ステップS11では、今回のサイクルにおいてステップS2で取得した電池温度Tが前述のステップS9で記憶した第1時刻電池温度T1と同じかどうかを判別する。ここで、NO、即ち今回のサイクルの電池温度Tが第1時刻電池温度T1と異なる場合には、ステップS17に進む。一方、YES、即ち電池温度Tが第1時刻電池温度T1と同じ場合には、ステップS12に進む。
 次いで、実施形態1と同様、ステップS12では、今回のサイクルにおいて、ステップS2で測定した電流値IFが、ステップS9で記憶した第1時刻電流値IF1と同じ大きさかどうかを判別する。ここで、NO、即ち今回のサイクルの電流値IFが第1時刻電流値IF1と異なる大きさの場合には、ステップS17に進む。一方、YES、即ち電流値IFが反転後電流値IF1と同じ大きさの場合には、図4に破線で示すステップS13に進む。
 ステップS13では、反転フラグF1がセットされた後に、ステップS12を通過した回数を示すmを1つインクリメントする(m=m+1)。そして、ステップS14では、その回数mが6回よりも小さいか否かを判別する。ここで、YES、即ち回数mが6回よりも小さい場合(m<6)、ステップS19に進む。二次電池101Aの動作が放電から充電に反転した直後から所定時間TM1(本実施形態1と同様の0.1秒)経過していないからである。一方、NO、即ち回数mが6回となった(m=6)場合には、二次電池101Aの動作が放電から充電に反転した直後の第1時刻P1から所定時間TM1の0.1秒間、電池温度Tが第1時刻電池温度T1を保ちつつ、6回検知した電流値IFがいずれも第1時刻電流値IF1と等しくなったことを示している。そこで、ステップS40の抵抗取得サブルーチンに進む。
 抵抗取得サブルーチンS40では、実施形態1と同様にして、第1電池温度Tja(20℃)における二次電池101Aの通常内部抵抗R(Tja)を取得する。かくして、本変形形態1でも、実施形態1と同じく、所定時間TM1(0.1秒)の間に二次電池101Aに生じた端子間電圧の変化分(差分電圧ΔV(Tja))、及び、電流値IF(第1時刻電流値IF1)から、第1電池温度Tjaにおける二次電池101Aの通常内部抵抗R(Tja)を取得する。
 続いて、実施形態1と同じく、ステップS15では、上述の抵抗取得サブルーチンS40で、通常内部抵抗R(Tja)を新たに取得(更新)したか否かを判別し、NOの場合はステップS17に進む。一方、YESの場合はステップS16に進む。
 次いで、実施形態1と同様、ステップS16では、電池温度Tが第1電池温度Tjaにおける、二次電池101Aの差分抵抗ΔR(Tja)を取得する。さらに、実施形態1と同じく、ステップS17では、反転フラグF1をリセットして、破線で示すステップS18に進む。
 このステップS18では、回数mをリセット(m=0)して、ステップS19に進む。二次電池101Aの動作が放電から充電に反転した直後から、所定時間TM1(0.1秒)経過するまでに電流値IFが反転後電流値IF1と異なったり、電池温度Tが第一電池温度Tjaから変わった場合や、抵抗取得サブルーチンS40を実行した場合は、回数mをクリアするためである。
 以上より、本変形形態1にかかる電池制御システムBS2では、二次電池101Aの動作が放電から充電に反転した直後から、所定時間TM1(0.1秒)経過後の時刻までの期間に取得した複数の充電電流Icの電流値IFが互いに等しい場合に、抵抗取得サブルーチンS30において通常内部抵抗R(Tja)を取得するので、電流の変動による誤差を抑えて、より正確な二次電池101の通常内部抵抗R(Tja)を取得することができる。
 (実施形態2)
 次に、本発明の実施形態2について、図面を参照しつつ説明する。なお、実施形態1及び変形形態1では、自身で通常内部抵抗R(Tja)を測定したのに対し、本実施形態2にかかる電池制御システムBS3では、外部から入力された、入力の時点での二次電池101の通常内部抵抗R(Tja)を記憶する通常内部抵抗記憶手段を備えている点で、上述した実施形態1と異なる。即ち、本変形形態2の電池制御システムBS3における、HV制御装置20では、外部から入力される二次電池101の通常内部抵抗R(Tja)をマイコン21に記憶することができるように構成されている。
 また、通常内部抵抗R(Tja)の測定については、具体的には以下のようにして行う。まず、車検等のタイミングで、車両1(電池制御システムBS3)から二次電池101を一時的に取り外す。そして、電池制御システムBS3の外部に設置してある直流電源装置210、電圧計220及び電流計230(図9参照)を用いて、DC-IR法によって二次電池101の通常内部抵抗R(Tja)を測定する。このとき、二次電池101を第1電池温度Tja(20℃)環境下に置いて測定する。
 その後、二次電池101を車両1に積み戻すと共に、取得した第1電池温度Tja(20℃)における二次電池101の通常内部抵抗R(Tja)を、既知の方法で、マイコン21の図示しないRAMに入力(書き込み)する。かくして、これ以降、電池制御システムBS3では、車両1において、二次電池101の通常内部抵抗R(Tja)を用いて、二次電池101の最大端子間電圧V(T)を設定することができる。
 以上により、本実施形態2にかかる電池制御システムBS3では、電池制御システムBS3内に抵抗取得手段を備えなくても、通常内部抵抗R(Tja)を用いて二次電池101の負極板130上に金属リチウムの析出を確実に抑制しつつ、高い端子間電圧まで適切に二次電池101を充電することができる。
 以上において、本発明を実施形態1,2及び変形形態1に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、実施形態1等では、負極活物質として天然黒鉛を含む負極板を用いたが、例えば、負極活物質として、天然黒鉛以外のグラファイトや人造黒鉛を含む負極板用いても良い。また、抵抗記憶手段に、通常温度域AT内の所定電池温度Tjaについての初期内部抵抗R(T)のみを記憶させた例を示した。しかしながら、例えば、通常温度域ATの範囲全体や、低温域ATを含む全温度域について、電池温度T毎に記憶させても良い。また、実施形態2では、通常内部抵抗R(Tja)をDC-IR法で測定したが、交流インピーダンス(AC-IR)法を用いて測定しても良い。

Claims (7)

  1.  正極板及び負極板を有するリチウムイオン二次電池(以後、単に二次電池ともいう)と、
     上記二次電池の充電時に許容する最大端子間電圧及び許容充電電流を設定して、電源から上記二次電池への充電を制御する制御装置と、を備える
    電池制御システムであって、
     電池温度Tについて、20~45℃を通常温度域ATとし、-30~0℃を低温域ATとしたとき、
     上記負極板は、
      電池温度Tが上記通常温度域ATの場合と上記低温域ATの場合とで、その特性を比較したときに、
      上記負極板に生じる反応抵抗R(T)に関し、上記低温域ATの場合が大きく、かつ、
      上記二次電池の内部抵抗R(T)に占める上記負極板の上記反応抵抗R(T)の割合に関し、上記低温域ATの場合が大きい、
     特性を有してなり、
     上記最大端子間電圧V(T)のうち、上記二次電池の使用初期に許容する初期最大端子間電圧Vm0(T)を、上記電池温度T毎に記憶する電圧記憶手段と、
     上記二次電池の使用初期に生じる初期内部抵抗R(T)を、少なくとも上記通常温度域AT内の所定電池温度Tjaについて記憶する抵抗記憶手段と、
     上記許容充電電流I(T)を、上記電池温度T毎に記憶する電流記憶手段と、
     上記二次電池の上記電池温度Tが上記所定電池温度Tjaとなったタイミングでの、上記二次電池の内部抵抗のうち、上記通常温度域AT内の温度Tにおける通常内部抵抗R(Tja)と、上記抵抗記憶手段に記憶されていた、対応する上記所定電池温度Tjaにおける上記初期内部抵抗R(Tja)との差分である差分抵抗ΔR(Tja)を得る差分取得手段と、
     少なくとも上記電池温度Tが上記低温域AT内であるとき、この電池温度Tに対応する上記最大端子間電圧V(T)を、上記電圧記憶手段に記憶されていた上記初期最大端子間電圧Vm0(T)に、上記差分抵抗ΔR(Tja)と上記電流記憶手段に記憶されていた上記許容充電電流I(T)との積を加えた値とする最大電圧算出手段と、を備える
    電池制御システム。
  2. 請求項1に記載の電池制御システムであって、
     前記負極板は、
      前記反応抵抗R(T)に関し、前記低温域AT内の温度Tにおける低温反応抵抗Rrl(T)が、前記通常温度域AT内の温度Tにおける通常反応抵抗Rrj(T)の7倍以上の値となり、
      上記温度Tにおける前記内部抵抗R(T)である通常内部抵抗R(T)に占める、上記通常反応抵抗Rrj(T)の割合Rrj(T)/R(T)が、10%以下であり、
      上記温度Tにおける上記内部抵抗R(T)である低温内部抵抗R(T)に占める、上記低温反応抵抗Rrl(T)の割合Rrl(T)/R(T)が、20%以上である、
     特性を有する
    電池制御システム。
  3. 請求項1又は請求項2に記載の電池制御システムであって、
     前記最大電圧算出手段は、
      前記電池温度Tが前記低温域ATより高いときには、前記初期最大端子間電圧Vm0(T)を前記最大端子間電圧V(T)の値とする
    電池制御システム。
  4. 請求項1~請求項3のいずれか1項に記載の電池制御システムであって、
     前記二次電池の前記電池温度Tが前記所定電池温度Tjaとなった場合に、上記二次電池の前記通常内部抵抗R(Tja)を取得する抵抗取得手段を備える
    電池制御システム。
  5. 請求項4に記載の電池制御システムであって、
     前記二次電池の充電状態を検知する充電状態検知手段と、
     上記二次電池に関する各充電状態毎の開放端子間電圧を予め記憶してなる開放端子間電圧記憶手段と、
     上記充電状態検知手段で検知した上記充電状態から、これに対応する上記開放端子間電圧を取得する開放端子間電圧取得手段と、を備え、
     前記抵抗取得手段は、
      上記二次電池の充電期間のうち、上記二次電池の動作が放電から充電に変わった直後の第1時刻から所定時間経過後の第2時刻まで、同じ大きさの充電電流を検知した場合に、上記第1時刻における上記二次電池の上記充電状態に対応する上記開放端子間電圧と、上記第2時刻における上記二次電池の端子間電圧との差と、上記充電電流の電流値とを用いて、前記通常内部抵抗R(Tja)を取得する手段であり、
     上記所定時間を、1.0秒以下としてなる
    電池制御システム。
  6. 請求項5に記載の電池制御システムであって、
     前記抵抗取得手段における上記所定時間を、0.1秒以下としてなる
    電池制御システム。
  7. 請求項1~請求項3のいずれか1項に記載の電池制御システムであって、
     外部から入力された、上記入力の時点での前記二次電池の前記通常内部抵抗R(Tja)を記憶する通常内部抵抗記憶手段を備える
    電池制御システム。
     
PCT/JP2010/066684 2010-09-27 2010-09-27 電池制御システム WO2012042585A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080064325.6A CN102771003B (zh) 2010-09-27 2010-09-27 电池控制系统
JP2011533027A JP5293827B2 (ja) 2010-09-27 2010-09-27 電池制御システム
PCT/JP2010/066684 WO2012042585A1 (ja) 2010-09-27 2010-09-27 電池制御システム
US13/579,304 US8947055B2 (en) 2010-09-27 2010-09-27 Battery control system
DE112010005906.3T DE112010005906B4 (de) 2010-09-27 2010-09-27 Batteriesteuerungssystem
CA2789668A CA2789668C (en) 2010-09-27 2010-09-27 Battery control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066684 WO2012042585A1 (ja) 2010-09-27 2010-09-27 電池制御システム

Publications (1)

Publication Number Publication Date
WO2012042585A1 true WO2012042585A1 (ja) 2012-04-05

Family

ID=45892091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066684 WO2012042585A1 (ja) 2010-09-27 2010-09-27 電池制御システム

Country Status (6)

Country Link
US (1) US8947055B2 (ja)
JP (1) JP5293827B2 (ja)
CN (1) CN102771003B (ja)
CA (1) CA2789668C (ja)
DE (1) DE112010005906B4 (ja)
WO (1) WO2012042585A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086400A1 (ja) * 2015-11-19 2017-05-26 株式会社東芝 蓄電池システム、蓄電池装置及び方法
KR20190100683A (ko) * 2018-02-21 2019-08-29 주식회사 엘지화학 최대 방전 전압 보정 장치
JP2021077570A (ja) * 2019-11-12 2021-05-20 日産自動車株式会社 二次電池に含まれるリチウムの析出を判定する判定装置及び判定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017074A (ja) * 2012-07-06 2014-01-30 Toyota Motor Corp 二次電池における反応関与物質の析出及び溶解を制御する装置
JP2014153269A (ja) * 2013-02-12 2014-08-25 Toyota Motor Corp 二次電池の検査方法
JP6183446B2 (ja) * 2015-12-25 2017-08-23 マツダ株式会社 リチウムイオン電池充放電制御装置
CN107240937A (zh) * 2016-03-28 2017-10-10 中兴通讯股份有限公司 一种磷酸铁锂电池的充电方法及装置
JP6674637B2 (ja) * 2017-03-17 2020-04-01 トヨタ自動車株式会社 電池制御装置および電池制御システム
DE102018200976A1 (de) 2018-01-23 2019-07-25 Volkswagen Aktiengesellschaft Verfahren zum Steuern des Ladens einer Batterieeinheit, Verfahren zum Laden einer Batterieeinheit, Steuereinheit, Ladesystem, Batteriesystem und Arbeitsvorrichtung
JP6947081B2 (ja) * 2018-02-27 2021-10-13 トヨタ自動車株式会社 電池の充放電制御方法および電池システム
FR3088494B1 (fr) * 2018-11-08 2020-10-23 Psa Automobiles Sa Dispositif d’inhibition de la sortie de courant d’un equipement, a elements de commutation a fuite surveillee
KR20200086397A (ko) * 2019-01-08 2020-07-17 현대자동차주식회사 배터리 충전 상태 평가 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919073A (ja) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd 二次電池の急速充電方法
JPH09149556A (ja) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd 二次電池の充電方法
JPH09233732A (ja) * 1996-02-29 1997-09-05 Sanyo Electric Co Ltd 二次電池の充電方法および装置
JP2008204800A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水系電解質二次電池の急速充電方法およびそれを用いる電子機器
JP2008204801A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水系電解質二次電池の充電方法およびそれを用いる電子機器
JP2010063279A (ja) * 2008-09-04 2010-03-18 Toyota Motor Corp 二次電池の充電方法、二次電池システム及び車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984277A (ja) 1995-09-18 1997-03-28 Nissan Motor Co Ltd 電池の充電制御方法および装置
JP2000270491A (ja) 1999-03-16 2000-09-29 Nissan Motor Co Ltd リチウムイオン電池充電方法及びリチウムイオン電池充電装置
JP2002142379A (ja) 2000-11-06 2002-05-17 Sanyo Electric Co Ltd 電池の充電方法
JP4385664B2 (ja) * 2003-07-08 2009-12-16 パナソニック株式会社 車両用電源装置
JP2007221868A (ja) 2006-02-15 2007-08-30 Fujitsu Ten Ltd バッテリ充電装置、およびバッテリ充電方法
JP2007311065A (ja) * 2006-05-16 2007-11-29 Toyota Motor Corp 電池装置、これを搭載した車両、および電池装置の異常判定方法
JP5054338B2 (ja) 2006-07-20 2012-10-24 本田技研工業株式会社 車両用電源の制御装置およびその制御方法
JP4782663B2 (ja) 2006-11-29 2011-09-28 パナソニック株式会社 充電システム、充電装置、及び電池パック
JP5130917B2 (ja) 2007-01-11 2013-01-30 パナソニック株式会社 リチウム二次電池の劣化検出方法と劣化抑制方法、劣化検出器と劣化抑制器、それを用いた電池パック、充電器
US8529125B2 (en) * 2010-05-26 2013-09-10 GM Global Technology Operations LLC Dynamic estimation of cell core temperature by simple external measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919073A (ja) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd 二次電池の急速充電方法
JPH09149556A (ja) * 1995-11-24 1997-06-06 Sanyo Electric Co Ltd 二次電池の充電方法
JPH09233732A (ja) * 1996-02-29 1997-09-05 Sanyo Electric Co Ltd 二次電池の充電方法および装置
JP2008204800A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水系電解質二次電池の急速充電方法およびそれを用いる電子機器
JP2008204801A (ja) * 2007-02-20 2008-09-04 Matsushita Electric Ind Co Ltd 非水系電解質二次電池の充電方法およびそれを用いる電子機器
JP2010063279A (ja) * 2008-09-04 2010-03-18 Toyota Motor Corp 二次電池の充電方法、二次電池システム及び車両

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086400A1 (ja) * 2015-11-19 2017-05-26 株式会社東芝 蓄電池システム、蓄電池装置及び方法
KR20190100683A (ko) * 2018-02-21 2019-08-29 주식회사 엘지화학 최대 방전 전압 보정 장치
KR102487641B1 (ko) * 2018-02-21 2023-01-10 주식회사 엘지에너지솔루션 최대 방전 전압 보정 장치
JP2021077570A (ja) * 2019-11-12 2021-05-20 日産自動車株式会社 二次電池に含まれるリチウムの析出を判定する判定装置及び判定方法
JP7395327B2 (ja) 2019-11-12 2023-12-11 日産自動車株式会社 二次電池に含まれるリチウムの析出を判定する判定装置及び判定方法

Also Published As

Publication number Publication date
CN102771003B (zh) 2014-11-26
CA2789668C (en) 2014-05-13
JP5293827B2 (ja) 2013-09-18
US20130181684A1 (en) 2013-07-18
CN102771003A (zh) 2012-11-07
DE112010005906B4 (de) 2020-10-08
CA2789668A1 (en) 2012-04-05
DE112010005906T5 (de) 2013-08-01
US8947055B2 (en) 2015-02-03
JPWO2012042585A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5293827B2 (ja) 電池制御システム
EP2804249B1 (en) Method for controlling and device for controlling secondary battery
US10569660B2 (en) Systems and methods for battery state-of-health monitoring
EP2746796B1 (en) Device for estimating state of deterioration of secondary battery and method for estimating state of deterioration
US10281530B2 (en) Battery capacity measuring device and battery capacity measuring method
KR101611116B1 (ko) 2차 전지의 제어 장치, 충전 제어 방법 및 soc 검출 방법
US10209319B2 (en) State of deterioration or state of charges estimating apparatus for secondary battery
US20180313905A1 (en) Method for estimating state of charge and on-vehicle battery system
US20140111214A1 (en) Electric storage condition detecting apparatus
US9939494B2 (en) Battery system and method of determining polarization of secondary battery
JP5846054B2 (ja) 診断装置および診断方法
WO2015083372A1 (ja) 電池残存容量推定装置、電池残存容量判定方法及び電池残存容量判定プログラム
JPWO2014167602A1 (ja) 電池システム
Jaguemont et al. Low temperature aging tests for lithium-ion batteries
JP2010066229A (ja) バッテリの故障検出装置およびバッテリの故障検出方法
JP2013171691A (ja) 蓄電システム
US20200223322A1 (en) Method and system for estimating remaining battery pack energy using cell-group state of charge spread
JP5737138B2 (ja) 電池の制御装置及び電池の制御方法
JP6466287B2 (ja) 電池状態測定方法及び電池状態測定装置
US20180080996A1 (en) Deterioration detector for non-aqueous electrolyte power storage element, power storage device, deterioration detection system for non-aqueous electrolyte power storage element, and deterioration detection method for non-aqueous electrolyte power storage element
JP5535092B2 (ja) 鉛蓄電池状態検出装置および鉛蓄電池状態検出方法
JP5673422B2 (ja) 二次電池の充電システム
WO2020085097A1 (ja) 電池制御装置
WO2022176317A1 (ja) 二次電池の制御装置
JP5929711B2 (ja) 充電システムおよび、電圧降下量の算出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064325.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011533027

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2789668

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13579304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005906

Country of ref document: DE

Ref document number: 1120100059063

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857800

Country of ref document: EP

Kind code of ref document: A1