WO2020085097A1 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
WO2020085097A1
WO2020085097A1 PCT/JP2019/039875 JP2019039875W WO2020085097A1 WO 2020085097 A1 WO2020085097 A1 WO 2020085097A1 JP 2019039875 W JP2019039875 W JP 2019039875W WO 2020085097 A1 WO2020085097 A1 WO 2020085097A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
upper limit
limit current
ion concentration
unit
Prior art date
Application number
PCT/JP2019/039875
Other languages
English (en)
French (fr)
Inventor
亮平 中尾
拓是 森川
匡 内藤
政文 志波
ファニー マテ
Original Assignee
ビークルエナジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビークルエナジージャパン株式会社 filed Critical ビークルエナジージャパン株式会社
Priority to CN201980071325.XA priority Critical patent/CN113016099B/zh
Priority to US17/288,789 priority patent/US11899070B2/en
Priority to JP2020553120A priority patent/JP7100151B2/ja
Priority to EP19877305.3A priority patent/EP3872920A4/en
Publication of WO2020085097A1 publication Critical patent/WO2020085097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery control device.
  • a battery system mounted on an electric vehicle (EV), a plug-in hybrid vehicle (PHEV), a hybrid vehicle (HEV), etc. is generally composed of a plurality of secondary batteries connected in series or in parallel and various electric parts. It The electrical components include relays that control the on / off of the electrical connection between the battery and load, sensors that measure the current and voltage of the battery, and a battery control device that controls the charging and discharging of the battery. Be done.
  • the battery control device sets a limit value (upper limit current value) for the current flowing through the battery in order to use the battery within an appropriate range, and performs charge / discharge control of the battery within this upper limit current value range. As a result, the deterioration of the battery is suppressed by avoiding the use in the large current region where the battery voltage changes abruptly.
  • the battery control device has an upper limit in accordance with the lithium ion concentration gradient in the diffusion layer near the interface between the electrode and the electrolyte, which changes variously with charging and discharging. It is desirable to set the current value appropriately.
  • Patent Document 1 The technique described in Patent Document 1 is known as a current limiting method for a secondary battery that takes into consideration the ion concentration of the electrolyte.
  • an evaluation value indicating the bias of the ion concentration is calculated based on the current value flowing in the secondary battery, and when the evaluation value exceeds a target value, the upper limit value for the discharge power of the secondary battery is lowered. Techniques for doing so are disclosed.
  • Patent Document 1 does not consider the ion concentration gradient in the diffusion layer formed near the interface between the electrode and the electrolyte, and therefore considers the abrupt change of the battery voltage in the large current region as described above. It is not possible to set the upper limit current value.
  • the battery control device based on the current flowing in the secondary battery, or the current and the temperature of the secondary battery, the ion concentration in the diffusion layer formed near the interface between the electrode of the secondary battery and the electrolyte.
  • a concentration gradient estimation unit that estimates a gradient
  • an upper limit current determination unit that determines an upper limit current value of the secondary battery based on the ion concentration gradient, the upper limit current determination unit according to the ion concentration gradient.
  • the upper limit current value is determined so that the overvoltage of the secondary battery falls within a predetermined range.
  • an appropriate upper limit current value is set in consideration of a sharp change in battery voltage in a large current region caused by an ion concentration gradient in a diffusion layer formed near the interface between an electrode and an electrolyte.
  • a case where the present invention is applied to a battery system that constitutes a power source of a plug-in hybrid vehicle (PHEV) will be described as an example.
  • PHEV plug-in hybrid vehicle
  • the configuration of the embodiment described below is not limited to this, and a storage battery control circuit of a power storage device that constitutes a power source of a passenger vehicle such as a hybrid vehicle (HEV) or an electric vehicle (EV) or an industrial vehicle such as a hybrid railway vehicle. It can also be applied to
  • a case of adopting a lithium-ion battery will be described as an example, but as long as it is a rechargeable secondary battery, a nickel-hydrogen battery, a lead battery, an electric double layer capacitor, A hybrid capacitor or the like can also be used.
  • a plurality of unit cells are connected in series to form an assembled battery, but a plurality of unit cells connected in parallel are further connected in series to form an assembled battery.
  • a plurality of unit cells connected in series may be further connected in parallel to form an assembled battery.
  • FIG. 1 is a diagram showing a configuration of a battery system 100 and its periphery according to an embodiment of the present invention.
  • Battery system 100 is connected to inverter 400 via relays 300 and 310.
  • the battery system 100 includes an assembled battery 110, a unit battery management unit 120, a current detection unit 130, a voltage detection unit 140, an assembled battery control unit 150, and a storage unit 180.
  • the assembled battery 110 is composed of a plurality of unit cells 111.
  • the unit cell management unit 120 monitors the state of the unit cell 111.
  • the current detection unit 130 detects the current flowing through the battery system 100.
  • the voltage detector 140 detects the total voltage of the assembled battery 110.
  • the assembled battery control unit 150 detects the state of the assembled battery 110 and also manages the state.
  • the assembled battery 110 is configured by electrically connecting in series a plurality of unit cells 111 capable of storing and releasing electric energy (charging and discharging DC power).
  • a lithium ion battery having an output voltage of 3.0 to 4.2 V (average output voltage: 3.6 V) is used for each of the unit cells 111. Note that other voltage specifications may be used.
  • the unit cells 111 that form the assembled battery 110 are grouped into a predetermined number of units in order to manage and control the state.
  • the unit cells 111 divided into groups are electrically connected in series to form unit cell groups 112a and 112b.
  • the number of the unit cells 111 forming the unit cell group 112 may be the same in all the unit cell groups 112, or the number of the unit cells 111 may be different for each unit cell group 112.
  • the unit cell management unit 120 monitors the state of the unit cells 111 forming the assembled battery 110.
  • the unit cell management unit 120 includes a unit cell control unit 121 provided for each unit cell group 112.
  • unit cell control units 121a and 121b are provided corresponding to the unit cell groups 112a and 112b.
  • the unit cell control unit 121 monitors and controls the state of the unit cells 111 forming the unit cell group 112.
  • unit cells 111 are electrically connected in series to form unit cell groups 112a and 112b, and the unit cell groups 112a and 112b are further electrically connected in series. Then, an assembled battery 110 including a total of eight unit cells 111 was obtained.
  • the assembled battery control unit 150 includes a measured value of the battery voltage and temperature of the unit battery 111 output from the unit battery management unit 120, a current value from the current detection unit 130, and an assembled battery 110 output from the voltage detection unit 140.
  • the total voltage value, the battery characteristic information of the unit cell 111 stored in the storage unit 180, and the like are input.
  • the unit cell management unit 120 has a function of diagnosing whether the unit cell 111 is overcharged or overdischarged, and a function of outputting an abnormal signal when a communication error occurs in the unit cell management unit 120.
  • the diagnostic result and the abnormal signal are also input to the battery pack controller 150.
  • a signal is also input from the vehicle control unit 200, which is a higher-level control device.
  • the battery pack control unit 150 performs an operation for appropriately controlling the charging / discharging of the battery pack 110 based on the input information, the current limit value stored in advance in the storage unit 180, and the battery characteristics of the unit cell 111. I do. For example, calculation of the charge / discharge power limit value for each unit cell 111, calculation of the state of charge (SOC: State of Charge) and deterioration state (SOHR: State of Health based on Resistance) of each unit cell 111, and calculation of each unit The calculation for performing the voltage equalization control of the battery 111 is executed. The battery pack control unit 150 outputs these calculation results and a command based on the calculation results to the unit cell management unit 120 and the vehicle control unit 200.
  • SOC State of Charge
  • SOHR State of Health based on Resistance
  • the storage unit 180 stores information about the battery characteristics of the assembled battery 110, the unit cell 111, and the unit cell group 112.
  • the storage unit 180 is configured to be installed outside the assembled battery control unit 150 or the unit battery management unit 120, but the assembled battery control unit 150 or the unit battery management unit 120 includes a storage unit.
  • the above information may be stored in a configuration.
  • the battery pack control unit 150 and the unit cell management unit 120 send and receive signals via the insulating element 170 represented by a photocoupler and the signal communication unit 160.
  • the insulating element 170 is provided because the assembled battery control unit 150 and the unit cell management unit 120 have different operating power supplies. That is, the unit cell management unit 120 operates by receiving electric power from the assembled battery 110, while the assembled battery control unit 150 uses a battery (for example, a 14V system battery) for vehicle-mounted auxiliary equipment as a power source.
  • the insulating element 170 may be mounted on the circuit board forming the unit cell management unit 120 or may be mounted on the circuit board forming the assembled battery control unit 150. The insulating element 170 may be omitted depending on the system configuration.
  • the communication means between the assembled battery control unit 150 and the unit cell control units 121a and 121b that form the unit cell management unit 120 will be described.
  • the unit cell control units 121a and 121b are connected in series in the descending order of the potential of the unit cell groups 112a and 112b monitored by them.
  • the signal transmitted from the assembled battery control unit 150 to the unit cell management unit 120 is input to the unit cell control unit 121a via the insulating element 170 and the signal communication unit 160.
  • the output of the unit cell control unit 121a is input to the unit cell control unit 121b via the signal communication unit 160, and the output of the lowest unit cell control unit 121b is via the insulating element 170 and the signal communication unit 160. It is transmitted to 150.
  • the insulating element 170 is not provided between the unit cell control unit 121a and the unit cell control unit 121b, but signals can be transmitted and received through the insulating element 170.
  • the vehicle control unit 200 uses the information transmitted by the battery pack control unit 150 to control the inverter 400 connected to the battery system 100 via the relays 300 and 310. While the vehicle is traveling, the battery system 100 is connected to the inverter 400, and the energy stored in the battery pack 110 is used to drive the motor generator 410.
  • the battery system 100 When the vehicle system equipped with the battery system 100 starts and runs, the battery system 100 is connected to the inverter 400 under the control of the vehicle control unit 200, and the motor using the energy stored in the assembled battery 110 is used.
  • the generator 410 is driven, and the assembled battery 110 is charged by the electric power generated by the motor generator 410 during regeneration.
  • the energy stored in the assembled battery 110 by charging is used when the vehicle next runs, or is also used to operate electric components inside and outside the vehicle.
  • FIG. 2 is a diagram showing a circuit configuration of the unit cell control unit 121.
  • the unit cell control unit 121 includes a voltage detection circuit 122, a control circuit 123, a signal input / output circuit 124, and a temperature detection unit 125.
  • the voltage detection circuit 122 measures the terminal voltage of each unit cell 111.
  • the control circuit 123 receives the measurement result from the voltage detection circuit 122 and the temperature detection unit 125, and transmits the measurement result to the assembled battery control unit 150 via the signal input / output circuit 124.
  • circuit configuration that is generally mounted in the unit cell control unit 121 and that equalizes the voltage variation and the SOC variation between the unit cells 111 caused by the self-discharge, the consumption current variation, and the like is determined to be well-known. The description was omitted.
  • the temperature detection unit 125 included in the unit cell control unit 121 in FIG. 2 has a function of measuring the temperature of the unit cell group 112.
  • the temperature detection unit 125 measures one temperature of the entire unit cell group 112 and handles the temperature as a temperature representative value of the unit cells 111 forming the unit cell group 112.
  • the temperature measured by the temperature detection unit 125 is used for various calculations for detecting the state of the unit cell 111, the unit cell group 112, or the assembled battery 110. Since FIG. 2 is premised on this, one temperature detection unit 125 is provided in the unit cell control unit 121. It is also possible to provide the temperature detection unit 125 for each unit cell 111, measure the temperature for each unit cell 111, and perform various calculations based on the temperature for each unit cell 111. In this case, the number of temperature detection units 125 As the number of cells increases, the configuration of the unit cell control unit 121 becomes complicated.
  • the temperature detection unit 125 is simply shown. Actually, a temperature sensor is installed on the temperature measurement target, the installed temperature sensor outputs temperature information as voltage, and the measurement result is transmitted to the signal input / output circuit 124 via the control circuit 123, and the signal input / output circuit 124 is output. Outputs the measurement result to the outside of the unit cell control unit 121.
  • a function for realizing this series of flows is mounted in the unit cell control unit 121 as the temperature detection unit 125, and the voltage detection circuit 122 can be used for measuring the temperature information (voltage).
  • FIG. 3 is a diagram showing a functional configuration of the assembled battery control unit 150 according to the first embodiment of the present invention.
  • the battery pack control unit 150 based on the current value and voltage value of each battery cell 111 detected while the vehicle is traveling, the state of each battery cell 111 in the battery pack 110 and the power that can be input to and output from each battery cell 111. Is a part that determines the charge and discharge power limit value (charge power limit value and discharge power limit value) for limiting the charge and discharge power of each unit cell 111.
  • FIG. 3 shows a functional configuration of the battery pack control unit 150 regarding the calculation of the charge / discharge power limit value. This is a part having a function corresponding to the battery control device according to the embodiment of the present invention.
  • the assembled battery control unit 150 has various functions necessary for controlling the assembled battery 110, for example, a function of performing voltage equalization control of the individual batteries 111, in addition to the charge / discharge power limit value calculation function. However, since these are well-known functions and are not directly related to the present invention, detailed description thereof will be omitted below.
  • the battery pack control unit 150 has, as its functions, functional blocks of a battery state detection unit 151, an upper limit current calculation unit 152, and a chargeable / dischargeable power calculation unit 153.
  • the assembled battery control unit 150 uses these functional blocks to detect the current of the assembled battery 110 detected by the current detection unit 130, that is, the current of each single battery 111, the voltage of each single battery 111 detected by the single battery management unit 120, and the The charge / discharge power limit value of each unit cell 111 is calculated based on the temperature.
  • the assembled battery control unit 150 is described as calculating the charge / discharge power limit value of each single battery 111, but the charge / discharge power limit value may be collectively calculated for a plurality of single batteries 111. For example, it can be calculated for each of the unit cell groups 112a and 112b or can be calculated for the entire assembled battery 110. Even in these cases, the charge / discharge power limit value can be calculated by the same processing as that of the unit cell 111. The charge / discharge power limit value of each unit cell 111 can be calculated by the same process. Therefore, in the following, the calculation function of the charge / discharge power limit value in the battery pack control unit 150 will be described by simply calling the target of calculation of the charge / discharge power limit value as a “battery”.
  • the battery state detection unit 151 calculates SOC and SOHR of each battery based on the current, voltage, and temperature information of each battery input to the assembled battery control unit 150. Note that the calculation method of SOC and SOHR is publicly known and will not be described.
  • the upper limit current calculation unit 152 receives the current and temperature of each battery as input, and a charging side upper limit current that defines the upper limit current when charging each battery, and a discharging side upper limit current that specifies the upper limit current when discharging each battery. Is calculated and output. A specific method of calculating the charging-side upper limit current and the discharging-side upper limit current by the upper limit current calculation unit 152 will be described later.
  • the chargeable / dischargeable power calculation unit 153 calculates the SOC and SOHR of each battery calculated by the battery state detection unit 151, the temperature of each battery input to the assembled battery control unit 150, and each battery calculated by the upper limit current calculation unit 152.
  • the chargeable power and dischargeable power of each battery are calculated based on the charge-side upper limit current and the discharge-side upper limit current, and the charge power limit value and discharge power limit value for each battery are calculated based on these calculation results. Output. The method of calculating the chargeable power and the dischargeable power will be described later.
  • FIG. 4 is a diagram explaining the definition of the upper limit current.
  • FIG. 4 shows an example of a graph in which the voltage after a lapse of a predetermined time when a constant current is continuously applied to the battery is plotted by changing the magnitude of the current in the charging direction and the discharging direction.
  • the horizontal axis of FIG. 4 represents current and the vertical axis represents voltage.
  • each plot point indicated by a square exists on each of the three curves. These three curves show that the timing of measuring the voltage, that is, the elapsed time from the start of energization of the battery is different.
  • the upper limit current calculation unit 152 the current immediately before entering this region is defined as the upper limit current, and the current value at this time is set as the upper limit current value, so that the use of the battery in that region is prevented. I try to avoid it.
  • FIG. 5 is a schematic diagram of the lithium ion concentration distribution near the interface between the electrode and the electrolyte.
  • FIG. 5A shows the state of the lithium ion concentration distribution in the vicinity of the positive electrode immediately after the battery starts to be discharged.
  • the lithium ion concentration at the interface between the positive electrode and the electrolyte corresponds to the current flowing in the battery, and the concentration in the offshore region sufficiently away from the interface between the electrode and the electrolyte in the electrolytic solution (no charging or discharging) It becomes smaller than the lithium ion concentration in the equilibrium state, C * ) in FIG.
  • FIG. 5 (b) shows how the concentration distribution of lithium ions near the positive electrode changes with the passage of time. Since lithium ions continue to be consumed at the interface between the positive electrode and the electrolyte when the current continues to flow after the start of discharge of the battery, as shown in FIG. The concentration distribution gradually widens. As a result, the thickness of the diffusion layer increases and the value of ⁇ increases.
  • the thickness of the diffusion layer increases as described above, it is necessary to apply a larger overvoltage in order to supply lithium ions to the interface from a distant point. That is, during discharge of the battery, the thickness of the diffusion layer increases with the passage of current, and as a result, the overvoltage increases, so that the internal resistance tends to increase.
  • the abrupt change in the voltage during energization at a large current for a long time as shown in FIG. 4 reflects the above-mentioned tendency.
  • the concentration distribution (concentration of lithium ions as shown in FIG. It is important to understand the slope). That is, in order to apply the method of setting the upper limit current as described in FIG. 4 to the actual control, the upper limit current value is taken into consideration in consideration of the lithium ion concentration distribution (concentration gradient) generated by charging and discharging up to the present time. It is necessary to set.
  • FIG. 5 shows the lithium ion concentration distribution near the positive electrode during discharge
  • the lithium ion concentration distribution near the negative electrode tends to be the opposite of that shown in FIG. That is, the lithium ion concentration at the interface between the negative electrode and the electrolyte is higher than the average value of the lithium ion concentration in the electrolytic solution by the amount corresponding to the current flowing in the battery. Further, the diffusion of lithium ions from the interface having a high concentration into the electrolytic solution having a low concentration occurs, and the concentration distribution of the lithium ions gradually widens with the passage of time, and the thickness of the diffusion layer increases.
  • the lithium ion concentration distributions near the positive electrode and the negative electrode during discharging have been described above, the lithium ion concentration distributions at the positive electrode and the negative electrode tend to be opposite during charging, and a concentration gradient in the opposite direction to that during discharging is obtained.
  • the diffusion layers are formed near the positive electrode and the negative electrode, respectively. Therefore, the upper limit current calculation unit 152 needs to calculate the upper limit current separately for the charging side and the discharging side.
  • FIG. 6 is a diagram showing an outline of the discharge-side upper limit current after continuing charge / discharge.
  • FIG. 6A shows the concept of the discharge-side upper limit current when there is a discharge history at the present time, that is, when the discharge continues until immediately before the current time. If there is a discharge history up to the present time, near the interface between the electrode (positive electrode) and the electrolyte at the present time, as shown by the broken line 601 in FIG. The concentration gradient is gradually decreasing. At a time point after a lapse of an arbitrary time when the discharge is continued from this state, the concentration gradient of the lithium ion changes from the broken line 601 to the solid line 602 due to the diffusion layer expanding more than the current time. Therefore, it is considered that the current upper limit current on the discharge side is determined according to the difference in the concentration of lithium ions remaining at the interface between the broken line 601 and the solid line 602.
  • FIG. 6 (b) shows the concept of the discharge side upper limit current when there is a charging history at the present time, that is, when charging continues until just before the current time.
  • a charge history up to the present time near the interface between the electrode (positive electrode) and the electrolyte at the present time, as shown by the broken line 603 in FIG.
  • concentration gradient that gradually increases.
  • the concentration gradient of the lithium ions changes from the broken line 603 to the solid line 604 by changing the concentration gradient in the opposite direction according to the thickness of the diffusion layer. Change. Therefore, it is considered that the discharge-side upper limit current at this point is determined by the difference in the concentration of lithium ions remaining at the interface between the broken line 603 and the solid line 604.
  • the lithium ion concentration at the interface between the electrode and the electrolyte is lower and the diffusion layer is expanded as compared with the case where there is no discharge history. . Therefore, the upper limit current on the discharge side in this case is smaller than that when there is no discharge history.
  • the lithium ion concentration at the interface between the electrode and the electrolyte is higher than when there is no charge history, and there is no diffusion layer that affects the discharge-side upper limit current. ing. Therefore, the upper limit current on the discharge side in this case is larger than that when there is no charge history.
  • the upper limit current on the discharge side after continuing charging / discharging was explained, but the same idea can be adopted for the upper limit current on the charging side after continuing charging / discharging by switching between discharging and charging. That is, when there is a discharge history, the charging-side upper limit current is larger than when there is no discharge history. On the other hand, when there is a charging history, the charging-side upper limit current is smaller than when there is no charging history.
  • the estimation model formula of the upper limit current can be set based on, for example, the Cottrell formula shown in the following formula (1).
  • t represents the energization time [sec] of the battery
  • T represents the temperature [° C] of the battery.
  • n is the number of moles of electrons [mol]
  • F is the Faraday constant [C / mol]
  • A is the electrode area [cm ⁇ 2]
  • D (T) is the diffusion constant at temperature T [cm ⁇ 2 / sec]
  • C * is the lithium ion concentration [mol / cm ⁇ 3] offshore, sufficiently far from the interface between the electrode and the electrolyte
  • is the diffusion layer thickness [cm].
  • the thickness ⁇ of the diffusion layer in the equation (1) is given by the following equation (2).
  • a relational expression derived from the diffusion equation shown in the following expression (3) can be applied.
  • equation (4) By solving equation (3), for example, equation (4) below is obtained.
  • the upper limit of the current limit considering the lithium ion concentration distribution in the diffusion layer due to the charge / discharge history up to the present time It can be used as an estimation model formula.
  • FIG. 7 is a control block diagram of the upper limit current calculation unit 152 according to the first embodiment of the present invention based on the above-described upper limit current estimation model formula.
  • the upper limit current calculation unit 152 includes an interface concentration estimation unit 1521, a diffusion layer estimation unit 1522, a concentration gradient estimation unit 1523, and an upper limit current determination unit 1524.
  • the interface concentration estimation unit 1521 estimates the lithium ion concentration at the interface between the electrode and the electrolyte.
  • the lithium at the interface at the time of charging or discharging is calculated, for example, by the above formula (4). Calculates and outputs the ion concentration.
  • the interface concentration estimating unit 1521 determines the lithium ion concentration of the interface based on only the current of each battery. It is also possible to calculate.
  • the diffusion layer estimation unit 1522 estimates the thickness of the diffusion layer formed near the interface.
  • the diffusion layer of the diffusion layer at the time of charging or discharging is calculated. Calculate and output the thickness.
  • the diffusion layer estimation unit 1522 like the interface concentration estimation unit 1521, has only the current of each battery. It is also possible to calculate the thickness of the diffusion layer based on
  • the concentration gradient estimation unit 1523 estimates the lithium ion concentration gradient in the diffusion layer based on the interface lithium ion concentration output by the interface concentration estimation unit 1521 and the diffusion layer thickness output by the diffusion layer estimation unit 1522.
  • the lithium ion concentration gradient in the diffusion layer is calculated and output by dividing the calculation result of the interface concentration estimation unit 1521 by the calculation result of the diffusion layer estimation unit 1522.
  • the concentration gradient estimation unit 1523 can estimate the ion concentration gradient in the diffusion layer formed during charging or discharging, based on the current and temperature of each battery.
  • the concentration gradient estimating unit 1523 charges only the current of each battery. Alternatively, the ion concentration gradient in the diffusion layer formed during discharge is estimated.
  • the upper limit current determination unit 1524 determines the charging side upper limit current and the discharging side upper limit current of each battery based on the lithium ion concentration gradient estimated by the concentration gradient estimating unit 1523.
  • the lithium ion concentration gradient is calculated according to, for example, the above-described formula (1).
  • the upper limit current on the charging side and the upper limit current on the discharging side are calculated and output so that the overvoltage of the battery according to the above is within a predetermined range.
  • the lithium ion concentration gradient of the diffusion layer estimated by the concentration gradient estimator 1523 may be used for C * / ⁇ (t, T) on the right side of Expression (1).
  • the upper limit current determination unit 1524 is implemented as a map of the upper limit current according to the lithium ion concentration gradient estimated by the concentration gradient estimation unit 1523 and the battery temperature, for example. A method of collecting this map data will be described below with reference to FIG.
  • FIG. 8 is an explanatory diagram regarding the overvoltage component of the battery.
  • FIG. 8 is an example of a graph showing the behavior of voltage and resistance when a battery is continuously discharged with a certain constant current. As shown in FIG. 8, the voltage decreases and the resistance increases with the passage of time from the start of discharge. The voltage change at this time can be considered separately for each voltage component indicated by reference numerals 801 to 804 depending on the difference in the cause.
  • the voltage component 801 represents a change in OCV with a change in SOC, and this gradually increases with the passage of time.
  • the voltage component 802 represents a voltage component corresponding to an ohmic resistance component due to a member or the like in the battery, which is constant regardless of the passage of time.
  • the voltage component 803 represents a voltage component (activation overvoltage) corresponding to a resistance component associated with an electrochemical reaction in the battery, which changes greatly at the start of discharge and thereafter gradually changes with the passage of time. Increase to.
  • the voltage component 804 represents a voltage component (diffusion overvoltage) corresponding to the resistance component due to the lithium ion concentration gradient in the diffusion layer as described above, and this sharply increases when a certain energization time elapses from the start of discharge. growing. At this time, in the battery, as described above, the diffusion of lithium ions in the diffusion layer near the interface between the electrode and the electrolyte causes the rate to rise and the resistance rises, whereby the battery voltage sharply drops.
  • a test is performed on each of the charging side and the discharging side to measure the continuous energization time from the start of charging / discharging of the battery until the resistance value sharply increases for each temperature of the battery.
  • the time measured in this test corresponds to the time until the ratio of the resistance component according to the lithium ion concentration gradient in the internal resistance of the battery exceeds the predetermined range.
  • the charging side upper limit current such that the ratio of the resistance component according to the lithium ion concentration gradient to the internal resistance of the battery falls within a predetermined range from the battery temperature and the lithium ion concentration gradient. Also, the upper limit current on the discharge side can be obtained by map search.
  • the continuous energization time before the resistance value accompanying the diffusion of lithium ions becomes large is measured in advance, and the interface between the electrode and the electrolyte at this time is measured.
  • the lithium ion concentration and the thickness of the diffusion layer at are calculated from the above equations (2) and (3), respectively.
  • the relationship between the ratio (concentration gradient) and the current value is extracted as the relationship between the lithium ion concentration gradient of the diffusion layer and the upper limit current.
  • FIG. 9 is a diagram showing an example of an upper limit current map in the first embodiment of the present invention.
  • the graph shown in the upper part of FIG. 9 represents the relationship between the lithium ion concentration gradient of the diffusion layer and the upper limit current, and the horizontal axis represents the ratio (concentration gradient) between the lithium ion concentration and the thickness of the diffusion layer.
  • the axis represents the upper limit current.
  • points indicated by circles and squares represent measured values, and the difference in temperature is represented by the type of these points. From this graph, it can be seen that the higher the battery temperature, the higher the upper limit current, even if the concentration gradient is the same.
  • the table shown in the lower part of Fig. 9 is an example of the upper limit current map constructed from the graph in the upper part.
  • the upper limit current value is set for each combination of these values.
  • Such an upper limit current map can be obtained by creating an approximate curve for each temperature from the graph in the above figure.
  • the upper limit current map as described with reference to FIG. 9 is stored in the storage unit 180, for example, and is referred to by the upper limit current determination unit 1524.
  • the approximation curve is approximated by a straight line, but it may not necessarily be a straight line. Therefore, an approximation curve that can be well approximated to the experimental result may be obtained to create the upper limit current map.
  • the upper limit current calculation unit 152 uses the calculation method described above to determine the ratio of the resistance component according to the lithium ion concentration gradient in the diffusion layer near the interface in the internal resistance of the battery to a predetermined value.
  • the charging-side upper limit current and the discharging-side upper limit current can be determined so as to be within the range. Therefore, the charging-side upper limit current and the discharging-side upper limit current can be determined so that the overvoltage of the battery is within a predetermined range.
  • the chargeable / dischargeable power calculation unit 153 calculates the charge-side upper limit current and the discharge-side upper limit current determined by the upper limit current calculation unit 152, and the SOC and SOHR of each battery calculated by the battery state detection unit 151.
  • the rechargeable power Wchg (t) and the dischargeable power Wd is of each battery based on the temperature of each battery detected by the temperature detection unit 125 in the unit battery control unit 121 and by the following equations (5) and (6). Calculate and output each (t).
  • N is the number of cells in the battery
  • Ro is the ohmic resistance [ ⁇ ] due to the members of the battery
  • Vp is the polarization voltage [V].
  • SOC, T the part after OCV
  • FIG. 10 is a figure which shows an example of the change of the electric power of a battery, voltage, and current by the upper limit current when not applying the 1st Embodiment of this invention.
  • the charging-side upper limit current and the discharging-side upper limit current are set to constant values without applying the upper limit current setting method described in the present embodiment, and the battery is continuously charged at the charging-side upper limit current. After the elapse of a certain time after that, an example of each waveform of electric power, voltage, and current in the case of continuously discharging at the discharge-side upper limit current is shown.
  • the current increases as the voltage decreases, and deviates from the upper limit current.
  • the electric power that can be charged to the battery decreases, and in the worst case, it is feared that the battery cannot be charged even though the SOC is low.
  • the discharge side on the contrary, a large current flows, so there is concern that the battery may generate heat or accelerate deterioration, and it may not be possible to maximize the performance of the battery.
  • FIG. 11 is a diagram showing an example of changes in battery power, voltage, and current depending on the upper limit current when the first embodiment of the present invention is applied.
  • the charging-side upper limit current and the discharging-side upper limit current are set in consideration of the lithium ion concentration gradient in the diffusion layer according to the upper limit current setting method according to the present embodiment as described above, and the battery is set to the charging-side upper limit current.
  • the waveform examples of power, voltage, and current in the case of continuously discharging at the discharge-side upper limit current after a lapse of a fixed time after continuous charging are shown.
  • the upper limit current that can suppress the increase in resistance due to the lithium ion concentration gradient in the diffusion layer
  • the battery is charged and discharged with electric power based on the result of estimating the value in real time. Therefore, it is possible to charge and discharge the battery on both the charging side and the discharging side by suppressing a sharp voltage change due to an increase in diffusion resistance.
  • the voltage rise at the time of charging and the voltage drop at the time of discharging as shown in FIG. 10 do not occur, and as a result, the deterioration of the charging performance is prevented and the heat generation and deterioration at the time of discharging are suppressed to improve the battery performance. It is possible to make the best use of it.
  • the first embodiment of the present invention it is possible to maximize the input / output performance of the battery while avoiding the region where the voltage of the secondary battery changes sharply.
  • the upper limit current calculation unit 152 in the battery pack control unit 150 determines the electrodes and the electrolyte of the battery based on the current flowing in the single battery 111 or the battery pack 110, which is a secondary battery, or the current and temperature of these batteries.
  • a concentration gradient estimation unit 1523 that estimates the lithium ion concentration gradient in the diffusion layer formed near the interface of No. 1 and an upper limit current determination unit 1524 that determines the upper limit current value of the battery based on the lithium ion concentration gradient.
  • the upper limit current determination unit 1524 determines the upper limit current value so that the overvoltage of the battery according to the lithium ion concentration gradient falls within a predetermined range. Since this is done, an appropriate upper limit current value is set in consideration of the abrupt change in battery voltage in the large current region caused by the lithium ion concentration gradient in the diffusion layer formed near the interface between the electrode and the electrolyte. be able to.
  • the upper limit current determination unit 1524 determines the upper limit current value so that the ratio of the resistance component according to the lithium ion concentration gradient in the internal resistance of the battery is within a predetermined range. Since this is done, it is possible to reliably determine the upper limit current value such that the battery overvoltage falls within a predetermined range.
  • the upper limit current calculator 152 in the battery pack controller 150 is an interface concentration estimator 1521 that estimates the lithium ion concentration at the interface between the battery electrode and the electrolyte, and a diffusion layer estimator that estimates the thickness of the diffusion layer. 1522 and.
  • the concentration gradient estimation unit 1523 estimates the lithium ion concentration gradient based on the lithium ion concentration at the interface estimated by the interface concentration estimation unit 1521 and the diffusion layer thickness estimated by the diffusion layer estimation unit 1522. Since this is done, the lithium ion concentration gradient in the diffusion layer formed near the interface between the battery electrode and the electrolyte can be reliably estimated.
  • the battery pack control unit 150 estimates the voltage of the battery when the upper limit current is energized based on the upper limit current value determined by the upper limit current determination unit 1524 in the upper limit current calculation unit 152, and estimates the estimated voltage and the upper limit current value. And a chargeable / dischargeable power calculation unit 153 that estimates the chargeable power and the dischargeable power of the battery based on Since it did in this way, the chargeable electric power and the dischargeable electric power at the time of energizing an upper limit current can be estimated in real time.
  • the upper limit current determination unit 1524 determines the lithium ion concentration gradient in the diffusion layer among the internal resistances of the batteries based on the temperature and the lithium ion concentration gradient of each battery.
  • the example has been described in which the overvoltage of the battery is controlled to be within the predetermined range by determining the charging-side upper limit current value and the discharging-side upper limit current value so that the ratio of the resistance component is within the predetermined range.
  • the upper limit current value may be determined by a method other than this.
  • the overvoltage of the battery can be controlled to fall within a predetermined range.
  • the resistance of the battery increases as the energization time from the start of charging / discharging increases. Therefore, in consideration of this point, charging according to the passage of the energization time of the battery
  • the side upper limit current value and the discharge side upper limit current value may be reduced. Even with such a method, the same effect as that described in the first embodiment can be obtained.
  • FIG. 12 is a diagram showing a functional configuration of an assembled battery control unit 150a according to the second embodiment of the present invention.
  • the battery pack control unit 150a in the present embodiment has an upper limit current calculation unit 152a in place of the upper limit current calculation unit 152 of FIG. 3, and the SOHR of each battery calculated by the battery state detection unit 151 is the upper limit current calculation.
  • the functional configuration is the same as that of the battery pack control unit 150 in the first embodiment, except that it is input to the unit 152a.
  • the upper limit current calculation unit 152a calculates and outputs the charge side upper limit current and the discharge side upper limit current of each battery based on the current and temperature of each battery. At this time, the upper limit current calculation unit 152a performs the calculation of the upper limit current value according to the SOHR of each battery calculated by the battery state detection unit 151, so that the charging side upper limit current and the discharge side upper limit current are calculated based on the deterioration state of each battery. Change the upper limit current.
  • FIG. 13 is a diagram for explaining changes in the voltage waveform due to deterioration of the battery.
  • the voltage of the battery changes as shown in FIG. 13B.
  • the resistance component due to the concentration gradient of lithium ions in the diffusion layer sharply increases as described in the first embodiment. Then, the battery voltage drops sharply.
  • FIG. 14 is a diagram showing an example of an upper limit current map according to the second embodiment of the present invention.
  • the graph shown in the upper diagram of FIG. 14 shows the relationship between the lithium ion concentration gradient of the diffusion layer and the upper limit current, and the horizontal axis represents the ratio between the lithium ion concentration and the thickness of the diffusion layer ( The concentration gradient), and the vertical axis represents the upper limit current.
  • points indicated by circles and squares represent measured values, and the types of these points represent the difference in the deterioration state of the battery. From this graph, it can be seen that even if the concentration gradient is the same, the upper limit current decreases as the deterioration of the battery progresses.
  • the table shown in the lower diagram of FIG. 14 is an example of the upper limit current map constructed from the graph of the upper diagram.
  • a plurality of upper limit current maps in which the upper limit current value is set around the temperature and the concentration gradient are further constructed for each deterioration state, that is, for each SOHR value. ing.
  • the upper limit current map as described in FIG. 14 is stored in the storage unit 180, for example.
  • the approximation curve is approximated by a straight line, but similar to FIG. 9 described in the first embodiment, an approximation curve that can be well approximated to the experimental result is obtained and an upper limit current map is created. Good.
  • FIG. 15 is a control block diagram of the upper limit current calculation unit 152a according to the second embodiment of the present invention.
  • the upper limit current calculation unit 152a in the present embodiment has an upper limit current determination unit 1524a in place of the upper limit current determination unit 1524 of FIG. 7, and the SOHR of each battery calculated by the battery state detection unit 151 determines this upper limit current.
  • the functional configuration is the same as that of the upper limit current calculation unit 152 according to the first embodiment, except that the input is input to the unit 1524a.
  • the upper limit current determination unit 1524a like the upper limit current determination unit 1524 in the first embodiment, based on the lithium ion concentration gradient of the diffusion layer estimated by the concentration gradient estimation unit 1523, the charging side upper limit current and discharge of each battery. Determine the side upper limit current.
  • the upper limit current determination unit 1524a is based on the temperature and SOHR of each battery input from the unit cell management unit 120 to the upper limit current calculation unit 152a and the calculation result of the concentration gradient estimation unit 1523, as described in FIG.
  • the upper limit current map is referred to, and the upper limit current on the charging side and the upper limit current on the discharging side are calculated and output.
  • the charging-side upper limit current is set so that the battery overvoltage according to the lithium ion concentration gradient in the diffusion layer formed near the interface between the electrode and the electrolyte falls within a predetermined range. And the discharge side upper limit current is determined respectively.
  • FIG. 16 is a figure which shows an example of the change of the electric power of a battery, voltage, and current by the upper limit current when not applying the 2nd Embodiment of this invention.
  • the charging side upper limit current and the discharging side upper limit current are set for the deteriorated battery according to the method described in the first embodiment without applying the upper limit current setting method described in the present embodiment.
  • the respective waveform examples of electric power, voltage, and current in the case where the respective settings are made and the battery is continuously charged at the charging-side upper limit current and then continuously discharged at the discharging-side upper limit current after a lapse of a certain time are shown.
  • the current value becomes smaller as the voltage increases.
  • the voltage decreases due to an increase in resistance due to the lithium ion concentration gradient of the diffusion layer.
  • the current increases as the voltage decreases, and deviates from the upper limit current.
  • the electric power that can be charged in the battery decreases on the charging side, and in the worst case , There is a concern that it will not be able to charge even though the SOC is low.
  • the discharge side on the contrary, a large current flows, so there is concern that the battery may generate heat or accelerate deterioration, and it may not be possible to maximize the performance of the battery.
  • FIG. 17 is a diagram showing an example of changes in battery power, voltage, and current depending on the upper limit current when the second embodiment of the present invention is applied.
  • the charging side upper limit current and the discharging side upper limit current are set in consideration of the increase in resistance due to the deterioration of the battery, and the battery is set to the charging side upper limit current.
  • the waveform examples of power, voltage, and current in the case of continuously discharging at the discharge-side upper limit current after a lapse of a fixed time after continuous charging are shown.
  • the upper limit current value that can suppress the increase in resistance due to the lithium ion concentration gradient of the diffusion layer
  • the battery is charged and discharged with electric power based on the result of real-time estimation according to the deterioration state of the battery. Therefore, it is possible to charge and discharge the battery on both the charging side and the discharging side by suppressing a sharp voltage change due to an increase in diffusion resistance.
  • the voltage rise at the time of charging and the voltage drop at the time of discharging as shown in FIG. 16 do not occur, and as a result, the deterioration of the charging performance is prevented and heat generation at the time of discharging or It is possible to suppress deterioration and maximize battery performance.
  • the input / output of the battery is avoided while avoiding the region where the voltage of the secondary battery sharply changes. It is possible to maximize the performance.
  • the upper limit current determination unit 1524a changes the upper limit current value based on the deterioration state of the battery. Since this is done, even when a deteriorated secondary battery is used, it is possible to reliably determine the upper limit current value such that the overvoltage of the battery falls within a predetermined range.
  • a third embodiment of the present invention will be described.
  • the upper limit current value is determined in consideration of a deterioration mode in which the lithium ion concentration (offshore concentration C * ) in the electrolytic solution is different from that in the second embodiment.
  • the configuration of the battery system according to this embodiment is the same as that of the battery system 100 of FIG. 1 described in the first embodiment, except that the assembled battery control unit 150 is replaced by an assembled battery control unit 150b.
  • the contents of the present embodiment will be described focusing on the difference between the battery pack control units 150 and 150b.
  • FIG. 18 is a diagram showing a functional configuration of an assembled battery control unit 150b according to the third embodiment of the present invention.
  • the battery pack control unit 150b in the present embodiment has an ion concentration estimation unit 154 added and has an upper limit current calculation unit 152b instead of the upper limit current calculation unit 152 in FIG.
  • the functional configuration is the same as that of the battery pack control unit 150 in the first embodiment, except that the lithium ion concentration of each battery calculated by 154 is input to the upper limit current calculation unit 152b.
  • the ion concentration estimation unit 154 estimates the lithium ion concentration in the electrolytic solution of each battery based on the voltage, temperature and SOC of each battery. For the battery in which the lithium ions in the electrolytic solution have decreased due to the deterioration mode assumed in the present embodiment, the ion concentration estimation unit 154 estimates the lithium ion concentration lower than that in the normal state.
  • the deterioration mode (decrease in lithium ion concentration offshore) assumed in this embodiment will be described later.
  • the upper limit current calculating unit 152b calculates and outputs the charging side upper limit current and the discharging side upper limit current of each battery based on the current and temperature of each battery. At this time, the upper limit current calculation unit 152b performs the calculation of the upper limit current value according to the lithium ion concentration of each battery estimated by the ion concentration estimation unit 154, so that the charging side based on the change of the lithium ion concentration of each battery. The upper limit current and the discharge-side upper limit current are changed.
  • FIG. 19 is a diagram illustrating a deterioration mode due to a decrease in lithium ion concentration. Particularly, at a low temperature, when excessive charging / discharging is performed so that a large current value continuously flows, a side reaction different from the charging / discharging reaction occurs, so that lithium ions in the electrolytic solution decrease.
  • the lithium ion concentration in a normal state without deterioration is C * 0
  • the lithium ion concentration changes from C * 0 to C * 1 (C * 0 > C * 1 ) due to deterioration.
  • the thickness ⁇ of the diffusion layer does not change from the normal state when such a deterioration mode occurs, the lithium ion concentration gradient in the diffusion layer becomes small as shown in FIG. Therefore, it is assumed that the diffusion process of lithium ions is more likely to enter the rate-determining stage than in the normal state without deterioration.
  • FIG. 20 is a diagram illustrating a change in voltage waveform with a decrease in lithium ion concentration.
  • the battery voltage changes as shown in FIG. 20 (b).
  • the resistance component due to the concentration gradient of lithium ions in the diffusion layer sharply increases as described in the first embodiment after the timing indicated by reference numeral 2001 after the time t1 has elapsed from the start of discharge. Then, the battery voltage drops sharply.
  • the battery voltage changes as shown in FIG. 20 (c).
  • the diffusion process of lithium ions easily enters the rate-determining stage as the lithium ion concentration decreases, so that after time t3 (t1> t3) has elapsed from the start of discharge, the timing indicated by reference numeral 2002 and thereafter.
  • the resistance component due to the concentration gradient of lithium ions in the diffusion layer sharply increases, and the battery voltage sharply decreases. That is, it can be seen that the resistance component increases with the diffusion of lithium ions in a shorter time than in the new state.
  • the function of detecting a decrease in the lithium ion concentration is added to the assembled battery control unit 150b by providing the assembled battery control unit 150b with the ion concentration estimation unit 154.
  • the upper limit current is set and the battery is controlled so as to avoid falling into the mode in which the above-described lithium ion diffusion process easily enters the rate-determining step.
  • FIG. 21 is a control block diagram of the upper limit current calculation unit 152b according to the third embodiment of the present invention.
  • the upper limit current calculation unit 152b in the present embodiment has an interface concentration estimation unit 1521b in place of the interface concentration estimation unit 1521 of FIG. 7, and the lithium ion concentration of each battery estimated by the ion concentration estimation unit 154 is the interface concentration estimation unit 1521b.
  • the functional configuration is the same as that of the upper limit current calculation unit 152 in the first embodiment, except that the concentration estimation unit 1521b inputs the same.
  • the interface concentration estimating unit 1521b is based on the current and temperature of each battery input from the current detecting unit 130 or the unit cell managing unit 120 to the upper limit current calculating unit 152b.
  • the lithium ion concentration at the interface between the electrode and the electrolyte at the time of charging or discharging is estimated by the above formula (4).
  • the interface concentration estimation unit 1521b replaces the value of C * in the first term on the right side of Expression (4) with the lithium ion concentration input from the ion concentration estimation unit 154.
  • the interface concentration estimating unit 1521b calculates the current of each battery as It is also possible to calculate the lithium ion concentration at the interface based only on the lithium ion concentration.
  • FIG. 22 is a control block diagram of the ion concentration estimation unit 154 according to the third embodiment of the present invention.
  • the ion concentration estimation unit 154 includes a voltage difference effective value calculation unit 1541, a voltage difference threshold calculation unit 1542, a voltage difference ratio calculation unit 1543, and an ion concentration calculation unit 1544.
  • the voltage difference effective value calculation unit 1541 receives the voltage and the SOC and calculates the voltage difference effective value in a preset predetermined time window. Specifically, the voltage difference effective value calculation unit 1541 calculates the voltage difference effective value ⁇ V RMS , for example, according to the following equations (7) to (9). It should be noted that the OCV in the equation (7) can be calculated from the preset correspondence relationship between the SOC and the OCV based on the input SOC.
  • ⁇ V (t) represents the voltage difference [V] between CCV and OCV, which corresponds to the overvoltage of the battery.
  • ⁇ V Filter (t) is the result of applying the first-order lag filter of ⁇ V 2 (t) [V 2 ], ts is the control period [sec], Tw is the time window [sec], and ⁇ V RMS (t) is the voltage difference effective value. Each represents [V].
  • the voltage difference threshold value calculation unit 1542 calculates the threshold value for the voltage difference effective value calculated by the voltage difference effective value calculation unit 1541 using the temperature as an input. This threshold serves as a reference for whether the lithium ion concentration in the battery decreases with respect to the voltage difference effective value, and is determined according to the length of the time window and the temperature at which the voltage difference effective value is calculated. It Specifically, the voltage difference threshold calculation unit 1542 determines the threshold using, for example, map information stored in the storage unit 180 in advance. This map information represents the condition of the voltage difference effective value such that the phenomenon described with reference to FIG. 20 (c) does not occur, and the time window and the temperature and the voltage difference effective value extracted by an experiment in advance. Created based on relationships.
  • FIG. 23 is a diagram showing an example of thresholds calculated by the voltage difference threshold calculator 1542.
  • the longer the time window Tw and the lower the temperature the smaller the threshold value (the limit value for the voltage difference between CCV and OCV) calculated by the voltage difference threshold value calculation unit 1542. That is, the threshold value is set such that the upper limit current becomes more strict as the battery charge / discharge time is longer and the battery temperature is lower.
  • the voltage difference ratio calculation unit 1543 calculates a voltage difference ratio which is a ratio between the voltage difference effective value output by the voltage difference effective value calculation unit 1541 and the threshold value output by the voltage difference threshold value calculation unit 1542.
  • the voltage difference ratio calculator 1543 calculates and outputs the voltage difference ratio, for example, according to the following equation (10).
  • ⁇ V thresh (t) represents the limit threshold value [V] for the voltage difference effective value ⁇ V RMS (t)
  • ⁇ V Ratio (t) represents the voltage difference ratio [%].
  • the voltage difference ratio ⁇ V Ratio (t) corresponds to a load determination index that is a determination index for the load state of the battery.
  • the phenomenon described in FIG. 20 (c) is likely to occur under a condition where the time window is long, that is, charging / discharging continues continuously for a long time. Therefore, in the voltage difference effective value calculation unit 1541 and the voltage difference threshold value calculation unit 1542, it is desirable to set a long time window in advance. That is, the decrease in the lithium ion concentration is likely to occur during continuous charging and discharging at a low temperature for a long time, so by setting a longer time window in advance, the upper limit current is tightened, and The phenomenon of can be reliably prevented.
  • the ion concentration calculation unit 1544 estimates and outputs the lithium ion concentration based on the voltage difference ratio calculated by the voltage difference ratio calculation unit 1543.
  • the ion concentration calculation unit 1544 estimates the lithium ion concentration corresponding to the calculation result of the voltage difference ratio by using the relationship between the voltage difference ratio and the lithium ion concentration stored in the storage unit 180 in advance, for example.
  • FIG. 24 is a diagram showing an example of the relationship between the voltage difference ratio and the lithium ion concentration.
  • the horizontal axis represents the voltage difference ratio and the vertical axis represents the lithium ion concentration.
  • the lithium ion concentration starts to decrease when the voltage difference ratio exceeds a certain threshold value Th1, and becomes zero at the threshold value Th2.
  • the ion concentration estimating unit 154 calculates the lithium ion concentration according to the deterioration state of the battery as described above.
  • the lithium ion concentration calculated by the ion concentration estimation unit 154 is input to the upper limit current calculation unit 152b.
  • FIG. 25 is a figure which shows an example of the change of the electric power of a battery, voltage, and electric current by the upper limit current when not applying the 3rd Embodiment of this invention.
  • FIG. 25 according to the method described in the first and second embodiments without applying the method of setting the upper limit current as described in the present embodiment, excessive charging that causes a decrease in lithium ion concentration occurs.
  • the charge side upper limit current and the discharge side upper limit current were set respectively for the battery that was discharged and deteriorated, and the battery was continuously charged at the charge side upper limit current and then continuously discharged at the discharge side upper limit current after a certain time elapsed. In this case, waveform examples of electric power, voltage and current are shown.
  • the current increases as the voltage decreases, and deviates from the upper limit current.
  • the charging-side upper limit current and the discharging-side upper limit current described in the first embodiment are set to constant values, or the charging-side upper limit current is not taken into consideration without considering the deterioration of the battery described in the second embodiment.
  • the chargeable power of the battery decreases on the charge side, and in the worst case, it may be impossible to charge even though the SOC is low. .
  • the discharge side on the contrary, a large current flows, so there is concern that the battery may generate heat or accelerate deterioration, and it may not be possible to maximize the performance of the battery.
  • FIG. 26 is a diagram showing an example of changes in the power, voltage, and current of the battery depending on the upper limit current when the third embodiment of the present invention is applied.
  • the decrease in the lithium ion concentration due to the charge / discharge at the time of no limitation is detected, and the charging side upper limit current and the discharge side upper limit current are reflected by reflecting this.
  • FIG. 7 shows examples of waveforms of electric power, voltage, and current in the case where the battery is set and continuously charged at the charging-side upper limit current and then continuously discharged at the discharging-side upper limit current after a lapse of a certain time.
  • the upper limit current value that can suppress the increase in resistance due to the lithium ion concentration gradient of the diffusion layer
  • the battery is charged / discharged with electric power based on the result of real-time estimation according to the reduction state of the lithium ion concentration. Therefore, it is possible to charge and discharge the battery on both the charging side and the discharging side by suppressing a sharp voltage change due to an increase in diffusion resistance. As a result, even when the lithium ion concentration of the battery is lowered, the voltage rise at the time of charging and the voltage drop at the time of discharging do not occur as shown in FIG. It is possible to suppress heat generation and deterioration at the time and maximize the battery performance.
  • the third embodiment of the present invention even when a secondary battery having a reduced lithium ion concentration due to deterioration is used, a region where the voltage of the secondary battery sharply changes is avoided. At the same time, it is possible to maximize the input / output performance of the battery.
  • a first-order lag filter is applied to the square value of the overvoltage (CCV-OCV) according to the above equations (7) and (8), and An example has been described in which the voltage difference ratio is calculated by the expressions (9) and (10) using the results.
  • the calculation process performed by the ion concentration estimation unit 154 is not limited to this, and for example, the squared value of the current may be used instead of the overvoltage.
  • the threshold value calculated by the voltage difference threshold value calculation unit 1542 and used in Expression (10) instead of the threshold value for the effective value of the voltage difference as illustrated in FIG. 23, the threshold value corresponding to the effective value of the current.
  • the ion concentration estimation unit 154 can estimate the lithium ion concentration based on the effective value of the overvoltage or current of the battery.
  • the method of simply detecting the decrease in the lithium ion concentration based on the result of the experiment conducted in advance was described, but the present invention is not limited to this.
  • the interface between the electrode and the electrolyte can be estimated. You may estimate the lithium ion concentration in.
  • the battery pack control unit 150b includes an ion concentration estimation unit 154 that estimates the lithium ion concentration of the battery.
  • the upper limit current determination unit 1524 changes the upper limit current value based on the change in the lithium ion concentration estimated by the ion concentration estimation unit 154. Since this is done, even when a secondary battery having a reduced lithium ion concentration due to deterioration is used, it is possible to reliably determine the upper limit current value such that the overvoltage of the battery falls within a predetermined range.
  • the ion concentration estimation unit 154 estimates the lithium ion concentration of the battery based on the effective value of the overvoltage or current of the battery. Since it did in this way, when excessive charge / discharge is performed and the lithium ion concentration of a battery falls, this can be detected reliably.
  • a fourth embodiment of the present invention will be described.
  • the configuration of the battery system according to the present embodiment is the same as that of the battery system 100 of FIG. 1 described in the first embodiment, except that the assembled battery control unit 150 is replaced by an assembled battery control unit 150c.
  • the contents of the present embodiment will be described focusing on the difference between the battery pack control units 150 and 150c.
  • FIG. 27 is a diagram showing a functional configuration of an assembled battery control unit 150c according to the fourth embodiment of the present invention.
  • the battery pack control unit 150c in the present embodiment has a point that a limit rate setting unit 155 is added, and has a chargeable / dischargeable power calculation unit 153c in place of the chargeable / dischargeable power calculation unit 153 in FIG.
  • the functional configuration is the same as that of the battery pack control unit 150 in the first embodiment, except that the limit rate set by the limit rate setting unit 155 is input to the chargeable / dischargeable power calculation unit 153c.
  • the limiting rate setting unit 155 sets the limiting rate according to the change in the lithium ion concentration in the electrolyte of each battery based on the voltage, temperature and SOC of each battery. Note that the limiting rate set by the limiting rate setting unit 155 reflects the deterioration state of each battery, similarly to the lithium ion concentration estimated by the ion concentration estimating unit 154 in the third embodiment. That is, for a battery in which lithium ions in the electrolytic solution have decreased due to deterioration, the limiting rate setting unit 155 sets a limiting rate different from that in the normal state.
  • the chargeable / dischargeable power calculation unit 153c inputs the SOC and SOHR of each battery calculated by the battery state detection unit 151 and the battery pack control unit 150. Based on the temperature of each battery and the charge side upper limit current and the discharge side upper limit current of each battery calculated by the upper limit current calculator 152, the chargeable power and the dischargeable power of each battery are calculated and output. At this time, the chargeable / dischargeable power calculation unit 153c changes the chargeable power and the dischargeable power according to the change in the lithium ion concentration of each battery based on the limit rate set by the limit rate setting unit 155.
  • FIG. 28 is a control block diagram of the limiting rate setting unit 155 according to the fourth embodiment of the present invention.
  • the limiting rate setting unit 155 includes a voltage difference effective value computing unit 1541, a voltage difference threshold computing unit 1542, a voltage difference ratio computing unit 1543, and a limiting rate computing unit 1554.
  • the voltage difference effective value calculator 1541, the voltage difference threshold calculator 1542, and the voltage difference ratio calculator 1543 are the same as those included in the ion concentration estimator 154 shown in FIG. 22 in the third embodiment. .
  • the limit rate calculation unit 1554 sets a limit rate for chargeable power and dischargeable power based on the voltage difference ratio calculated by the voltage difference ratio calculation unit 1543.
  • the limiting rate calculator 1554 calculates the limiting rate k corresponding to the calculation result of the voltage difference ratio, for example, using the relationship between the voltage difference ratio and the limiting rate stored in the storage unit 180 in advance.
  • FIG. 29 is a diagram showing an example of the relationship between the voltage difference ratio and the limiting ratio.
  • the horizontal axis represents the voltage difference ratio and the vertical axis represents the limiting rate.
  • Th1 the voltage difference ratio exceeds a certain threshold value Th1
  • the value of the limiting rate starts to decrease, and thus the limit on the chargeable power and the dischargeable power becomes severe.
  • Th2 the threshold value
  • charging and discharging are prohibited.
  • the limiting rate setting unit 155 sets the limiting rate according to the lithium ion concentration when the lithium ion concentration is lowered due to deterioration.
  • the limit rate k set by the limit rate setting unit 155 is input to the chargeable / dischargeable power calculation unit 153c.
  • the chargeable / dischargeable power calculation unit 153c multiplies the chargeable power and the dischargeable power by the limit rate k input from the limit rate setting unit 155, for example, according to the following equations (11) and (12) to charge the battery. Varyable power and dischargeable power are changed. Note that only one of the rechargeable power and the rechargeable power may be changed using the formula (11) or (12).
  • the chargeable power or the dischargeable power is changed based on the change in the lithium ion concentration in the battery.
  • the same effect as described with reference to FIGS. 25 and 26 in the third embodiment can be obtained. Therefore, even when a secondary battery having a reduced lithium ion concentration due to deterioration is used, It is possible to maximize the input / output performance of the battery while avoiding the region where the voltage changes abruptly.
  • the squared value of the current may be used instead of the overvoltage in the arithmetic processing performed by the limiting rate setting unit 155.
  • the chargeable / dischargeable power calculation unit 153c changes the chargeable power or the dischargeable power according to the change in the lithium ion concentration of the battery. Since this is done, even when using a secondary battery with a reduced lithium ion concentration due to deterioration, the chargeable power or dischargeable power at the time of energization of the upper limit current is set so that the overvoltage of the battery falls within the predetermined range. Can be set appropriately.
  • the assembled battery control unit 150c includes a limiting rate setting unit 155 that sets a limiting rate according to a change in the lithium ion concentration of the battery based on the effective value of the battery overvoltage or current.
  • the chargeable / dischargeable power calculation unit 153c changes the chargeable power or the dischargeable power based on the limit rate set by the limit rate setting unit 155. Since it did in this way, when excessive charge / discharge is performed and the lithium ion concentration of a battery falls, chargeable electric power or dischargeable electric power according to this can be reliably determined.
  • Battery system 110 Battery pack 111: Single battery 112: Single battery group 120: Single battery management unit 121: Single battery control unit 122: Voltage detection circuit 123: Control circuit 124: Signal input / output circuit 125: Temperature detection unit 130 : Current detection section 140: Voltage detection section 150, 150a, 150b, 150c: Battery pack control section 151: Battery state detection section 152, 152a, 152b: Upper limit current calculation section 153, 153c: Chargeable / dischargeable power calculation section 154: Ion Concentration estimation unit 155: Limit rate setting unit 160: Signal communication unit 170: Insulation element 180: Storage unit 200: Vehicle control unit 300 to 330: Relay 400: Inverter 410: Motor generator 1521, 1521b: Interface concentration estimation unit 1522: Diffusion Layer estimation unit 1523: concentration gradient estimation units 1524, 1524a: Limited current determining unit 1541: the voltage difference effective value calculating unit 1542: the voltage difference threshold value operation unit 1543: Voltage difference ratio calculation unit 1544: ion concentration

Abstract

電極と電解質との界面付近に形成される拡散層におけるイオン濃度勾配によって生じる大電流領域での電池電圧の急峻な変化を考慮して、適切な上限電流値を設定する。上限電流演算部152は、電池に流れる電流、または電流と温度に基づいて、電池の電極と電解質との界面付近に形成される拡散層におけるリチウムイオン濃度勾配を推定する濃度勾配推定部1523と、このリチウムイオン濃度勾配に基づいて電池の上限電流値を決定する上限電流決定部1524とを備える。上限電流決定部1524は、リチウムイオン濃度勾配に応じた電池の過電圧が所定の範囲内となるように、上限電流値を決定する。

Description

電池制御装置
 本発明は、電池制御装置に関する。
 電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)等に搭載される電池システムは、一般に、直列もしくは並列に接続された複数の二次電池と、各種電気部品から構成される。電気部品には、電池と負荷との電気的な接続のオンオフを制御するためのリレーや、電池の電流や電圧を測定するためのセンサ類、電池の充放電制御を行う電池制御装置などが含まれる。
 電池制御装置は、電池を適切な範囲で使用するために、電池に流れる電流に対する制限値(上限電流値)を設定し、この上限電流値の範囲内で電池の充放電制御を行う。これにより、電池の電圧が急峻に変化する大電流領域での使用を避けて、電池の劣化を抑制している。
 大電流領域で電池電圧が急峻に変化する理由は、例えば、二次電池として一般的なリチウムイオン電池を用いた場合、電極と電解質との界面付近に形成される拡散層においてリチウムイオンの濃度勾配が発生することで、大電流通電時には電解質から電極へとリチウムイオンを供給するのに大きな過電圧が必要となるからである。したがって、大電流領域での電池の使用を避けるためには、充放電に伴って様々に変化する電極と電解質との界面付近の拡散層でのリチウムイオン濃度勾配に応じて、電池制御装置が上限電流値を適切に定めることが望ましい。
 電解質のイオン濃度を考慮した二次電池の電流制限方法に関して、特許文献1に記載の技術が知られている。特許文献1では、二次電池に流れる電流値に基づいてイオン濃度の偏りを示す評価値を算出し、この評価値が目標値を超えたときに、二次電池の放電電力に対する上限値を低下させる技術が開示されている。
特開2013-137935号公報
 特許文献1に記載の技術では、電極と電解質との界面付近に形成される拡散層におけるイオン濃度勾配を考慮していないため、上述したような大電流領域での電池電圧の急峻な変化を考慮した上限電流値を設定することができない。
 本発明による電池制御装置は、二次電池に流れる電流、または前記電流および前記二次電池の温度に基づいて、前記二次電池の電極と電解質との界面付近に形成される拡散層におけるイオン濃度勾配を推定する濃度勾配推定部と、前記イオン濃度勾配に基づいて前記二次電池の上限電流値を決定する上限電流決定部と、を備え、前記上限電流決定部は、前記イオン濃度勾配に応じた前記二次電池の過電圧が所定の範囲内となるように、前記上限電流値を決定する。
 本発明によれば、電極と電解質との界面付近に形成される拡散層におけるイオン濃度勾配によって生じる大電流領域での電池電圧の急峻な変化を考慮して、適切な上限電流値を設定することができる。
本発明の一実施形態に係る電池システムとその周辺の構成を示す図である。 単電池制御部の回路構成を示す図である。 本発明の第1の実施形態に係る組電池制御部の機能構成を示す図である。 上限電流の定義を説明する図である。 電極と電解質との界面付近におけるリチウムイオン濃度分布の模式図である。 充放電継続後の放電側上限電流の概要を示す図である。 本発明の第1の実施形態に係る上限電流演算部の制御ブロック図である。 電池の過電圧成分に関する説明図である。 本発明の第1の実施形態における上限電流マップの例を示す図である。 本発明の第1の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第1の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第2の実施形態に係る組電池制御部の機能構成を示す図である。 電池の劣化に伴う電圧波形の変化を説明する図である。 本発明の第2の実施形態における上限電流マップの例を示す図である。 本発明の第2の実施形態に係る上限電流演算部の制御ブロック図である。 本発明の第2の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第2の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第3の実施形態に係る組電池制御部の機能構成を示す図である。 リチウムイオン濃度の低下による劣化モードを説明する図である。 リチウムイオン濃度の低下に伴う電圧波形の変化を説明する図である。 本発明の第3の実施形態に係る上限電流演算部の制御ブロック図である。 本発明の第3の実施形態に係るイオン濃度推定部の制御ブロック図である。 電圧差閾値演算部により演算される閾値の例を示す図である。 電圧差比率とリチウムイオン濃度との関係の一例を示す図である。 本発明の第3の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第3の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。 本発明の第4の実施形態に係る組電池制御部の機能構成を示す図である。 本発明の第4の実施形態に係る制限率設定部の制御ブロック図である。 電圧差比率と制限率との関係の一例を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、プラグインハイブリッド自動車(PHEV)の電源を構成する電池システムに対して本発明を適用した場合を例に挙げて説明する。ただし、以下に説明する実施形態の構成はこれに限らず、ハイブリッド自動車(HEV)、電気自動車(EV)などの乗用車や、ハイブリッド鉄道車両といった産業用車両の電源を構成する蓄電装置の蓄電器制御回路などにも適用できる。
 また、以下の実施形態では、リチウムイオン電池を採用した場合を例に挙げて説明するが、充放電可能な二次電池であれば、他にもニッケル水素電池、鉛電池、電気二重層キャパシタ、ハイブリッドキャパシタなどを用いることもできる。さらに、以下の実施形態では複数の単電池を直列に接続して組電池を構成しているが、複数の単電池を並列接続したものをさらに複数個直列に接続して組電池を構成してもよいし、直列接続した複数の単電池をさらに複数個並列に接続して組電池を構成してもよい。
<第1の実施形態>
 図1は、本発明の一実施形態に係る電池システム100とその周辺の構成を示す図である。電池システム100は、リレー300,310を介してインバータ400に接続される。電池システム100は、組電池110、単電池管理部120、電流検知部130、電圧検知部140、組電池制御部150、記憶部180を備える。
 組電池110は、複数の単電池111から構成される。単電池管理部120は、単電池111の状態を監視する。電流検知部130は、電池システム100に流れる電流を検知する。電圧検知部140は、組電池110の総電圧を検知する。組電池制御部150は、組電池110の状態を検知し、状態の管理等も行う。
 組電池110は、電気エネルギーの蓄積および放出(直流電力の充放電)が可能な複数の単電池111を電気的に直列に接続して構成されている。各単電池111には、例えば出力電圧が3.0~4.2V(平均出力電圧:3.6V)のリチウムイオン電池が用いられる。なお、これ以外の電圧仕様のものでも構わない。組電池110を構成する単電池111は、状態の管理・制御を実施する上で、所定の単位数にグループ分けされている。グループ分けされた単電池111は、電気的に直列に接続され、単電池群112a、112bを構成している。単電池群112を構成する単電池111の個数は、全ての単電池群112において同数でもよいし、単電池群112毎に単電池111の個数が異なっていてもよい。
 単電池管理部120は、組電池110を構成する単電池111の状態を監視する。単電池管理部120は、単電池群112毎に設けられた単電池制御部121を備える。図1では、単電池群112aと112bに対応して、単電池制御部121aと121bが設けられている。単電池制御部121は、単電池群112を構成する単電池111の状態を監視および制御する。
 本実施形態では、説明を簡略化するために、4個の単電池111を電気的に直列接続して単電池群112aと112bを構成し、単電池群112aと112bをさらに電気的に直列接続して合計8個の単電池111を備える組電池110とした。
 組電池制御部150には、単電池管理部120から出力される単電池111の電池電圧や温度の計測値、電流検知部130からの電流値、電圧検知部140から出力される組電池110の総電圧値、記憶部180に格納された単電池111の電池特性情報などが入力される。また、単電池管理部120は、単電池111が過充電もしくは過放電であるかの診断を行う機能や、単電池管理部120に通信エラーなどが発生した場合に異常信号を出力する機能を有しており、それらの診断結果や異常信号も組電池制御部150に入力される。さらに、上位の制御装置である車両制御部200からも信号が入力される。
 組電池制御部150は、入力された情報、および記憶部180に予め記憶されている電流制限値や単電池111の電池特性に基づいて、組電池110の充放電を適切に制御するための演算を行う。例えば、各単電池111に対する充放電電力の制限値の演算や、各単電池111の充電状態(SOC:State Of Charge)および劣化状態(SOHR:State Of Health based on Resistance)の演算や、各単電池111の電圧均等化制御を行うための演算などを実行する。組電池制御部150は、これらの演算結果や、その演算結果に基づく指令を、単電池管理部120や車両制御部200に出力する。
 記憶部180は、組電池110、単電池111、および単電池群112の電池特性に関する情報を格納する。なお、本実施形態では、記憶部180は組電池制御部150または単電池管理部120の外部に設置されている構成としたが、組電池制御部150または単電池管理部120が記憶部を備える構成とし、これに上記情報を格納してもよい。
 組電池制御部150と単電池管理部120は、フォトカプラに代表される絶縁素子170および信号通信手段160を介して信号を送受信する。絶縁素子170を設けるのは、組電池制御部150と単電池管理部120は、動作電源が異なるためである。すなわち、単電池管理部120は、組電池110から電力をうけて動作するのに対して、組電池制御部150は、車載補機用のバッテリ(例えば14V系バッテリ)を電源として用いている。絶縁素子170は、単電池管理部120を構成する回路基板に実装してもよいし、組電池制御部150を構成する回路基板に実装してもよい。システム構成によっては、絶縁素子170を省略することもできる。
 組電池制御部150と、単電池管理部120を構成する単電池制御部121aおよび121bとの間の通信手段について説明する。単電池制御部121aおよび121bは、それぞれが監視する単電池群112aおよび112bの電位の高い順にしたがって直列に接続されている。組電池制御部150が単電池管理部120に送信した信号は、絶縁素子170および信号通信手段160を介して単電池制御部121aに入力される。単電池制御部121aの出力は信号通信手段160を介して単電池制御部121bに入力され、最下位の単電池制御部121bの出力は絶縁素子170および信号通信手段160を介して組電池制御部150へと伝送される。本実施形態では、単電池制御部121aと単電池制御部121bの間は絶縁素子170を介していないが、絶縁素子170を介して信号を送受信することもできる。
 車両制御部200は、組電池制御部150が送信する情報を用いて、リレー300と310を介して電池システム100と接続されるインバータ400を制御する。車両走行中には、電池システム100はインバータ400と接続され、組電池110が蓄えているエネルギーを用いて、モータジェネレータ410を駆動する。
 電池システム100を搭載した車両システムが始動して走行する場合には、車両制御部200の管理のもと、電池システム100はインバータ400に接続され、組電池110が蓄えているエネルギーを用いてモータジェネレータ410を駆動し、回生時はモータジェネレータ410の発電電力により組電池110が充電される。充電によって組電池110に蓄えられたエネルギーは、次回の車両走行時に利用されるか、車両内外の電装品等を動作させるためにも利用される。
 図2は、単電池制御部121の回路構成を示す図である。単電池制御部121は、電圧検出回路122、制御回路123、信号入出力回路124、温度検知部125を備える。電圧検出回路122は、各単電池111の端子間電圧を測定する。制御回路123は、電圧検出回路122および温度検知部125から測定結果を受け取り、信号入出力回路124を介して組電池制御部150に送信する。なお、単電池制御部121に一般的に実装される、自己放電や消費電流ばらつき等に伴い発生する単電池111間の電圧やSOCばらつきを均等化する回路構成は、周知のものであると判断して記載を省略した。
 図2における単電池制御部121が備える温度検知部125は、単電池群112の温度を測定する機能を有する。温度検知部125は、単電池群112全体として1つの温度を測定し、単電池群112を構成する単電池111の温度代表値としてその温度を取り扱う。温度検知部125が測定した温度は、単電池111、単電池群112、または組電池110の状態を検知するための各種演算に用いられる。図2はこれを前提とするため、単電池制御部121に1つの温度検知部125を設けた。単電池111毎に温度検知部125を設けて単電池111毎に温度を測定し、単電池111毎の温度に基づいて各種演算を実行することもできるが、この場合は温度検知部125の数が多くなる分、単電池制御部121の構成が複雑となる。
 図2では、簡易的に温度検知部125を示した。実際は温度測定対象に温度センサが設置され、設置した温度センサが温度情報を電圧として出力し、これを測定した結果が制御回路123を介して信号入出力回路124に送信され、信号入出力回路124が単電池制御部121の外に測定結果を出力する。この一連の流れを実現する機能が単電池制御部121に温度検知部125として実装され、温度情報(電圧)の測定には電圧検出回路122を用いることもできる。
 図3は、本発明の第1の実施形態に係る組電池制御部150の機能構成を示す図である。組電池制御部150は、車両走行中に検出された各単電池111の電流値および電圧値をもとに、組電池110における各単電池111の状態や各単電池111に入出力可能な電力を決定する部分であり、その1つの機能構成要素として、各単電池111の充放電電力を制限するための充放電電力制限値(充電電力制限値および放電電力制限値)の演算を行う機能を有する。図3は、この充放電電力制限値の演算に関する組電池制御部150の機能構成を示している。これは、本発明の一実施形態に係る電池制御装置に相当する機能を担う部分である。なお、組電池制御部150は充放電電力制限値の演算機能以外にも、組電池110の制御に必要な各種機能、例えば各単電池111の電圧均等化制御を行う機能などを有しているが、これらは周知の機能であり、また本発明とは直接関係がないため、以下では詳細な説明を省略する。
 図3に示すように、組電池制御部150は、その機能として、電池状態検知部151、上限電流演算部152、および充放電可能電力演算部153の各機能ブロックを有する。組電池制御部150は、これらの機能ブロックにより、電流検知部130が検知した組電池110の電流、すなわち各単電池111の電流や、単電池管理部120が検知した各単電池111の電圧および温度に基づいて、各単電池111の充放電電力制限値を演算する。
 なお、上記では組電池制御部150が各単電池111の充放電電力制限値を演算することとして説明したが、複数の単電池111をまとめて充放電電力制限値を算出してもよい。例えば、単電池群112a,112bごとに算出したり、組電池110全体で算出したりすることができる。これらの場合でも、単電池111と同様の処理で充放電電力制限値を算出できる。また、各単電池111の充放電電力制限値は、同様の処理によって算出できる。そのため以下では、充放電電力制限値の算出対象を単に「電池」と称して、組電池制御部150における充放電電力制限値の演算機能を説明する。
 電池状態検知部151は、組電池制御部150に入力される各電池の電流、電圧、温度の情報をもとに、各電池のSOCやSOHRを演算する。なお、SOCやSOHRの演算方法については、公知であるものとして説明を省略する。
 上限電流演算部152は、各電池の電流と温度を入力として、各電池の充電時の上限電流を規定する充電側上限電流と、各電池の放電時の上限電流を規定する放電側上限電流とを演算して出力する。なお、上限電流演算部152による充電側上限電流および放電側上限電流の具体的な演算方法については後述する。
 充放電可能電力演算部153は、電池状態検知部151が演算した各電池のSOCおよびSOHRと、組電池制御部150に入力される各電池の温度と、上限電流演算部152が演算した各電池の充電側上限電流および放電側上限電流をもとに、各電池の充電可能電力および放電可能電力を演算し、これらの演算結果に基づいて、各電池の充電電力制限値および放電電力制限値を出力する。なお、充電可能電力および放電可能電力の演算方法については後述する。
 続いて、上限電流演算部152による充電側上限電流および放電側上限電流の具体的な演算方法について、図4~図9を参照して説明する。
 図4は、上限電流の定義を説明する図である。図4では、電池に一定の電流を連続通電したときの所定時間経過後の電圧を、充電方向と放電方向に電流の大きさをそれぞれ変化させてプロットしたグラフの一例を示している。図4の横軸は電流を、縦軸は電圧を表している。図4において、四角で示した各プロット点は、3つの曲線上にそれぞれ存在している。これら3つの曲線は、それぞれ電圧を測定するタイミング、つまり、電池への通電を開始してからの経過時間が異なることを示している。
 一般に、電池に一定の電流を連続的に通電した場合、通電時間の経過に伴って内部抵抗が上昇するため、電池の電圧はOCVから次第に乖離する。つまり、通電時間が長くなるほど内部抵抗値が上昇する。ここで図4に示すように、電池に流れる電流がある電流値を超えると、充電、放電ともに、電圧が急峻に変化する領域が発現することが知られている。この領域は、電池内で電極と電解質との界面へのリチウムイオンの拡散が律速となる領域に相当するものである。すなわち、この領域ではリチウムイオンの拡散に起因する抵抗成分が増大することにより、電池の電圧が急峻に変化する。
 上記のようにリチウムイオンの拡散が律速となる領域では、電池を使用し続けると入出力性能の低下に繋がる可能性があるため、電池の使用をできるだけ避けることが好ましい。そこで本実施形態では、上限電流演算部152において、この領域に入る直前の電流を上限電流として定義し、このときの電流値を上限電流値として設定することで、当該領域での電池の使用を回避するようにしている。
 しかし、図4のグラフにおいて、リチウムイオンの拡散が律速となる領域に移行する電流の大きさは、曲線ごとに異なっている。したがって、上限電流値に設定すべき電流の大きさは、通電時間の違いに応じて様々に異なることが分かる。こうした上限電流の通電時間依存性について、以下に図5を用いて説明する。
 図5は、電極と電解質との界面付近におけるリチウムイオン濃度分布の模式図である。図5(a)は、電池の放電が開始した直後の正極付近のリチウムイオンの濃度分布の様子を示している。この場合、正極と電解質との界面でのリチウムイオン濃度は、電池に流れる電流に対応する分だけ、電解液中の電極と電解液の界面から十分離れた沖合いの濃度(充放電をしていない平衡状態におけるリチウムイオン濃度、図5中のC*)よりも小さくなる。このとき、界面付近ではリチウムイオンの濃度分布が生じており、濃度の高い電解液から濃度の低い界面へのリチウムイオンの拡散が起こる。この拡散に要する距離を、以下では拡散層の厚さ(δ)と呼ぶ。
 図5(b)は、時間の経過に伴う正極付近のリチウムイオンの濃度分布の変化の様子を示している。電池の放電開始以降に電流が継続して流れているときには、正極と電解質との界面においてリチウムイオンが消費され続けるため、図5(b)に示すように、時間の経過に伴ってリチウムイオンの濃度分布が次第に広がる。その結果、拡散層の厚さが増大してδの値が大きくなる。
 上記のように拡散層の厚さが増大すると、界面に対してリチウムイオンをより遠く離れた地点から供給するために、より大きな過電圧をかける必要がある。すなわち、電池の放電中には、通電時間の経過に伴って拡散層の厚さが拡大し、この結果として過電圧が大きくなることで、内部抵抗が増大する傾向となる。図4に示したような、大電流かつ長時間の通電における電圧の急峻な変化は、上述したような傾向を反映している。
 したがって、上限電流演算部152において、大電流領域での電圧の急峻な変化が起こらないような電流値を上限電流値として推定するためには、図5に示すようなリチウムイオンの濃度分布(濃度勾配)を把握することが重要となる。すなわち、図4で説明したような上限電流の設定方法を実際の制御へ落とし込むためには、現時点までの充放電によって生じているリチウムイオンの濃度分布(濃度勾配)を考慮して、上限電流値の設定を行う必要がある。
 なお、図5では放電時の正極付近におけるリチウムイオンの濃度分布を示したが、負極付近におけるリチウムイオンの濃度分布は、図5に示したのとは反対の傾向となる。すなわち、負極と電解質との界面でのリチウムイオン濃度は、電池に流れる電流に対応する分だけ、電解液中のリチウムイオン濃度の平均値よりも大きくなる。また、濃度の高い界面から濃度の低い電解液へのリチウムイオンの拡散が起こり、時間の経過に伴ってリチウムイオンの濃度分布が次第に広がって拡散層の厚さが大きくなる。
 さらに、上記では放電時の正極および負極付近におけるリチウムイオンの濃度分布を説明したが、充電時には正極と負極でリチウムイオンの濃度分布がそれぞれ反対の傾向となり、放電時とは逆向きの濃度勾配を有する拡散層が正極付近と負極付近にそれぞれ生じる。そのため、上限電流演算部152では、上限電流を充電側と放電側で別々に算出する必要がある。
 図6は、充放電継続後の放電側上限電流の概要を示す図である。図6(a)は、現時点で放電履歴がある場合、すなわち現時点の直前まで放電が継続していた場合の放電側上限電流の考え方を示している。現時点までに放電履歴がある場合、現時点での電極(正極)と電解質との界面近傍には、図6(a)の破線601で示したように、電解液から界面に向かってリチウムイオンの濃度が次第に低下する濃度勾配が生じている。この状態から放電を継続したときの任意時間経過後の時点では、現時点よりも拡散層が拡大することで、リチウムイオンの濃度勾配が破線601から実線602のように変化する。そのため、現時点での放電側上限電流は、破線601と実線602で界面にそれぞれ残存しているリチウムイオンの濃度差に応じて決まると考えられる。
 図6(b)は、現時点で充電履歴がある場合、すなわち現時点の直前まで充電が継続していた場合の放電側上限電流の考え方を示している。現時点までに充電履歴がある場合、現時点での電極(正極)と電解質との界面近傍には、図6(b)の破線603で示したように、電解液から界面に向かってリチウムイオンの濃度が次第に上昇する濃度勾配が生じている。この状態から放電を開始したときの任意時間経過後の時点では、拡散層の厚さに応じて濃度勾配が逆方向に変化することで、リチウムイオンの濃度勾配が破線603から実線604のように変化する。そのため、現時点での放電側上限電流は、破線603と実線604で界面にそれぞれ残存しているリチウムイオンの濃度差に応じて決まると考えられる。
 図6から分かるように、放電履歴がある場合は、放電履歴がない場合と比べて、電極と電解質との界面におけるリチウムイオン濃度が低く、かつ、拡散層が拡大している状態となっている。そのため、この場合の放電側上限電流は、放電履歴がない場合よりも小さくなる。一方、充電履歴がある場合は、充電履歴がない場合と比べて、電極と電解質との界面におけるリチウムイオン濃度が高く、かつ、放電側上限電流に影響を及ぼす拡散層が生じていない状態となっている。そのため、この場合の放電側上限電流は、充電履歴がない場合よりも大きくなる。
 なお、上記では充放電継続後の放電側上限電流について説明したが、充放電継続後の充電側上限電流についても、放電と充電を入れ替えることで同様の考え方を採用することができる。すなわち、放電履歴がある場合は、放電履歴がない場合よりも充電側上限電流が大きくなる。一方、充電履歴がある場合は、充電履歴がない場合よりも充電側上限電流が小さくなる。
 ここで、上限電流の推定モデル式について説明する。上限電流の推定モデル式は、例えば以下の式(1)に示すコットレルの式に基づいて設定できる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、tは電池の通電時間[sec]を表し、Tは電池の温度[℃]を表している。また、nは電子のモル数[mol]、Fはファラデー定数[C/mol]、Aは電極面積[cm^2]、D(T)は温度Tにおける拡散定数[cm^2/sec]、C*は電極と電解質との界面から十分離れた沖合いでのリチウムイオン濃度[mol/cm^3]、δは拡散層の厚さ[cm]をそれぞれ表している。
 なお、式(1)中の拡散層の厚さδは、以下の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 式(1)は、あくまで電池が安定した状態で充放電を開始した場合、すなわち、t=0で電極と電解質との界面におけるリチウムイオン濃度がC*と等しい場合の上限電流の挙動を表している。そのため、図6に示したような挙動を再現するためには、現時点までの充放電履歴に応じた界面や拡散層でのリチウムイオン濃度を推定する必要がある。ここで、界面のリチウムイオン濃度には、例えば以下の式(3)に示す拡散方程式から導出される関係式を適用することができる。
Figure JPOXMLDOC01-appb-M000003
 式(3)を解くと、例えば以下の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 式(4)で得られる界面でのリチウムイオン濃度を、前述の式(1)のC*と置き換えることで、現時点までの充放電履歴による拡散層のリチウムイオンの濃度分布を考慮した上限電流の推定モデル式として活用することができる。
 図7は、上述した上限電流の推定モデル式に基づいた本発明の第1の実施形態に係る上限電流演算部152の制御ブロック図である。本実施形態において、上限電流演算部152は、界面濃度推定部1521、拡散層推定部1522、濃度勾配推定部1523、および上限電流決定部1524から構成される。
 界面濃度推定部1521は、電極と電解質との界面におけるリチウムイオン濃度を推定する。ここでは、電流検知部130や単電池管理部120から上限電流演算部152に入力される各電池の電流および温度に基づいて、例えば前述の式(4)により、充電または放電時における界面のリチウムイオン濃度を演算して出力する。なお、式(4)において拡散定数D(T)の値を温度Tに関わらず一定であると仮定すれば、界面濃度推定部1521において、各電池の電流のみに基づいて界面のリチウムイオン濃度を算出することも可能である。
 拡散層推定部1522は、界面付近に形成される拡散層の厚さを推定する。ここでは、電流検知部130や単電池管理部120から上限電流演算部152に入力される各電池の電流および温度に基づいて、例えば前述の式(2)により、充電または放電時における拡散層の厚さを演算して出力する。なお、式(2)において拡散定数D(T)の値を温度Tに関わらず一定であると仮定すれば、拡散層推定部1522においても界面濃度推定部1521と同様に、各電池の電流のみに基づいて拡散層の厚さを算出することも可能である。
 濃度勾配推定部1523は、界面濃度推定部1521が出力する界面のリチウムイオン濃度と、拡散層推定部1522が出力する拡散層の厚さとに基づき、拡散層におけるリチウムイオン濃度勾配を推定する。ここでは、例えば界面濃度推定部1521の演算結果を拡散層推定部1522の演算結果で割ることにより、拡散層でのリチウムイオン濃度勾配を演算して出力する。これにより、濃度勾配推定部1523は、各電池の電流および温度に基づいて、充電または放電時に形成される拡散層におけるイオン濃度勾配を推定することができる。なお、前述のように界面濃度推定部1521および拡散層推定部1522の演算を各電池の電流のみに基づいて行った場合は、濃度勾配推定部1523において、各電池の電流のみに基づいて、充電または放電時に形成される拡散層におけるイオン濃度勾配が推定されることになる。
 上限電流決定部1524は、濃度勾配推定部1523が推定したリチウムイオン濃度勾配に基づいて、各電池の充電側上限電流および放電側上限電流を決定する。ここでは、単電池管理部120から上限電流演算部152に入力される各電池の温度と、濃度勾配推定部1523の演算結果とに基づいて、例えば前述の式(1)に従い、リチウムイオン濃度勾配に応じた電池の過電圧が所定の範囲内となるように、充電側上限電流および放電側上限電流をそれぞれ演算して出力する。このとき、式(1)の右辺のC*/δ(t,T)には、濃度勾配推定部1523が推定した拡散層のリチウムイオン濃度勾配を用いればよい。
 次に、上限電流決定部1524について、図8、図9に基づき詳細に説明する。本実施形態では、上限電流決定部1524は、例えば濃度勾配推定部1523が推定したリチウムイオン濃度勾配と電池の温度に応じた上限電流のマップとして実装される。このマップデータの収集方法について、以下に図8を参照して説明する。
 図8は、電池の過電圧成分に関する説明図である。図8は、ある一定の電流で電池を連続放電したときの電圧と抵抗の挙動を示したグラフの一例である。図8に示すように、放電開始からの時間経過に伴い、電圧は下降し、抵抗は上昇する。このときの電圧変化は、その原因の違いによって、符号801~804に示す各電圧成分に分けて考えることができる。
 電圧成分801は、SOCの変化に伴うOCVの変化を表しており、これは時間の経過に伴って徐々に増大する。電圧成分802は、電池内の部材等によるオーミックな抵抗成分に対応する電圧成分を表しており、これは時間の経過に関わらず一定である。電圧成分803は、電池内の電気化学的な反応に伴う抵抗成分に対応する電圧成分(活性化過電圧)を表しており、これは放電開始時に大きく変化し、その後は時間の経過に伴って徐々に増大する。電圧成分804は、前述のような拡散層でのリチウムイオン濃度勾配による抵抗成分に対応する電圧成分(拡散過電圧)を表しており、これは放電開始からある特定の通電時間が経過すると、急峻に大きくなる。このとき、電池内では前述のように電極と電解質との界面付近での拡散層におけるリチウムイオンの拡散が律速となって抵抗が立ち上がることで、電池電圧が急峻に低下する。
 電池の抵抗成分が大きくなれば、これに伴って出力性能も低下する。出力性能が急峻に低下すると、車両の走行に影響を及ぼすおそれがあるため、上記のような拡散に伴う抵抗成分の増加が抑えられるように、電池に流れる電流を制限することが望ましい。そこで本実施形態では、充電側と放電側のそれぞれについて、電池の充放電を開始してから抵抗値が急峻に大きくなるまでの連続通電時間を電池の温度ごとに測定する試験を行う。この試験において測定される時間は、電池の内部抵抗のうちリチウムイオン濃度勾配に応じた抵抗成分の割合が所定の範囲を超えるまでの時間に相当する。そして、得られた試験結果に基づき、拡散層のリチウムイオン濃度勾配と上限電流との関係を抽出し、これを温度ごとにマップ化したデータを記憶部180に予め格納しておく。これにより、上限電流決定部1524において、電池の温度とリチウムイオン濃度勾配から、電池の内部抵抗のうちリチウムイオン濃度勾配に応じた抵抗成分の割合が所定の範囲内となるような充電側上限電流および放電側上限電流を、マップ検索で求められるようにする。
 具体的には、例えば電池の電流がある値であるときに、リチウムイオンの拡散に伴う抵抗値が大きくなる手前までの連続通電時間を予め測定しておき、このときの電極と電解質との界面におけるリチウムイオン濃度と拡散層の厚さを、前述の式(2)、(3)からそれぞれ求める。そして、これらの比率(濃度勾配)と電流値との関係を、拡散層のリチウムイオン濃度勾配と上限電流との関係として抽出する。こうした試験を、電池の電流と温度をそれぞれ変化させながら行うことで、上限電流決定部1524でのマップ検索に利用するための上限電流マップを構築することができる。
 図9は、本発明の第1の実施形態における上限電流マップの例を示す図である。図9の上図に示したグラフは、拡散層のリチウムイオン濃度勾配と上限電流との関係を表しており、横軸はリチウムイオン濃度と拡散層の厚さとの比率(濃度勾配)を、縦軸は上限電流を表している。この図において、丸や四角で示した各点は実測値を表しており、これらの点の種類によって温度の違いを表している。このグラフから、濃度勾配が同じでも、電池の温度が高いほど上限電流が高くなることが分かる。
 一方、図9の下図に示した表は、上図のグラフから構築した上限電流マップの例である。この表では、温度と濃度勾配を軸にして、これらの値の組み合わせごとに上限電流値が設定されている。こうした上限電流マップは、上図のグラフから温度ごとに近似曲線を作成することで求められる。
 図9で説明したような上限電流マップは、例えば記憶部180に格納され、上限電流決定部1524によって参照される。なお図9では、近似曲線を直線で近似しているが、必ずしも直線とはならない可能性もあるため、実験結果に対してよく近似できる近似曲線を求めて上限電流マップを作成してもよい。
 組電池制御部150において、上限電流演算部152では、以上説明したような演算方法により、電池の内部抵抗のうち界面付近の拡散層でのリチウムイオン濃度勾配に応じた抵抗成分の割合が所定の範囲内となるように、充電側上限電流および放電側上限電流を決定することができる。したがって、電池の過電圧が所定の範囲内となるように、充電側上限電流および放電側上限電流を決定することができる。
 続いて、充放電可能電力演算部153による充電可能電力および放電可能電力の具体的な演算方法について説明する。組電池制御部150において、充放電可能電力演算部153は、上限電流演算部152が決定した充電側上限電流および放電側上限電流と、電池状態検知部151が演算した各電池のSOCおよびSOHRと、単電池制御部121において温度検知部125が検出した各電池の温度とに基づいて、以下の式(5)、(6)により、各電池の充電可能電力Wchg(t)および放電可能電力Wdis(t)をそれぞれ演算して出力する。
Figure JPOXMLDOC01-appb-M000005
 式(5)、(6)において、Nは電池のセル数、Roは電池の部材等によるオーミックな抵抗[Ω]、Vpは分極電圧[V]をそれぞれ表している。なお、式(5)、(6)の各右辺の括弧内の部分、すなわちOCV(SOC,T)以降の部分は、上限電流通電時の電池電圧を推定する式にそれぞれ相当する。これら電池電圧の推定式は、電池の等価回路モデルから導くことが出来るが、等価回路モデルは既に公知の技術であるため、本実施形態ではこれらの詳細な説明を省略する。
 次に、本実施形態の効果について、図10、図11に基づき説明する。図10は、本発明の第1の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図10では、本実施形態で説明したような上限電流の設定方法を適用せずに、充電側上限電流および放電側上限電流をそれぞれ一定の値で設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図10に示すように、本実施形態の手法を適用せずに充電側上限電流および放電側上限電流をそれぞれ一定の値とした場合、最初の連続充電時には、充電開始からある程度の時間が経過すると、符号1001で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が上昇する。その結果、符号1003で示すように、電圧が上昇した分だけ電流値が小さくなってしまう。また、充電後の放電でも同様に、放電開始からある時間以上経過すると、符号1002で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が低下する。その結果、符号1004で示すように、電圧が低下した分だけ電流が大きくなり、上限電流を逸脱してしまっている。このような場合、充電側では電池に充電可能な電力が減少し、最悪の場合には、SOCが低いにも関わらず充電が出来なくなることが懸念される。一方で、放電側では逆に大電流が流れるため、電池の発熱や劣化の加速が懸念され、電池の性能を最大限活かすことが出来なくなる。
 図11は、本発明の第1の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図11では、上述したような本実施形態による上限電流の設定方法に従って、拡散層におけるリチウムイオン濃度勾配を考慮して充電側上限電流および放電側上限電流を設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図11に示すように、本実施形態の手法を適用して充電側上限電流および放電側上限電流をそれぞれ設定した場合、拡散層でのリチウムイオン濃度勾配に伴う抵抗の増大を抑制可能な上限電流値をリアルタイムに推定した結果に基づく電力で、電池の充放電が行われる。そのため、充電側、放電側ともに、拡散抵抗増大に伴う急峻な電圧変化を抑制して、電池を充放電することが可能となる。その結果、図10のような充電時の電圧上昇や放電時の電圧低下が発生することなく、その結果、充電性能の低下を防ぐとともに、放電時の発熱や劣化を抑制し、電池の性能を最大限活用することが可能となる。
 以上説明したように、本発明の第1の実施形態によれば、二次電池の電圧が急峻に変化する領域を回避しつつ、電池の入出力性能を最大限活用することが可能となる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)組電池制御部150における上限電流演算部152は、二次電池である単電池111や組電池110に流れる電流、またはこれらの電池の電流と温度に基づいて、電池の電極と電解質との界面付近に形成される拡散層におけるリチウムイオン濃度勾配を推定する濃度勾配推定部1523と、このリチウムイオン濃度勾配に基づいて電池の上限電流値を決定する上限電流決定部1524とを備える。上限電流決定部1524は、リチウムイオン濃度勾配に応じた電池の過電圧が所定の範囲内となるように、上限電流値を決定する。このようにしたので、電極と電解質との界面付近に形成される拡散層におけるリチウムイオン濃度勾配によって生じる大電流領域での電池電圧の急峻な変化を考慮して、適切な上限電流値を設定することができる。
(2)上限電流決定部1524は、電池の内部抵抗のうちリチウムイオン濃度勾配に応じた抵抗成分の割合が所定の範囲内となるように、上限電流値を決定する。このようにしたので、電池の過電圧が所定の範囲内となるような上限電流値を確実に決定することができる。
(3)組電池制御部150における上限電流演算部152は、電池の電極と電解質との界面におけるリチウムイオン濃度を推定する界面濃度推定部1521と、拡散層の厚さを推定する拡散層推定部1522とを備える。濃度勾配推定部1523は、界面濃度推定部1521が推定した界面におけるリチウムイオン濃度と、拡散層推定部1522が推定した拡散層の厚さとに基づいて、リチウムイオン濃度勾配を推定する。このようにしたので、電池の電極と電解質との界面付近に形成される拡散層におけるリチウムイオン濃度勾配を確実に推定することができる。
(4)組電池制御部150は、上限電流演算部152において上限電流決定部1524が決定した上限電流値に基づいて、上限電流通電時の電池の電圧を推定し、推定した電圧および上限電流値に基づいて、電池の充電可能電力および放電可能電力を推定する充放電可能電力演算部153を備える。このようにしたので、上限電流通電時の充電可能電力および放電可能電力をリアルタイムに推定することができる。
 なお、以上説明した本発明の第1の実施形態では、上限電流決定部1524において、各電池の温度とリチウムイオン濃度勾配に基づき、電池の内部抵抗のうち拡散層でのリチウムイオン濃度勾配に応じた抵抗成分の割合が所定の範囲内となるように充電側上限電流値および放電側上限電流値を決定することで、電池の過電圧が所定の範囲内となるように制御する例を説明した。しかし、これ以外の方法で上限電流値を決定してもよい。例えば、電池の充放電電力がそれぞれ最大となるように充電側上限電流値および放電側上限電流値を決定することで、電池の過電圧が所定の範囲内となるように制御することもできる。なお、前述の図8で示したように、充放電を開始してからの通電時間が長くなるほど電池の抵抗が増加するため、この点を考慮して、電池の通電時間の経過に応じて充電側上限電流値および放電側上限電流値を低下させるようにしてもよい。このような方法でも、第1の実施形態で説明したのと同様の効果を得ることができる。
<第2の実施形態>
 次に、本発明の第2の実施形態について説明する。本実施形態では、電池の劣化を考慮して上限電流値を決定する例を説明する。なお、本実施形態に係る電池システムの構成は、組電池制御部150に替えて組電池制御部150aを有する点以外は、第1の実施形態で説明した図1の電池システム100と同様である。以下では、この組電池制御部150と150aの差分点を中心に、本実施形態の内容を説明する。
 図12は、本発明の第2の実施形態に係る組電池制御部150aの機能構成を示す図である。本実施形態における組電池制御部150aは、図3の上限電流演算部152に替えて上限電流演算部152aを有しており、電池状態検知部151が演算した各電池のSOHRがこの上限電流演算部152aに入力される点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 上限電流演算部152aは、第1の実施形態における上限電流演算部152と同様に、各電池の電流と温度に基づき、各電池の充電側上限電流および放電側上限電流を演算して出力する。このとき上限電流演算部152aは、電池状態検知部151が演算した各電池のSOHRに応じた上限電流値の演算を実施することで、各電池の劣化状態に基づいて充電側上限電流および放電側上限電流を変化させるようにする。
 以下では、図13、図14に基づき、電池の劣化による上限電流値の変化について説明する。図13は、電池の劣化に伴う電圧波形の変化を説明する図である。電池が劣化していない新品状態において、例えば図13(a)に示す電流波形で電池を連続的に放電させると、電池の電圧は図13(b)に示すように変化する。この電圧波形では、放電開始から時間t1が経過した符号1301に示すタイミング以降において、第1の実施形態で説明したように、拡散層でのリチウムイオンの濃度勾配による抵抗成分が急峻に大きくなることで、電池電圧が急峻に低下している。
 一方、電池が劣化した状態において、例えば図13(a)に示す電流波形で電池を連続的に放電させると、電池の電圧は図13(c)に示すように変化する。この電圧波形では、劣化に伴う電池の内部抵抗の上昇により、新品時に比べて電流通電時の電圧降下が大きくなっている。また、放電開始から時間t2(t1>t2)が経過した符号1302に示すタイミング以降において、拡散層でのリチウムイオンの濃度勾配による抵抗成分が急峻に大きくなることで、電池電圧が急峻に低下している。すなわち、新品状態のときよりも短い時間で、リチウムイオンの拡散に伴う抵抗成分の増加が生じていることが分かる。
 図14は、本発明の第2の実施形態における上限電流マップの例を示す図である。図14の上図に示したグラフは、図9と同様に、拡散層のリチウムイオン濃度勾配と上限電流との関係を表しており、横軸はリチウムイオン濃度と拡散層の厚さとの比率(濃度勾配)を、縦軸は上限電流を表している。この図において、丸や四角で示した各点は実測値を表しており、これらの点の種類によって電池の劣化状態の違いを表している。このグラフから、濃度勾配が同じでも、電池の劣化が進むにつれて上限電流が低くなることが分かる。
 一方、図14の下図に示した表は、上図のグラフから構築した上限電流マップの例である。この表では、第1の実施形態で説明したような、温度と濃度勾配を軸にして上限電流値が設定された上限電流マップが、さらに劣化状態ごとに、すなわちSOHRの値ごとに複数構築されている。
 図14で説明したような上限電流マップは、例えば記憶部180に格納される。なお図14では、近似曲線を直線で近似しているが、第1の実施形態で説明した図9と同様に、実験結果に対してよく近似できる近似曲線を求めて上限電流マップを作成してもよい。
 図15は、本発明の第2の実施形態に係る上限電流演算部152aの制御ブロック図である。本実施形態における上限電流演算部152aは、図7の上限電流決定部1524に替えて上限電流決定部1524aを有しており、電池状態検知部151が演算した各電池のSOHRがこの上限電流決定部1524aに入力される点以外は、第1の実施形態における上限電流演算部152と同様の機能構成である。
 上限電流決定部1524aは、第1の実施形態における上限電流決定部1524と同様に、濃度勾配推定部1523が推定した拡散層のリチウムイオン濃度勾配に基づいて、各電池の充電側上限電流および放電側上限電流を決定する。このとき上限電流決定部1524aは、単電池管理部120から上限電流演算部152aに入力される各電池の温度およびSOHRと、濃度勾配推定部1523の演算結果とに基づき、図14で説明したような上限電流マップを参照して、充電側上限電流および放電側上限電流をそれぞれ演算して出力する。これにより、現在の電池の劣化状態で、電極と電解質との界面付近に形成される拡散層でのリチウムイオン濃度勾配に応じた電池の過電圧が所定の範囲内となるように、充電側上限電流および放電側上限電流をそれぞれ決定する。
 次に、本実施形態の効果について、図16、図17に基づき説明する。図16は、本発明の第2の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図16では、本実施形態で説明したような上限電流の設定方法を適用せずに、第1の実施形態で説明した方法に従って、劣化した電池に対して充電側上限電流および放電側上限電流をそれぞれ設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図13で説明したように、電池が劣化していると、電池の通電を開始してから拡散層のリチウムイオン濃度勾配に伴う抵抗成分の増加が生じるまでの時間は、新品時よりも短くなる。そのため、図16に示すように、本実施形態の手法を適用せずに、すなわち電池の劣化状態を考慮せずに充電側上限電流および放電側上限電流を設定した場合、最初の連続充電時には、充電開始からある程度の時間が経過すると、符号1601で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が上昇する。その結果、符号1603で示すように、電圧が上昇した分だけ電流値が小さくなってしまう。また、充電後の放電でも同様に、放電開始からある時間以上経過すると、符号1602で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が低下する。その結果、符号1604で示すように、電圧が低下した分だけ電流が大きくなり、上限電流を逸脱してしまっている。このような場合、第1の実施形態で説明した充電側上限電流および放電側上限電流をそれぞれ一定の値とした場合と同様に、充電側では電池に充電可能な電力が減少し、最悪の場合には、SOCが低いにも関わらず充電が出来なくなることが懸念される。一方で、放電側では逆に大電流が流れるため、電池の発熱や劣化の加速が懸念され、電池の性能を最大限活かすことが出来なくなる。
 図17は、本発明の第2の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図17では、上述したような本実施形態による上限電流の設定方法に従って、電池の劣化による抵抗の増大を考慮して充電側上限電流および放電側上限電流を設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図17に示すように、本実施形態の手法を適用して充電側上限電流および放電側上限電流をそれぞれ設定した場合、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大を抑制可能な上限電流値を電池の劣化状態に応じてリアルタイムに推定した結果に基づく電力で、電池の充放電が行われる。そのため、充電側、放電側ともに、拡散抵抗増大に伴う急峻な電圧変化を抑制して、電池を充放電することが可能となる。その結果、電池が劣化している場合でも、図16のような充電時の電圧上昇や放電時の電圧低下が発生することなく、その結果、充電性能の低下を防ぐとともに、放電時の発熱や劣化を抑制し、電池の性能を最大限活用することが可能となる。
 以上説明したように、本発明の第2の実施形態によれば、劣化した二次電池を使用した場合においても、二次電池の電圧が急峻に変化する領域を回避しつつ、電池の入出力性能を最大限活用することが可能となる。
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明したものに加えて、さらに以下の作用効果を奏する。
(5)上限電流決定部1524aは、電池の劣化状態に基づいて上限電流値を変化させる。このようにしたので、劣化した二次電池を使用した場合においても、電池の過電圧が所定の範囲内となるような上限電流値を確実に決定することができる。
<第3の実施形態>
 次に、本発明の第3の実施形態について説明する。本実施形態では、第2の実施形態とは異なる、電解液中のリチウムイオン濃度(沖合いの濃度C*)が低下するような劣化モードをさらに考慮して上限電流値を決定する例を説明する。なお、本実施形態に係る電池システムの構成は、組電池制御部150に替えて組電池制御部150bを有する点以外は、第1の実施形態で説明した図1の電池システム100と同様である。以下では、この組電池制御部150と150bの差分点を中心に、本実施形態の内容を説明する。
 図18は、本発明の第3の実施形態に係る組電池制御部150bの機能構成を示す図である。本実施形態における組電池制御部150bは、イオン濃度推定部154が追加されている点と、図3の上限電流演算部152に替えて上限電流演算部152bを有しており、イオン濃度推定部154が演算した各電池のリチウムイオン濃度がこの上限電流演算部152bに入力される点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 イオン濃度推定部154は、各電池の電圧、温度およびSOCに基づき、各電池の電解液中のリチウムイオン濃度を推定する。本実施例で想定する劣化モードにより、電解液中のリチウムイオンが減少した電池に対しては、イオン濃度推定部154により、正常状態のものよりも低いリチウムイオン濃度が推定される。なお、本実施例で想定する劣化モード(沖合いのリチウムイオン濃度の低下)については、後述する。
 上限電流演算部152bは、第1の実施形態における上限電流演算部152と同様に、各電池の電流と温度に基づき、各電池の充電側上限電流および放電側上限電流を演算して出力する。このとき上限電流演算部152bは、イオン濃度推定部154が推定した各電池のリチウムイオン濃度に応じた上限電流値の演算を実施することで、各電池のリチウムイオン濃度の変化に基づいて充電側上限電流および放電側上限電流を変化させるようにする。
 以下では、図19、図20に基づき、本実施例で想定している劣化モード(沖合いのリチウムイオン濃度の低下)と上限電流値の変化について説明する。図19は、リチウムイオン濃度の低下による劣化モードを説明する図である。特に低温時において、大きな電流値が継続的に流れるような過剰な充放電を行うと、充放電反応とは異なる副反応が生じることにより、電解液中のリチウムイオンが減少する。このとき、劣化のない正常状態でのリチウムイオン濃度がC* 0であったとすると、劣化によりリチウムイオン濃度がC* 0からC* 1(C* 0>C* 1)へと変化する。こうした劣化モードが生じた場合に、拡散層の厚さδが正常状態から変化しないとすると、図19に示すように、拡散層におけるリチウムイオン濃度勾配が小さくなる。そのため、劣化のない正常状態よりも、リチウムイオンの拡散過程が律速となる段階に入りやすくなることが想定される。
 図20は、リチウムイオン濃度の低下に伴う電圧波形の変化を説明する図である。リチウムイオン濃度が低下していない新品状態において、例えば図20(a)に示す電流波形で電池を連続的に放電させると、電池の電圧は図20(b)に示すように変化する。この電圧波形では、放電開始から時間t1が経過した符号2001に示すタイミング以降において、第1の実施形態で説明したように、拡散層でのリチウムイオンの濃度勾配による抵抗成分が急峻に大きくなることで、電池電圧が急峻に低下している。
 一方、劣化によりリチウムイオン濃度が低下した状態において、例えば図20(a)に示す電流波形で電池を連続的に放電させると、電池の電圧は図20(c)に示すように変化する。この電圧波形では、リチウムイオン濃度の低下に伴ってリチウムイオンの拡散過程が律速となる段階に入りやすくなることで、放電開始から時間t3(t1>t3)が経過した符号2002に示すタイミング以降において、拡散層でのリチウムイオンの濃度勾配による抵抗成分が急峻に大きくなり、電池電圧が急峻に低下している。すなわち、新品状態のときよりも短い時間で、リチウムイオンの拡散に伴う抵抗成分の増加が生じていることが分かる。
 そこで本実施形態では、組電池制御部150bにイオン濃度推定部154を設けることで、リチウムイオン濃度の低下を検出する機能を組電池制御部150bに追加した。これにより、リチウムイオン濃度が低下した場合でも、上述したリチウムイオンの拡散過程が律速となる段階に入りやすくなるモードに陥るのを回避するように、上限電流を設定して電池を制御する。
 図21は、本発明の第3の実施形態に係る上限電流演算部152bの制御ブロック図である。本実施形態における上限電流演算部152bは、図7の界面濃度推定部1521に替えて界面濃度推定部1521bを有しており、イオン濃度推定部154が推定した各電池のリチウムイオン濃度がこの界面濃度推定部1521bに入力される点以外は、第1の実施形態における上限電流演算部152と同様の機能構成である。
 界面濃度推定部1521bは、第1の実施形態における界面濃度推定部1521と同様に、電流検知部130や単電池管理部120から上限電流演算部152bに入力される各電池の電流および温度に基づき、前述の式(4)により、充電または放電時における電極と電解質との界面のリチウムイオン濃度を推定する。このとき界面濃度推定部1521bは、式(4)の右辺の第一項におけるC*の値を、イオン濃度推定部154から入力されるリチウムイオン濃度に置き換える。これにより、電池の劣化によって電解液全体のリチウムイオン濃度が低下した場合には、その劣化状態に対応した界面のリチウムイオン濃度を推定する。なお、第1の実施形態と同様に、式(4)において拡散定数D(T)の値を温度Tに関わらず一定であると仮定すれば、界面濃度推定部1521bにおいて、各電池の電流とリチウムイオン濃度のみに基づいて界面のリチウムイオン濃度を算出することも可能である。
 図22は、本発明の第3の実施形態に係るイオン濃度推定部154の制御ブロック図である。イオン濃度推定部154は、電圧差実効値演算部1541、電圧差閾値演算部1542、電圧差比率演算部1543、およびイオン濃度演算部1544から構成される。
 電圧差実効値演算部1541は、電圧およびSOCを入力として、予め設定した所定の時間窓における電圧差実効値を演算する。具体的には、電圧差実効値演算部1541は、例えば以下の式(7)~(9)に従って、電圧差実効値ΔVRMSを演算する。なお、式(7)中のOCVは、入力されたSOCに基づき、予め設定されたSOCとOCVの対応関係から算出することができる。
Figure JPOXMLDOC01-appb-M000006
 式(7)~(9)において、ΔV(t)はCCVとOCVの電圧差[V]を表しており、これは電池の過電圧に相当する。また、ΔVFilter(t)はΔV2(t)の一次遅れフィルタ適用結果[V2]、tsは制御周期[sec]、Twは時間窓[sec]、ΔVRMS(t)は電圧差実効値[V]をそれぞれ表している。
 電圧差閾値演算部1542は、温度を入力として、電圧差実効値演算部1541が演算する電圧差実効値に対する閾値を演算する。この閾値は、電圧差実効値に対して電池内でリチウムイオン濃度が低下するか否かの基準となるものであり、電圧差実効値が算出された時間窓の長さや温度に応じて決定される。具体的には、電圧差閾値演算部1542は、例えば予め記憶部180に格納されたマップ情報を用いて、閾値を決定する。このマップ情報は、図20(c)で説明したような現象が起こらないような電圧差実効値の条件を表すものであり、予め実験により抽出された時間窓および温度と電圧差実効値との関係に基づいて作成される。
 図23は、電圧差閾値演算部1542により演算される閾値の例を示す図である。この図では、時間窓Twが長いほど、また温度が低いほど、電圧差閾値演算部1542が演算する閾値(CCVとOCVの電圧差に対する制限値)が小さくなっている。つまり、電池の充放電時間が長く、また電池の温度が低いほど、上限電流に対する制限が厳しくなるように閾値が設定されている。
 電圧差比率演算部1543は、電圧差実効値演算部1541が出力する電圧差実効値と、電圧差閾値演算部1542が出力する閾値との比率である電圧差比率を演算する。電圧差比率演算部1543は、例えば以下の式(10)により、電圧差比率を演算して出力する。
Figure JPOXMLDOC01-appb-M000007
 式(10)において、ΔVthresh(t)は電圧差実効値ΔVRMS(t)に対する制限閾値[V]、ΔVRatio(t)は電圧差比率[%]をそれぞれ表している。なお、電圧差比率ΔVRatio(t)は、電池の負荷状態に対する判定指標である負荷判定指標に相当する。
 図20(c)で説明したような現象は、時間窓の長い、つまり、充放電が長期間継続的に続いている条件にて発生しやすい。そのため、電圧差実効値演算部1541や電圧差閾値演算部1542では、長めの時間窓を予め設定しておくことが望ましい。すなわち、リチウムイオン濃度の低下は、温度が小さく、かつ、長時間の連続的な充放電時に起こりやすいため、長めの時間窓を予め設定しておくことで、上限電流に対する制限を厳しくし、上記の現象を確実に防止することができる。
 イオン濃度演算部1544は、電圧差比率演算部1543が演算した電圧差比率をもとに、リチウムイオン濃度を推定し出力する。イオン濃度演算部1544は、例えば予め記憶部180に格納された電圧差比率とリチウムイオン濃度との関係を用いて、電圧差比率の演算結果に対応するリチウムイオン濃度を推定する。
 図24は、電圧差比率とリチウムイオン濃度との関係の一例を示す図である。図24では、横軸に電圧差比率を、縦軸にリチウムイオン濃度を表している。図24に示した関係では、電圧差比率がある一定の閾値Th1を超えたところからリチウムイオン濃度が減少し始め、閾値Th2で0となる。
 イオン濃度推定部154は、以上説明したようにして、電池の劣化状態に応じたリチウムイオン濃度を演算する。イオン濃度推定部154により演算されたリチウムイオン濃度は、上限電流演算部152bに入力される。
 次に、本実施形態の効果について、図25、図26に基づき説明する。図25は、本発明の第3の実施形態を適用しない場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図25では、本実施形態で説明したような上限電流の設定方法を適用せずに、第1、第2の実施形態で説明した方法に従って、リチウムイオン濃度の低下が発生するような過剰な充放電が行われて劣化した電池に対して充電側上限電流および放電側上限電流をそれぞれ設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図20で説明したように、リチウムイオン濃度が低下していると、電池の通電を開始してから拡散層のリチウムイオン濃度勾配に伴う抵抗成分の増加が生じるまでの時間は、新品時よりも短くなる。そのため、図25に示すように、本実施形態の手法を適用せずに、すなわちリチウムイオン濃度の低下を考慮せずに充電側上限電流および放電側上限電流を設定した場合、これらに対応する充電電力制限値または放電電力制限値に満たない電力で行われる未制限時の充放電では、リチウムイオン濃度の低下が発生したことを検出できない。したがって、その後に充電電力制限値で行われる最初の連続充電時には、充電開始からある程度の時間が経過すると、符号2501で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が上昇する。その結果、符号2503で示すように、電圧が上昇した分だけ電流値が小さくなってしまう。また、充電後に放電電力制限値で行われる連続放電でも同様に、放電開始からある時間以上経過すると、符号2502で示すように、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大により電圧が低下する。その結果、符号2504で示すように、電圧が低下した分だけ電流が大きくなり、上限電流を逸脱してしまっている。このような場合、第1の実施形態で説明した充電側上限電流および放電側上限電流をそれぞれ一定の値とした場合や、第2の実施形態で説明した電池の劣化を考慮せずに充電側上限電流および放電側上限電流を設定した場合と同様に、充電側では電池に充電可能な電力が減少し、最悪の場合には、SOCが低いにも関わらず充電が出来なくなることが懸念される。一方で、放電側では逆に大電流が流れるため、電池の発熱や劣化の加速が懸念され、電池の性能を最大限活かすことが出来なくなる。
 図26は、本発明の第3の実施形態を適用した場合の上限電流による電池の電力、電圧および電流の変化の一例を示す図である。図26では、上述したような本実施形態による上限電流の設定方法に従って、未制限時の充放電によるリチウムイオン濃度の低下を検出し、これを反映して充電側上限電流および放電側上限電流を設定し、電池を充電側上限電流で連続充電してから一定時間経過後に放電側上限電流で連続放電させた場合の、電力、電圧および電流の各波形例を示している。
 図26に示すように、本実施形態の手法を適用して充電側上限電流および放電側上限電流をそれぞれ設定した場合、拡散層のリチウムイオン濃度勾配に伴う抵抗の増大を抑制可能な上限電流値をリチウムイオン濃度の低下状態に応じてリアルタイムに推定した結果に基づく電力で、電池の充放電が行われる。そのため、充電側、放電側ともに、拡散抵抗増大に伴う急峻な電圧変化を抑制して、電池を充放電することが可能となる。その結果、電池のリチウムイオン濃度が低下している場合でも、図25のような充電時の電圧上昇や放電時の電圧低下が発生することなく、その結果、充電性能の低下を防ぐとともに、放電時の発熱や劣化を抑制し、電池の性能を最大限活用することが可能となる。
 以上説明したように、本発明の第3の実施形態によれば、劣化によりリチウムイオン濃度が低下した二次電池を使用した場合においても、二次電池の電圧が急峻に変化する領域を回避しつつ、電池の入出力性能を最大限活用することが可能となる。
 なお、上記の実施形態では、イオン濃度推定部154が行う演算処理について、前述の式(7)、(8)により、過電圧(CCV-OCV)の二乗値に対して一次遅れフィルタを施し、その結果を用いて式(9)、(10)により、電圧差比率を演算する例を説明した。しかしながら、イオン濃度推定部154が行う演算処理はこれに限定されず、例えば過電圧の代わりに電流の二乗値を用いてもよい。この場合、電圧差閾値演算部1542により演算されて式(10)で用いられる閾値についても、図23に例示したような電圧差の実効値に対する閾値に替えて、電流の実効値に対応した閾値とすることが好ましい。これにより、過電圧ベースでの制御の代替として、電流ベースでの制御を利用できる。すなわち、イオン濃度推定部154は、電池の過電圧または電流の実効値に基づいて、リチウムイオン濃度を推定することが可能である。
 また、本実施形態では、予め実施された実験結果をベースに、リチウムイオン濃度の低下を簡易的に検知する手法について述べたが、本発明はこれに限定されるものではない。例えば、リチウムイオンの副反応に伴うリチウム化合物の生成をモデル化して、電池内のリチウムイオン量の低下を推定し、その推定結果を式(4)へ反映することで、電極と電解質との界面におけるリチウムイオン濃度を推定してもよい。
 以上説明した本発明の第3の実施形態によれば、第1の実施形態で説明したものに加えて、さらに以下の作用効果を奏する。
(6)組電池制御部150bは、電池のリチウムイオン濃度を推定するイオン濃度推定部154を備える。上限電流演算部152bにおいて、上限電流決定部1524は、イオン濃度推定部154が推定したリチウムイオン濃度の変化に基づいて上限電流値を変化させる。このようにしたので、劣化によりリチウムイオン濃度が低下した二次電池を使用した場合においても、電池の過電圧が所定の範囲内となるような上限電流値を確実に決定することができる。
(7)イオン濃度推定部154は、電池の過電圧または電流の実効値に基づいて電池のリチウムイオン濃度を推定する。このようにしたので、過剰な充放電が行われて電池のリチウムイオン濃度が低下した場合に、これを確実に検知することができる。
<第4の実施形態>
 次に、本発明の第4の実施形態について説明する。本実施形態では、第3の実施形態とは異なる方法により、リチウムイオン濃度が低下した電池に対する充放電制御を行う例を説明する。なお、本実施形態に係る電池システムの構成は、組電池制御部150に替えて組電池制御部150cを有する点以外は、第1の実施形態で説明した図1の電池システム100と同様である。以下では、この組電池制御部150と150cの差分点を中心に、本実施形態の内容を説明する。
 図27は、本発明の第4の実施形態に係る組電池制御部150cの機能構成を示す図である。本実施形態における組電池制御部150cは、制限率設定部155が追加されている点と、図3の充放電可能電力演算部153に替えて充放電可能電力演算部153cを有しており、制限率設定部155が設定した制限率がこの充放電可能電力演算部153cに入力される点以外は、第1の実施形態における組電池制御部150と同様の機能構成である。
 制限率設定部155は、各電池の電圧、温度およびSOCに基づき、各電池の電解液中のリチウムイオン濃度の変化に応じた制限率を設定する。なお、制限率設定部155が設定する制限率には、第3の実施形態においてイオン濃度推定部154が推定するリチウムイオン濃度と同様に、各電池の劣化状態が反映される。すなわち、劣化によって電解液中のリチウムイオンが減少した電池に対しては、制限率設定部155により、正常状態のものとは異なる制限率が設定される。
 充放電可能電力演算部153cは、第1の実施形態における充放電可能電力演算部153と同様に、電池状態検知部151が演算した各電池のSOCおよびSOHRと、組電池制御部150に入力される各電池の温度と、上限電流演算部152が演算した各電池の充電側上限電流および放電側上限電流をもとに、各電池の充電可能電力および放電可能電力を演算して出力する。このとき充放電可能電力演算部153cは、制限率設定部155が設定した制限率に基づき、各電池のリチウムイオン濃度の変化に応じて充電可能電力および放電可能電力を変化させるようにする。
 図28は、本発明の第4の実施形態に係る制限率設定部155の制御ブロック図である。制限率設定部155は、電圧差実効値演算部1541、電圧差閾値演算部1542、電圧差比率演算部1543、および制限率演算部1554から構成される。なお、電圧差実効値演算部1541、電圧差閾値演算部1542および電圧差比率演算部1543については、第3の実施形態において図22に示したイオン濃度推定部154が有するものとそれぞれ同様である。
 制限率演算部1554は、電圧差比率演算部1543が演算した電圧差比率をもとに、充電可能電力および放電可能電力に対する制限率を設定する。制限率演算部1554は、例えば予め記憶部180に格納された電圧差比率と制限率との関係を用いて、電圧差比率の演算結果に対応する制限率kを演算する。
 図29は、電圧差比率と制限率との関係の一例を示す図である。図29では、横軸に電圧差比率を、縦軸に制限率を表している。図29に示した関係では、電圧差比率がある一定の閾値Th1を超えたところから、制限率の値が小さくなり始めることで充電可能電力および放電可能電力に対する制限が厳しくなっている。また、閾値Th2で制限率が0となることで、充電および放電が禁止される。
 制限率設定部155は、以上説明したようにして、劣化によりリチウムイオン濃度が低下している場合は、そのリチウムイオン濃度に応じた制限率を設定する。制限率設定部155により設定された制限率kは、充放電可能電力演算部153cへ入力される。
 充放電可能電力演算部153cは、例えば以下の式(11)、(12)により、制限率設定部155から入力される制限率kを充電可能電力と放電可能電力にそれぞれ乗算することで、充電可能電力および放電可能電力を変化させる。なお、式(11)または(12)を用いて、充電可能電力または放電可能電力のいずれか一方のみを変化させてもよい。
Figure JPOXMLDOC01-appb-M000008
 以上説明したように、本実施形態によれば、電池内のリチウムイオン濃度の変化に基づいて充電可能電力または放電可能電力を変化させる。その結果、第3の実施形態において図25、26で説明したのと同様の効果を得ることができるため、劣化によりリチウムイオン濃度が低下した二次電池を使用した場合においても、二次電池の電圧が急峻に変化する領域を回避しつつ、電池の入出力性能を最大限活用することが可能となる。
 なお、本実施形態でも第3の実施形態と同様に、制限率設定部155が行う演算処理において、過電圧の代わりに電流の二乗値を用いてもよい。
 以上説明した本発明の第4の実施形態によれば、第1の実施形態で説明したものに加えて、さらに以下の作用効果を奏する。
(8)充放電可能電力演算部153cは、電池のリチウムイオン濃度の変化に応じて充電可能電力または放電可能電力を変化させる。このようにしたので、劣化によりリチウムイオン濃度が低下した二次電池を使用した場合においても、電池の過電圧が所定の範囲内となるように、上限電流通電時の充電可能電力または放電可能電力を適切に定めることができる。
(9)組電池制御部150cは、電池の過電圧または電流の実効値に基づいて電池のリチウムイオン濃度の変化に応じた制限率を設定する制限率設定部155を備える。充放電可能電力演算部153cは、制限率設定部155が設定した制限率に基づいて、充電可能電力または放電可能電力を変化させる。このようにしたので、過剰な充放電が行われて電池のリチウムイオン濃度が低下した場合に、これに応じた充電可能電力または放電可能電力を確実に定めることができる。
 なお、以上説明した各実施形態では、二次電池としてリチウムイオン電池を用いた場合に、電極と電解質との界面付近に形成される拡散層におけるリチウムイオン濃度に基づいて充放電制御を行う場合の例を説明したが、他の二次電池を用いた場合にも、同様の充放電制御が可能である。すなわち、リチウムイオンに限らず、他の任意のイオンに関して、電極と電解質との界面付近に形成される拡散層におけるイオン濃度に基づいて充放電制御を行う場合に、本発明を適用可能である。
 なお、以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記の各実施形態は、任意に組み合わせて使用することもできる。さらに、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 100:電池システム
 110:組電池
 111:単電池
 112:単電池群
 120:単電池管理部
 121:単電池制御部
 122:電圧検出回路
 123:制御回路
 124:信号入出力回路
 125:温度検知部
 130:電流検知部
 140:電圧検知部
 150,150a,150b,150c:組電池制御部
 151:電池状態検知部
 152,152a,152b:上限電流演算部
 153,153c:充放電可能電力演算部
 154:イオン濃度推定部
 155:制限率設定部
 160:信号通信手段
 170:絶縁素子
 180:記憶部
 200:車両制御部
 300~330:リレー
 400:インバータ
 410:モータジェネレータ
1521,1521b:界面濃度推定部
1522:拡散層推定部
1523:濃度勾配推定部
1524,1524a:上限電流決定部
1541:電圧差実効値演算部
1542:電圧差閾値演算部
1543:電圧差比率演算部
1544:イオン濃度演算部
1554:制限率演算部

Claims (11)

  1.  二次電池に流れる電流、または前記電流および前記二次電池の温度に基づいて、前記二次電池の電極と電解質との界面付近に形成される拡散層におけるイオン濃度勾配を推定する濃度勾配推定部と、
     前記イオン濃度勾配に基づいて前記二次電池の上限電流値を決定する上限電流決定部と、を備え、
     前記上限電流決定部は、前記イオン濃度勾配に応じた前記二次電池の過電圧が所定の範囲内となるように、前記上限電流値を決定する電池制御装置。
  2.  請求項1に記載の電池制御装置において、
     前記上限電流決定部は、前記二次電池の内部抵抗のうち前記イオン濃度勾配に応じた抵抗成分の割合が所定の範囲内となるように、前記上限電流値を決定する電池制御装置。
  3.  請求項1に記載の電池制御装置において、
     前記上限電流決定部は、前記二次電池の充電電力または放電電力が最大となるように、前記上限電流値を決定する電池制御装置。
  4.  請求項3に記載の電池制御装置において、
     前記上限電流決定部は、前記二次電池の通電時間の経過に応じて前記上限電流値を低下させるように、前記上限電流値を決定する電池制御装置。
  5.  請求項1に記載の電池制御装置において、
     前記界面におけるイオン濃度を推定する界面濃度推定部と、
     前記拡散層の厚さを推定する拡散層推定部と、を備え、
     前記濃度勾配推定部は、前記界面濃度推定部が推定した前記界面におけるイオン濃度と、前記拡散層推定部が推定した前記拡散層の厚さとに基づいて、前記イオン濃度勾配を推定する電池制御装置。
  6.  請求項1~5のいずれか一項に記載の電池制御装置において、
     前記上限電流決定部が決定した前記上限電流値に基づいて、上限電流通電時の前記二次電池の電圧を推定し、推定した前記電圧および前記上限電流値に基づいて、前記二次電池の充電可能電力および放電可能電力を推定する充放電可能電力演算部を備える電池制御装置。
  7.  請求項1~6のいずれか一項に記載の電池制御装置において、
     前記上限電流決定部は、前記二次電池の劣化状態に基づいて前記上限電流値を変化させる電池制御装置。
  8.  請求項1~7のいずれか一項に記載の電池制御装置において、
     前記二次電池のイオン濃度を推定するイオン濃度推定部を備え、
     前記上限電流決定部は、前記イオン濃度の変化に基づいて前記上限電流値を変化させる電池制御装置。
  9.  請求項8に記載の電池制御装置において、
     前記イオン濃度推定部は、前記二次電池の過電圧または電流の実効値に基づいて前記イオン濃度を推定する電池制御装置。
  10.  請求項6に記載の電池制御装置において、
     前記充放電可能電力演算部は、前記二次電池のイオン濃度の変化に応じて前記充電可能電力または前記放電可能電力を変化させる電池制御装置。
  11.  請求項10に記載の電池制御装置において、
     前記二次電池の過電圧または電流の実効値に基づいて前記二次電池のイオン濃度の変化に応じた制限率を設定する制限率設定部を備え、
     前記充放電可能電力演算部は、前記制限率設定部が設定した前記制限率に基づいて、前記充電可能電力または前記放電可能電力を変化させる電池制御装置。
PCT/JP2019/039875 2018-10-26 2019-10-09 電池制御装置 WO2020085097A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980071325.XA CN113016099B (zh) 2018-10-26 2019-10-09 电池控制装置
US17/288,789 US11899070B2 (en) 2018-10-26 2019-10-09 Battery control device
JP2020553120A JP7100151B2 (ja) 2018-10-26 2019-10-09 電池制御装置
EP19877305.3A EP3872920A4 (en) 2018-10-26 2019-10-09 BATTERY CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-201526 2018-10-26
JP2018201526 2018-10-26

Publications (1)

Publication Number Publication Date
WO2020085097A1 true WO2020085097A1 (ja) 2020-04-30

Family

ID=70331954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039875 WO2020085097A1 (ja) 2018-10-26 2019-10-09 電池制御装置

Country Status (5)

Country Link
US (1) US11899070B2 (ja)
EP (1) EP3872920A4 (ja)
JP (1) JP7100151B2 (ja)
CN (1) CN113016099B (ja)
WO (1) WO2020085097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629932B1 (ko) * 2022-09-20 2024-01-30 한국전력공사 전기차의 배터리 성능 예측 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137935A (ja) 2011-12-28 2013-07-11 Toyota Motor Corp 非水二次電池の制御装置および制御方法
JP2014157662A (ja) * 2013-02-14 2014-08-28 Toyota Motor Corp 電池システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055671B2 (ja) * 2003-07-31 2008-03-05 日産自動車株式会社 非水電解質電池
JP4802945B2 (ja) 2006-08-31 2011-10-26 トヨタ自動車株式会社 二次電池の制御システムおよびそれを搭載したハイブリッド車両
JP2008058278A (ja) * 2006-09-04 2008-03-13 Toyota Motor Corp 二次電池の内部状態推定装置、二次電池の内部状態推定方法、プログラム、および記録媒体
JP4872743B2 (ja) 2007-03-23 2012-02-08 トヨタ自動車株式会社 二次電池の状態推定装置
JP5196982B2 (ja) * 2007-03-28 2013-05-15 三洋電機株式会社 非水電解質電池
JP5210591B2 (ja) * 2007-10-15 2013-06-12 トヨタ自動車株式会社 二次電池の制御システムおよびそれを搭載した電動車両ならびに二次電池の制御方法
JP4968088B2 (ja) * 2008-01-24 2012-07-04 トヨタ自動車株式会社 電池システム、車両、電池搭載機器
JP5045816B2 (ja) * 2009-01-08 2012-10-10 トヨタ自動車株式会社 非水電解液型二次電池システム及び車両
US8334675B2 (en) * 2010-07-28 2012-12-18 Honda Motor Co., Ltd. Method of charging battery based on calcualtion of an ion concentration of a solid active material and battery charging control system
JP5910879B2 (ja) 2012-06-19 2016-04-27 トヨタ自動車株式会社 電池システムおよび制御方法
JP5596083B2 (ja) * 2012-06-26 2014-09-24 Imv株式会社 リチウムイオン二次電池の劣化診断装置
JP2014120200A (ja) 2012-12-12 2014-06-30 Toyota Motor Corp 電池システムおよび、リチウム濃度分布の推定方法
CN104035048A (zh) * 2014-06-20 2014-09-10 上海出入境检验检疫局工业品与原材料检测技术中心 一种锂离子电池过充安全性能的热电检测方法及其装置
KR101756389B1 (ko) * 2014-10-30 2017-07-11 주식회사 엘지화학 전해액의 확산계수 측정방법 및 측정장치
KR102405514B1 (ko) * 2018-12-06 2022-06-03 주식회사 엘지에너지솔루션 이차 전지의 충전 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137935A (ja) 2011-12-28 2013-07-11 Toyota Motor Corp 非水二次電池の制御装置および制御方法
JP2014157662A (ja) * 2013-02-14 2014-08-28 Toyota Motor Corp 電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872920A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102629932B1 (ko) * 2022-09-20 2024-01-30 한국전력공사 전기차의 배터리 성능 예측 방법

Also Published As

Publication number Publication date
CN113016099A (zh) 2021-06-22
US11899070B2 (en) 2024-02-13
US20220003819A1 (en) 2022-01-06
JP7100151B2 (ja) 2022-07-12
JPWO2020085097A1 (ja) 2021-09-24
CN113016099B (zh) 2024-02-06
EP3872920A1 (en) 2021-09-01
EP3872920A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
US10553896B2 (en) Battery capacity degradation resolution methods and systems
US11124072B2 (en) Battery control device and electric motor vehicle system
US8207740B2 (en) Method for use with a vehicle battery pack having a number of individual battery cells
US10209319B2 (en) State of deterioration or state of charges estimating apparatus for secondary battery
EP3410558A1 (en) Battery control device
US10554064B2 (en) Battery controlling device
JP6174963B2 (ja) 電池制御システム
US9939494B2 (en) Battery system and method of determining polarization of secondary battery
JP5770563B2 (ja) 車両用電源システム
JP5738784B2 (ja) 蓄電システム
JP2014036497A (ja) 蓄電システムおよび均等化方法
JP2014157662A (ja) 電池システム
US8441262B2 (en) Optimization of electrical component parameters in energy storage system models
JP2014202630A (ja) 電池システム
JP7231657B2 (ja) 電池制御装置
WO2020085097A1 (ja) 電池制御装置
JP2023500449A (ja) 急速充電方法
WO2022224681A1 (ja) 電池監視装置及びそれが搭載された電動車両
JP2020079764A (ja) 二次電池の状態判定方法
JP2013127440A (ja) 蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877305

Country of ref document: EP

Effective date: 20210526