JP6763195B2 - 充電率推定装置 - Google Patents

充電率推定装置 Download PDF

Info

Publication number
JP6763195B2
JP6763195B2 JP2016097752A JP2016097752A JP6763195B2 JP 6763195 B2 JP6763195 B2 JP 6763195B2 JP 2016097752 A JP2016097752 A JP 2016097752A JP 2016097752 A JP2016097752 A JP 2016097752A JP 6763195 B2 JP6763195 B2 JP 6763195B2
Authority
JP
Japan
Prior art keywords
battery
voltage
charge rate
charge
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016097752A
Other languages
English (en)
Other versions
JP2017207286A (ja
Inventor
順一 波多野
順一 波多野
隆広 都竹
隆広 都竹
祐希 村松
祐希 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016097752A priority Critical patent/JP6763195B2/ja
Publication of JP2017207286A publication Critical patent/JP2017207286A/ja
Application granted granted Critical
Publication of JP6763195B2 publication Critical patent/JP6763195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池の充電率を推定する充電率推定装置に関する。
既存の充電率推定装置として、例えば、充電中の電池に流れる電流の積算値に基づいて、電池の充電率(電池の満充電容量に対する残容量の割合(百分率))を推定するものがある。
また、既存の他の充電率推定装置として、例えば、充電中の電池の電圧が目標電圧に達した時点で、電池の充電率を100[%]に設定するものがある。
関連する技術として、例えば、特許文献1、2がある。
特開2013−176195号公報 特開2009−171789号公報
しかしながら、上述のように、電流の積算値に基づいて、充電率を推定する充電率推定装置では、電流検出部が故障するなどして電池に流れる電流を精度よく検出することができない場合や充電率の推定時間が長くなり電流検出部の検出誤差が電流の積算値に多く含まれてしまう場合、推定される充電率と実際の充電率に乖離が生じるおそれがある。
また、上述のように、充電中の電池の電圧が目標電圧に達した時点で、電池の充電率を100[%]に設定する充電率推定装置では、電池の電圧が目標電圧に達した時点で、実際の充電率がまだ100[%]に達していないおそれがある。
本発明の一側面に係る目的は、電池の充電率の推定精度を向上させることが可能な充電率推定装置を提供することである。
本発明に係る一つの形態である充電率推定装置は、充電制御部と、推定部とを備える。
充電制御部は、電池の電圧が最初に目標電圧以上になった後、電池の電圧が目標電圧以上になる度に、充電器に送信する電流指令値を所定値減少させ、電池の電圧が最初に目標電圧以上になってから所定時間経過すると、または、電流指令値が所定の電流指令値以下になると、充電器に充電停止指示を送信し、電池の充電を停止させる。
推定部は、電池の電圧が最初に目標電圧以上になったときの電池の推定充電率を所定の充電率に設定し、電池の電圧が最初に目標電圧以上になった後、充電器に送信する電流指令値が減少する度に、または、電池に流れる電流が減少する度に、電池の推定充電率を所定量増加させる。
本発明によれば、電池の充電率の推定精度を向上させることができる。
実施形態の充電率推定装置を含む電池パックの一例を示す図である。 制御部の動作を説明するためのフローチャートである。 充電制御を説明するための図である。 記憶部に記憶される情報の一例を示す図である。 記憶部に記憶される情報の一例を示す図である。
以下図面に基づいて実施形態について詳細を説明する。
図1は、実施形態の充電率推定装置を含む電池パックの一例を示す図である。
図1に示す電池パック1は、例えば、電動フォークリフトなどの車両に搭載され、走行モータを駆動するインバータなどの負荷へ電力を供給する。
また、電池パック1は、複数の電池モジュール2と、制御部3と、記憶部4とを備える。なお、記憶部4は、例えば、RAM(Random Access Memory)やROM(Read Only Memory)などにより構成される。
各電池モジュール2は、それぞれ、電池スタックSと、スイッチSWと、電流検出部21と、温度検出部22と、監視部23とを備える。なお、各電池モジュール2のそれぞれの電池スタックSは、互いに並列接続され、組電池を構成する。なお、並列接続される電池スタックSの並列数は、1でも2以上でもよい。
電池スタックSは、直列接続される複数の電池B(例えば、リチウムイオン電池、ニッケル水素電池、または、電気二重層コンデンサ)により構成される。なお、各電池スタックSは、それぞれ、1つの電池Bで構成されてもよい。
スイッチSWは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などの半導体リレーや電磁式リレーにより構成される。充電器Chから電池パック1へ電力が供給されているとき、スイッチSWがオンしている電池モジュール2が有する電池Bが充電され、その電池Bの電圧が上昇する。
電流検出部21は、例えば、ホール素子やシャント抵抗により構成され、各電池Bに流れる電流Iを検出する。
温度検出部22は、例えば、サーミスタにより構成され、各電池Bの温度Tを検出する。
監視部23は、例えば、CPU(Central Processing Unit)またはプログラマブルディバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)により構成され、各電池Bの電圧Vを検出する。また、監視部23は、制御部3から送られてくる指示により、スイッチSWのオン、オフを制御する。また、監視部23は、各電池Bの電圧V、電流検出部21により検出される電流I、及び温度検出部22により検出される温度Tを示す電池状態情報を制御部3に送る。
制御部3は、定電流定電圧充電制御を行うことで各電池Bを充電させる充電制御部31と、各電池Bの充電率(SOC:State Of Charge)を推定する推定部32とを備える。また、制御部3は、充電停止後において、推定部32で推定した推定充電率を、車両側制御部5に送る。車両側制御部5は、制御部3から送られてくる充電率を、表示部6(例えば、ディスプレイ)に表示させる。なお、制御部3は、例えば、CPUまたはプログラマブルディバイスにより構成され、CPUまたはプログラマブルディバイスが所定のプログラムを実行することによって、充電制御部31及び推定部32が実現される。また、充電率推定装置は、例えば、少なくとも充電制御部31及び推定部32を備えて構成される。
図2は、制御部3の動作を説明するためのフローチャートである。
まず、制御部3の充電制御部31は、定電流充電制御を開始する(S201)。
次に、充電制御部31は、電圧Vが目標電圧Vtよりも小さいとき(S202:No)、定電流充電制御を継続し、電圧Vが最初に目標電圧Vt以上になると(S202:Yes)、定電流充電制御を終了し、定電圧充電制御を開始する(S203)。目標電圧Vtは、例えば、満充電電圧であるが、満充電電圧に限らず任意の電圧でも良い。
また、制御部3の推定部32は、電圧Vが最初に目標電圧Vt以上になると(S202:Yes)、推定充電率を所定の充電率に設定する(S203)。すなわち、推定部32は、電圧Vが最初に目標電圧Vt以上になったときの推定充電率を所定の充電率に設定する。S203で設定される所定の充電率は100[%]より小さい値である。
次に、充電制御部31は、電圧Vが目標電圧Vtよりも小さいとき(S204:No)、定電圧充電制御を継続し、電圧Vが目標電圧Vt以上になると(S204:Yes)、充電器Chに送信する電流指令値を所定値減少させる(S205)。すなわち、充電制御部31は、電圧Vが最初に目標電圧Vt以上になった後、電圧Vが目標電圧Vt以上になる度に、電流指令値を所定値減少させる。
また、推定部32は、電圧Vが目標電圧Vt以上になると(S204:Yes)、推定充電率を所定量増加させる(S205)。すなわち、推定部32は、電圧Vが最初に目標電圧Vt以上になった後、電圧Vが目標電圧Vt以上になり電流指令値が減少する度に、推定充電率を所定量増加させる。このように、電流指令値の変化に応じて推定充電率を設定する場合では、電流検出部21が故障するなどして電流Iを検出できない状況であっても、推定充電率を継続して推定することができる。なお、推定部32は、電圧Vが最初に目標電圧Vt以上になった後、電圧Vが目標電圧Vt以上になり電流指令値が減少して電流I(電流検出部21により検出される電流)が減少する度に、推定充電率を所定量増加させるように構成してもよい。この場合、電流検出部21が故障していないが、電流検出部21の検出誤差が電流の積算値に多く含まれてしまう状況であっても、推定充電率を精度よく推定することができる。
次に、充電制御部31は、定電圧充電制御を開始した時刻から所定時間が経過していないとき(S206:No)、定電圧充電制御を継続し、定電圧充電制御を開始した時刻から所定時間が経過すると、すなわち、電圧Vが最初に目標電圧Vt以上になってから所定時間経過すると(S206:Yes)、定電圧充電制御を終了する(S207)。例えば、充電制御部31は、電圧Vが最初に目標電圧Vt以上になってから所定時間経過すると、充電器Chに充電停止指示を送信するとともに、すべてのスイッチSWをオンからオフに切り替え、各電池Bの充電を停止させる。なお、充電制御部31は、電流指令値が所定の電流指令値以下になると、充電器Chに充電停止指示を送信するとともに、すべてのスイッチSWをオンからオフに切り替え、各電池Bの充電を停止させるように構成してもよい。なお、充電器Chは、充電停止指示を受け取ると、電池パック1への電力供給を停止する。
また、推定部32は、電圧Vが最初に目標電圧Vt以上になってから所定時間経過すると(S206:Yes)、各電池Bのうち、最も電圧Vが高い満充電電池の推定充電率を100[%]に設定し、各電池Bのうち、満充電電池以外の未満充電電池の推定充電率を、充電が停止したときの未満充電電池の電圧Vにより推定する(S207)。
このように、各電池Bの充電中において、電圧Vが最初に目標電圧Vt以上になったときの推定充電率を所定の充電率に設定し、電圧Vが最初に目標電圧Vt以上になった後、充電器Chに送信する電流指令値が減少する度に、または、電流Iが減少する度に、推定充電率を所定量増加させているため、所定の充電率として、電圧Vが最初に目標電圧Vt以上になるときの電池Bの実際の充電率に近い値を設定することで、電流Iの積算値に基づいて推定充電率を求める場合や電圧Vが最初に目標電圧Vt以上になったときに推定充電率を100[%]に設定する場合に比べて、充電中の各電池Bの充電率の推定精度を向上させることができる。
また、各電池Bの充電停止後において、各電池Bのうち、最も電圧が高い満充電電池の推定充電率を100[%]に設定し、各電池Bのうち、満充電電池以外の未満充電電池の推定充電率を、充電を停止したときの未満充電電池の電圧Vにより推定するため、充電停止後の各電池Bの充電率の推定精度を向上させることができる。例えば、少なくとも1つの電池Bの推定充電率が100[%]になると、組電池の充電率として100[%]がユーザに対して表示され、少なくとも1つの電池Bの推定充電率が0[%]になると、組電池の充電率として0[%]がユーザに対して表示される場合、各電池Bの実際の充電率と、ユーザに対して表示される組電池の充電率との乖離を抑えることができるため、ユーザに違和感を覚えさせないようにすることができる。
次に、充電制御部31及び推定部32の具体的な動作について説明する。
図3(a)は電池Bの電圧Vの変動例を示す図であり、図3(b)は電池Bに流れる電流Iの変動例を示す図であり、図3(c)は電池Bの実際の充電率(一点鎖線)及び推定充電率(実線)の変動例を示す図である。なお、図3(a)に示すグラフの横軸は時間を示し、縦軸は電池Bの電圧Vを示している。また、図3(b)に示すグラフの横軸は時間を示し、縦軸は電池Bに流れる電流Iを示している。また、図3(c)に示すグラフの横軸は時間を示し、縦軸は電池Bの充電率を示している。また、図3(a)〜図3(c)の各グラフの横軸は互いに同じ時間を示している。
まず、充電制御部31は、定電流充電制御を開始すると、時間t0〜t1において、電流Iを一定電流Icに保ちつつ、電圧Vが目標電圧Vtまで徐々に上昇するように、電流指令値を充電器Chに送信することで各電池Bを充電させる。
また、推定部32は、時間t0〜t1において、電流Iの積算値に基づいて、推定充電率を求める。例えば、推定部32は、時間t0〜t1において、推定充電率=電流Iの積算値/満充電容量×100を計算することにより、推定充電率を求める。なお、推定部32は、充電開始前に推定した電池Bの充電率を記憶部4に記憶しておき、その記憶した充電率を、時間t0〜t1における推定充電率とするように構成してもよい。
次に、充電制御部31は、電圧Vが最初に目標電圧Vt以上になると、定電流充電制御を終了して、定電圧充電制御を開始する。
また、推定部32は、電圧Vが最初に目標電圧Vt以上になると、推定充電率を所定の充電率(例えば、80[%])に設定する。なお、ここで設定される所定の充電率は、電圧Vが最初に目標電圧Vt以上になったときの電流指令値と電池Bの内部抵抗をもとに算出することができる。電圧Vが最初に目標電圧Vtになったときの実際の電池Bの開回路電圧は、電圧Vが最初に目標電圧Vtから、(電圧Vが最初に目標電圧Vt以上になったときの電流指令値)×(電池Bの内部抵抗)により決まる電圧を減算して求めた電圧に近いため、その求めた開回路電圧を用いて、開回路電圧−充電率特性曲線により算出した充電率を所定の充電率とすることができる。なお、電池Bの内部抵抗は温度や劣化度によって変化するため、温度や劣化度を考慮して所定の充電率を求めてもよい。
なお、推定部32は、例えば、図4(a)に示す情報を記憶部4から取り出し、電池Bの温度Tが低い程、所定の充電率を低く設定し、温度Tが高い程、所定の充電率を高く設定してもよい。通常、温度Tが低い程、電池Bの内部抵抗が大きいために電池Bの閉回路電圧と実際の開回路電圧との差が大きくなることから、電池Bの実際の充電率が低くなり、温度Tが高い程、電池Bの実際の充電率が高くなるため、電圧Vが最初に目標電圧Vt以上になったときの推定充電率の推定精度を向上させることができる。
また、推定部32は、例えば、図4(b)に示す情報を記憶部4から取り出し、電池Bに流れる電流Iが大きい程、所定の充電率を低く設定し、電流Iが小さい程、所定の充電率を高く設定してもよい。通常、電流Iが大きい程、電池Bの閉回路電圧と実際の開回路電圧との差が大きくなることから、電池Bの実際の充電率が低くなり、電流Iが小さい程、電池Bの実際の充電率が高くなるため、電圧Vが最初に目標電圧Vt以上になったときの推定充電率の推定精度を向上させることができる。
また、推定部32は、例えば、図4(c)に示す情報を記憶部4から取り出し、電池Bの劣化度Dが大きい程、所定の充電率を低く設定し、電池Bの劣化度Dが小さい程、所定の充電率を高く設定してもよい。通常、電池Bの劣化度Dが大きい程、電池Bの内部抵抗が大きいために電池Bの閉回路電圧と実際の開回路電圧との差が大きくなることから、電池Bの実際の充電率が小さくなり、電池Bの劣化度Dが小さい程、電池Bの実際の充電率が大きくなるため、電圧Vが最初に目標電圧Vt以上になったときの推定充電率の推定精度を向上させることができる。
また、推定部32は、電池Bの温度T、電池Bに流れる電流I、及び、電池Bの劣化度Dの少なくとも2つの変化に応じて、所定の充電率を変化させるように構成してもよい。例えば、推定部32は、図4(a)及び図4(b)に示す各情報を記憶部4から取り出し、電池Bの温度Tが低い程、電池Bに流れる電流Iが大きい程、所定の充電率を低く設定し、電池Bの温度Tが高い程、電池Bに流れる電流Iが小さい程、所定の充電率を高く設定する。例えば、推定部32は、図4(a)〜図4(c)に示す各情報を記憶部4から取り出し、電池Bの温度Tが低い程、電池Bに流れる電流Iが大きい程、電池Bの劣化度Dが大きい程、所定の充電率を低く設定し、電池Bの温度Tが高い程、電池Bに流れる電流Iが小さい程、電池Bの劣化度が小さい程、所定の充電率を高く設定する。
次に、充電制御部31は、定電圧充電制御を開始すると、時間t1〜t2において、電圧Vが目標電圧Vt以上になる度に、電流指令値を所定値(例えば、1[A])減少させる。
また、推定部32は、時間t1〜t2において、電圧Vが目標電圧Vt以上になる度に、推定充電率を所定量(例えば、0.2[%])増加させる。なお、推定部32は、所定量=(100[%]−所定の充電率)/(電圧Vが最初に目標電圧Vt以上になったときの電流指令値)を計算することにより所定量を求めるように構成してもよい。また、推定部32は、所定量=(100[%]−所定の充電率)×(電圧Vが目標電圧Vt以上になる度に、減少させる電流指令値の減少量)/(電圧Vが最初に目標電圧Vt以上になったときの電流指令値)を計算することにより所定量を求めるように構成してもよい。また、推定部32は、電池Bに流れる電流Iの変化に応じて、所定量を変化させるように構成してもよい。
そして、充電制御部31は、定電圧充電制御を開始してから所定時間t(時間t1〜t2)経過すると、定電圧充電制御を終了する。
また、推定部32は、定電圧充電制御を開始してから所定時間t(時間t1〜t2)経過すると、各電池Bのうち、最も電圧が高い満充電電池の推定充電率を100[%]に設定し、各電池Bのうち、満充電電池以外の未満充電電池の推定充電率を、充電を停止したときの未満充電電池の電圧Vにより推定する。
次に、充電停止後の推定部32の具体的な動作を説明する。
まず、推定部32は、図5(a)に示すように、電池Bに流れる電流I(I1、I2、I3、・・・)毎に、電池Bの温度T(T1、T2、T3、・・・)と電池Bの劣化度D(D1、D2、D3、・・・)と補正値Vc(充電停止から分極が解消するまでの間に変動する電池Bの電圧幅)(Vc11、Vc12、Vc13、・・・)とが対応付けられた情報を記憶部4から取り出し、その取り出した情報を参照して、充電停止時に未満充電電池に流れていた電流Iと、充電停止時の未満充電電池の温度T及び劣化度Dとに対応する補正値Vcを求める。なお、電池Bに流れる電流が大きくなる程、電池Bの分極が大きくなるため、電流Iが大きくなる程、補正値Vcが大きな値になるように設定する。また、電池Bの温度が高くなる程、電池Bの分極が大きくなるため、温度Tが大きくなる程、補正値Vcが大きな値になるように設定する。また、電池Bの劣化度が大きくなる程、電池Bの分極が大きくなるため、劣化度Dが大きくなる程、補正値Vcが大きな値になるように設定する。このように補正値Vcを設定することにより、補正値Vcを最適値に近づけることができる。
次に、推定部32は、充電停止時(各スイッチSWがオンからオフに切り替わった後)に監視部23により検出された未満充電電池の開回路電圧から、上記求めた補正値Vcを減算することにより、分極解消時の未満充電電池の開回路電圧を推定する。
そして、推定部32は、図5(b)に示すように、電池Bの開回路電圧(OCV1、OCV2、OCV3、・・・)と、電池Bの充電率(SOC1、SOC2、SOC3、・・・)とが対応付けられた情報を参照して、上記推定した分極解消時の未満充電電池の開回路電圧に対応する充電率を求め、その求めた充電率を未満充電電池の推定充電率とする。
このように、充電停止時の未満充電電池の開回路電圧により未満充電電池の充電率を推定する構成であるため、充電停止までに未満充電電池に流れる電流の積算値により未満充電電池の充電率を推定する場合に比べて、電流検出部21で生じる検出誤差に相当する充電率を未満充電電池の充電率に含ませないようにすることができ、未満充電電池の充電率の推定精度をさらに向上させることができる。また、監視部23により検出された未満充電電池の開回路電圧から分極を考慮した補正値Vcを減算することで分極解消時の未満充電電池の開回路電圧を推定する構成であるため、分極解消時の未満充電電池の開回路電圧の推定精度を上げることができ、未満充電電池の充電率の推定精度をさらに向上させることができる。また、未満充電電池に流れる電流I、未満充電電池の温度T及び劣化度Dを考慮して補正値Vcを求める構成であり、補正値Vcを最適値に近づけることができるため、分極解消時の未満充電電池の開回路電圧の推定精度をさらに上げることができ、未満充電電池の充電率の推定精度をさらに向上させることができる。
また、本発明は、上記実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
1 電池パック
2 電池モジュール
3 制御部
4 記憶部
5 車両側制御部
6 表示部
21 電流検出部
22 温度検出部
23 監視部
31 充電制御部
32 推定部
Ch 充電器
S 電池スタック
B 電池
SW スイッチ

Claims (3)

  1. 定電流充電制御による電池の充電を開始し、前記定電流充電制御による電池の充電の開始後に前記電池の閉回路電圧が最初に目標電圧以上になったときに充電器に送信する電流指令値を所定値減少させると共に、前記定電流充電制御を終了して定電圧充電制御を開始し、前記定電圧充電制御による電池の充電において前記電池の閉回路電圧が前記目標電圧以上になる度に前記電流指令値を所定値減少させた後、前記定電圧充電制御による電池の充電を開始してから所定時間経過すると、または、前記電流指令値が所定の電流指令値以下になると、前記充電器に充電停止指示を送信して前記定電圧充電制御による電池の充電を停止させる充電制御部と、
    前記定電流充電制御による電池の充電の開始後に前記電池の電圧が最初に前記目標電圧以上になったときの前記電池の推定充電率を所定の充電率に設定し、前記定電圧充電制御による電池の充電が行われているときに前記電流指令値が減少する度に、または、前記電池に流れる電流が減少する度に、前記電池の推定充電率を所定量増加させる推定部と、
    を備える充電率推定装置。
  2. 請求項に記載の充電率推定装置であって、
    前記推定部は、前記電池の温度が低い程、前記所定の充電率を低く設定し、前記電池の
    温度が高い程、前記所定の充電率を高く設定する
    ことを特徴とする充電率推定装置。
  3. 請求項1または2に記載の充電率推定装置であって、
    前記推定部は、前記電池に流れる電流が大きい程、前記所定の充電率を低く設定し、前
    記電池に流れる電流が小さい程、前記所定の充電率を高く設定する
    ことを特徴とする充電率推定装置。
JP2016097752A 2016-05-16 2016-05-16 充電率推定装置 Active JP6763195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097752A JP6763195B2 (ja) 2016-05-16 2016-05-16 充電率推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097752A JP6763195B2 (ja) 2016-05-16 2016-05-16 充電率推定装置

Publications (2)

Publication Number Publication Date
JP2017207286A JP2017207286A (ja) 2017-11-24
JP6763195B2 true JP6763195B2 (ja) 2020-09-30

Family

ID=60417005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097752A Active JP6763195B2 (ja) 2016-05-16 2016-05-16 充電率推定装置

Country Status (1)

Country Link
JP (1) JP6763195B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087994B2 (ja) * 2018-12-26 2022-06-21 トヨタ自動車株式会社 満充電容量算出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231988A (ja) * 2011-09-27 2014-12-11 三洋電機株式会社 バッテリシステム、充電状態推定装置、電動車両、移動体、電力貯蔵装置および電源装置
US9081068B2 (en) * 2012-09-18 2015-07-14 Apple Inc. Method and apparatus for determining a capacity of a battery
JP2017198455A (ja) * 2016-04-25 2017-11-02 株式会社豊田自動織機 充電率推定装置

Also Published As

Publication number Publication date
JP2017207286A (ja) 2017-11-24

Similar Documents

Publication Publication Date Title
JP6791386B2 (ja) 充電時間演算方法及び充電制御装置
JP5001938B2 (ja) バッテリーの充電または放電出力の調整方法及び装置
US9438059B2 (en) Battery control apparatus and battery control method
CN106972206B (zh) 电池控制系统和电池组
JP6696311B2 (ja) 充電率推定装置
KR100965743B1 (ko) 이차전지 전류차단방법 및 이를 이용한 배터리 팩
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
US11391779B2 (en) Battery capacity estimation apparatus and method, and battery management apparatus provided with same and method thereof
JP6733515B2 (ja) 電池膨張量推定装置
JP6802723B2 (ja) 蓄電装置および蓄電制御方法
JP2010032412A (ja) 車両用の電源装置
WO2015178075A1 (ja) 電池制御装置
JP2018050373A (ja) 電池システム
JP6708011B2 (ja) 電池パック
JP6115446B2 (ja) 満充電容量算出装置
JP5851514B2 (ja) 電池制御装置、二次電池システム
JP6763195B2 (ja) 充電率推定装置
JP2017198455A (ja) 充電率推定装置
JP2019041497A (ja) 電源管理装置
JP6855947B2 (ja) 充電率推定装置及び充電率推定方法
JP6311616B2 (ja) 充電電流制御装置及び充電電流制御方法
JP7412993B2 (ja) 電池パック、制御方法およびプログラム
KR102375843B1 (ko) 배터리 관리 장치 및 방법
JP6848775B2 (ja) リチウムイオン二次電池システム
KR102437477B1 (ko) 배터리의 만충전 용량을 산출하기 위한 배터리 관리 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151