WO2013125611A1 - 燃料電池セパレーター用水系導電性ペースト - Google Patents
燃料電池セパレーター用水系導電性ペースト Download PDFInfo
- Publication number
- WO2013125611A1 WO2013125611A1 PCT/JP2013/054259 JP2013054259W WO2013125611A1 WO 2013125611 A1 WO2013125611 A1 WO 2013125611A1 JP 2013054259 W JP2013054259 W JP 2013054259W WO 2013125611 A1 WO2013125611 A1 WO 2013125611A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- conductive paste
- fuel cell
- binder
- cell separator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to an aqueous conductive paste for a fuel cell separator that can be used in the manufacture of a fuel cell separator.
- Fuel cells are one of the energy supply methods that have been studied for the purpose of reducing the environmental load.
- oxygen or air is used for the positive electrode and hydrogen or the like is used for the negative electrode as the battery active material.
- These active materials are supplied and reacted from the outside, and products such as water are sequentially discharged to the outside continuously. Is possible.
- a separator of a fuel cell As a separator of a fuel cell, a molded product in which a composite material of conductive carbon and a resin such as epoxy is formed into an uneven plate shape, or a pressed product of a corrosion-resistant metal plate is known.
- the composite material using conductive carbon has a problem that the molding time is long, it cannot be made thin, it is easily cracked, and it is more expensive.
- the press-molded product of the corrosion-resistant metal plate has a problem that the corners of the formed irregularities are easily cracked and heavy.
- Patent Document 1 proposes a conductive paste containing a styrene-butadiene copolymer, an acryl-styrene copolymer, or an acryl-silicone copolymer for forming a conductive coating on the surface of a separator substrate. Has been.
- the conductive coating film formed with the conductive paste when the conductive coating film formed with the conductive paste is formed on the surface of the separator substrate and used inside the fuel cell, it may be in contact with acidic water, so it is formed with the conductive paste.
- the acid resistance of the conductive coating film is required, but the acid resistance of the conductive coating film formed from the conductive paste described in Patent Document 1 is not sufficient.
- An object of the present invention is to provide an aqueous conductive paste for a fuel cell separator that is suitable for forming a conductive coating film excellent in acid resistance.
- the present inventor has made extensive studies to form a conductive coating film excellent in acid resistance by using a polymer polymerized in the presence of an alcoholic hydroxyl group-containing polymer as a binder. It was found that an aqueous conductive paste for a fuel cell separator suitable for the above can be obtained.
- Aqueous conductive paste for battery separators (2) The binder is a copolymer of an acrylate and an acid monomer, and a ratio of the conductive material to the binder is 90:10 to 97: 3.
- the conductive material is graphite and carbon black, and the weight ratio of the graphite to the carbon black is 60:40 to 90:10, and the content of the conductive material is 50 to 75.
- the aqueous conductive paste for fuel cell separators according to (1) or (2) characterized in that the content is% by weight.
- an aqueous conductive paste for a fuel cell separator that is suitable for forming a conductive coating film excellent in acid resistance.
- the aqueous conductive paste for a fuel cell separator of the present invention contains a conductive material and a binder, and the binder is a polymer obtained by polymerization in the presence of an alcoholic hydroxyl group-containing polymer.
- Carbon is used as the conductive material.
- graphite, carbon black, or the like can be used, and graphite and carbon black are preferably used.
- the weight ratio of graphite to carbon black is preferably 60:40 to 90:10 (graphite: carbon black). If the ratio of graphite is too small, the viscosity of the conductive paste obtained on the substrate becomes high and the fluidity is lost, so that it is not suitable for coating. Moreover, when the ratio of graphite is too large, the smoothness of the coating film formed decreases, and as a result, the value of contact resistance increases.
- the particle diameter of graphite is preferably 5 to 80 ⁇ m
- the DBP (dibutyl phthalate) oil absorption amount of carbon black is preferably 50 ml to 400 ml / 100 g.
- the content of the conductive material in the aqueous conductive paste for fuel cell separator is 50 to 75% by weight.
- the amount of carbon in the aqueous conductive paste that is, the solid content concentration of carbon
- the amount of carbon in the aqueous conductive paste is usually 50 to 75 parts by weight, preferably 55 parts in 100 parts by weight of the aqueous conductive paste for fuel cell separators. It is ⁇ 73 parts by weight, more preferably 60 to 70 parts by weight. If the solid content concentration is lower than this range, the time and energy for drying the aqueous conductive paste for fuel cell separator increase, and the cost for obtaining the conductive coating film increases. Furthermore, it becomes difficult to control the thickness of the conductive coating film obtained.
- the solid content concentration is higher than this range, the viscosity of the aqueous conductive paste for fuel cell separators is increased and fluidity is lost, so that it is not suitable for coating. Moreover, even if a conductive coating film is formed in this case, a crack occurs in the conductive coating film.
- a polymer such as acid-modified polyacrylate can be used as the binder.
- the acid-modified polyacrylate include a copolymer of an acrylate and an acid monomer.
- the acrylate include ethyl acrylate, butyl acrylate, 2 ethylhexyl acrylate (2EHA), and isononyl acrylate.
- the acid monomer include acrylic acid and methacrylic acid.
- the amount of acrylate used when copolymerizing the polymer used for the binder is usually 75 to 95 parts by weight, preferably 80 to 90 parts by weight, with 100 parts by weight of the total amount of acrylate and acid monomer. If the amount of acrylate is too small, the formed conductive coating film tends to break, and if the amount of acrylate is too large, the peel strength of the formed conductive coating film decreases.
- the polymer used for the binder is obtained by obtaining an alkali-soluble copolymer and then neutralizing the alkali-soluble copolymer with a basic substance.
- the alkali-soluble copolymer is obtained by polymerizing a monomer mixture composed of an acrylate and an acid monomer, preferably in an aqueous medium, in the presence of an alcoholic hydroxyl group-containing polymer.
- the alcoholic hydroxyl group-containing polymer refers to an alcoholic hydroxyl group-containing polymer containing 5 to 25 alcoholic hydroxyl groups per 1000 molecular weight.
- the alcoholic hydroxyl group-containing polymer include vinyl alcohol polymers such as polyvinyl alcohol (PVOH) and various modified products thereof; saponified products of copolymers of vinyl acetate and acrylic acid, methacrylic acid or maleic anhydride; Examples thereof include cellulose derivatives such as alkyl cellulose, hydroxyalkyl cellulose, and alkylhydroxyalkyl cellulose; starch derivatives such as alkyl starch, carboxymethyl starch and oxidized starch; gum arabic, tragacanth gum; and polyalkylene glycol. Of these, vinyl alcohol polymers are preferred from the viewpoint of superior acid resistance.
- the weight average molecular weight (Mw) of the alcoholic hydroxyl group-containing polymer is not particularly limited, but is preferably 1,000 to 10,000. If the molecular weight is too small, the dispersion stabilizing effect is lowered, and conversely if too large, the viscosity when polymerized in the presence thereof becomes high, and the polymerization becomes difficult.
- the amount of the alcoholic hydroxyl group-containing polymer used is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the monomer mixture. If the amount is too small, the dispersion stabilizing effect is lowered, and thus aggregates are generated during the polymerization. On the other hand, if the amount is too large, the viscosity at the time of polymerization increases and the polymerization becomes difficult.
- the alcoholic hydroxyl group-containing polymer and monomer mixture may be added to the reactor all at once before the polymerization is started, or may be added separately or continuously after the polymerization is started.
- the addition amount can be uniform or constant, and can be changed depending on the progress of polymerization.
- the alcoholic hydroxyl group-containing polymer and the monomer mixture are added separately, they are added in the form of a monomer dispersion obtained by mixing the alcoholic hydroxyl group-containing polymer, the monomer mixture and water. It doesn't matter.
- the alcoholic hydroxyl group-containing polymer and the monomer mixture are added separately, it is desirable to start the addition of both at almost the same time. If only a monomer mixture is added in a large amount first, agglomerates are likely to be generated, and conversely, if only a large amount of alcoholic hydroxyl group-containing polymer is added first, the polymerization system thickens or agglomerates. Problems are likely to occur.
- the addition of both does not necessarily have to be the same, but it is desirable that the addition be almost the same.
- the methods of adding the alcoholic hydroxyl group-containing polymer and the monomer mixture there is obtained a method in which the alcoholic hydroxyl group-containing polymer is mixed with the monomer mixture and water to form a dispersion, which is continuously added to the reactor. It is preferable in that the chain distribution of the ethylenically unsaturated carboxylic acid monomer in the polymer polymer chain is uniform.
- the polymerization initiator that can be used for the production of the polymer is not particularly limited. Specific examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; Benzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, isobutyryl peroxide, benzoyl peroxide, etc.
- inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide
- Benzene hydroperoxide cumene hydroperoxide
- t-butyl hydroperoxide 1,1,3,3-tetramethylbutyl hydroperoxide
- di-t-butyl peroxide di-t-butyl peroxid
- Organic peroxides azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, methyl azobisisobutyrate, and the like. Of these, persulfates such as potassium persulfate and ammonium persulfate are preferable.
- These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used varies depending on the type, but is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the total amount of the monomer mixture. .
- Examples of the basic substance used when neutralizing the alkali-soluble copolymer obtained by polymerization as described above include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; calcium hydroxide and water. Examples thereof include hydroxides of alkaline earth metals such as magnesium oxide; ammonia; amines such as triethylamine and triethanolamine; and the like, or a mixture thereof. Of these, ammonia is preferred.
- the amount of the binder in the aqueous conductive paste for fuel cell separator is usually 1.5 to 12 parts by weight, preferably 3 to 10 parts by weight, in 100 parts by weight of the aqueous conductive paste for fuel cell separator.
- the aqueous conductive paste for a fuel cell separator of the present invention can be obtained by mixing the above-described conductive material and binder.
- the method for mixing the conductive material and the binder is not particularly limited.
- the conductive material and the binder can be obtained by kneading the binder dispersion and the conductive material in a batch kneader.
- the above-mentioned alcoholic hydroxyl group-containing polymer may be added and mixed as a dispersant.
- An additive may be further added to the aqueous conductive paste of the present invention as necessary.
- the additive include silicon-based and fluorine-based antifoaming agents, viscosity modifiers such as polyacrylic acid and polyvinyl alcohol as an additive.
- the method for producing the aqueous conductive paste include a method of kneading each material using a kneader such as a disper, roll, Banbury mixer, or extruder. A closed kneader such as a Banbury mixer is preferred.
- the conductive coating film can be formed by applying the aqueous conductive paste of the present invention onto a metal material or a carbon material used as a base material for a fuel cell separator and drying it.
- the coating method include a die coating method, a doctor blade method, a dipping method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and brush coating.
- it can use as a separator of a fuel cell by forming an electroconductive coating film on a base material.
- an aqueous conductive paste for a fuel cell separator that is suitable for forming a conductive coating film excellent in acid resistance.
- a conductive coating film can be formed with high accuracy by using the aqueous conductive paste for a fuel cell separator of the present invention.
- Example and a comparative example demonstrate this invention further more concretely, it is not limited to these Examples.
- part and% in an Example and a comparative example are mass references
- Each characteristic in an Example and a comparative example was measured in accordance with the following method. (Fluidity: Appearance of sheet after applying and drying conductive paste) The appearance of the surface of the conductive paste sheet obtained by drying a coating film formed with a doctor blade having a gap of 500 ⁇ m on a PET film at 90 ° C. for 1 hour was judged to determine the presence or absence of cracks.
- a SUS plate coated with a conductive paste sheet is immersed in acid water adjusted to pH 3 with sulfuric acid, heated to 60 ° C., immersed for 100 hours, washed with ion-exchanged water, and dried in the same manner.
- the peel strength was measured. It shows that the peel strength is good when it is 10 N or more.
- a conductive paste sheet formed by drying a coating film formed with a doctor blade with a gap of 500 ⁇ m on a PET film at 90 ° C. for 1 hour is cut into a predetermined size, and a metal terminal is brought into contact with the surface to measure volume resistivity. did.
- a SUS plate coated with a conductive paste sheet is immersed in acid water adjusted to pH 3 with sulfuric acid, heated to 60 ° C., immersed for 100 hours, washed with ion-exchanged water, and dried in the same manner.
- the resistance value (volume resistivity) was measured.
- the volume resistivity is good when it is 1000 m ⁇ cm or less.
- the volume average particle size was measured using a particle size measuring device (Coulter LS230: manufactured by Coulter).
- Example 1 Manufacture of binder composition
- seed latex latex of polymer particles having a particle diameter of 70 nm obtained by polymerizing 38 parts of styrene, 60 parts of methyl methacrylate, and 2 parts of methacrylic acid
- solid content 3 parts 50 parts of butyl acrylate, 35 parts of 2-ethylhexyl acrylate (2EHA), 15 parts of acrylic acid, 18 parts of polyvinyl alcohol (PVOH) having a weight average molecular weight of 1500, and 80 parts of ion-exchanged water were added and stirred.
- EHA 2-ethylhexyl acrylate
- PVOH polyvinyl alcohol
- the pH of the dispersion was adjusted by adding a 10% aqueous ammonia solution.
- the volume average particle diameter of the obtained particulate binder polymer was 0.21 ⁇ m.
- the obtained binder polymer dispersion, carbon and dispersant (polyvinyl alcohol) were kneaded for 30 minutes with a batch kneader to prepare a conductive paste.
- 55 parts of carbon was used with respect to 100 parts of the aqueous conductive paste for fuel cell separator.
- 5 parts of binder polymer was used with respect to 100 parts of carbon.
- As carbon 80 parts of graphite having a volume average particle diameter of 25 ⁇ m and 20 parts of carbon black having an oil absorption of 160 ml / 100 g were used.
- Example 2 Manufacture of binder composition
- the composition of the monomer mixture used for the polymerization was 5 parts of butyl acrylate, 85 parts of 2-ethylhexyl acrylate, 10 parts of acrylic acid, and the binder composition was the same as in Example 1 except that the amount of dispersant (PVOH) used was 20 parts.
- the product was manufactured to obtain a binder polymer dispersion.
- the volume average particle diameter of the obtained particulate binder polymer was 0.18 ⁇ m.
- Example 3 Manufacture of binder composition
- the composition of the monomer mixture used for polymerization was 20 parts of butyl acrylate, 70 parts of 2-ethylhexyl acrylate, 10 parts of acrylic acid, and the binder composition was the same as in Example 1 except that the amount of dispersant (PVOH) used was 15 parts.
- the product was manufactured to obtain a binder polymer dispersion.
- the volume average particle diameter of the obtained particulate binder polymer was 0.17 ⁇ m.
- Example 4 Manufacture of binder composition
- the composition of the monomer mixture used for the polymerization is 60 parts butyl acrylate, 20 parts 2ethylhexyl acrylate, 15 parts acrylic acid, the type of dispersant used is PVOH with a weight average molecular weight of 3000, and the amount of dispersant used is 15 parts.
- a binder composition was produced in the same manner as in Example 1 except that a binder polymer dispersion was obtained. The volume average particle diameter of the obtained particulate binder polymer was 0.18 ⁇ m.
- Example 5 Manufacture of binder composition
- the composition of the monomer mixture used for the polymerization was 65 parts of butyl acrylate, 25 parts of 2-ethylhexyl acrylate, 15 parts of acrylic acid, and the binder composition was the same as in Example 1 except that the amount of dispersant (PVOH) used was 15 parts.
- the product was manufactured to obtain a binder polymer dispersion.
- the volume average particle diameter of the obtained particulate binder polymer was 0.15 ⁇ m.
- Example 6 Manufacture of binder composition
- the composition of the monomer mixture used for the polymerization was 30 parts of butyl acrylate, 2 parts of ethyl hexyl acrylate, 15 parts of acrylic acid, and the binder composition was the same as in Example 1 except that the amount of dispersant (PVOH) used was 15 parts.
- the product was manufactured to obtain a binder polymer dispersion.
- the volume average particle diameter of the obtained particulate binder polymer was 0.15 ⁇ m.
- Example 1 Manufacture of binder composition
- a binder composition was produced in the same manner as in Example 1 except that the type of dispersant used for polymerization was non-PVOH (nonionic surfactant) and the amount of dispersant used was 1 part.
- a dispersion was obtained.
- the volume average particle diameter of the obtained particulate binder polymer was 0.12 ⁇ m.
- the obtained binder polymer dispersion, carbon and dispersant (polyvinyl alcohol) were kneaded for 30 minutes with a batch kneader to prepare a conductive paste.
- 55 parts of carbon was used with respect to 100 parts of the aqueous conductive paste for fuel cell separator.
- 5 parts of binder polymer was used with respect to 100 parts of carbon.
- As carbon 20 parts of carbon black having an oil absorption of 160 ml / 100 g was used for 80 parts of graphite having a particle diameter of 25 ⁇ m.
- Example 2 Manufacture of binder composition
- a binder composition was produced in the same manner as in Example 1 except that the type of dispersant used for polymerization was carboxymethylcellulose (CMC) and the amount of dispersant used was 15 parts. Obtained.
- the volume average particle diameter of the obtained particulate binder polymer was 0.29 ⁇ m.
- the obtained binder polymer dispersion, carbon and dispersant (polyvinyl alcohol) were kneaded for 30 minutes with a batch kneader to prepare a conductive paste.
- 55 parts of carbon was used with respect to 100 parts of the aqueous conductive paste for fuel cell separator.
- binder polymer As carbon, 20 parts of carbon black having an oil absorption of 55 ml / 100 g was used with respect to 80 parts of graphite having a particle diameter of 25 ⁇ m.
- Table 1 shows the results of the evaluation of the fluidity, paintability, film strength, resistance value, and volume average particle diameter of the particulate copolymer of the conductive pastes produced in Examples 1 to 6 and Comparative Examples 1 and 2. Show.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
Description
(1) 導電性材料およびバインダーを含む燃料電池セパレーター用水系導電性ペーストであって、前記バインダーは、アルコール性水酸基含有高分子の存在下で重合して得られるポリマーであることを特徴とする燃料電池セパレーター用水系導電性ペースト、
(2) 前記バインダーは、アクリレートと酸モノマーとの共重合体であって、前記導電性材料と前記バインダーとの比が、90:10~97:3であることを特徴とする(1)記載の燃料電池セパレーター用水系導電性ペースト、
(3) 前記導電性材料は、黒鉛およびカーボンブラックであって、前記黒鉛と前記カーボンブラックとの重量比が、60:40~90:10であり、前記導電性材料の含有量が50~75重量%であることを特徴とする(1)または(2)記載の燃料電池セパレーター用水系導電性ペースト
が提供される。
(流動性:導電性ペーストを塗布乾燥したシートの外観)
PETフィルム上に、ギャップ500μmのドクターブレードで形成した塗膜を90℃で1時間乾燥してなる導電性ペーストシート表面の外観を目視し、亀裂等の有無を判断した。なお、表1においては亀裂等の欠陥がない場合には○、亀裂等の欠陥がある場合には×として示した。
(塗料性:シート平滑度)
レーザー式深度計で、表面の粗さを測定した。JIS B0633:'01に準拠してRaを求めた。Raは、10μm以下であると平滑であることを示している。
(膜密着強度:剥離強度)
SUS板に導電性ペーストを、ギャップ500μmのドクターブレードで塗布形成した塗膜を90℃で1時間乾燥してなる導電性ペーストシートに、幅10mmの粘着テープを張り付け、180°剥離強度を測定した。
(抵抗値)
PETフィルム上に、ギャップ500μmのドクターブレードで形成した塗膜を90℃で1時間乾燥してなる導電性ペーストシートを所定の大きさに切り出し、金属端子を表面に接触させて体積抵抗率を測定した。
(粒子状共重合体の体積平均粒子径)
体積平均粒子径は、粒子径測定機(コールターLS230:コールター社製)を用いて、測定した。
(バインダー組成物の製造)
攪拌装置を備えたステンレス製耐圧反応器に、シードラテックス(スチレン38部、メチルメタアクリレート60部及びメタクリル酸2部を重合して得られる、粒子径70nmの重合体粒子のラテックス)を固形分にて3部、ブチルアクリレート50部、2エチルヘキシルアクリレート(2EHA)35部、アクリル酸15部、重量平均分子量1500のポリビニルアルコール(PVOH)18部、およびイオン交換水80部を添加し、攪拌した。次いで、別の反応器にEDTA0.05部を溶解したイオン交換水90部を仕込み、反応器内の温度を80℃に昇温した後、4%過硫酸カリウム水溶液10部を投入したのち、先の分散液を2時間かけて添加して重合した。添加終了後、反応温度を維持したまま1時間反応を継続した。重合転化率は97%であった。反応系を室温まで冷却して、重合反応を停止し、減圧して未反応単量体を除去した。イオン交換水を添加し、固形分濃度を45%、分散液のpHを7.5に調整することにより、バインダーポリマーの分散液を得た。なお、分散液のpHの調整は、10%アンモニア水溶液を添加することにより行った。
得られた粒子状のバインダーポリマーの体積平均粒子径は、0.21μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを55部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては体積平均粒子径25μmの黒鉛を80部、及び吸油量160ml/100gのカーボンブラックを20部用いた。
(バインダー組成物の製造)
重合に用いる単量体混合物の組成をブチルアクリレート5部、2エチルヘキシルアクリレート85部、アクリル酸10部とし、用いる分散剤(PVOH)の量を20部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.18μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを60部用いた。また、バインダーポリマーをカーボン100部に対して10部用いた。また、カーボンとしては粒子径55μmの黒鉛80部に対して吸油量160ml/100gのカーボンブラックを20部用いた。
(バインダー組成物の製造)
重合に用いる単量体混合物の組成をブチルアクリレート20部、2エチルヘキシルアクリレート70部、アクリル酸10部とし、用いる分散剤(PVOH)の量を15部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.17μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを70部用いた。また、バインダーポリマーをカーボン100部に対して3部用いた。また、カーボンとしては粒子径25μmの黒鉛90部に対して吸油量160ml/100gのカーボンブラックを10部用いた。
(バインダー組成物の製造)
重合に用いる単量体混合物の組成をブチルアクリレート60部、2エチルヘキシルアクリレート20部、アクリル酸15部とし、用いる分散剤の種類を重量平均分子量3000のPVOHとし、用いる分散剤の量を15部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.18μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを60部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては体積平均粒子径25μmの黒鉛60部に対して吸油量160ml/100gのカーボンブラックを40部用いた。
(バインダー組成物の製造)
重合に用いる単量体混合物の組成をブチルアクリレート65部、2エチルヘキシルアクリレート25部、アクリル酸15部とし、用いる分散剤(PVOH)の量を15部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.15μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを60部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては体積平均粒子径30μmの黒鉛80部に対して吸油量55ml/100gのカーボンブラックを20部用いた。
(バインダー組成物の製造)
重合に用いる単量体混合物の組成をブチルアクリレート30部、2エチルヘキシルアクリレート50部、アクリル酸15部とし、用いる分散剤(PVOH)の量を15部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.15μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを60部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては粒子径75μmの黒鉛80部に対して吸油量55ml/100gのカーボンブラックを20部用いた。
(バインダー組成物の製造)
重合を行う際に用いる分散剤の種類を非PVOH(ノニオン系界面活性剤)とし、用いる分散剤の量を1部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.12μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを55部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては粒子径25μmの黒鉛80部に対して吸油量160ml/100gのカーボンブラックを20部用いた。
(バインダー組成物の製造)
重合を行う際に用いる分散剤の種類をカルボキシメチルセルロース(CMC)とし、用いる分散剤の量を15部とした以外は実施例1と同様にバインダー組成物の製造を行い、バインダーポリマーの分散液を得た。得られた粒子状のバインダーポリマーの体積平均粒子径は、0.29μmであった。
(燃料電池セパレーター用導電性ペーストの製造)
得られたバインダーポリマーの分散液、カーボンと分散剤(ポリビニルアルコール)をバッチ式混錬機で30分間混錬して導電性ペーストを作製した。ここで、燃料電池セパレーター用水系導電性ペースト100部に対してカーボンを55部用いた。また、バインダーポリマーをカーボン100部に対して5部用いた。また、カーボンとしては粒子径25μmの黒鉛80部に対して吸油量55ml/100gのカーボンブラックを20部用いた。
Claims (3)
- 導電性材料およびバインダーを含む燃料電池セパレーター用水系導電性ペーストであって、
前記バインダーは、アルコール性水酸基含有高分子の存在下で重合して得られるポリマーであることを特徴とする燃料電池セパレーター用水系導電性ペースト。 - 前記バインダーは、アクリレートと酸モノマーとの共重合体であって、
前記導電性材料と前記バインダーとの比が、90:10~97:3であることを特徴とする請求項1記載の燃料電池セパレーター用水系導電性ペースト。 - 前記導電性材料は、黒鉛およびカーボンブラックであって、
前記黒鉛と前記カーボンブラックとの重量比が、60:40~90:10であり、
前記導電性材料の含有量が50~75重量%であることを特徴とする請求項1または2記載の燃料電池セパレーター用水系導電性ペースト。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014500749A JP6119734B2 (ja) | 2012-02-23 | 2013-02-21 | 燃料電池セパレーター用水系導電性ペーストの製造方法 |
US14/380,417 US20150041729A1 (en) | 2012-02-23 | 2013-02-21 | Aqueous electroconductive paste for fuel cell separator |
US14/939,683 US20160064745A1 (en) | 2012-02-23 | 2015-11-12 | Method For Producing Aqueous Electroconductive Paste for fuel Cell Separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-037628 | 2012-02-23 | ||
JP2012037628 | 2012-02-23 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/380,417 A-371-Of-International US20150041729A1 (en) | 2012-02-23 | 2013-02-21 | Aqueous electroconductive paste for fuel cell separator |
US14/939,683 Continuation US20160064745A1 (en) | 2012-02-23 | 2015-11-12 | Method For Producing Aqueous Electroconductive Paste for fuel Cell Separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125611A1 true WO2013125611A1 (ja) | 2013-08-29 |
Family
ID=49005791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/054259 WO2013125611A1 (ja) | 2012-02-23 | 2013-02-21 | 燃料電池セパレーター用水系導電性ペースト |
Country Status (3)
Country | Link |
---|---|
US (2) | US20150041729A1 (ja) |
JP (1) | JP6119734B2 (ja) |
WO (1) | WO2013125611A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015220162A (ja) * | 2014-05-20 | 2015-12-07 | 日本ゼオン株式会社 | 燃料電池セパレーター用水系導電性ペーストの製造方法 |
JP2016081717A (ja) * | 2014-10-16 | 2016-05-16 | 東洋インキScホールディングス株式会社 | コーティング用組成物、コート層付セパレータ及び燃料電池 |
WO2016098446A1 (ja) * | 2014-12-19 | 2016-06-23 | 日本ゼオン株式会社 | 導電性インク |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63193926A (ja) * | 1987-02-09 | 1988-08-11 | Sumitomo Chem Co Ltd | ポリピロ−ル類水分散液の製造方法 |
JP2000058083A (ja) * | 1998-06-05 | 2000-02-25 | Nisshinbo Ind Inc | 燃料電池用セパレータ及びその製造方法 |
JP2001229931A (ja) * | 2000-02-15 | 2001-08-24 | Unitika Ltd | 燃料電池用セパレータ、それを得るための成形体、及びその製造方法 |
JP2002140930A (ja) * | 2000-11-01 | 2002-05-17 | Mitsubishi Rayon Co Ltd | 導電性組成物、及び柔軟性導電体 |
JP2007157387A (ja) * | 2005-12-01 | 2007-06-21 | Toyota Motor Corp | 燃料電池の製造方法及び燃料電池 |
JP2008078143A (ja) * | 2001-11-21 | 2008-04-03 | Hitachi Powdered Metals Co Ltd | 燃料電池セパレーター用塗料 |
JP2009256491A (ja) * | 2008-04-17 | 2009-11-05 | Kansai Paint Co Ltd | カチオン電着塗料組成物 |
JP2010248474A (ja) * | 2009-03-25 | 2010-11-04 | Nisshin Steel Co Ltd | 導電性塗料、および塗装ステンレス鋼板 |
WO2011025035A1 (ja) * | 2009-08-31 | 2011-03-03 | 日新化成株式会社 | コーティング用組成物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186557A (ja) * | 1984-03-06 | 1985-09-24 | Victor Co Of Japan Ltd | 導電性樹脂組成物及び情報信号記録媒体 |
WO2007116718A1 (ja) * | 2006-03-30 | 2007-10-18 | Zeon Corporation | 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極 |
-
2013
- 2013-02-21 WO PCT/JP2013/054259 patent/WO2013125611A1/ja active Application Filing
- 2013-02-21 JP JP2014500749A patent/JP6119734B2/ja not_active Expired - Fee Related
- 2013-02-21 US US14/380,417 patent/US20150041729A1/en not_active Abandoned
-
2015
- 2015-11-12 US US14/939,683 patent/US20160064745A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63193926A (ja) * | 1987-02-09 | 1988-08-11 | Sumitomo Chem Co Ltd | ポリピロ−ル類水分散液の製造方法 |
JP2000058083A (ja) * | 1998-06-05 | 2000-02-25 | Nisshinbo Ind Inc | 燃料電池用セパレータ及びその製造方法 |
JP2001229931A (ja) * | 2000-02-15 | 2001-08-24 | Unitika Ltd | 燃料電池用セパレータ、それを得るための成形体、及びその製造方法 |
JP2002140930A (ja) * | 2000-11-01 | 2002-05-17 | Mitsubishi Rayon Co Ltd | 導電性組成物、及び柔軟性導電体 |
JP2008078143A (ja) * | 2001-11-21 | 2008-04-03 | Hitachi Powdered Metals Co Ltd | 燃料電池セパレーター用塗料 |
JP2007157387A (ja) * | 2005-12-01 | 2007-06-21 | Toyota Motor Corp | 燃料電池の製造方法及び燃料電池 |
JP2009256491A (ja) * | 2008-04-17 | 2009-11-05 | Kansai Paint Co Ltd | カチオン電着塗料組成物 |
JP2010248474A (ja) * | 2009-03-25 | 2010-11-04 | Nisshin Steel Co Ltd | 導電性塗料、および塗装ステンレス鋼板 |
WO2011025035A1 (ja) * | 2009-08-31 | 2011-03-03 | 日新化成株式会社 | コーティング用組成物 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015220162A (ja) * | 2014-05-20 | 2015-12-07 | 日本ゼオン株式会社 | 燃料電池セパレーター用水系導電性ペーストの製造方法 |
JP2016081717A (ja) * | 2014-10-16 | 2016-05-16 | 東洋インキScホールディングス株式会社 | コーティング用組成物、コート層付セパレータ及び燃料電池 |
WO2016098446A1 (ja) * | 2014-12-19 | 2016-06-23 | 日本ゼオン株式会社 | 導電性インク |
JP2016117819A (ja) * | 2014-12-19 | 2016-06-30 | トヨタ自動車株式会社 | 導電性インク |
CN107004870A (zh) * | 2014-12-19 | 2017-08-01 | 日本瑞翁株式会社 | 导电性油墨 |
US10263261B2 (en) | 2014-12-19 | 2019-04-16 | Zeon Corporation | Electrically conductive ink |
Also Published As
Publication number | Publication date |
---|---|
JP6119734B2 (ja) | 2017-04-26 |
JPWO2013125611A1 (ja) | 2015-07-30 |
US20160064745A1 (en) | 2016-03-03 |
US20150041729A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101959962B1 (ko) | 전기 화학 소자 전극용 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자 전극 | |
JP5462016B2 (ja) | 二次電池耐熱保護層用バインダーおよび耐熱保護層用組成物 | |
US10263261B2 (en) | Electrically conductive ink | |
JP5567429B2 (ja) | リチウムイオン二次電池用導電層 | |
JP2015018776A (ja) | 電池用水系電極組成物用バインダー | |
WO2018043200A1 (ja) | リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ | |
CN114560973A (zh) | 一种锂离子电池正极水性粘结剂及其制备方法 | |
JP5817616B2 (ja) | 水系導電性塗料 | |
JP6119734B2 (ja) | 燃料電池セパレーター用水系導電性ペーストの製造方法 | |
WO2022138613A1 (ja) | 二次電池電極用バインダー及びその利用 | |
TW201710308A (zh) | 共聚合物、二次電池之電極用黏合劑、二次電池之電極用組成物、二次電池用電極 | |
WO2017188055A1 (ja) | リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ | |
CN112739786B (zh) | 包含n-乙烯基羧酸酰胺的聚合物的水性涂覆液用组合物 | |
JP6363331B2 (ja) | 電池電極用水系バインダー及びその製造方法 | |
JP7220215B2 (ja) | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス | |
EP4015544A1 (en) | Composition for electricity storage devices, slurry for electricity storage device electrodes, electricity storage device electrode, and electricity storage device | |
JP6326958B2 (ja) | 燃料電池セパレーター用水系導電性ペーストの製造方法 | |
JP2015195114A (ja) | 電極組成物用水系バインダ | |
JP4428881B2 (ja) | 水性アクリル系感圧接着剤組成物 | |
JP7220216B2 (ja) | 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス | |
JP2018076446A (ja) | 可溶性多官能ビニル共重合体、その製造方法、これを含む硬化性樹脂組成物、その塗膜及び硬化物 | |
JP6083432B2 (ja) | 水系導電性塗料および水系導電性塗料の製造方法 | |
JP6973695B2 (ja) | リチウムイオン二次電池バインダー用水性樹脂組成物、及びリチウムイオン二次電池用セパレータ | |
JP2023156097A (ja) | 蓄電デバイスならびにそれに用いられるバインダー、水分散体、樹脂組成物およびセパレータ | |
CN116333650A (zh) | 一种用于钠离子电池硬碳负极材料的水性粘合剂 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751703 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014500749 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14380417 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13751703 Country of ref document: EP Kind code of ref document: A1 |