WO2013125262A1 - トリメチルシランの精製方法 - Google Patents

トリメチルシランの精製方法 Download PDF

Info

Publication number
WO2013125262A1
WO2013125262A1 PCT/JP2013/050639 JP2013050639W WO2013125262A1 WO 2013125262 A1 WO2013125262 A1 WO 2013125262A1 JP 2013050639 W JP2013050639 W JP 2013050639W WO 2013125262 A1 WO2013125262 A1 WO 2013125262A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethylsilane
activated carbon
impurities
gas
adsorption
Prior art date
Application number
PCT/JP2013/050639
Other languages
English (en)
French (fr)
Inventor
手島 卓也
茂朗 柴山
陽介 中村
知之 平岡
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to KR1020147025932A priority Critical patent/KR101623827B1/ko
Priority to CN201380010463.XA priority patent/CN104136447B/zh
Priority to US14/380,079 priority patent/US9073953B2/en
Priority to EP13751853.6A priority patent/EP2818475B1/en
Publication of WO2013125262A1 publication Critical patent/WO2013125262A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage

Definitions

  • the present invention relates to a method for purifying trimethylsilane which is useful as a film forming material in semiconductor production.
  • trimethylsilane As a method for producing trimethylsilane, a method in which trimethylchlorosilane ((CH 3 ) 3 SiCl) is reduced using an appropriate hydrogenating agent is generally used.
  • Non-patent Document 1 a method of synthesizing trimethylchlorosilane and lithium aluminum hydride (LiAlH 4 ) by reacting them in a solvent of dimethoxyethane (DME) is disclosed (Non-patent Document 1). Also disclosed are a method using lithium hydride (LiH) as a hydrogenating agent (Patent Document 1) and a method using diethylaluminum hydride ((C 2 H 5 ) 2 AlH) (Patent Document 2). In addition, a method using a lithium aluminum hydride as a hydrogenating agent and an aromatic hydrocarbon organic solvent as a solvent is disclosed (Patent Document 3).
  • trimethylchlorosilane which is a common raw material in these synthesis methods, usually several tens to several thousand ppm of methyltrichlorosilane (CH 3 SiCl 3 ), dimethyldichlorosilane ((CH 3 ) 2 SiCl 2 ), tetrachloride Silicon (SiCl 4 ) or the like is mixed as impurities, and these impurities react with the hydrogenating agent to react with the corresponding silanes, that is, methylsilane (CH 3 SiH 3 ), dimethylsilane ((CH 3 ) 2 SiH 2. ) Or silane (SiH 4 ).
  • Patent Document 4 As a method for removing these impurities, purification by distillation is generally used, but other methods utilizing recrystallization, reprecipitation, and sublimation can also be used. Furthermore, a method using activated carbon (Patent Document 4) and a method of cleaning gas with an absorbing solution (Patent Document 5) are disclosed.
  • Activated carbon has a porous structure and itself acts as a heat insulating material, so that heat generated in the packed tower packed with activated carbon is easily accumulated.
  • the heat of reaction caused by the disproportionation reaction caused by the generated heat of adsorption further increases the temperature of the activated carbon in the packed tower.
  • the present invention relates to a purification method for removing impurities such as dimethylsilane, which is an impurity in trimethylsilane, using activated carbon, and purification of trimethylsilane capable of efficiently removing impurities by suppressing heat generation of the activated carbon. It aims to provide a method.
  • the inventors of the present invention adsorbed trimethylsilane in advance to activated carbon containing copper (II) oxide and zinc oxide, and trimethylsilane containing impurities in the activated carbon.
  • the inventors have found that the heat generation of activated carbon is suppressed by contacting the substrate and impurities such as dimethylsilane can be efficiently removed, resulting in the present invention.
  • the present invention includes (1) a step of preparing activated carbon impregnated with at least copper (II) oxide and zinc oxide, (2) a step of adsorbing trimethylsilane to the activated carbon, (3) silane, methylsilane, or dimethyl
  • the present invention provides a method for purifying trimethylsilane comprising the step of bringing trimethylsilane containing silane as an impurity into contact with activated carbon which has been subjected to the step (2) and adsorbing the impurity to remove it from trimethylsilane.
  • the present invention provides the method for purifying trimethylsilane, wherein in the step (2), trimethylsilane is adsorbed on the activated carbon by bringing diluted trimethylsilane into contact with the activated carbon. .
  • the trimethylsilane to be purified contains silane, methylsilane, or dimethylsilane, and is obtained by the above-mentioned known method in which trimethylchlorosilane ((CH 3 ) 3 SiCl) is reduced with a hydrogenating agent.
  • the activated carbon used in this step is a so-called impregnated activated carbon containing copper (II) oxide and zinc oxide. Any shape such as granular, sheet, crushed, granular, and fibrous can be used. Such activated carbon is commercially available. When used in a packed tower form, granular, crushed, granular, etc. can be preferably used.
  • the method of adsorbing copper (II) oxide and zinc oxide on activated carbon is as follows: Any method can be used as long as this chemical interaction can be expected.
  • a method of mixing raw materials crushed before carbonization during the production of activated carbon with powders of copper (II) oxide and zinc oxide, carbonizing and activating, a method of attaching to activated carbon using surface potential, powdered carbon There is a method in which copper, copper (II) oxide and zinc oxide are kneaded in the presence of a suitable binder, and after granulation, heat treatment is applied.
  • a suitable binder any binder that can be cured after kneading can be used.
  • inorganic materials, thermosetting resins, thermoplastic resins, etc. used for inorganic adhesives such as cement, water glass, and solder. can be used.
  • thermosetting resin phenol resin, epoxy resin, unsaturated polyester resin, alkyd resin, melamine resin, urea resin, polyurethane, and thermosetting polyimide
  • thermoplastic resin polyethylene, polypropylene, polyvinyl chloride, acrylic resin, polyvinyl chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, ABS resin, AS resin, polyamide, polycarbonate, cyclic polyolefin, and the like can be used.
  • the concentration of copper (II) oxide and zinc oxide with respect to the activated carbon is preferably 1 to 10 wt% in terms of Cu and 1 to 10 wt% in terms of Zn, and the ratio of copper (II) oxide and zinc oxide is particularly Not limited.
  • concentrations of copper (II) oxide and zinc oxide are less than 1 wt% as Cu and Zn, the removal ability of silane, methylsilane, and dimethylsilane is lowered, and complete removal cannot be performed.
  • the concentration of copper oxide (II) and zinc oxide exceeds 10 wt% as Cu and Zn, it is not preferable because the adsorption ability of the activated carbon itself is remarkably reduced as the specific surface area decreases.
  • trimethylsilane is adsorbed on the activated carbon prepared in the step (1).
  • the trimethylsilane used for this adsorption is desirably as highly pure as possible, and it is preferable to use trimethylsilane having a purity of at least 95% or more, more preferably a purity of 99.9% or more.
  • Concerning impurities, silane, methylsilane, and dimethylsilane may be included, but a corrosive substance such as trimethylchlorosilane only damages equipment for carrying out the present invention.
  • the content is preferably less than 1 vol%.
  • trimethylsilane can be adsorbed by contacting the activated carbon.
  • this method there is a method of contacting the activated carbon in a gaseous state or a method of contacting with the liquid, but a method of contacting in a gaseous state having a large diffusion coefficient is efficient.
  • a batch type or a distribution type may be used, it is preferable to use a distribution type in order to improve production efficiency industrially.
  • the temperature of the activated carbon at the time of adsorption is preferably as low as possible considering the disproportionation reaction of trimethylsilane.
  • the boiling point of trimethylsilane is 6.7 ° C.
  • the disproportionation reaction of trimethylsilane is likely to occur, and the possibility that impurities such as tetramethylsilane ((CH 3 ) 4 Si) are by-produced increases. Above 135 ° C, the disproportionation reaction becomes particularly significant.
  • the by-produced tetramethylsilane adsorbs and stays on the activated carbon, and then may be mixed into the product to be purified when contacting trimethylsilane containing impurities to be purified.
  • the temperature of the activated carbon at the time of adsorption is preferably less than 100 ° C., and this step is preferably completed. It is more preferable to adsorb until the temperature rise stops and to end this step.
  • trimethylsilane when brought into contact with the activated carbon, it is preferable to contact only trimethylsilane in consideration of raw material costs and simplification of the process.
  • the cooling for adjusting the temperature of the activated carbon to a temperature at which disproportionation reaction is unlikely to occur, there is a possibility that the load of cooling capacity becomes large and the equipment structure of the activated carbon tower becomes complicated.
  • it is preferable to contact trimethylsilane at a low temperature but since the boiling point of trimethylsilane is 6.7 ° C., there is a limit as to the effect of reducing the load. For this reason, it is preferable to dilute trimethylsilane with a gas that is inert to trimethylsilane and difficult to be adsorbed on the activated carbon, and to contact the activated carbon.
  • gases used for dilution include rare gases such as helium, neon, argon, krypton, and xenon, and nitrogen.
  • a gas highly reactive with trimethylsilane is not preferable because other impurities are produced and affect the purity. Further, in the case of a gas that is highly reactive with activated carbon or easily adsorbed, it is not preferable because it may cause a decrease in adsorption capacity.
  • the dilution ratio at the time of dilution is not particularly limited, the purpose of this step is to suppress the temperature rise of the activated carbon and adsorb trimethylsilane, so the temperature of the activated carbon in this step depends on the heat of adsorption of trimethylsilane. It is preferable to adsorb at a temperature that does not cause a disproportionation reaction. For this reason, a dilution rate can be suitably selected with the supply amount per time of the gas to contact, and the temperature of the activated carbon at the time of contact. Generally, as the concentration of trimethylsilane is increased, a rapid temperature increase due to heat of adsorption is observed. In order to avoid this, it is preferable to dilute and adsorb.
  • the dilution ratio at the time of dilution is preferably 0.5 to 100 times in terms of the volume ratio of the inert gas to trimethylsilane.
  • the dilution ratio exceeds 100 times, much time is required in consideration of the adsorption time and the amount of gas used for dilution, and the processing efficiency decreases.
  • the dilution factor is less than 0.5, it is difficult to obtain the effect of dilution.
  • the dilution ratio of trimethylsilane during this step does not need to be constant.
  • a large amount of heat of adsorption is likely to be generated, so that it is preferable to adsorb at a relatively high dilution factor.
  • This heat treatment is a treatment in which the activated carbon is heated at 100 to 300 ° C. to remove adsorbed moisture and the like by vacuum degassing or inert gas flow.
  • the activated carbon that has been completed the step (2) is used as an impurity, such as silane, methylsilane, or dimethylsilane. Containing trimethylsilane to be purified.
  • a contact method there are a gas contact method and a liquid contact method, but a gas contact method with a large diffusion coefficient is efficient. Either a batch type or a flow type may be used, but in order to remove impurities efficiently, the flow type is preferable, and among them, a multi-stage type is excellent and more preferable.
  • the temperature of the activated carbon at the time of contact is the same as in the case of the step (2).
  • the impurities are replaced with the trimethylsilane adsorbed by the step (2), or the trimethylsilane of the activated carbon is adsorbed. It is thought that the impurities are removed by adsorbing to the surface that is not. Furthermore, since the adsorption of trimethylsilane to activated carbon has already been performed by the step (2), the rapid adsorption of the purified trimethylsilane itself is inhibited, and the step (2) is not performed. Compared with, the heat generation of the activated carbon is suppressed, and the generation of impurities due to heating is also suppressed.
  • the rapid adsorption of the trimethylsilane to be purified can be inhibited.
  • the heat generation of the activated carbon due to the heat of adsorption is suppressed, so that the disproportionation reaction of trimethylsilane is suppressed and the increase in impurity concentration can be suppressed. Therefore, it is possible to obtain high purity trimethylsilane.
  • Examples 1 to 5 Activated carbon containing zinc oxide and copper oxide by attachment in a tube made of SUS304 having an inner diameter of 158.4 mm x length of 3350 mm (active carbon filling height: 3000 mm) (Nippon Enviro Chemicals Co., Ltd. Granular white seaweed XRC410: content 1 as Cu
  • the packing in the packed tower packed with 30 kg of ⁇ 10 wt% and 1-10 wt% Zn was vacuum degassed at 200 ° C. for 1 hour to desorb moisture adhering to the activated carbon. Then, it cooled once to room temperature of 25 degreeC.
  • the packed tower After adsorption of trimethylsilane, the packed tower was returned to room temperature (25 ° C.) while purging with nitrogen gas for 2 hours. Thereafter, trimethylsilane containing 62 volppm of methylsilane and 248 volppm of dimethylsilane was passed through the packed tower at 100 sccm under atmospheric pressure, and purification was performed for the purpose of removing these two kinds of impurities.
  • the temperature of the packed column during the purification was 33 ° C. in all examples.
  • Example 6 The packing in the packed tower in which 30 kg of the same activated carbon as in Example 1 is packed in a tube made of SUS304 having an inner diameter of 158.4 mm ⁇ length of 3350 mm (active carbon packing height: 3000 mm) is vacuum degassed at 200 ° C. for 1 hour. By degassing, water adhering to the activated carbon was desorbed. Then, it cooled once to room temperature of 25 degreeC.
  • mixed gas was supplied to the packed tower while supplying trimethylsilane (purity 99.9% or more) at a flow rate of 3 slm and nitrogen gas (purity 99.999% or more) at a flow rate of 10 slm (dilution ratio was approximately 3.3 times).
  • trimethylsilane purity 99.9% or more
  • nitrogen gas purity 99.999% or more
  • the packed tower After stopping the supply, the packed tower was returned to room temperature (25 ° C.) while purging the packed tower with nitrogen gas for 2 hours. Thereafter, 30 kg of trimethylsilane containing 10 volppm of silane and 500 volppm of dimethylsilane was passed through the packed tower at a flow rate of 17 slm, and purification was performed for the purpose of removing these two kinds of impurities.
  • the temperature of the packed column during the purification was 31 ° C.
  • the gas at the outlet of the packed tower during the purification was analyzed by gas chromatography and a gas chromatograph mass spectrometer.
  • concentrations of silane and dimethylsilane were both less than 1 volppm which is the lower limit of quantification.
  • the contents of methane and tetramethylsilane were similarly analyzed, but both were less than 1 volppm which is the lower limit of quantification.
  • Example 7 After vacuum degassing at 250 ° C. for 1 hour, the packed material in a packed tower in which 62 g of the same activated carbon as in Example 1 (packed length: 300 mm) is packed in a stainless steel tube having an inner diameter of 22.1 mm and a length of 600 mm is used. After returning to room temperature (25 ° C.), a mixed gas obtained by diluting trimethylsilane with nitrogen gas (both purity is 99.999% or more) with a dilution ratio of 0.6 times in a volume ratio is supplied to the packed column at a flow rate of 0.5 slm. Then, the trimethylsilane was adsorbed until the temperature increase due to heat of adsorption could not be confirmed.
  • the packed tower After adsorption of trimethylsilane, the packed tower was returned to room temperature (25 ° C.) while purging with nitrogen gas for 2 hours. Thereafter, trimethylsilane containing 62 volppm of methylsilane and 248 volppm of dimethylsilane was passed through the packed column at 100 sccm under atmospheric pressure, and purification was performed for the purpose of removing these two kinds of impurities.
  • the temperature of the packed column during the purification was 32 ° C.
  • the gas at the outlet of the packed tower at the time of the purification was analyzed by gas chromatography and a gas chromatograph mass spectrometer.
  • concentrations of methylsilane and dimethylsilane were both less than 1 volppm which is the lower limit of quantification.
  • contents of methane and tetramethylsilane were similarly analyzed, but both were less than 1 volppm which is the lower limit of quantification.
  • Example 8 After vacuum degassing at 250 ° C. for 1 hour, the packed material in a packed tower in which 62 g of the same activated carbon as in Example 1 (packed length: 300 mm) is packed in a stainless steel tube having an inner diameter of 22.1 mm and a length of 600 mm is used.
  • a mixed gas obtained by diluting trimethylsilane with nitrogen gas (purity: 99.999% or more respectively) at a dilution ratio of 50 times by volume ratio can be confirmed at a flow rate of 0.5 slm. It was made to distribute
  • the packed tower After adsorption of trimethylsilane, the packed tower was returned to room temperature (25 ° C.) while purging with nitrogen gas for 2 hours. Thereafter, trimethylsilane containing 62 volppm of methylsilane and 248 volppm of dimethylsilane was passed through the packed column at 100 sccm under atmospheric pressure, and purification was performed for the purpose of removing these two kinds of impurities. The temperature of the packed column during the purification was 29 ° C.
  • the gas at the outlet of the packed tower at the time of the purification was analyzed by gas chromatography and a gas chromatograph mass spectrometer.
  • concentrations of methylsilane and dimethylsilane were both less than 1 volppm which is the lower limit of quantification.
  • contents of methane and tetramethylsilane were similarly analyzed, but both were less than 1 volppm which is the lower limit of quantification.
  • Example 1 The same operation as in Example 6 was performed except that the treatment for adsorbing trimethylsilane was not performed. During this time, the temperature of the packed tower rose to a maximum of 380 ° C.
  • the gas at the outlet of the packed tower was analyzed by gas chromatography and a gas chromatograph mass spectrometer. As a result, not only dimethylsilane was detected at 500 volppm, but tetramethylsilane was detected at 2000 volppm, and methane was detected at 100 volppm, making the desired purification difficult. This result is considered to be because the disproportionation reaction was remarkably caused by the temperature rise.
  • Example 2 The same operation as in Example 7 was performed except that the treatment for adsorbing trimethylsilane was not performed. During this time, the temperature of the packed tower reached a maximum of 267 ° C.
  • the gas at the outlet of the packed tower was analyzed by gas chromatography and a gas chromatograph mass spectrometer. As a result, 78 volppm of methylsilane and 280 volppm of dimethylsilane were detected, 410 volppm of tetramethylsilane and 100 volppm of methane were detected, and the desired purification was difficult. This result is considered to be because the disproportionation reaction was remarkably caused by the temperature rise.
  • the present invention can be used for the purification of trimethylsilane using activated carbon.
  • this is an effective means when the generation of impurities becomes a problem due to the heat of adsorption of trimethylsilane on activated carbon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

 開示されているのは、(1)少なくとも酸化銅(II)及び酸化亜鉛を添着させた活性炭を準備する工程、(2)トリメチルシランを前記活性炭に吸着させる工程、(3)シラン、メチルシラン、又はジメチルシランを不純物として含むトリメチルシランを前記(2)の工程を終了した活性炭に接触させ、該不純物を吸着させてトリメチルシランから除去する工程、からなるトリメチルシランの精製方法である。この方法によって、活性炭の発熱が抑制されて、ジメチルシランなどの不純物を効率的に除去できる。

Description

トリメチルシランの精製方法
 本発明は、半導体製造における成膜原料として有用なトリメチルシランの精製方法に関するものである。
発明の背景
 トリメチルシラン((CH33SiH)は、近年では半導体分野における層間絶縁膜として成膜原料としてもその用途が拡大している。
 トリメチルシランの製造法としては、トリメチルクロロシラン((CH33SiCl)を適当な水素化剤を用いて還元する方法が一般的である。
 例えば、トリメチルクロロシランと水素化アルミニウムリチウム(LiAlH4)とをジメトキシエタン(DME)の溶媒中で反応させることにより合成する方法が開示されている(非特許文献1)。また、水素化剤として水素化リチウム(LiH)を用いる方法(特許文献1)やジエチルアルミニウムハイドライド((C252AlH)を用いる方法(特許文献2)が開示されている。また、水素化剤に水素化アルミニウムリチウムを、溶媒に芳香族炭化水素系有機溶媒を用いる方法(特許文献3)が開示されている。
 これらの合成法において共通の原料であるトリメチルクロロシラン中には、通常、数十~数千ppmのメチルトリクロロシラン(CH3SiCl3)、ジメチルジクロロシラン((CH32SiCl2)、四塩化ケイ素(SiCl4)等が不純物として混入しており、これらの不純物が水素化剤と反応することで対応するシラン類、すなわちメチルシラン(CH3SiH3)、ジメチルシラン((CH32SiH2)、又はシラン(SiH4)が生成する。また、これらのクロロシラン系の不純物を全く含まない場合においても、水素化剤と反応させる過程において、不均化反応が生じてこれらのシラン類がトリメチルシラン中に不純物として混入する。あるいは、未反応のクロロシラン系不純物の残存や副生成不純物も見られる。
 昨今、半導体製造における成膜原料には、非常に高純度なものが必要とされており、合成したトリメチルシランを半導体用途に供するには、これらの不純物を低減することは必要不可欠である。
 これらの不純物を除去する方法としては、通常、蒸留操作による精製が一般的であるが、その他にも再結晶、再沈殿、昇華を利用する方法を用いることができる。さらには、活性炭を利用する方法(特許文献4)、吸収溶液でガスを洗浄するような方法(特許文献5)が開示されている。
 最も一般的である蒸留手段を用いる場合、トリメチルシランと比較的沸点が近いジメチルシランを完全に除去するためには高段数の蒸留塔が必要であり、経済的ではない問題があった。また、蒸留により沸点の近い微量の不純物を完全に除去するためには、製品のロスが多くなり、収率低下にもつながる。
 これに対し、上記の活性炭を利用する特許文献4に記載の方法により、不純物の効果的な除去が可能となった。
特開平2-221110号公報 特開2004-115388号公報 特開2005-154336号公報 特開2006-117559号公報 特開2006-206444号公報
J.Amer.Chem.Soc.,83,1916(1961)
 従来の活性炭を利用する方法では、不純物の除去を目的に被精製物であるトリメチルシランを活性炭に接触させる際、吸着熱により活性炭が高温になり、この熱のため、この活性炭が充填されている設備の機械的な問題による不具合を起こす他、吸着された不純物が脱着したり、トリメチルシランの不均化反応が起こったりし、結果的に被精製物中の不純物濃度が上昇するなどの不具合が引き起こされる場合がある。
 これは、不純物だけでなく被精製物であるトリメチルシランも活性炭に吸着し、吸着熱が発生するためである。活性炭はポーラスな構造であり、それ自体断熱材としても働くため、活性炭が充填されている充填塔内に発生した熱が蓄積されやすい。また、吸着熱の他、発生する吸着熱により引き起こされる不均化反応による反応熱が該充填塔内の活性炭の温度を更に高める。
 本発明は、トリメチルシラン中の不純物であるジメチルシランなどの不純物を、活性炭を用いて除去する精製方法において、該活性炭の発熱を抑制して、不純物の効率的な除去が可能なトリメチルシランの精製方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、酸化銅(II)及び酸化亜鉛を含有させた活性炭に、予めトリメチルシランを吸着させ、この活性炭に不純物を含むトリメチルシランを接触させることにより、活性炭の発熱が抑制されて、ジメチルシランなどの不純物を効率的に除去できることを見出し、本発明に到ったものである。
 すなわち、本発明は、(1)少なくとも酸化銅(II)及び酸化亜鉛を添着させた活性炭を準備する工程、(2)トリメチルシランを前記活性炭に吸着させる工程、(3)シラン、メチルシラン、又はジメチルシランを不純物として含むトリメチルシランを前記(2)の工程を終了した活性炭に接触させ、該不純物を吸着させてトリメチルシランから除去する工程、からなるトリメチルシランの精製方法を提供するものである。
 更には、前記(2)の工程において、希釈したトリメチルシランを該活性炭に接触させることにより、トリメチルシランを該活性炭に吸着させることを特徴とする上記のトリメチルシランの精製方法を提供するものである。
 本発明の方法によれば、少なくとも酸化銅(II)及び酸化亜鉛を添着させた活性炭を用いてトリメチルシラン中のシラン、メチルシラン、ジメチルシランを吸着除去する時に、該活性炭で発生する熱を抑制できるので、不純物を定量下限の1volppm未満に低減できる。
詳細な説明
 以下、本発明を更に詳述する。
 精製の対象となるトリメチルシランは、シラン、メチルシラン、又はジメチルシランを含有しており、トリメチルクロロシラン((CH33SiCl)を水素化剤で還元する、上記公知の方法で得られる。
(1)酸化銅(II)及び酸化亜鉛を添着させた活性炭を準備する工程について
 本工程に使用する活性炭は、酸化銅(II)及び酸化亜鉛を含む、いわゆる添着活性炭であれば、粉末状、粒状、シート状、破砕状、顆粒状、繊維状等のいずれの形状も使用できる。このような活性炭は市販品として入手できる。充填塔形式で使用する場合には、粒状、破砕状、顆粒状等のものが好ましく使用できる。
 一般に、添着活性炭では物理吸着だけでなく、被添着物と被吸着物との化学的相互作用により、化学吸着が促進されるため、活性炭に酸化銅(II)及び酸化亜鉛を添着させる方法は、この化学的相互作用が期待できる方法であればどのような方法でもよい。
 例えば、活性炭の製造時における炭化前に破砕した原料と酸化銅(II)及び酸化亜鉛の粉末を混合し、炭化、賦活する方法、既製の活性炭に表面電位を利用して添着させる方法、粉末炭と酸化銅(II)及び酸化亜鉛とを適当なバインダー存在下混練し、造粒後、熱処理を施して添着させる方法等がある。バインダーとしては、混練後、硬化するものであれば用いることができ、具体的には、セメント、水ガラス、はんだ等の無機系接着材に使用される無機物や熱硬化性樹脂、熱可塑性樹脂などの合成樹脂が使用できる。例えば、熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、熱硬化性ポリイミドが使用できる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリル樹脂、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ABS樹脂、AS樹脂、ポリアミド、ポリカーボネート、環状ポリオレフィンなどが使用できる。
 活性炭に対する酸化銅(II)及び酸化亜鉛の濃度は、Cuとしての含有量で1~10wt%、Znとしての含有量で1~10wt%が好ましく、酸化銅(II)及び酸化亜鉛の比率は特に制限されない。酸化銅(II)及び酸化亜鉛の濃度がCu、Znとして1wt%未満の場合には、シラン、メチルシラン、ジメチルシランの除去能力が低下し、完全な除去ができなくなる。また、酸化銅(II)及び酸化亜鉛の濃度がCu、Znとして10wt%超える場合においては、比表面積の低下に伴い活性炭自体の吸着能力が著しく低下するため好ましくない。
(2)トリメチルシランを前記活性炭に吸着させる工程について
 本工程では、前記(1)の工程で準備した活性炭にトリメチルシランを吸着させる。この吸着に用いるトリメチルシランは、可能な限り高純度であることが望ましく、少なくとも純度95%以上、より好ましくは純度99.9%以上のトリメチルシランを使用することが好ましい。含まれる不純物については、シラン、メチルシラン、ジメチルシランについては含まれていても構わないが、トリメチルクロロシランのような腐食性を持つ物質は、本発明を実施する為の設備に対しダメージを与えるだけでなく、本発明の精製方法により得られるガスを汚染する可能性があるので、その含有量は1vol%未満であることが好ましい。
 また、吸着させる方法としては、トリメチルシランを該活性炭に接触させることにより吸着させることができる。この方法としては、該活性炭に、ガス状で接触させる方法又は液体で接触する方法があるが、拡散係数が大きなガス状で接触させる方法が効率的である。また、バッチ式、流通式のいずれを用いても良いが、工業的に生産効率を向上させるためには、流通式を用いるのが好ましい。
 吸着させる時の該活性炭の温度は、トリメチルシランの不均化反応を考慮するとできるだけ低い温度が良いが、トリメチルシランの沸点が6.7℃であるため、大気圧下、ガス状で接触させる場合には室温付近(10~40℃)が好ましい。活性炭の温度を100℃以上で接触させる場合には、トリメチルシランの不均化反応が生じ易くなり、テトラメチルシラン((CH34Si)などの不純物が副生する可能性が高くなり、135℃以上では特に不均化反応が顕著となる。副生するテトラメチルシランは該活性炭に吸着滞在し、その後、精製対象である不純物を含むトリメチルシランを接触させる際、被精製物に混入する虞がある。
 本工程では、該活性炭へトリメチルシランがいくらかでも吸着すれば本発明の効果は得られるので、所望の量のトリメチルシランを吸着させればよい。例えば、該活性炭へのトリメチルシランの吸着により、該活性炭の温度が上昇することを考慮すると、吸着時の該活性炭の温度が100℃未満で本工程を終了させることが好ましく、更に、吸着時の温度上昇が停止するまで吸着させて本工程を終了することがより好ましい。
 また、該活性炭にトリメチルシランを接触させる場合、原料コストや工程の簡素化を考慮すると、トリメチルシランだけを接触させることが好ましい。しかしながらこの場合、該活性炭の温度を不均化反応が生じにくい温度に調整する為の冷却において、冷却能の負荷が大きくなったり、活性炭塔の設備構造が複雑になったりする虞が生じる。これらの対応策の一つとして、低温のトリメチルシランを接触させることが好ましいが、トリメチルシランの沸点は6.7℃であるため負荷低減できる効果としては限度がある。このため、トリメチルシランに対し不活性で、かつ、活性炭に吸着され難いガスでトリメチルシランを希釈して該活性炭に接触させることが好ましい。
 この場合、希釈に用いるガスとしては、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどの希ガスや窒素が挙げられる。トリメチルシランと反応性の高いガスは、別の不純物が生成し純度に影響を及ぼすため好ましくない。また、活性炭と反応性の高いあるいは吸着されやすいガスの場合、吸着能力の低下を引き起こす可能性があるため好ましくない。
 また希釈時の希釈倍率は特に限定されないが、本工程の目的は、活性炭の温度上昇を抑制しトリメチルシランを吸着させることにあるため、本工程中の活性炭の温度が、トリメチルシランの吸着熱による不均化反応を起こさない程度の温度で吸着させることが好ましい。このため、接触させるガスの時間当たりの供給量と接触時の活性炭の温度により、希釈倍率を適宜選択できる。一般的には、高濃度のトリメチルシランを吸着させる程、吸着熱による急激な温度上昇が観察される。これを回避するためには、希釈し吸着させることが好ましい。
 希釈時の希釈倍率はトリメチルシランに対する不活性ガスの容量比で、0.5~100倍が好ましい。希釈倍率が100倍を超える場合、吸着の時間や希釈に使用するガスの量を考慮すると多くの時間を要し、処理効率が低下する。希釈倍率が0.5倍未満の場合、希釈による効果が得にくくなる。
 また、本工程中のトリメチルシランの希釈倍率は一定とする必要はない。本工程の初期においては、多量の吸着熱を発生しやすいため比較的高い希釈倍率で吸着させることが好ましい。
 さらに、本工程において該活性炭にトリメチルシランを吸着させる前に、該活性炭を加熱処理することが好ましい。この加熱処理は、該活性炭を100~300℃で加熱して、真空脱気あるいは不活性ガス流通により、吸着している水分等を除去する処理である。
(3)前記(2)の工程を終了した活性炭に不純物含有のトリメチルシランを接触させる工程について
 本工程では、前記(2)の工程を終了した活性炭に、不純物として、シラン、メチルシラン、又はジメチルシランを含有する、精製対象であるトリメチルシランを接触させる。接触方法としては、ガス状で接触させる方法及び液体で接触する方法があるが、拡散係数が大きなガス状で接触させる方法が効率的である。また、バッチ式、流通式のいずれを用いても良いが、効率よく不純物を除去するためには、流通式が好ましく、中でも、多段のものが優れており、より好ましい。
 また接触時の活性炭の温度としては、前記(2)の工程の場合と同様である。
 前記(2)の工程を終了した活性炭に精製対象である不純物を含むトリメチルシランを接触させることにより、不純物は前記(2)の工程により吸着したトリメチルシランと置換、あるいは該活性炭のトリメチルシランが吸着されない表面へ吸着し、不純物が除去されると考えられる。さらには前記(2)の工程により、トリメチルシランの活性炭への吸着が既におこなわれているため、精製されるトリメチルシラン自体の急激な吸着が阻害され、前記(2)の工程が未実施の場合と比較して、活性炭の発熱は抑制され、加熱に起因する不純物の生成も抑制される。
 このように精製対象のトリメチルシランの急激な吸着が阻害できる結果、吸着熱による活性炭の発熱が抑制されることにより、トリメチルシランの不均化反応が抑制され、不純物濃度の上昇を抑制できる。従って、高純度のトリメチルシランを得ることが可能となる。
 以下、実施例により本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
[実施例1~5]
 内径158.4mm×長さ3350mm(活性炭充填高さ:3000mm)のSUS304製チューブ内に、添着により酸化亜鉛と酸化銅を含有した活性炭(日本エンバイロケミカルズ株式会社製 粒状白鷺 XRC410:含有量 Cuとして1~10wt%、Znとして1~10wt%)が30kg充填されている充填塔内の充填物を、200℃で1時間真空脱気することにより、該活性炭に付着している水分を脱離した。その後、一度、25℃の室温まで冷却した。
 その後該充填塔に、トリメチルシランを窒素ガス(いずれも純度99.999%以上)で表1に記載の希釈条件で希釈した混合ガスを、吸着熱による温度上昇が確認できなくなるまで流通させトリメチルシランを吸着させた。その際観測された、充填塔内の最高温度を、表1に示す。いずれの場合も、トリメチルシランの不均化反応が顕著となる温度より十分低い温度であった。
 トリメチルシランを吸着後、該充填塔に2時間窒素ガスをパージしながら充填塔を室温(25℃)に戻した。その後該充填塔に、メチルシラン62volppm、ジメチルシラン248volppmを含むトリメチルシランを、大気圧下、100sccmで流通させ、これら2種の不純物の除去を目的に精製を行った。該精製中の充填塔の温度は、いずれの実施例の場合も33℃であった。
 該精製時の充填塔出口のガスを、ガスクロマトグラフィー及びガスクロマトグラフ質量分析装置で分析した。その分析結果を、表1に示す。その結果、メチルシラン及びジメチルシランは、ともに定量下限である1volppm未満であった。また同時に、メタンとテトラメチルシランの含有量についても同様に分析したが、ともに定量下限である1volppm未満であった。
Figure JPOXMLDOC01-appb-T000001
[実施例6]
 内径158.4mm×長さ3350mm(活性炭充填高さ:3000mm)のSUS304製チューブ内に、実施例1と同じ活性炭が30kg充填されている充填塔内の充填物を、200℃で1時間真空脱気することにより、該活性炭に付着している水分を脱離した。その後、一度、25℃の室温まで冷却した。
 その後該充填塔に、トリメチルシラン(純度99.9%以上)を流量3slm、窒素ガス(純度99.999%以上)を流量10slmで供給しながら混合したガス(希釈倍率は略3.3倍)を流通させ、トリメチルシランの流通全量が計20kgとなった時点で混合ガスの供給を停止し、トリメチルシランを吸着させた。充填塔の温度は活性炭中央での温度計で混合ガスの供給の間、常に100℃以下を示した。
 供給停止後、該充填塔に2時間窒素ガスをパージしながら充填塔を室温(25℃)に戻した。その後、充填塔にシラン10volppm、ジメチルシラン500volppmを含むトリメチルシランを流量17slmで30Kg流通させ、これら2種の不純物の除去を目的に精製を行った。該精製中の充填塔の温度は31℃であった。
 該精製時の充填塔出口のガスをガスクロマトグラフィー及びガスクロマトグラフ質量分析装置により分析した。その結果、シラン、ジメチルシランの濃度は、ともに定量下限である1volppm未満であった。また同時に、メタンとテトラメチルシランの含有量についても同様に分析したが、ともに定量下限である1volppm未満であった。
[実施例7]
 内径22.1mm、長さ600mmのステンレス鋼チューブ内に、実施例1と同じ活性炭が62g充填(充填長300mm)されている充填塔内の充填物を、250℃で1時間真空脱気した後室温(25℃)に戻し、該充填塔に、トリメチルシランを窒素ガス(いずれも純度99.999%以上)で希釈倍率を容積比で0.6倍に希釈した混合ガスを、流量0.5slmで、吸着熱による温度上昇が確認できなくなるまで流通させトリメチルシランを吸着させた。
 トリメチルシランを吸着後、該充填塔に2時間窒素ガスをパージしながら充填塔を室温(25℃)に戻した。その後、該充填塔にメチルシラン62volppm、ジメチルシラン248volppmを含むトリメチルシランを、大気圧下、100sccmで流通させ、これら2種の不純物の除去を目的に精製を行った。該精製中の充填塔の温度は32℃であった。
 該精製時の該充填塔出口のガスを、ガスクロマトグラフィー及びガスクロマトグラフ質量分析装置で分析した。その結果、メチルシラン、ジメチルシランの濃度は、ともに定量下限である1volppm未満であった。また同時に、メタンとテトラメチルシランの含有量についても同様に分析したが、ともに定量下限である1volppm未満であった。
[実施例8]
 内径22.1mm、長さ600mmのステンレス鋼チューブ内に、実施例1と同じ活性炭が62g充填(充填長300mm)されている充填塔内の充填物を、250℃で1時間真空脱気した後、該充填塔に、トリメチルシランを窒素ガス(それぞれ純度99.999%以上)で希釈倍率を容積比で50倍に希釈した混合ガスを、流量0.5slmで、吸着熱による温度上昇が確認できなくなるまで流通させトリメチルシランを吸着させた。
 トリメチルシランを吸着後、該充填塔に2時間窒素ガスをパージしながら充填塔を室温(25℃)に戻した。その後、該充填塔にメチルシラン62volppm、ジメチルシラン248volppmを含むトリメチルシランを、大気圧下、100sccmで流通させ、これら2種の不純物の除去を目的に精製を行った。該精製中の充填塔の温度は29℃であった。
 該精製時の該充填塔出口のガスを、ガスクロマトグラフィー及びガスクロマトグラフ質量分析装置で分析した。その結果、メチルシラン、ジメチルシランの濃度は、ともに定量下限である1volppm未満であった。また同時に、メタンとテトラメチルシランの含有量についても同様に分析したが、ともに定量下限である1volppm未満であった。
[比較例1]
 トリメチルシランを吸着させる処理を実施しない以外は、実施例6と同様の操作を実施した。この間、充填塔の温度は最高で380℃に上昇した。
 充填塔出口のガスをガスクロマトグラフィー及びガスクロマトグラフ質量分析装置により分析した。その結果、ジメチルシランが500volppm検出されただけでなく、テトラメチルシランが2000volppm、メタンが100volppm検出され、所望の精製が困難であった。この結果は、温度上昇により不均化反応が顕著に生じたためと考えられる。
[比較例2]
 トリメチルシランを吸着させる処理を実施しない以外は、実施例7と同様の操作を実施した。この間、充填塔の温度は最高で267℃に達した。
 充填塔出口のガスをガスクロマトグラフィー及びガスクロマトグラフ質量分析装置により分析した。その結果、メチルシランが78volppm、ジメチルシランが280volppm検出されただけでなく、テトラメチルシランが410volppm、メタンが100volppm検出され、所望の精製が困難であった。この結果は、温度上昇により不均化反応が顕著に生じたためと考えられる。
 本発明は、活性炭を利用したトリメチルシランの精製に利用できる。特に、活性炭へのトリメチルシランの吸着熱が原因で、不純物の生成が問題となる場合、有効な手段となる。

Claims (2)

  1. (1)少なくとも酸化銅(II)及び酸化亜鉛を添着させた活性炭を準備する工程、
    (2)トリメチルシランを前記活性炭に吸着させる工程、
    (3)シラン、メチルシラン、又はジメチルシランを不純物として含むトリメチルシランを前記(2)の工程を終了した活性炭に接触させ、該不純物を吸着させてトリメチルシランから除去する工程、
    からなるトリメチルシランの精製方法。
  2. (2)の工程において、希釈したトリメチルシランを該活性炭に接触させることにより、トリメチルシランを該活性炭に吸着させることを特徴とする、請求項1に記載のトリメチルシランの精製方法。
PCT/JP2013/050639 2012-02-21 2013-01-16 トリメチルシランの精製方法 WO2013125262A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147025932A KR101623827B1 (ko) 2012-02-21 2013-01-16 트리메틸실란의 정제 방법
CN201380010463.XA CN104136447B (zh) 2012-02-21 2013-01-16 三甲基硅烷的纯化方法
US14/380,079 US9073953B2 (en) 2012-02-21 2013-01-16 Method for refining trimethylsilane
EP13751853.6A EP2818475B1 (en) 2012-02-21 2013-01-16 Method for refining trimethylsilane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012034668A JP5861491B2 (ja) 2012-02-21 2012-02-21 トリメチルシランの精製方法
JP2012-034668 2012-02-21

Publications (1)

Publication Number Publication Date
WO2013125262A1 true WO2013125262A1 (ja) 2013-08-29

Family

ID=49005456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050639 WO2013125262A1 (ja) 2012-02-21 2013-01-16 トリメチルシランの精製方法

Country Status (7)

Country Link
US (1) US9073953B2 (ja)
EP (1) EP2818475B1 (ja)
JP (1) JP5861491B2 (ja)
KR (1) KR101623827B1 (ja)
CN (1) CN104136447B (ja)
TW (1) TWI480284B (ja)
WO (1) WO2013125262A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221110A (ja) 1985-11-27 1990-09-04 E I Du Pont De Nemours & Co ケイ素、ゲルマニウム及び錫のハロゲン化物の還元方法
JP2002179689A (ja) * 2000-09-19 2002-06-26 Boc Group Inc:The メチルシラン類の精製
JP2004115388A (ja) 2002-09-24 2004-04-15 Mitsui Chemicals Inc 還元剤およびそれを用いたシラン類の製造方法
JP2005154336A (ja) 2003-11-26 2005-06-16 Central Glass Co Ltd オルガノシランの製造方法
JP2006117559A (ja) 2004-10-20 2006-05-11 Central Glass Co Ltd トリメチルシランの精製方法
JP2006206444A (ja) 2005-01-25 2006-08-10 Central Glass Co Ltd トリメチルシランの精製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159674B1 (ko) * 2009-11-16 2012-06-25 주식회사 케이씨씨 모노실란의 정제방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221110A (ja) 1985-11-27 1990-09-04 E I Du Pont De Nemours & Co ケイ素、ゲルマニウム及び錫のハロゲン化物の還元方法
JP2002179689A (ja) * 2000-09-19 2002-06-26 Boc Group Inc:The メチルシラン類の精製
JP2004115388A (ja) 2002-09-24 2004-04-15 Mitsui Chemicals Inc 還元剤およびそれを用いたシラン類の製造方法
JP2005154336A (ja) 2003-11-26 2005-06-16 Central Glass Co Ltd オルガノシランの製造方法
JP2006117559A (ja) 2004-10-20 2006-05-11 Central Glass Co Ltd トリメチルシランの精製方法
JP2006206444A (ja) 2005-01-25 2006-08-10 Central Glass Co Ltd トリメチルシランの精製方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AMER. CHEM. SOC., vol. 83, 1961, pages 1916
See also references of EP2818475A4 *

Also Published As

Publication number Publication date
CN104136447B (zh) 2016-04-13
KR20140123109A (ko) 2014-10-21
CN104136447A (zh) 2014-11-05
TWI480284B (zh) 2015-04-11
EP2818475B1 (en) 2016-08-31
US20150119596A1 (en) 2015-04-30
JP5861491B2 (ja) 2016-02-16
EP2818475A4 (en) 2015-08-26
KR101623827B1 (ko) 2016-05-24
US9073953B2 (en) 2015-07-07
EP2818475A1 (en) 2014-12-31
JP2013170139A (ja) 2013-09-02
TW201339167A (zh) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5122700B1 (ja) モノシランの精製方法
CA1319586C (en) Recovery of lower-boiling silanes in a cvd process
EP1720800B1 (en) Process for producing silicon
US9908781B2 (en) Process and use of amino-functional resins for dismutating halosilanes and for removing extraneous metals
EP3296261B1 (en) Method for regenerating weakly basic ion-exchange resin
WO2015059919A1 (ja) 多結晶シリコンの製造方法
EP1867604B1 (en) Method for purification of disilicon hexachloride and high purity disilicon hexachloride
CN110606490A (zh) 一种高纯四氟化硅的合成及纯化方法
TWI568673B (zh) 三氯矽烷之純化
JP5861491B2 (ja) トリメチルシランの精製方法
CN112645976B (zh) 一种利用氯基CVD晶体薄膜生长制程尾气FTrPSA制备甲基氯硅烷类有机硅方法
CN112642259B (zh) 一种烷烃与硅烷反应的氯基SiC-CVD外延制程尾气FTrPSA回收方法
TWI480228B (zh) 單矽烷及四烷氧基矽烷的製造方法
JP4437733B2 (ja) トリメチルシランの精製方法
JP7028604B2 (ja) ヘキサクロロジシランの製造方法
JP4498152B2 (ja) トリメチルシランの精製方法
KR20140120507A (ko) 폴리실란 제조방법
CN108250230B (zh) 一种二异丙胺硅烷的精制方法
JPH0436090B2 (ja)
RU2129984C1 (ru) Способ получения моносилана высокой чистоты
JPS6270217A (ja) モノシランの精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13751853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025932

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013751853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013751853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14380079

Country of ref document: US