WO2013124988A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2013124988A1
WO2013124988A1 PCT/JP2012/054293 JP2012054293W WO2013124988A1 WO 2013124988 A1 WO2013124988 A1 WO 2013124988A1 JP 2012054293 W JP2012054293 W JP 2012054293W WO 2013124988 A1 WO2013124988 A1 WO 2013124988A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat spreader
sheet member
semiconductor device
back surface
front surface
Prior art date
Application number
PCT/JP2012/054293
Other languages
English (en)
French (fr)
Inventor
坂本 健
武敏 鹿野
太志 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/358,917 priority Critical patent/US9466548B2/en
Priority to CN201280070502.0A priority patent/CN104137252B/zh
Priority to JP2014500798A priority patent/JP5858135B2/ja
Priority to KR1020147021760A priority patent/KR101591643B1/ko
Priority to DE112012005920.4T priority patent/DE112012005920B4/de
Priority to PCT/JP2012/054293 priority patent/WO2013124988A1/ja
Publication of WO2013124988A1 publication Critical patent/WO2013124988A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3142Sealing arrangements between parts, e.g. adhesion promotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device provided with a heat spreader and a method for manufacturing the same.
  • Patent Document 1 a power semiconductor device in which a metal block for heat dissipation (heat spreader) is mounted on an insulating sheet and a semiconductor element is installed on the metal block is known. Yes.
  • This type of power semiconductor device incorporates a so-called power semiconductor element such as an IGBT.
  • the insulating sheet is made slightly larger than the metal block so as to protrude by a certain dimension from the edge of the metal block. Then, this insulating sheet is bent to the metal block side. Furthermore, sealing resin is provided so that the back surface part of the bent insulating sheet may be covered. According to such a configuration, the creeping distance can be ensured so as to ensure insulation by the insulating sheet. Furthermore, the semiconductor package can be miniaturized by bending the insulating sheet.
  • a semiconductor device incorporating a power semiconductor element uses high power. For this reason, high insulation is required for the package structure. This point is also studied in the above-described conventional technique, and technical development for ensuring insulation is being advanced in a semiconductor device incorporating a power semiconductor element.
  • Japanese Unexamined Patent Publication No. 2011-9410 Japanese Unexamined Patent Publication No. 2010-267794 Japanese Unexamined Patent Publication No. 2003-124406 Japanese Unexamined Patent Publication No. 6-302722
  • An object of the present invention is to provide a semiconductor device having a structure improved so as to suppress dielectric breakdown in a semiconductor device incorporating a heat spreader, and a method for manufacturing the semiconductor device.
  • a first invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body that seals the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposes at least a part of the back surface of the sheet member; With The heat spreader includes corners of the bottom surface that are chamfered or curved in a plan view and rectangular in a cross-sectional view.
  • the second invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body that seals the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposes at least a part of the back surface of the sheet member; With The surface of the peripheral edge portion is provided with a layer of an electrically insulating coating material having at least one of insulation and adhesion to the surface of the sheet member higher than that of the resin of the sealing resin body. And
  • a third invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body that seals the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposes at least a part of the back surface of the sheet member; With The peripheral portion of the sheet member is A plane portion extending in parallel with the bottom surface; A bent portion that is provided on the outside of the flat portion and in the vicinity of the corner of the heat spreader or along the side of the heat spreader, and is convex on the surface side; The sealing resin body covers the back surface of the sheet member at the bent portion.
  • a fourth invention is a method of manufacturing a semiconductor device, Preparing an electrically conductive heat spreader having a bottom surface, a semiconductor element to be fixed to the heat spreader, and a sheet member having a front surface and a back surface and electrically insulating the front surface and the back surface;
  • the sheet member, the heat spreader, and the semiconductor element fixed to the heat spreader are placed in the cavity of the mold, and the sheet member is placed on the bottom of the cavity with the back surface facing the cavity bottom of the mold, Placing the heat spreader on the surface of the sheet member so as to produce a peripheral edge protruding from the edge of the bottom surface of the heat spreader, and bending the peripheral edge to the heat spreader side by a bent portion forming means;
  • the front surface of the sheet member and the back surface of the peripheral portion, the heat spreader, and the semiconductor element are sealed, and at least a part of the back surface of the sheet member is sealed
  • a fifth invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body for sealing the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposing at least a part of the back surface of the sheet member; With The peripheral portion has a thin portion on the back surface that is thinned so as to form a step that falls to the front surface side toward the front end of the peripheral portion. The sealing resin body covers the step of the sheet member.
  • a sixth invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body that seals the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposes at least a part of the back surface of the sheet member; With The surface of the peripheral portion is provided with at least one convex portion or concave portion.
  • a seventh invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; A sheet member comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader and protrudes from an edge of the bottom surface; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body for sealing the front surface of the sheet member, the heat spreader, and the semiconductor element, and exposing at least a part of the back surface of the sheet member; With The sheet member is a laminate of an insulating layer located on the front surface side and a metal layer located on the back side from the insulating layer, The peripheral edge is provided with at least one through-hole penetrating the front surface and the back surface, At the edge of the through hole in the surface on the back surface side of the metal layer, a burr projecting to the back surface side is provided, The sealing resin body covers a portion where the burr is provided on the back surface of
  • the eighth invention is a semiconductor device, An electrically conductive heat spreader having a bottom surface; An insulating sheet comprising a front surface and a back surface, electrically insulating the front surface and the back surface, wherein the front surface is in contact with the bottom surface of the heat spreader; A metal sheet provided with a peripheral portion that is in contact with the back surface of the insulating sheet and protrudes from an edge of the insulating sheet, and wherein the peripheral portion has an upper surface facing the heat spreader side; A semiconductor element fixed to the heat spreader and electrically connected to the heat spreader; A sealing resin body for sealing the upper surface of the metal sheet, the heat spreader, and the semiconductor element, and exposing at least a part of the back surface of the metal sheet; It is characterized by providing.
  • dielectric breakdown can be suppressed in a semiconductor device incorporating a heat spreader.
  • FIG. 1 is a plan view of a semiconductor device according to a first embodiment of the present invention. It is a fragmentary sectional view which shows the structure of the corner part of the heat spreader concerning Embodiment 1 of this invention. It is a figure which shows the modification of the semiconductor device concerning Embodiment 1 of this invention. It is sectional drawing of the semiconductor device concerning Embodiment 2 of this invention. It is a top view of the semiconductor device concerning Embodiment 2 of the present invention. It is a figure which shows a part of manufacturing process of the semiconductor device concerning Embodiment 2 of this invention. It is a figure which shows one of the modifications of the semiconductor device concerning Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view of a semiconductor device 10 according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the semiconductor device 10 according to the first embodiment of the present invention.
  • FIG. 1 shows a cross section of the semiconductor device 10 taken along the line AA in FIG.
  • FIG. 2 is a plan view of the semiconductor device 10 of FIG. 1 looking down from the top of the drawing.
  • the internal structure of the semiconductor device 10 is illustrated through the mold resin.
  • the semiconductor device 10 includes a heat spreader 20.
  • the heat spreader 20 is an electrically conductive metal block having a bottom surface. As shown in FIGS. 1 and 2, the heat spreader 20 has a substantially rectangular parallelepiped shape, and has an upper surface (a surface facing upward in FIG. 1) and a bottom surface (a surface facing downward in FIG. 1). And a side surface connecting the upper surface and the bottom surface.
  • the material of the heat spreader 20 is copper (Cu), and has high thermal conductivity and electrical conductivity.
  • the semiconductor device 10 includes a sheet member 26.
  • the sheet member 26 is formed by laminating an insulating sheet 22 constituting an insulating layer and a metal sheet 24 constituting a metal layer.
  • the insulating sheet 22 is epoxy resin, and the metal sheet 24 is a copper foil.
  • the insulating sheet 22 may include a conductive filler.
  • the sheet member 26 has a front surface and a back surface.
  • the front surface is in contact with the bottom surface of the heat spreader 20, and the back surface is exposed to the outside of the semiconductor device 10 (outside of the mold resin 42).
  • the insulating sheet 22 electrically insulates the front surface and back surface of the sheet member 26.
  • the sheet member 26 includes a peripheral edge 27 protruding from the edge of the bottom surface of the heat spreader 20.
  • peripheral edge 27 protruding from the edge of the bottom surface of the heat spreader 20.
  • peripheral edge 27 protrudes in four directions from the edges of the four sides of the heat spreader 20, and its size is slightly larger than that of the heat spreader 20.
  • the semiconductor device 10 includes, as semiconductor elements, an IGBT (Insulated Gate Bipolar Transistor) 30 and a diode 32 that is a free wheel diode.
  • the IGBT 30 and the diode 32 are fixed to the upper surface of the heat spreader 20 with solder.
  • the IGBT 30 and the diode 32 each include a front electrode and a back electrode.
  • the back electrodes are connected to the heat spreader 20 via solder, whereby both are electrically connected.
  • the semiconductor device 10 includes a main terminal 36, a main terminal 37, and a signal terminal 38. These terminals are all electrode plates made of copper (Cu).
  • the main terminal 36 is directly fixed to the heat spreader 20 with solder.
  • the main terminal 37, the diode 32, and the IGBT 30 are connected to each other via a plurality (five in the figure) of wires 46 formed of aluminum (Al).
  • the signal terminal 38 is connected to the gate electrode of the IGBT 30 via a plurality of (three in the figure) wires 44 formed of aluminum (Al).
  • the semiconductor device 10 includes a mold resin 42.
  • the mold resin 42 is a sealing resin body that seals the surface of the sheet member 26, the heat spreader 20, the IGBT 30, and the diode 32. A part of the main terminal 36, the main terminal 37, and the signal terminal 38 is exposed outside the mold resin. The mold resin 42 exposes the entire back surface of the sheet member 26.
  • the heat spreader 20 has corners 21 at four corners on the bottom surface of the heat spreader 20.
  • the corners 21 are the four corner portions in the plan view of the heat spreader 20.
  • the corner portion 21 is a portion having a curved shape in a plan view of the heat spreader 20 (or a plan view of the semiconductor device 10).
  • the corner 21 has a rectangular shape in a sectional view of the heat spreader 20 (or a sectional view of the semiconductor device 10).
  • the corner 21 according to the first embodiment is a uniform curved surface from the bottom surface to the top surface of the heat spreader 20.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the corner 21 of the heat spreader 20 according to the first embodiment of the present invention.
  • FIG. 3A is a diagram showing the corner 21 in the cross-sectional view of the heat spreader 20
  • FIG. 3B is a diagram showing the corner 21 in the plan view of the heat spreader 20.
  • FIG. 3A is a cross-sectional view taken along line A1-A1 of FIG.
  • Embodiment 1 In a power semiconductor device having a configuration such as the semiconductor device 10, there is a problem that moisture enters from a slight interface between the mold resin and the insulating sheet. This moisture forms a conductive path between the heat spreader and the copper foil and causes dielectric breakdown. This is because the insulating performance of the insulating material deteriorates due to hydrolysis of the insulating material of the insulating sheet that contacts the heat spreader due to moisture.
  • 3A is the interface between the mold resin 42 and the sheet member 26, and is hereinafter also evidenced as a moisture absorption path.
  • the length of the moisture absorption path is substantially the same as the creepage distance.
  • the creepage distance is defined as the shortest distance along the insulator interface between two conductive portions.
  • the curved surface of the corner 21 can be formed by performing rounding (R-face chamfering).
  • the rounding of the corner portion 21 is formed by performing a rounding process that is larger than a simple rounding process performed on the corner portion of the metal block. Simple rounding may be applied to the corners of the heat spreader 20 in addition to the corners 21.
  • the radius of the corner 21 is larger than the radius of the corner 21.
  • the radius of the rounding of the curved surface of the corner 21 is larger than the radius of the rounding of the corner of the heat spreader 20 other than the corner 21.
  • the present embodiment even if moisture absorption occurs from the interface between the sheet member 26 and the mold resin 42, it is possible to suppress water due to this moisture absorption from concentrating on the four corners of the heat spreader 20 in the semiconductor device 10. Thereby, the dielectric breakdown at the four corners of the heat spreader 20 can be suppressed.
  • one of the reasons for the occurrence of dielectric breakdown at the four corners of the heat spreader is that when the four corner ends of the heat spreader are sharp, electric field concentration occurs at this portion (acute angle portion). Is mentioned. According to the present embodiment, since the corner portion 21 is a curved surface, such a sharp portion can be eliminated, and the degree of electric field concentration can be reduced.
  • corner portion 21 is rectangular in a cross-sectional view of the heat spreader 20 (or a cross-sectional view of the semiconductor device 10), and does not have a curved shape as in the plan view. This point is different in configuration from the chamfered portion and the like in FIG. 7 of Patent Document 1 (Japanese Unexamined Patent Publication No. 2011-9410).
  • corner 21 of the present embodiment includes, for example, the following effects.
  • the inventors of the present application have found by analyzing and examining that dielectric breakdown is likely to occur in the four corners of the heat spreader and in the minute gaps generated between the heat spreader and the insulating sheet. If it is set as the structure which carries out chamfering of a round etc. also in cross-sectional view like patent document 1, there exists a possibility that the filling of mold resin may not be smoothly performed to the micro clearance gap which arises between a heat spreader and an insulating sheet.
  • the mold resin sealing step may be performed under the same conditions as in the case of using a rectangular heat spreader.
  • the moisture absorption distance can be increased in the plan view structure, while the mold resin sealing quality can be ensured in the cross section structure. And an excellent effect can be obtained from the viewpoint of ensuring insulation.
  • the semiconductor device 10 that suppresses dielectric breakdown between the heat spreader 20 and the insulating layer (insulating sheet 22) of the sheet member 26 and ensures insulation. .
  • FIG. 4 is a diagram showing a modification of the semiconductor device 10 according to the first embodiment of the present invention.
  • This modification has a heat spreader 50 instead of the heat spreader 20, and other than that, it has the same configuration as the semiconductor device 10 shown in FIGS.
  • FIG. 4A is a diagram showing the corner 51 in a cross-sectional view of the heat spreader 50
  • FIG. 4B is a diagram showing the corner 51 in a plan view of the heat spreader 50.
  • FIG. 4A is a cross-sectional view taken along the line A2-A2 of FIG.
  • the corner 51 has a chamfered shape in a plan view and a rectangular shape in a sectional view.
  • the corner 51 is obtained by chamfering four corner portions in a plan view of the heat spreader 20.
  • the corner 51 has the same insulating property as that of the corner 21 and also has ease of processing.
  • FIG. 5 is a cross-sectional view of the semiconductor device 100 according to the second embodiment of the present invention.
  • FIG. 6 is a plan view of the semiconductor device 100 according to the second embodiment of the present invention.
  • FIG. 5 shows a cross section of the semiconductor device 100 taken along the line BB in FIG.
  • FIG. 6 is a plan view of the semiconductor device 100 of FIG. 5 as viewed downward from the top of FIG. 5.
  • the internal structure of the semiconductor device 100 is illustrated through the mold resin.
  • the semiconductor device 100 has the same configuration as the semiconductor device 10 of the first embodiment except for the following two differences.
  • the first difference is that the coating layer 122 is provided.
  • the second difference is that a heat spreader 120 is provided instead of the heat spreader 20.
  • the heat spreader 120 does not include the “corner portion 21 having a curved shape in plan view”. Except for this point, the heat spreader 120 has the same configuration as the heat spreader 20, and is the same in that it is a rectangular metal block and uses copper (Cu) as a material.
  • Cu copper
  • the coating layer 122 is a layer made of an electrically insulating coating material.
  • the coating layer 122 is provided on the surface of the peripheral edge portion 27. As shown in the plan view of FIG. 6, in the second embodiment, the coating layer 122 covers the entire peripheral edge portion 27 so as to surround the periphery of the heat spreader 120.
  • the material of the coating layer 122 a material having higher insulation and adhesion to the surface of the sheet member 26 than the material of the mold resin 42 is used.
  • the material of the coating layer 122 is preferably one material selected from the group consisting of polyimide, polyamide, and an epoxy polymer having a polyfunctional group.
  • the conductive filler is not mixed in the material of the coating layer 122. These insulating coating materials have higher adhesion to the insulating sheet 22. This is because the mold resin 42 is filled with a filler in order to ensure high heat dissipation.
  • FIG. 7 is a diagram illustrating a part of the manufacturing process of the semiconductor device 100 according to the second embodiment.
  • the material of the coating layer 122 is applied in advance to the surface of the sheet member 26 (the surface of the peripheral edge 27). Thereafter, the heat spreader 120 is placed on the sheet member 26, and a molding resin sealing process is performed. As a result, the configuration of FIG. 7B is obtained.
  • the coating layer 122 is provided at the interface between the sheet member 26 and the mold resin 42.
  • the coating layer 122 is a layer made of an insulating coating material.
  • the coating layer 122 can suppress dielectric breakdown even if moisture absorption occurs along the interface.
  • insulation property higher than the insulating sheet 22 can be ensured, and an insulation characteristic can also be improved actively. Thereby, the dielectric breakdown at the four corners of the heat spreader can be suppressed.
  • FIG. 8 is a view showing one modification of the semiconductor device 100 according to the second embodiment of the present invention.
  • the coating layer 124 is provided so as to cover not only the surface of the sheet member 26 but also the end side surface.
  • the material of the coating layer 126 is the same as that of the coating layer 122.
  • FIG. 9 is a diagram showing another example of a modification of the semiconductor device 100 according to the second embodiment of the present invention.
  • the semiconductor device according to the modification shown in FIG. 9 includes a sheet member 140.
  • the sheet member 140 includes a metal sheet 144 that is slightly larger than the insulating sheet 142. That is, the surface of the insulating sheet 142 is in contact with the bottom surface of the heat spreader 120.
  • the metal sheet 144 is provided with a peripheral portion protruding from the edge of the insulating sheet 142 in contact with the back surface of the insulating sheet 142, and an upper surface with the peripheral portion facing the heat spreader side.
  • the coating layer 126 is applied over the surface of the insulating sheet 142 and the upper surface of the metal sheet 144.
  • the material of the coating layer 126 is the same as that of the coating layer 122. According to the modification of FIG. 9, since high adhesiveness is obtained between the coating material and the copper foil, the intrusion of moisture can be effectively suppressed.
  • FIG. 10 is a diagram showing still another example of a modification of the semiconductor device 100 according to the second embodiment of the present invention. 10 corresponds to a plan view of the semiconductor device 100 as in FIG. 6, and the internal configuration is shown in a simplified manner.
  • coating layers 128 may be partially provided only at the four corners of the heat spreader 120. Since the coating layers 128 are provided at the four corners of the heat spreader 120 having a high occurrence frequency of the dielectric breakdown, the effect of suppressing the dielectric breakdown can be secured. In addition, less coating material is required, leading to cost reduction.
  • the coating layer 130 may be partially provided only on the short side of the heat spreader 120.
  • the coating layer 132 may be partially provided only on the long side of the heat spreader 120. The material of each coating layer is the same as that of the coating layer 122.
  • Embodiment 3 FIG.
  • the semiconductor device according to the third embodiment of the present invention will be described below.
  • the semiconductor device according to the third embodiment described below and the modification thereof have a common configuration in which the mold resin covers the peripheral edge of the sheet member from the peripheral surface to the back surface of the sheet member.
  • FIG. 11 is a cross-sectional view of a semiconductor device 200 according to the third embodiment of the present invention.
  • FIG. 12 is a plan view of the semiconductor device 200 according to the third embodiment of the present invention.
  • FIG. 11 shows a cross section of the semiconductor device 200 taken along the line CC in FIG.
  • FIG. 12 is a plan view of the semiconductor device 200 of FIG. 11 looking down from the top of the drawing of FIG. 11 and shows the internal structure of the semiconductor device 200 through the mold resin for convenience.
  • the semiconductor device 200 has the same configuration as that of the semiconductor device 10 of the first embodiment except for the following two differences.
  • the first difference is that a sheet member 226 is provided instead of the sheet member 26.
  • the second difference is that the heat spreader 120 described in the second embodiment is provided instead of the heat spreader 20.
  • the sheet member 226 is different from the sheet member 26 in that it includes a bent portion 228. Other points, that is, the point that the insulating sheet 22 and the metal sheet 24 are laminated, and the point that the peripheral part 227 is provided similarly to the peripheral part 27 are common.
  • the peripheral part 227 of the sheet member 226 includes a flat part 229 and a bent part 228.
  • the flat surface portion 229 is a portion that extends in parallel with the bottom surface of the heat spreader 120.
  • the bent portion 228 is a portion that is provided on the outer side of the flat portion 229 and along the short side of the heat spreader 120 and is bent so as to protrude toward the heat spreader 120 side. In this embodiment, the bent portion 228 is formed by bending the sheet member 226 as shown in FIG.
  • FIG. 13A is a partial cross-sectional view schematically showing the vicinity of the bent portion 228 according to the third embodiment of the present invention.
  • the sheet member 226 by bending the sheet member 226 at an angle theta 1, to form a bent portion 228.
  • the angle ⁇ 1 is an acute angle, but the present invention is not limited to this.
  • the bent portion 232 and the flat portion 233 may be provided as an obtuse angle as ⁇ 2 in FIG.
  • the range of the angle ⁇ is preferably in the range of 15 degrees to 165 degrees with respect to the lower surface of the package of the semiconductor device 200 (or a surface parallel to the bottom surface of the heat spreader 120).
  • the angle ⁇ is an obtuse angle (that is, an angle exceeding 90 degrees)
  • it is preferable that the width dimension of the plane part 233 is larger than the width dimension of the bent part 232 as shown in FIG. .
  • the mold resin 42 seals the respective components inside the semiconductor device as in the first and second embodiments. That is, the mold resin 42 is a sealing resin body that seals the surface of the sheet member 226, the heat spreader 120, and semiconductor elements such as the IGBT 30, and exposes the back surface of the sheet member 226.
  • the mold resin 42 wraps around the back surface side (the back surface side of the metal sheet 24) of the sheet member 226. Thereby, a part of the back surface of the sheet member 226 in the bent portion 228 is covered with the mold resin 42.
  • the mold resin 42 covers a part of the back surface of the sheet member 226 in the bent portion 228, the moisture absorption distance along the interface between the peripheral edge portion 227 of the sheet member 226 and the mold resin 42 is increased. Can do. That is, the creepage distance between the sheet member 226 and the heat spreader 120 can be increased. Thereby, the moisture absorption which causes a dielectric breakdown can be suppressed and the dielectric breakdown of a heat spreader can be suppressed.
  • the adhesion between the metal sheet (copper foil) and the mold resin is high, moisture absorption can be further suppressed by increasing the adhesion area between the two.
  • the peripheral edge portion 227 includes the flat surface portion 229.
  • the flat surface portion 229 can cause a certain distance between the bent portion 228 and the heat spreader 120 in the plane of the sheet member 226. As a result, a design margin can be ensured, and bending of the bent portion 228 can be ensured even if the heat spreader 120 is displaced during the manufacturing process.
  • the design margin is ensured by the flat surface portion 229, so that the problem as described above can be suppressed.
  • FIG. 14 is a schematic diagram illustrating a modification of the semiconductor device 200 according to the third embodiment of the present invention. This figure corresponds to the cross-sectional view shown in FIG. 13A, and is obtained by modifying the cross-sectional structure of FIG.
  • a flat portion 235 and a bent portion 234 may be provided in the peripheral edge portion 227.
  • the bent portion 234 may include a first bent portion 234a and a second bent portion 234b.
  • the first bent portion 234a is a portion that is connected to the flat portion 235 and bends to the heat spreader 120 side (the upper surface side of the package of the semiconductor device 200), and the second bent portion 234a is connected to the first bent portion 234b and the semiconductor device 200. This is a part that bends to the lower surface side of the package.
  • an ⁇ -shaped bent portion 236 may be provided together with the flat portion 237.
  • count of bending can be increased in a narrow space and a moisture absorption distance (creeping distance) can be expanded further.
  • FIG. 15 is a schematic diagram illustrating a modification of the semiconductor device 200 according to the third embodiment of the present invention. This figure corresponds to the cross-sectional view shown in FIG. 13A, and is obtained by modifying the cross-sectional structure of FIG.
  • the peripheral portion 227 is provided with a flat portion 243 and a bent portion 241.
  • the bent portion 241 provided at the end of the metal sheet 24 (copper foil) has a sagging surface 241a and a burring surface 241b.
  • the moisture absorption distance (creeping distance) can be increased compared to the case of a right angle without the sag surface 241a.
  • FIG. 16 is a schematic diagram showing a modification of the semiconductor device 200 according to the third embodiment of the present invention, which is modified based on the same concept as FIG.
  • the burrs are not as large as the burrs 241b in FIG. 15, the sag 254 can be covered with mold resin in FIG. As a result, similarly, the moisture absorption distance (creeping distance) can be increased.
  • FIG. 17 is a schematic diagram illustrating a modification of the semiconductor device 200 according to the third embodiment of the present invention.
  • two grooves 244 are provided on the back surface of the bent portion 228.
  • the groove 244 continuously extends in a direction penetrating the paper surface of FIG. 17, and a linear groove is formed by scratching the surface of the material (metal sheet 24) by performing so-called marking. With this groove, the moisture absorption distance (creeping distance) can be increased.
  • the adhesion area between the mold resin 42 and the surface of the metal sheet 24 can be expanded, and the adhesion can be improved.
  • the number of the grooves 244 may be one, or three or more. You may provide not discontinuously but discontinuously at predetermined intervals.
  • FIG. 18 is a schematic diagram illustrating a modification of the semiconductor device 200 according to the third embodiment of the present invention.
  • a chamfered portion 250 is provided in the vicinity of the peripheral edge portion 227 in the mold resin 42.
  • the chamfering angle may be the same as the angle of the bent portion at the peripheral edge.
  • a curved chamfer may be chamfered in a cross-sectional view at the bottom corner of the heat spreader 120 in the vicinity of the bent portion. Instead of a curved surface, it may be a straight chamfer (so-called C chamfer).
  • FIG. 19 is a schematic diagram showing a modification of the semiconductor device 200 according to the third embodiment of the present invention.
  • the internal structure of the semiconductor device 200 is illustrated through the mold resin 42, and is a simplified diagram showing only the heat spreader 120 and the sheet member 226.
  • 14 to 16 are obtained by variously modifying the cross-sectional structure of the peripheral edge portion 227 in the semiconductor device 200.
  • each modification shown in FIG. 19 is obtained by variously changing the position where the peripheral edge portion 227 is provided in the semiconductor device 200 in plan view.
  • a planar portion 272 and a bent portion 270 are provided on the peripheral edge portions 274 of all four sides of the sheet member 226.
  • a planar portion 278 and a bent portion 276 are partially provided at the four corners of the sheet member 226. You may provide a bending part partially only in the four corners of the heat spreader with a high occurrence frequency of dielectric breakdown.
  • the two long side peripheral edge portions 286 of the sheet member 226 are provided with a flat surface portion 282 and a bent portion 280. Compared with the case where bent portions are provided on all four sides, there are advantages such as ease of bending and low cost of the bending process.
  • the cross-sectional shape of each plane part and the bent part may be the same as the configuration of FIG. 13 of the third embodiment, or the various modifications shown in FIGS. It is good.
  • Embodiment 4 The method for manufacturing the semiconductor device according to the fourth embodiment of the present invention will be described below.
  • the manufacturing method according to the fourth embodiment is for manufacturing a semiconductor device in which a bent portion is provided at the peripheral edge of the sheet member 226 as in the third embodiment.
  • 20 to 23 below are symmetrical on the left and right sides of each drawing, and therefore only the left side of the drawing is shown, and the illustration is simplified.
  • 20 to 23 are simplified schematic diagrams. Actually, like the semiconductor device 200, the heat spreader 120, the sheet member 226, the IGBT 30 and the diode 32 as power semiconductor elements, and the mold resin 42 are provided. I have. In addition, like the semiconductor device 200, wires 44 and 46, a signal terminal 38, and main terminals 36 and 37 are also provided. The mounting locations and relative positional relationships of these components are the same as those shown in FIGS.
  • FIG. 20 is a schematic view for explaining the method for manufacturing the semiconductor device according to the fourth embodiment of the present invention.
  • a preparation process is first performed as the first step.
  • the heat spreader 120, the semiconductor elements (IGBT 30 and the diode 32), and the sheet member 226 are prepared.
  • wires 44 and 46, a signal terminal 38, and main terminals 36 and 37 are also prepared as in the semiconductor device 200.
  • the protrusion 290 is provided on the peripheral edge portion 227 of the sheet member 226 as “bending portion forming means”.
  • the bent portion forming means is means for bending the peripheral edge portion of the sheet member 226.
  • the protrusion 290 is preferably made of a resin material. This is to ensure processability and insulation by the resin material.
  • the insulating material is coated continuously (or discontinuously) from one end of the side to the other end along each side on the back side of the end of the sheet member 226. The coating material is cured to form protrusions 290.
  • the upper mold 291a and the lower mold 291b are molds for molding resin molding.
  • the resin injection path is not shown.
  • Parts to be sealed such as the heat spreader 120 and the sheet member 226 are installed in a cavity formed by the upper mold 291a and the lower mold 291b for molding resin molding.
  • the heat spreader 120 is placed on the surface of the sheet member 226 so that a peripheral edge portion 227 protruding from the edge of the bottom surface of the heat spreader 120 is generated.
  • the protrusion 290 functions as a bent portion forming means, and the peripheral portion 227 of the sheet member 226 is bent by the heat spreader 120 and the protrusion 290 as shown in FIG.
  • existing mold molds upper mold 291 a and lower mold 291 b
  • processing application of a coating material
  • a resin sealing step is performed in a state where the peripheral edge is bent.
  • the mold resin 42 can seal the front surface of the sheet member 226 and the back surface of the peripheral edge portion 227, semiconductor elements such as the heat spreader 120 and IGBT 30, and components such as main terminals and wires (not shown). Further, since the mold resin 42 does not enter the back surface of the sheet member 226 in contact with the bottom surface of the lower mold 290 (that is, the back surface of a part of the metal sheet 24), at least a part of the back surface of the sheet member 226 is exposed from the mold resin 42. To do.
  • the bent portion forming means may be a pin provided on the bottom surface of the cavity in the mold and capable of protruding into the cavity.
  • FIG. 21 is a schematic diagram for explaining a modification of the semiconductor device manufacturing method according to the fourth embodiment of the present invention.
  • the lower mold 291c is provided with a through hole and a movable pin 292 that can advance and retract in the axial direction inside the through hole.
  • the movable pin 292 is advanced so that the end of the sheet member 226 is disposed at a position where the tip of the movable pin 292 hits. Thereby, as shown in FIG. 21, the edge part of the sheet
  • the movable pin 292 may be pressed first to bend, and after forming the bent portion by bending, the mold resin may be injected with the movable pin 292 retracted.
  • the mold resin may be injected with the movable pin 292 protruding, and the hole generated by the movable pin 292 may be filled with resin.
  • a plurality of movable pins 292 may be provided along an edge of a predetermined area where the sheet member 226 is disposed.
  • the bent portion forming means may be a convex portion provided on the bottom surface of the cavity in the mold.
  • FIG. 22 is a schematic diagram for explaining a modification of the semiconductor device manufacturing method according to the fourth embodiment of the present invention.
  • a mold resin sealing step is performed using a lower mold 291d having a convex portion 294 on the bottom surface.
  • the convex portion 294 has an inclined surface 294a having a tilt angle theta 3.
  • the sheet member 226 is disposed so that the rear surface on the end side is in contact with the inclined surface 294a, and the heat spreader 120 is disposed on the right side of the paper surface from the convex portion 294. Thereby, as shown in FIG. 22, the edge part of the sheet
  • the bent portion forming means is provided on the bottom surface of the cavity in the mold, and is provided on the upper surface of the cavity of the mold so as to face the pin together with the first pin that can protrude into the cavity.
  • the second pin can be projected. The distance between the first pin and the second pin is separated by about the size of the peripheral edge 227.
  • FIG. 23 is a schematic diagram for explaining a modification of the semiconductor device manufacturing method according to the fourth embodiment of the present invention.
  • an upper mold 291e having a movable pin 298 is used together with the lower mold 291c having the movable pin 292 described above.
  • the movable pin 292 is advanced so that the end of the sheet member 226 is disposed at a position where the tip of the movable pin 292 hits.
  • the movable pin 298 is also pressed so that the tip of the movable pin 298 presses the surface of the sheet member 226 in the vicinity of the heat spreader 120 as shown in FIG.
  • seat member 226 can be bent, and also bending stability improves by pressing of the movable pin 298.
  • FIG. 23 the edge part of the sheet
  • the movable pins 292 and 298 may be first pressed and bent, and after forming the bent portion by bending, the mold resin may be injected with the movable pins 292 and 298 retracted.
  • the mold resin may be injected with the movable pins 292 and 298 protruding, and the holes generated in the movable pins 292 and 298 may be filled with resin.
  • a plurality of movable pins 292 may be provided along the edge of a predetermined area where the sheet member 226 is disposed. Further, a plurality of movable pins 298 may be provided along the outer periphery of a predetermined area where the heat spreader 120 is disposed.
  • FIG. FIG. 24 is a schematic cross-sectional view partially showing the vicinity of the periphery of the semiconductor device 202 according to the fifth embodiment of the present invention.
  • the semiconductor device 202 shown in FIG. 24 is common to the semiconductor device 200 according to the third embodiment in that a part of the back surface of the sheet member 226 is covered with the mold resin 42.
  • it also has the technical features described below.
  • the semiconductor device 202 includes a heat spreader 120, a sheet member 226, IGBTs 30 and diodes 32 as power semiconductor elements, and a mold resin 42.
  • a wire, a signal terminal, and a main terminal are also provided.
  • FIG. 24A is an enlarged cross-sectional view of the vicinity of the peripheral portion showing a state before the heat spreader 120 is mounted during the manufacturing of the semiconductor device 202.
  • FIG. 24B is an enlarged cross-sectional view of the vicinity of the periphery of the semiconductor device 202 after sealing with the mold resin.
  • the configuration other than the mold resin 42, the heat spreader 120, and the sheet member 226 is the same as that of the semiconductor device 200 according to the third embodiment. That is, similarly to the semiconductor device 200, wires 44 and 46, a signal terminal 38, and main terminals 36 and 37 are also provided. Since the mounting locations and relative positional relationships of these components are the same as those shown in FIGS. 11 and 12, they are not shown for convenience of explanation.
  • the sheet member 226 has a thin portion 296 at the peripheral edge portion 227.
  • the thin portion 296 is a portion thinned so as to form a step 297 on the back surface of the sheet member 226 (that is, the front surface of the metal sheet 24).
  • the thickness of the thin portion 296 is 1 ⁇ 2 of the thickness of the center side (thick portion) of the sheet member 226.
  • the step 297 is a step that is continuously provided from the position near the end of the back surface of the sheet member 226 to the tip of the peripheral edge 227.
  • the mold resin 42 is provided with a step sealing resin portion 299 that covers the step 297.
  • the peripheral portion 227 is a flat portion. That is, the end of the sheet member 226 is not bent or the like.
  • a part of the back surface of the sheet member 226 can be covered with the mold resin 42.
  • a thin portion 296 exists from a position in the vicinity of the end of the back surface of the sheet member 226 to a tip of the peripheral portion 227, and the thin resin 296 is sealed with the thin portion 296. Therefore, the water intrusion path is surely expanded by an amount corresponding to the interface between the thin portion 296 and the mold resin 42.
  • An effect of increasing the moisture absorption distance (creeping distance) and improving the adhesion of the mold resin can be obtained.
  • the adhesion between the metal sheet (copper foil in the present embodiment) and the mold resin is greater than the adhesion between the metal sheet (copper foil in the present embodiment) and the insulating layer (insulation sheet). high.
  • the anchor effect is exhibited by enlarging the surface area of the metal sheet (copper foil in the present embodiment) in contact with the mold resin. Thereby, the hygroscopic water approach prevention by high adhesiveness can be performed.
  • the peripheral edge portion 227 is all a flat surface portion. For this reason, even if the heat spreader 120 is misaligned, the problem of the design margin between the bent portion 228 and the heat spreader 120 as described above can be avoided. For this reason, there is an advantage in the manufacturing process.
  • Embodiment 6 FIG.
  • the semiconductor device according to the sixth embodiment described below and its modification are common in that at least one convex portion or concave portion is provided on the surface of the peripheral portion of the sheet member.
  • FIG. 25 is a sectional view of a semiconductor device 300 according to the sixth embodiment of the present invention.
  • FIG. 26 is a plan view of a semiconductor device 300 according to the sixth embodiment of the present invention.
  • FIG. 25 shows a cross section of the semiconductor device 300 taken along the line DD in FIG.
  • FIG. 26 is a plan view of the semiconductor device 300 of FIG. 25 looking down from the top of the drawing of FIG. 25.
  • the internal structure of the semiconductor device 300 is illustrated through the mold resin.
  • the semiconductor device 300 has the same configuration as the semiconductor device 10 of the first embodiment except for the following two differences.
  • the first difference is that a sheet member 326 is provided instead of the sheet member 26.
  • the second difference is that the heat spreader 120 described in the second embodiment is provided instead of the heat spreader 20.
  • the sheet member 326 is different from the sheet member 26 in that a recess 328 is provided.
  • the other points, that is, the laminated structure of the insulating sheet 22 and the metal sheet 24 and the point that the peripheral portion 327 is provided in the same manner as the peripheral portion 27 are common.
  • a plurality of recesses 328 are provided on the two short sides of the sheet member 326 so as to surround the heat spreader 120, respectively.
  • FIG. 27 (A) is a partial cross-sectional view schematically showing the vicinity of the peripheral edge according to the sixth embodiment of the present invention.
  • FIG. 27B is a cross-sectional view taken along the line EE in FIG.
  • each recess 328 is circular, and the depth of each recess 328 is halfway through the insulating sheet 22.
  • the recess 328 is provided from the end of the sheet member 326 to the vicinity of the heat spreader 120 at the peripheral edge 327.
  • the recess 328 may be formed by piercing the insulating sheet 22 with a movable pin. This facilitates processing and has a cost reduction effect.
  • the plurality of recesses 328 are provided on the surface of the peripheral edge 327 of the sheet member 326.
  • the recess 328 forms a plurality of recesses.
  • the plurality of recesses increase the moisture absorption distance (creeping distance) compared to the case where the sheet member 326 is simply a flat surface.
  • the adhesive area is increased by the mold resin entering the plurality of recesses 328, and the adhesion at the interface between the peripheral edge portion 327 of the sheet member 326 and the mold resin 42 can be improved. . Moisture absorption that causes dielectric breakdown can be suppressed. Thereby, the dielectric breakdown of the heat spreader 120 can be suppressed.
  • FIG. 28 is a schematic cross-sectional view showing a modification of the semiconductor device 300 according to the sixth embodiment of the present invention.
  • FIG. 28A is a partial cross-sectional view schematically showing the vicinity of the peripheral edge according to the sixth embodiment of the present invention.
  • FIG. 28B is a cross-sectional view taken along the line FF in FIG.
  • a plurality of holes 332 are provided at the same position and number as the recesses 328 according to the sixth embodiment. However, the holes 332 penetrate the insulating sheet 22 and the surface of the metal sheet 24. This is different from the recess 328 in that it is exposed. Thereby, in addition to the effect similar to the recessed part 328, the adhesion
  • the adhesion between the metal sheet (copper foil in the present embodiment) and the mold resin is greater than the adhesion between the metal sheet (copper foil in the present embodiment) and the insulating layer (insulation sheet). high.
  • the anchor effect is exhibited by enlarging the surface area of the metal sheet (copper foil in the present embodiment) in contact with the mold resin. Thereby, the hygroscopic water approach prevention by high adhesiveness can be performed.
  • the hole 332 may be formed by piercing a movable pin into the insulating sheet 22. In this case, processing is easy, and a cost reduction effect can be obtained.
  • FIG. 29 is a schematic cross-sectional view showing a modification of the semiconductor device 300 according to the sixth embodiment of the present invention.
  • an uneven portion 334 having triangular unevenness is provided instead of the recess 328.
  • the moisture absorption distance is increased as compared with the case where the sheet member 326 is merely a flat surface.
  • the adhesion is improved by increasing the contact surface area at the interface with the mold resin 42.
  • FIG. 30 is a schematic cross-sectional view showing a modification of the semiconductor device 300 according to the sixth embodiment of the present invention.
  • FIG. 30A is a partial cross-sectional view schematically showing the vicinity of the peripheral edge according to the sixth embodiment of the present invention.
  • FIG. 30B is a cross-sectional view taken along the line GG in FIG.
  • a recess 336 having a rectangular recess is provided instead of the recess 328.
  • the square recessed part may be arranged in multiple numbers (many) by planar view.
  • the shape of the concave portion in plan view is not necessarily a simple rectangle, and may include various patterns such as an L shape, a U shape, and a ring shape in the plan view.
  • FIG. 31A and 31B are schematic cross-sectional views showing modifications of the semiconductor device 300 according to the sixth embodiment of the present invention.
  • a thick portion 338 is provided on the sheet member 326.
  • the moisture absorption distance is increased by the thickness corresponding to the thickness as compared with the case of the uniform thickness.
  • electric field concentration at the end (particularly, the four corners) of the heat spreader 120 can be reduced.
  • the heat spreader 120 is disposed in contact with the side surface 338 a of the thick portion 338.
  • the present invention is not limited to this, and the side surface 338a and the side surface of the heat spreader 120 may be separated.
  • the space generated by the separation is filled with the mold resin 42. Thereby, it is possible to further increase the moisture absorption distance (creeping distance).
  • a plurality of recesses 328 are provided on each of the two short sides of the sheet member 326.
  • various modifications can be made to which position of the sheet member 326 the recess 328 according to the sixth embodiment and the various configurations of the modifications 1 to 5 are provided in the plan view of the semiconductor device 300.
  • the same modification as that shown in FIG. 19 in the third embodiment is possible.
  • the peripheral portions 327 of all four sides of the sheet member 326 may be provided with the recesses 328 and various configurations of the modifications 1 to 5.
  • the modification shown in FIG. 19A the peripheral portions 327 of all four sides of the sheet member 326 may be provided with the recesses 328 and various configurations of the modifications 1 to 5.
  • the concave portions 328 and various configurations of the modifications 1 to 5 may be partially provided at the four corners of the sheet member 326. Or you may provide the recessed part 328 and the various structures of the modifications 1 thru
  • FIG. 32 is a schematic cross-sectional view showing the configuration of the semiconductor device 302 according to the seventh embodiment of the present invention.
  • FIG. 32A is an enlarged cross-sectional view in the vicinity of the peripheral edge portion showing the state before mounting the heat spreader 120 during the manufacturing of the semiconductor device 302.
  • FIG. 32B is an enlarged cross-sectional view of the vicinity of the periphery of the semiconductor device 302 after sealing with the mold resin.
  • the semiconductor device 302 includes a heat spreader 120, a sheet member 326, an IGBT 30 and a diode 32 as power semiconductor elements, and a mold resin 42.
  • a wire, a signal terminal, and a main terminal are also provided.
  • the configuration other than the mold resin 42, the heat spreader 120, and the sheet member 326 is the same as that of the semiconductor device 200 according to the third embodiment, the illustration is omitted for convenience of explanation.
  • a plurality of through holes 342 are provided in the peripheral edge portion of the sheet member 326.
  • a burr 344 that protrudes to the back side is provided.
  • the mold resin 42 is a burr coating portion 345 that covers the portion where the burr 344 is provided on the back surface of the peripheral portion. Will be provided.
  • the moisture absorption distance can be increased by covering the back surface of the sheet member 326.
  • the burr covering portion 345 covers the burr 344, the adhesion area between the metal sheet 24, which is a copper foil, and the mold resin 42 can be increased as compared with the case where the burr 344 is not provided.
  • FIG. 33 is a sectional view of a semiconductor device 400 according to the eighth embodiment of the present invention.
  • FIG. 34 is a plan view of a semiconductor device 400 according to the eighth embodiment of the present invention.
  • FIG. 33 shows a cross section of the semiconductor device 400 taken along the line HH in FIG.
  • FIG. 34 is a plan view of the semiconductor device 400 of FIG. 33 looking down from the top of FIG. 33.
  • the internal structure of the semiconductor device 400 is illustrated through the mold resin.
  • the semiconductor device 400 has the same configuration as that of the semiconductor device 10 of the first embodiment except for the following two differences.
  • the first difference is that a sheet member 426 is provided instead of the sheet member 26.
  • the second difference is that the heat spreader 120 described in the second embodiment is provided instead of the heat spreader 20.
  • FIG. 35 is an enlarged cross-sectional view of the vicinity of the periphery of the semiconductor device 400 according to the eighth embodiment of the present invention.
  • the sheet member 426 is formed by laminating an insulating sheet and a metal sheet, and has a peripheral edge portion 427 as in the case of these sheet members.
  • the sheet member 426 has a size that the metal sheet 24 is slightly larger than the insulating sheet 422 in plan view. That is, the outer shape of the insulating sheet 422 is slightly smaller than that of the metal sheet 24, and the metal sheet 24 further includes a peripheral edge portion 428 protruding from the edge of the insulating sheet.
  • the mold resin 42 covers the surface of the peripheral edge 428.
  • the adhesion at the interface between the peripheral edge portion 427 of the sheet member 426 and the mold resin 42 can be improved. That is, the adhesion between the metal sheet (copper foil in the present embodiment) and the mold resin is greater than the adhesion between the metal sheet (copper foil in the present embodiment) and the insulating layer (insulating sheet). high. Moreover, the anchor effect is exhibited by enlarging the surface area of the metal sheet (copper foil in the present embodiment) in contact with the mold resin. Thereby, the hygroscopic water approach prevention by high adhesiveness can be performed. Thereby, the moisture absorption which causes a dielectric breakdown can be suppressed. Thereby, the dielectric breakdown of the heat spreader 120 can be suppressed.
  • FIG. 36 to FIG. 43 are schematic enlarged cross-sectional views in the vicinity of the periphery, showing a modification of the semiconductor device 400 according to the eighth embodiment of the present invention.
  • the peripheral portion 428 may be provided with a triangular uneven portion 430.
  • the peripheral portion 428 may be bent and the bent portion 435 may be provided.
  • the entire peripheral edge portion 428 may be bent.
  • the peripheral portion 428 may be bent halfway at the position of the dimension L from the opposite portion of the insulating sheet 422, and the bent portion 441 and the flat portion 442 may be provided. Can also be improved.
  • FIG. 37 the peripheral portion 428 may be bent halfway at the position of the dimension L from the opposite portion of the insulating sheet 422, and the bent portion 441 and the flat portion 442 may be provided. Can also be improved.
  • FIG. 37 the peripheral portion 428 may be bent halfway at the position of the dimension L from the opposite portion of the insulating sheet 422, and the bent portion 441 and the flat portion 442 may be provided. Can
  • the bent portion 444 may be provided by bending by a predetermined obtuse angle ⁇ 4, or the bent portion 446 may be provided by bending by a predetermined acute angle ⁇ 5 .
  • This bending angle is preferably in the range of 15 degrees to 165 degrees.
  • the mold resin 42 covers the front and back surfaces of the metal sheet 24. If it does so, since mold resin adheres to the front and back both surfaces of a metal sheet (this embodiment copper foil), high adhesiveness can be obtained.
  • a plurality of recesses 458 may be provided in the peripheral edge portion 428.
  • FIG. 39B is a plan view seen along the arrow J in FIG. 39A, and is a view seen through the mold resin 42 for convenience.
  • a plurality of through holes 460 may be provided in the peripheral edge portion 428.
  • FIG. 41B is an enlarged cross-sectional view of the vicinity of the recess 468 in FIG.
  • the trapezoidal concavo-convex portion 468 has the effect of further increasing the moisture absorption distance and improving the adhesion area between the metal sheet and the mold resin.
  • the mold resin 42 enters the recess 468, the mold resin 42 and the metal sheet 24 can be mechanically coupled.
  • FIG. 42 is a diagram showing an example of a method for manufacturing the recess 468 shown in FIG.
  • a press instrument tip 469 having the shape shown in the cross-sectional view of FIG. 42A and the plan view of FIG. 42B is pierced into the metal sheet 24.
  • the press tool tip 469 is rotated by 180 degrees or 360 degrees.
  • the metal sheet 24 is scraped off by rotation, and a bottom outer edge 468a and an inlet portion 468b of the concave portion 468 indicated by a dotted circle in the plan view of FIG. 42C are formed.
  • the press instrument tip 469 is extracted from the inlet portion 468b.
  • a recess 468 is formed as shown in the plan view of FIG. 42D and the cross-sectional view of FIG. 42E (the cross section taken along the line KK of FIG. 42D).
  • the mold resin 42 includes a burr covering portion that covers a portion where the burr 479 is provided on the back surface of the peripheral edge portion.
  • peripheral portions 428 are provided on the four sides of the sheet member 426.
  • various modifications can be made to which position of the sheet member 426 the peripheral edge portion 428 is provided in the plan view of the semiconductor device 400.
  • the peripheral edge portion 428 may be provided only at the long and short sides or four corners of the sheet member 426 facing each other.
  • the above embodiments can be used in appropriate combinations.
  • the coating layer, the bent portion, the hole portion, and the like of the above-described second to seventh embodiments can be appropriately provided at any of the short side, the long side, and the four corners of the sheet member in plan view. .
  • an IGBT is used as the power semiconductor element.
  • the present invention is not limited to this, and a MOSFET may be used as the power semiconductor element.
  • the heat spreader 20 according to the first embodiment may be used as the heat spreader of the semiconductor device according to the second to fifth embodiments.
  • a semiconductor device in which only one set of IGBT and free wheel diode as a power semiconductor element is sealed is disclosed, but the present invention is not limited to this.
  • the present invention can also be applied to a semiconductor device incorporating a plurality of sets of power semiconductor elements as an inverter circuit. Specifically, for example, for a semiconductor device including six sets of IGBTs and freewheel diodes as a three-phase inverter. The present invention can be applied.

Abstract

 ヒートスプレッダを内蔵する半導体装置において、絶縁破壊を抑制するように改善された構成を備える半導体装置を提供する。 半導体装置は、底面を有する電気伝導性のヒートスプレッダと、シート部材と、半導体素子であるIGBTおよびダイオードと、モールド樹脂を備えている。シート部材は、表面および裏面を備え、表面と裏面を電気的に絶縁し、表面がヒートスプレッダの底面に接しかつ底面の縁から突き出した周縁部を備える。IGBTおよびダイオードは、ヒートスプレッダに固定され、ヒートスプレッダと電気的に接続される。モールド樹脂は、シート部材の表面、ヒートスプレッダ、および半導体素子を封止し、かつシート部材の裏面の少なくとも一部を露出させる。ヒートスプレッダは、底面の隅に、平面視で面取り形状又は曲面形状でありかつ断面視で矩形状である隅部を備える。

Description

半導体装置および半導体装置の製造方法
 本発明は、半導体装置に関し、特にヒートスプレッダを備えた半導体装置およびその製造方法に関する。
 従来、例えば、下記の特許文献1に開示されているように、絶縁シート上に放熱用の金属ブロック(ヒートスプレッダ)を搭載し、この金属ブロックに半導体素子を設置した電力用半導体装置が知られている。この種の電力用半導体装置は、IGBT等のいわゆるパワー半導体素子を内蔵している。
 特許文献1に記載の半導体装置は、金属ブロックの縁から一定の寸法だけ突き出るように、絶縁シートを金属ブロックよりも一回り大きくしている。その上で、この絶縁シートを、金属ブロック側に折り曲げている。さらに、折り曲げられた絶縁シートの裏面部分を覆うように、封止樹脂を設けている。このような構成によれば、絶縁シートによる絶縁性を確保するように、沿面距離を確保することができる。さらに、絶縁シートを折り曲げることで、半導体パッケージの小型化を達成することもできる。
 パワー半導体素子を内蔵する半導体装置は、大電力を使用する。このため、そのパッケージ構造には高い絶縁性が要求される。この点について上記従来の技術でも検討されており、パワー半導体素子を内蔵する半導体装置では絶縁性確保のための技術開発が進められている。
日本特開2011-9410号公報 日本特開2010-267794号公報 日本特開2003-124406号公報 日本特開平6-302722号公報
 本発明の目的は、ヒートスプレッダを内蔵する半導体装置において、絶縁破壊を抑制するように改善された構成を備える半導体装置および半導体装置の製造方法を提供することである。
 第1の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
を備え、
 前記ヒートスプレッダは、前記底面の隅に、平面視で面取り形状又は曲面形状でありかつ断面視で矩形状である隅部を備えることを特徴とする。
 第2の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
を備え、
 前記周縁部の前記表面に、前記封止樹脂体の樹脂よりも、絶縁性および前記シート部材の前記表面に対する密着性のうち少なくとも一方が高い電気絶縁性コーティング材料の層が設けられたことを特徴とする。
 第3の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
 を備え、
 前記シート部材の前記周縁部は、
 前記底面と並行に延びる平面部と、
 前記平面部の外側であって前記ヒートスプレッダの隅の近傍又は前記ヒートスプレッダの辺に沿って設けられ、前記表面側に凸となる屈曲部と
を備え、
 前記封止樹脂体は、前記屈曲部における前記シート部材の前記裏面を覆うものであることを特徴とする。
 第4の発明は、半導体装置の製造方法であって、
 底面を有する電気伝導性のヒートスプレッダと、前記ヒートスプレッダに固定すべき半導体素子と、表面および裏面を備え前記表面と前記裏面を電気的に絶縁するシート部材と、を準備する工程と、
 モールド金型のキャビティ内に前記シート部材、前記ヒートスプレッダおよび前記ヒートスプレッダに固定した前記半導体素子を入れ、前記モールド金型の前記キャビティ底面に前記裏面を向けて当該キャビティ底面に前記シート部材を載せ、前記ヒートスプレッダの前記底面の縁から突き出した周縁部を生じさせるように前記ヒートスプレッダを前記シート部材の前記表面に載せて、屈曲部形成手段により前記ヒートスプレッダの側へと前記周縁部に折り曲げを施す工程と、
 前記周縁部に折り曲げが施された状態で、前記シート部材の前記表面および前記周縁部における前記裏面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させるように、樹脂封止を行う工程と、
 を備えることを特徴とする。
 第5の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子とを封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
 を備え、
 前記周縁部は、前記裏面に、前記周縁部の先端にかけて前記表面側に落ち込んだ段差を形成するように薄くされた薄厚部を有し、
 前記封止樹脂体が前記シート部材の前記段差を覆うことを特徴とする。
 第6の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
を備え、
 前記周縁部の前記表面には、少なくとも1つの凸部又は凹部が設けられたことを特徴とする。
 第7の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子とを封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
 を備え、
 前記シート部材が、前記表面側に位置する絶縁層と前記絶縁層よりも前記裏面側に位置する金属層とを積層したものであり、
 前記周縁部には、前記表面と前記裏面を貫通する少なくとも1つの貫通穴が設けられ、
 前記金属層の前記裏面側の面における前記貫通穴の縁部には、前記裏面側に突出するバリが設けられており、
 前記封止樹脂体は、前記周縁部の前記裏面における前記バリが設けられた部分を覆うことを特徴とする。
 第8の発明は、半導体装置であって、
 底面を有する電気伝導性のヒートスプレッダと、
 表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接する絶縁シートと、
 前記絶縁シートの前記裏面に接し、前記絶縁シートの縁から突き出た周縁部を備え、前記周縁部が前記ヒートスプレッダ側を向く上面を備える金属シートと、
 前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
 前記金属シートの前記上面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記金属シートの前記裏面の少なくとも一部を露出させる封止樹脂体と、
 を備えることを特徴とする。
 本発明によれば、ヒートスプレッダを内蔵する半導体装置において、絶縁破壊を抑制することができる。
本発明の実施の形態1にかかる半導体装置の断面図である。 本発明の実施の形態1にかかる半導体装置の平面図である。 本発明の実施の形態1にかかるヒートスプレッダの隅部の構成を示す部分断面図である。 本発明の実施の形態1にかかかる半導体装置の変形例を示す図である。 本発明の実施の形態2にかかる半導体装置の断面図である。 本発明の実施の形態2にかかる半導体装置の平面図である。 本発明の実施の形態2にかかる半導体装置の製造工程の一部を示す図である。 本発明の実施の形態2にかかかる半導体装置の変形例の1つを示す図である。 本発明の実施の形態2にかかかる半導体装置の変形例の他の1つを示す図である。 本発明の実施の形態2にかかかる半導体装置の変形例の更に他の1つを示す図である。 本発明の実施の形態3にかかる半導体装置の断面図である。 本発明の実施の形態3にかかる半導体装置の平面図である。 本発明の実施の形態3にかかる屈曲部付近を簡略化して示した部分断面図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態3にかかる半導体装置の変形例を示す模式図である。 本発明の実施の形態4にかかる半導体装置の製造方法を説明するための模式図である。 本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。 本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。 本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。 本発明の実施の形態5にかかる半導体装置の周縁部近傍を部分的に示す模式的な断面図である。 本発明の実施の形態6にかかる半導体装置の断面図である。 本発明の実施の形態6にかかる半導体装置の平面図である。 本発明の実施の形態6にかかる半導体装置の変形例を示す模式的な断面図である。 本発明の実施の形態6にかかる半導体装置の変形例を示す模式的な断面図である。 本発明の実施の形態6にかかる半導体装置の変形例を示す模式的な断面図である。 本発明の実施の形態6にかかる半導体装置の変形例を示す模式的な断面図である。 本発明の実施の形態6にかかる半導体装置の変形例を示す模式的な断面図である。 本発明の実施の形態7にかかる半導体装置の構成を示す模式的な断面図である。 本発明の実施の形態8にかかる半導体装置の断面図である。 本発明の実施の形態8にかかる半導体装置の平面図である。 本発明の実施の形態8にかかる半導体装置の周縁部付近の拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。 本発明の実施の形態8にかかる半導体装置の変形例を示す、周縁部付近の模式的な拡大断面図である。
 以下、図面に基づいてこの発明の実施の形態について説明する。尚、各図において共通又は対応する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1にかかる半導体装置10の断面図である。図2は、本発明の実施の形態1にかかる半導体装置10の平面図である。図1は、図2におけるA-A線に沿って半導体装置10を切断した断面を示している。図2は、図1の半導体装置10を紙面上から下方に見下ろした平面図であり、便宜上、モールド樹脂を透視して半導体装置10の内部構造を図示している。
 半導体装置10は、ヒートスプレッダ20を備えている。ヒートスプレッダ20は、底面を有する電気伝導性の金属ブロックである。図1および図2に示すように、ヒートスプレッダ20は、その全体形状が略直方体であり、対向する上面(図1の紙面上方を向く面)および底面(図1の紙面下方を向く面)を備えており、この上面と底面とを結ぶ側面も備えている。ヒートスプレッダ20の材料は、銅(Cu)であり、熱伝導性および電気伝導性が高い。
 半導体装置10は、シート部材26を備えている。シート部材26は、絶縁層を構成する絶縁シート22および金属層を構成する金属シート24が積層されたものである。絶縁シート22は、エポキシ樹脂性であり、金属シート24は、銅箔である。絶縁シート22は、導電性フィラー入りのものであってもよい。
 シート部材26は表面と裏面とを備えており、この表面はヒートスプレッダ20の底面に接し、この裏面は半導体装置10の外部(モールド樹脂42の外部)に露出している。絶縁シート22により、シート部材26の表面と裏面とが電気的に絶縁されている。
 シート部材26は、ヒートスプレッダ20の底面の縁から突き出した周縁部27を備える。以下、シート部材において、ヒートスプレッダ底面の縁から突き出した部分を、単に「周縁部」とも称す。図2に示すように、周縁部27は、ヒートスプレッダ20の四辺の縁から四方に突き出ており、そのサイズはヒートスプレッダ20に比べて一回り大きい。
 半導体装置10は、半導体素子として、IGBT(絶縁ゲートバイポーラトランジスタ)30と、フリーホイールダイオードであるダイオード32とを備えている。IGBT30とダイオード32は、ヒートスプレッダ20の上面に半田で固定されている。IGBT30とダイオード32は、それぞれ、表面電極と裏面電極とを備えている。それらの裏面電極が半田を介してヒートスプレッダ20と接続されることで、両者が電気的に接続される。
 半導体装置10は、主端子36、主端子37、および信号端子38を備えている。これらの端子はいずれも銅(Cu)で形成された電極板である。主端子36は、ヒートスプレッダ20に直接に半田で固定されている。主端子37、ダイオード32およびIGBT30が、アルミニウム(Al)で形成された複数本(図では5本)のワイヤ46を介して互いに接続されている。信号端子38は、アルミニウム(Al)で形成された複数本(図では3本)のワイヤ44を介して、IGBT30のゲート電極に接続している。
 半導体装置10は、モールド樹脂42を備えている。モールド樹脂42は、シート部材26の表面、ヒートスプレッダ20、並びにIGBT30およびダイオード32を封止する封止樹脂体である。モールド樹脂の外側に、主端子36、主端子37、および信号端子38の一部が露出する。モールド樹脂42は、シート部材26の裏面全体を露出させている。
 図2に示すように、ヒートスプレッダ20は、ヒートスプレッダ20の底面の4つの隅にそれぞれ隅部21を有している。隅部21は、すなわち、ヒートスプレッダ20の平面視における4つの隅の部分である。図2に示すように、隅部21は、ヒートスプレッダ20の平面視(あるいは半導体装置10の平面視)で曲面の形状となる部分である。その一方で、図1に示すように、隅部21は、ヒートスプレッダ20の断面視(あるいは半導体装置10の断面視)で矩形状である。実施の形態1にかかる隅部21は、ヒートスプレッダ20の底面から上面にかけて、一様な曲面となっている。
 図3は、本発明の実施の形態1にかかるヒートスプレッダ20の隅部21の構成を示す部分断面図である。図3(A)がヒートスプレッダ20の断面視における隅部21を示す図であり、図3(B)がヒートスプレッダ20の平面視における隅部21を示す図である。図3(A)は、図3(B)のA1-A1線に沿う断面図である。
[実施の形態1の作用]
 半導体装置10のような構成を備えた電力用半導体装置において、モールド樹脂と絶縁シートの間のわずかな界面から、水分が浸入することが問題となっている。この水分は、ヒートスプレッダと銅箔の間に導電パスを形成し、絶縁破壊をもたらす。水分により、ヒートスプレッダと接触する絶縁シートの絶縁材料が加水分解することで、絶縁材料の絶縁性能が低下してしまうからである。
 ここで、本願発明者は、分析を行った結果、このような絶縁破壊の発生箇所が、ヒートスプレッダの平面視における四隅の部分であって絶縁シートとの接触部分(隅部直下)に多いということを見出した。
 図3(A)に矢印で示す経路は、モールド樹脂42とシート部材26の界面であり、以下、吸湿経路とも証する。吸湿経路の長さは、沿面距離と実質的に同じである。沿面距離とは、2つの導電部分の間の、絶縁物界面に沿った最短距離をいうものとされている。
 仮に、図3(B)の平面視において、ヒートスプレッダ20の隅部が曲面ではなく、従来どおり直角であったと仮定する。そうすると、図3(B)に示す2つの吸湿経路を辿ってきた水分が、その直角の隅部の先端に集中してしまう。これに対し、本実施の形態のように平面視で曲面形状の隅部21を設けることで、平面視で直角の隅部の場合と比べて吸湿経路を長くすることができる(つまり、沿面距離を拡大することができる)。
 隅部21の曲面は、アール加工(R面の面取り)を施すことで形成することができる。隅部21のアール加工は、金属ブロックの角の部分に施される単なるアール加工よりも大きいアール加工を施すことによって形成される。単なるアール加工は、隅部21以外にもヒートスプレッダ20の角部に対しても施されうる。しかし、隅部21のアール加工は、これよりもアール加工の半径が大きいものである。隅部21の曲面のアール加工の半径は、隅部21以外のヒートスプレッダ20の角部のアール加工の半径よりも大きい。
 本実施の形態によれば、シート部材26とモールド樹脂42の界面から吸湿が起きても、この吸湿による水が半導体装置10内のヒートスプレッダ20四隅部分に集中することを、抑制できる。これにより、ヒートスプレッダ20の四隅での絶縁破壊を抑制することができる。
 また、前述したように絶縁破壊の発生箇所がヒートスプレッダの四隅に集中する理由の一つとして、ヒートスプレッダの四隅の端部が尖っていると、この部分(鋭角の部分)に電界集中が発生することが挙げられる。本実施形態によれば、隅部21が曲面であるためそのような尖った部分をなくすことができ、電界集中の程度を緩和することもできる。
 また、本実施の形態にかかる隅部21は、ヒートスプレッダ20の断面視(あるいは半導体装置10の断面視)では、矩形状となっており平面視の場合のような曲面形状は有していない。この点は、特許文献1(日本特開2011-9410号公報)の図7における面取部等とは構成が異なる。
 本実施の形態の隅部21の有利な効果として、例えば、次のような効果がある。前述したように、ヒートスプレッダの四隅であって、ヒートスプレッダと絶縁シートの間に生ずる微小な隙間において、絶縁破壊が発生しやすいことを本願発明者は分析、検討を行うことで見出した。特許文献1のように断面視でもアール等の面取りを行う構成とすると、ヒートスプレッダと絶縁シートの間に生ずる微小な隙間に、モールド樹脂の充填が円滑に行われないおそれがある。この点、本実施の形態では、平面視では曲面形状であるものの、断面視では矩形であるため、断面視でアール等の面取りをした場合のモールド樹脂の充填の困難性は生じない。つまり、本実施の形態では、矩形のヒートスプレッダを用いる場合と同様の条件でモールド樹脂封止工程を行っても良い。このように、本実施の形態にかかる半導体装置10によれば、平面視の構造において吸湿距離拡大を達成しつつ、その一方で、断面視の構造においてモールド樹脂封止の品質確保をすることができ、絶縁性確保の観点から優れた効果を得ることができる。
 以上説明したように、本実施の形態によれば、ヒートスプレッダ20とシート部材26の絶縁層(絶縁シート22)との間の絶縁破壊を抑制し、絶縁性を確保した半導体装置10が提供される。
[実施の形態1の変形例]
 図4は、本発明の実施の形態1にかかかる半導体装置10の変形例を示す図である。この変形例は、ヒートスプレッダ20に代えて、ヒートスプレッダ50を有しており、それ以外は図1、2に示した半導体装置10と同じ構成を備えている。図4(A)がヒートスプレッダ50の断面視における隅部51を示す図であり、図4(B)がヒートスプレッダ50の平面視における隅部51を示す図である。図4(A)は、図4(B)のA2-A2線に沿う断面図である。
 隅部51は、平面視で面取り形状であり、断面視で矩形状である。隅部51は、ヒートスプレッダ20の平面視における4つの隅の部分を、C面取り加工したものである。隅部51は、隅部21と同様の絶縁性確保とともに、加工容易性も有している。
実施の形態2.
[実施の形態2の構成]
 図5は、本発明の実施の形態2にかかる半導体装置100の断面図である。図6は、本発明の実施の形態2にかかる半導体装置100の平面図である。図5は、図6におけるB-B線に沿って半導体装置100を切断した断面を示している。図6は、図5の半導体装置100を図5の紙面上から下方に見下ろした平面図であり、便宜上、モールド樹脂を透視して半導体装置100の内部構造を図示している。
 半導体装置100は、次の二つの相違点を除き、実施の形態1の半導体装置10と同様の構成を備えている。第1の相違点は、コーティング層122備えている点である。第2の相違点は、ヒートスプレッダ20に代えてヒートスプレッダ120を備えている点である。
 ヒートスプレッダ120は、実施の形態1のヒートスプレッダ20とは異なり、「平面視で曲面形状となる隅部21」を備えていない。この点を除いてはヒートスプレッダ120はヒートスプレッダ20と同じ構成であり、矩形上の金属ブロックである点や、銅(Cu)を材料とする点も同じである。
 コーティング層122は、電気絶縁性コーティング材料からなる層である。コーティング層122は、周縁部27の表面に設けられている。図6の平面図に示すように、実施の形態2では、コーティング層122は、ヒートスプレッダ120の周囲を取り囲むように、周縁部27の全体を覆っている。
 コーティング層122の材料は、モールド樹脂42の材料よりも、絶縁性およびシート部材26の表面に対する密着性が高い材料を用いる。コーティング層122の材料は、ポリイミドと、ポリアミドと、多官能基を有するエポキシ系ポリマーとからなる群から選択された1つの材料であることが好ましい。また、コーティング層122の材料には、導電性フィラーが混入されていない。これらの絶縁性コーティング材料のほうが、絶縁シート22に対する密着性が高い。モールド樹脂42には、高い放熱性を確保するために、フィラーが充填されているためである。
 図7は、実施の形態2にかかる半導体装置100の、製造工程の一部を示す図である。図7(A)に示すように、シート部材26の表面(周縁部27の表面)に、コーティング層122の材料を予め塗布しておく。この後、ヒートスプレッダ120をシート部材26に載せて、モールド樹脂封止工程を実施する。その結果、図7(B)の構成が得られる。
[実施の形態2の作用]
 本実施の形態によれば、シート部材26とモールド樹脂42の界面に、コーティング層122を設けている。このコーティング層122は、絶縁性コーティング材料からなる層である。このコーティング層122により、界面を辿って吸湿が起きても、絶縁破壊を抑制することができる。また、コーティング層122によれば、絶縁シート22よりも高い絶縁性を確保して、絶縁特性を積極的に向上させることもできる。これにより、ヒートスプレッダの四隅での絶縁破壊を抑制することができる。
[実施の形態2の変形例]
(変形例1)
 図8は、本発明の実施の形態2にかかかる半導体装置100の変形例の1つを示す図である。コーティング層124を、シート部材26の表面のみならず端部側面まで覆うように設けたものである。コーティング層126の材料は、コーティング層122と同じである。
(変形例2)
 図9は、本発明の実施の形態2にかかかる半導体装置100の変形例の他の1つを示す図である。図9に示す変形例にかかる半導体装置は、シート部材140を備えている。このシート部材140は、シート部材26とは異なり、絶縁シート142よりも一回り大きな金属シート144を備えている。つまり、絶縁シート142は、表面がヒートスプレッダ120の底面に接する。金属シート144は、絶縁シート142の裏面に接し、絶縁シート142の縁から突き出た周縁部を備え、周縁部がヒートスプレッダ側を向く上面を備えている。
 本変形例では、コーティング層126が、絶縁シート142表面および金属シート144の上面にかけて塗布されている。コーティング層126の材料は、コーティング層122と同じである。図9の変形例によれば、コーティング材料と銅箔との間で高い接着性が得られるため、水分の浸入を効果的に抑制できる。
(変形例3)
 図10は、本発明の実施の形態2にかかかる半導体装置100の変形例の更に他の1つを示す図である。図10は、図6と同様に半導体装置100の平面図に相当しており、内部構成は簡略化して示している。図10(A)のように、ヒートスプレッダ120の四隅にのみ、部分的にコーティング層128を設けても良い。絶縁破壊の発生頻度の高いヒートスプレッダ120の四隅にコーティング層128を設けているので、絶縁破壊の抑制効果を確保できる。また、少ないコーティング材料で済み、コスト削減につながる。また、図10(B)のように、ヒートスプレッダ120の短辺側にのみ、部分的にコーティング層130を設けても良い。また、図10(C)のように、ヒートスプレッダ120の長辺側にのみ、部分的にコーティング層132を設けても良い。各コーティング層の材料は、コーティング層122と同じとする。
実施の形態3.
 以下、本発明の実施の形態3にかかる半導体装置について説明する。以下に述べる実施の形態3にかかる半導体装置およびその変形例は、モールド樹脂が、シート部材の周縁部表面から裏面にかけて、シート部材の周縁部を覆うという構成を共通に備えている。
[実施の形態3の構成]
 図11は、本発明の実施の形態3にかかる半導体装置200の断面図である。図12は、本発明の実施の形態3にかかる半導体装置200の平面図である。図11は、図12におけるC-C線に沿って半導体装置200を切断した断面を示している。図12は、図11の半導体装置200を図11の紙面上から下方に見下ろした平面図であり、便宜上、モールド樹脂を透視して半導体装置200の内部構造を図示している。
 半導体装置200は、次の二つの相違点を除き、実施の形態1の半導体装置10と同様の構成を備えている。第1の相違点は、シート部材26に代えてシート部材226を備えている点である。第2の相違点は、ヒートスプレッダ20に代えて、実施の形態2で説明したヒートスプレッダ120を備えている点である。
 シート部材226は、屈曲部228を備えている点で、シート部材26と異なっている。それ以外の点、つまり、絶縁シート22と金属シート24の積層構造である点や、周縁部27と同様に周縁部227を備えている点は、共通している。
 シート部材226の周縁部227は、平面部229と、屈曲部228とを備えている。平面部229は、ヒートスプレッダ120の底面と並行に延びる部分である。屈曲部228は、平面部229の外側であってヒートスプレッダ120の短辺に沿って設けられ、ヒートスプレッダ120側に凸となるように屈曲した部分である。本実施の形態では、図11に示すようにシート部材226が折り曲げられることで、この屈曲部228が形成されている。
 図13(A)は、本発明の実施の形態3にかかる屈曲部228付近を簡略化して示した部分断面図である。本実施の形態では、シート部材226を角度θで折り曲げることで、屈曲部228を形成している。
 なお、この角度θは鋭角であるが、本発明はこれに限られるものではない。例えば図13(B)のθのごとく鈍角として、屈曲部232および平面部233を設けてもよい。角度θの範囲は、半導体装置200のパッケージ下面(或いは、ヒートスプレッダ120の底面と平行な面)に対して、15度から165度の範囲とすることが好ましい。なお、角度θを鈍角(つまり90度を超える角度)とする場合には、図13(B)に示すように、平面部233の幅寸法は、屈曲部232の幅寸法よりも大きいことが好ましい。
 モールド樹脂42は、実施の形態3においても、上記の実施の形態1、2と同様に、半導体装置内部の各構成を封止している。つまり、モールド樹脂42は、シート部材226の表面、ヒートスプレッダ120、およびIGBT30等の半導体素子を封止し、かつシート部材226の裏面を露出させる封止樹脂体である。ここで、実施の形態3では、図13に示すように、モールド樹脂42が、シート部材226の裏面側(金属シート24裏面側)へと回りこむ。これにより、屈曲部228におけるシート部材226の裏面の一部をモールド樹脂42が覆っている。
[実施の形態3の作用]
 本実施の形態によれば、屈曲部228におけるシート部材226の裏面の一部をモールド樹脂42が覆っているので、シート部材226の周縁部227とモールド樹脂42の界面に沿う吸湿距離を伸ばすことができる。つまり、シート部材226とヒートスプレッダ120の間の沿面距離を拡大できる。これにより、絶縁破壊の原因となる吸湿を抑制することができ、ヒートスプレッダの絶縁破壊を抑制することができる。
 また、金属シート(銅箔)とモールド樹脂の密着力は高いため、両者の接着面積を増大することで、さらに吸湿を抑制することができる。
 さらに、実施の形態3においては、次に述べるように、製造プロセス上のメリットも得られる。すなわち、実施の形態3においては、周縁部227が、平面部229を備えている。平面部229は、シート部材226の面内において、屈曲部228とヒートスプレッダ120との間に一定の間隔を生じさせることができる。これにより、設計マージンを確保して、製造工程中にヒートスプレッダ120の位置ずれが生じても屈曲部228の曲がりを確保することができる。
 すなわち、仮に、特許文献1(日本特開2011-9410号公報)のように、ヒートスプレッダ120の縁の直近においてシート部材の周縁部を曲げるとする。そうすると、自動制御装置での配置の際にヒートスプレッダ120の位置ずれがあったときに、シート部材の周縁部の曲げた部分にヒートスプレッダ120が載ってしまうおそれがある。シート部材の周縁部の曲げた部分にヒートスプレッダ120が載ってしまうと、ヒートスプレッダ120が押しけられて折り曲げをなくすように力が加わる。その結果、シート部材が平坦となるように周縁部が押し付けられてしまう。
 この点、実施の形態3によれば、平面部229で設計マージンが確保されるので、のような問題を抑制することができる。
[実施の形態3の変形例]
 以下、図面を用いて、実施の形態3の変形例を説明する。以下の図では、便宜上、モールド樹脂42を透視して半導体装置200内部構造を図示しており、構成を簡略化して示す図である。具体的には、モールド樹脂42、ヒートスプレッダ120およびシート部材226以外の構成については省略あるいは簡略化されている。
(変形例1)
 図14は、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。この図は、図13(A)に示す断面図に対応しており、図13(A)の断面構造を変形させたものである。図14(A)に示すように、周縁部227において、平面部235、屈曲部234を設けても良い。屈曲部234が、第1屈曲部234aと、第2屈曲部234bとを備えていても良い。第1屈曲部234aは平面部235と接続してヒートスプレッダ120側(半導体装置200のパッケージ上面側)に折れ曲がる部分であり、第2屈曲部234aは、第1屈曲部234bと接続して半導体装置200のパッケージ下面側に折れ曲がる部分である。
 なお、二段階より多数の多段階の折り曲げを行っても良い。例えば、図14(B)に示すように、平面部237とともに、Ω型の形状の屈曲部236を設けても良い。これにより狭いスペースにおいて折り曲げ回数を増大させて、吸湿距離(沿面距離)をより一層拡大することができる。
(変形例2)
 図15は、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。この図は、図13(A)に示す断面図に対応しており、図13(A)の断面構造を変形させたものである。図15に示すように、周縁部227に平面部243および屈曲部241が設けられている。金属シート24(銅箔)の端部に設けられた屈曲部241は、ダレ面241aおよびカエリ面241bを有している。モールド樹脂がダレ面241aの表面を覆うとともにカエリ面241bが突き出ることによって、ダレ面241aの無い直角の場合と比べて、吸湿距離(沿面距離)を大きくすることができる。
 シート部材の切断加工の際に、切断をするための上下金型のクリアランスを大きくするようにすれば、大きな銅箔ダレを形成することが可能である。また、製造工程上、金型のクリアランスの大きさを制御することで足りるため、新しい追加工程を必要とせず、コスト増加を抑制できる。
 図16は、図15と同様の考え方で変形された、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。図15のカエリ面241bほどにはカエリが大きくないが、図16でもダレ面254をモールド樹脂が覆うことができる。その結果、同様に、吸湿距離(沿面距離)拡大が図れる。
(変形例3)
 図17は、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。図17に示す変形例では、屈曲部228の裏面に、溝244を2つ設ける。溝244は、図17の紙面を貫通する方向に連続的に伸びており、いわゆるケガキを行うことで材料(金属シート24)の表面に傷をつけて線状の溝を設けたものである。この溝により、吸湿距離(沿面距離)を拡大できる。また、この溝244で凹凸形状を設けた結果、モールド樹脂42と金属シート24表面との間の接着面積を拡大し、密着性を向上させることができる。なお、この溝244は、1つであってもよく、或いは3つ以上でも良い。連続的にではなく、所定間隔を置いて不連続的に設けても良い。
(変形例4)
 図18は、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。モールド樹脂42における周縁部227付近に、面取部250を設けている。面取りの角度は、周縁部における屈曲部の角度と一致させても良い。これにより、パッケージ小型化、モールド樹脂使用量の低減が可能でありコスト低減効果がある。なお、図18にあるように、屈曲部の近傍において、ヒートスプレッダ120の底面隅部に断面視で曲面形状の面取りを施しても良い。曲面ではなく直線的な面取り(いわゆるC面取り)としてもよい。
(変形例5)
 図19は、本発明の実施の形態3にかかる半導体装置200の変形例を示す模式図である。便宜上、モールド樹脂42を透視して半導体装置200内部構造を図示しており、ヒートスプレッダ120およびシート部材226のみを示す簡略化した図である。上述の図14乃至16に係る変形例は、半導体装置200における周縁部227について、その断面構造を各種変形させたものである。一方、図19に示す各変形例は、平面視における、半導体装置200における周縁部227を設ける位置を各種変形させたものである。
 図19(A)に示す変形例では、シート部材226の四辺全ての周縁部274に、平面部272および屈曲部270を設けた構成としている。
 図19(B)に示す変形例では、シート部材226の四つの隅に部分的に平面部278および屈曲部276を設けた構成としている。絶縁破壊の発生頻度の高いヒートスプレッダの四隅のみに部分的に屈曲部を設けてもよい。
 図19(C)に示す変形例では、シート部材226の対向する2つの長辺の周縁部286を、平面部282および屈曲部280を設けた構成としている。四辺全てに屈曲部を設ける場合に比して、曲げ加工の容易性や、曲げ加工工程のコストが低い等のメリットがある。
 なお、図19に示す変形例において、各平面部および屈曲部の断面形状は、実施の形態3の図13の構成と同じものとしてもよく、あるいは上記の図14乃至16に記載の各種変形例としてもよい。
実施の形態4.
 以下に、本発明の実施の形態4にかかる半導体装置の製造方法について説明する。実施の形態4にかかる製造方法は、実施の形態3と同様にシート部材226の周縁部に屈曲部を設けた半導体装置を製造するためのものである。以下の図20乃至23は、各図の紙面左右において対称形状であるため紙面左側の部分のみを図示しており、図示を簡略化している。
 また、図20乃至23は簡略化した模式図であるが、実際には、半導体装置200と同様に、ヒートスプレッダ120、シート部材226、パワー半導体素子としてのIGBT30およびダイオード32と、モールド樹脂42とを備えている。ほかにも、半導体装置200と同様に、ワイヤ44、46、信号端子38、及び主端子36、37も備えられている。これらの各部品の搭載箇所や相対的な位置関係は、図11および図12に示したのと同じである。
 図20は、本発明の実施の形態4にかかる半導体装置の製造方法を説明するための模式図である。実施の形態4にかかる製造方法では、まず、第1のステップとして、準備工程が行われる。この準備工程では、ヒートスプレッダ120、半導体素子(IGBT30およびダイオード32)と、シート部材226を準備する。これに加えて半導体装置200と同様に、ワイヤ44、46、信号端子38、及び主端子36、37も準備する。
 ここで、実施の形態4では、「屈曲部形成手段」として、シート部材226の周縁部227に突起290を設ける。屈曲部形成手段は、シート部材226の周縁部を折り曲げる手段である。この突起290は、好ましくは、樹脂材料とする。樹脂材料により加工性および絶縁性を確保するためである。具体的には、シート部材226の端部裏面側に、各辺に沿ってその辺の一端から他端にかけて連続的に(或いは不連続的に)、絶縁材料をコーティングする。このコーティング材料が硬化することで突起290となる。
 上金型291aおよび下金型291bは、モールド樹脂成型用の金型である。樹脂注入経路は図示を省略している。モールド樹脂成型のため上金型291aおよび下金型291bにより形成されるキャビティ内に、ヒートスプレッダ120、シート部材226等の封止対象部品を設置する。ヒートスプレッダ120の底面の縁から突き出した周縁部227を生じさせるように、ヒートスプレッダ120をシート部材226の表面に載せる。
 このとき突起290が屈曲部形成手段として機能し、図20(B)に示すように、ヒートスプレッダ120および突起290によってシート部材226の周縁部227が折り曲げられる。図20の製造方法によれば、シート部材226に対する加工(コーティング材料の塗布)によって、既存のモールド金型(上金型291aおよび下金型291b)を流用して、シート部材226の端部を折り曲げることができる。
 周縁部に折り曲げが施された状態で、図20(B)に示すように、樹脂封止工程が実施される。れにより、モールド樹脂42によって、シート部材226の表面および周縁部227における裏面、ヒートスプレッダ120、IGBT30等の半導体素子、および図示しない主端子やワイヤ等の構成部品を封止することができる。また、下金型290の底面と接するシート部材226裏面(つまり金属シート24の一部の裏面)にはモールド樹脂42は入り込まないので、シート部材226の裏面の少なくとも一部がモールド樹脂42から露出する。
(変形例1)
 なお、屈曲部形成手段が、モールド金型におけるキャビティ底面に設けられ、キャビティ内部へと突き出しが可能なピンであってもよい。図21は、本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。図21では、下金型291cに、貫通穴およびその内部で軸方向に進出と後退が可能な可動ピン292を設ける。可動ピン292の先端が当たる位置にシート部材226の端部を配置したうで、可動ピン292を進出させる。これにより、図21に示すようにシート部材226の端部を折り曲げることができる。
 例えばモールド工程時に、先に可動ピン292を押し付けて折り曲げを行い、折り曲げによる屈曲部形成後に、可動ピン292を後退させた状態でモールド樹脂の注入を行っても良い。或いは、可動ピン292を突き出した状態でモールド樹脂注入し、さらに可動ピン292で生じた穴を樹脂で埋めても良い。なお、可動ピン292は、シート部材226が配置される所定区域の縁に沿って、複数本備えられていても良い。
(変形例2)
 なお、屈曲部形成手段が、モールド金型におけるキャビティ底面に設けられた凸部であってもよい。図22は、本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。図22の製造方法では、底面に凸部294を設けた下金型291dを用いてモールド樹脂封止工程を実施する。この凸部294は角度θの傾斜を有する斜面294aを有している。
 斜面294aに端部側の裏面が当たるようにシート部材226を配置し、凸部294よりも紙面右側にヒートスプレッダ120を配置する。これにより、図22に示すようにシート部材226の端部を精度よく所望角度に折り曲げることができる。
(変形例3)
 なお、屈曲部形成手段が、モールド金型におけるキャビティ底面に設けられ、キャビティ内部へと突き出しが可能な第1のピンとともに、このピンと対向するようにモールド金型のキャビティ上面に設けられキャビティ内部へと突き出し可能な第2のピンであってもよい。第1のピンと第2のピンの間の距離は、周縁部227の寸法程度に離間されている。
 図23は、本発明の実施の形態4にかかる半導体装置の製造方法の変形例を説明するための模式図である。図23の製造方法では、前述した可動ピン292を有する下金型291cとともに、可動ピン298を備えた上金型291eを使用する。可動ピン292の先端が当たる位置にシート部材226の端部を配置したうで、可動ピン292を進出させる。このとき可動ピン298も押し付けて、可動ピン298の先端が、図23に示すようにヒートスプレッダ120の周囲近傍におけるシート部材226の表面を押さえつけるようにする。これにより、図23に示すようにシート部材226の端部を折り曲げることができ、さらに可動ピン298の押し付けにより曲げ安定性が向上する。
 例えばモールド工程時に、先に可動ピン292、298を押し付けて折り曲げを行い、折り曲げによる屈曲部形成後に、可動ピン292、298を後退させた状態でモールド樹脂の注入を行っても良い。或いは、可動ピン292,298を突き出した状態でモールド樹脂注入し、さらに可動ピン292、298で生じた穴を樹脂で埋めても良い。
 なお、可動ピン292は、シート部材226が配置される所定区域の縁に沿って、複数本備えられていても良い。また、可動ピン298は、ヒートスプレッダ120が配置される所定区域の外周に沿って、複数本備えられていてもよい。
実施の形態5.
 図24は、本発明の実施の形態5にかかる半導体装置202の周縁部近傍を部分的に示す模式的な断面図である。図24に示す半導体装置202は、シート部材226の裏面の一部をモールド樹脂42で覆う点で、実施の形態3にかかる半導体装置200と共通する。しかし、それ以外に、以下に述べる技術的特長をも有している。
 先ず、図24に示す実施の形態5にかかる半導体装置202の構成を説明する。半導体装置202も、半導体装置200と同様に、ヒートスプレッダ120、シート部材226、パワー半導体素子としてのIGBT30およびダイオード32と、モールド樹脂42とを備えている。ほかにも、半導体装置200と同様に、ワイヤ、信号端子、及び主端子も備えられている。
 図24(A)は、半導体装置202の製造途中における、ヒートスプレッダ120の搭載前の様子を示す周縁部付近の拡大断面図である。図24(B)は、モールド樹脂封止後における、半導体装置202の周縁部付近を拡大した断面図である。モールド樹脂42、ヒートスプレッダ120およびシート部材226以外の構成は、実施の形態3にかかる半導体装置200と同様である。つまり、ほかにも、半導体装置200と同様に、ワイヤ44、46、信号端子38、及び主端子36、37も備えられている。これらの各部品の搭載箇所や相対的な位置関係は、図11および図12に示したのと同じであるため、説明の便宜上、図示を省略している。
 図24(A)に示すように、シート部材226は、周縁部227に薄厚部296を有している。薄厚部296は、シート部材226の裏面(つまり、金属シート24の表面)に段差297を形成するように薄くされた部分である。薄厚部296の厚さは、シート部材226の中央側(肉厚の部分)の厚さの1/2とする。この段差297は、シート部材226の裏面の端部近傍位置から周縁部227の先端にかけて、連続的に設けられた段差である。図24(B)に示すように、モールド樹脂封止がなされた半導体装置202では、モールド樹脂42が、段差297を覆う段差封止樹脂部299を備えることになる。
 一方、この実施の形態5では、半導体装置200において周縁部227に屈曲部228が設けられていたのとは異なり、周縁部227が全て平面部となっている。つまり、シート部材226の端部に折り曲げ等が施されていない。
 実施の形態5では、次のような作用効果が得られる。
 先ず、シート部材226の裏面の一部を、モールド樹脂42で覆うことができる。シート部材226の裏面の端部近傍位置から周縁部227の先端まで薄厚部296が存在し、この薄厚部296をモールド樹脂42が封止している。よって、水の侵入経路は、薄厚部296とモールド樹脂42との界面の分だけ、確実に拡大している。吸湿距離(沿面距離)の拡大、モールド樹脂の密着性向上効果が得られる。
 また、金属シート(本実施の形態では銅箔)とモールド樹脂との間の密着力は、金属シート(本実施の形態では銅箔)と絶縁層(絶縁シート)との間の密着力よりも高い。また、モールド樹脂と接する金属シート(本実施の形態では銅箔)の表面積を拡大することで、アンカー効果が発揮される。これにより、高い密着性による吸湿水進入防止を行うことができる。
 さらに、実施の形態5では、周縁部227が全て平面部となっている。このため、ヒートスプレッダ120の位置ずれがあっても、前述したような屈曲部228とヒートスプレッダ120との間の設計マージンの問題を回避することができる。このため、製造プロセス上の利点がある。
 なお、金属シート24(銅箔)の端部に対して化学的加工(ハーフエッチング)を行うことで、薄厚部296を形成してもよい。また、金属シート24(銅箔)の端部に対して機械的加工(シェービング)を行うことで、薄厚部296を形成してもよい。
実施の形態6.
 以下、本発明の実施の形態6にかかる半導体装置について説明する。以下に述べる実施の形態6にかかる半導体装置およびその変形例は、シート部材の周縁部の表面に、少なくとも1つの凸部又は凹部が設けられた点で共通している。
[実施の形態6の構成]
 図25は、本発明の実施の形態6にかかる半導体装置300の断面図である。図26は、本発明の実施の形態6にかかる半導体装置300の平面図である。図25は、図26におけるD-D線に沿って半導体装置300を切断した断面を示している。図26は、図25の半導体装置300を図25の紙面上から下方に見下ろした平面図であり、便宜上、モールド樹脂を透視して半導体装置300の内部構造を図示している。
 半導体装置300は、次の二つの相違点を除き、実施の形態1の半導体装置10と同様の構成を備えている。第1の相違点は、シート部材26に代えてシート部材326を備えている点である。第2の相違点は、ヒートスプレッダ20に代えて、実施の形態2で説明したヒートスプレッダ120を備えている点である。
 シート部材326は、凹部328を備えている点で、シート部材26と異なっている。それ以外の点、つまり、絶縁シート22と金属シート24の積層構造である点や、周縁部27と同様に周縁部327を備えている点は、共通している。
 図26に示すように、実施の形態6では、シート部材326の2つの短辺に、ヒートスプレッダ120を取り囲むように、それぞれ、複数の凹部328が設けられている。
 図27(A)は、本発明の実施の形態6にかかる周縁部付近を簡略化して示した部分断面図である。図27(B)は、図27(A)のE-E線に沿う断面図である。図に示すように、各凹部328は円形であり、各凹部328の深さは絶縁シート22の途中までである。凹部328は、シート部材326の端から周縁部327におけるヒートスプレッダ120直近まで設けられている。
 なお、凹部328は、絶縁シート22に対して可動ピンを突き刺すことで形成しても良い。これにより加工が容易であり、コスト低減効果がある。
[実施の形態6の作用]
 本実施の形態にかかる半導体装置300によれば、シート部材326の周縁部327の表面に、複数の凹部328が設けられる。この凹部328は、複数の凹部を形成する。複数の凹部により、シート部材326が単に平坦面である場合と比べて、吸湿距離(沿面距離)が拡大する。
 さらに、本実施の形態によれば、複数の凹部328内にモールド樹脂が入り込むことによって接着面積が増大し、シート部材326の周縁部327とモールド樹脂42の界面の密着性を向上することができる。絶縁破壊の原因となる吸湿を抑制することができる。これにより、ヒートスプレッダ120の絶縁破壊を抑制することができる。
[実施の形態6の変形例]
 以下、図面を用いて、実施の形態6の変形例を説明する。以下の図では、便宜上、モールド樹脂42を透視して半導体装置300内部構造を図示しており、構成を簡略化して示す図である。具体的には、モールド樹脂42、ヒートスプレッダ120およびシート部材326以外の構成については省略あるいは簡略化されている。
(変形例1)
 図28は、本発明の実施の形態6にかかる半導体装置300の変形例を示す模式的な断面図である。図28(A)は、本発明の実施の形態6にかかる周縁部付近を簡略化して示した部分断面図である。図28(B)は、図27(A)のF-F線に沿う断面図である。この変形例1では、実施の形態6にかかる凹部328と同様の位置、個数で複数の穴部332が設けられているが、この穴部332は絶縁シート22を貫通して金属シート24の表面を露出させる点が凹部328と異なっている。これにより、凹部328と同様の効果に加え、銅箔の金属シート24における表面とモールド樹脂42との間の接着を生じさせることができる。
 また、金属シート(本実施の形態では銅箔)とモールド樹脂との間の密着力は、金属シート(本実施の形態では銅箔)と絶縁層(絶縁シート)との間の密着力よりも高い。また、モールド樹脂と接する金属シート(本実施の形態では銅箔)の表面積を拡大することで、アンカー効果が発揮される。これにより、高い密着性による吸湿水進入防止を行うことができる。
 なお、穴部332は、絶縁シート22に対して可動ピンを突き刺すことで形成しても良い。この場合、加工が容易であり、コスト低減効果が得られる。
(変形例2)
 図29は、本発明の実施の形態6にかかる半導体装置300の変形例を示す模式的な断面図である。図29では、凹部328に代えて、三角形状の凹凸を有する凹凸部334を設けている。これにより、平坦の場合と比べて、シート部材326が単に平坦面である場合と比べて、吸湿距離(沿面距離)が拡大する。また、凹部328の場合と同様に、モールド樹脂42との界面の接触表面積増大により、密着性も向上する。
(変形例3)
 図30は、本発明の実施の形態6にかかる半導体装置300の変形例を示す模式的な断面図である。図30(A)は、本発明の実施の形態6にかかる周縁部付近を簡略化して示した部分断面図である。図30(B)は、図30(A)のG-G線に沿う断面図である。図30では、凹部328に代えて、矩形状の凹部を有する凹部336を設けている。これにより、平坦の場合と比べて、シート部材326が単に平坦面である場合と比べて、吸湿距離(沿面距離)が拡大する。また、凹部328の場合と同様に、モールド樹脂42との界面の接触表面積増大により、密着性も向上する。
 なお、図30(B)のように平面視で長方形状(線状)となる凹部に限られず、平面視で正方形の凹部が複数(多数)並べられていてもよい。また、凹部の平面視形状は必ずしも単純な矩形でなくともよく、平面視でL字状やU字状、環状などの種々のパターンを含んでも良い。
(変形例4)
 図31(A)および(B)は、本発明の実施の形態6にかかる半導体装置300の変形例を示す模式的な断面図である。図31に示す変形例は、シート部材326に肉厚部338を設けたものである。肉厚部338がある場合には、一様な厚さの場合と比べて、肉厚となった厚さ分だけ吸湿距離(沿面距離)が拡大する。また、絶縁層を肉厚とすることで、ヒートスプレッダ120の端部(特に四隅)の電界集中を、緩和することもできる。
 なお、図31では、肉厚部338の側面338aに、ヒートスプレッダ120の側面を接するように配置した。しかしながら、本発明はこれに限られず、側面338aとヒートスプレッダ120の側面とを離間してもよい。離間して生じたそのスペースには、モールド樹脂42が充填される。これにより、吸湿距離(沿面距離)の拡大を更に図ることができる。
(変形例5)
 本実施の形態では、シート部材326の2つの短辺にそれぞれ複数の凹部328が設けられている。しかしながら、上述した実施の形態6にかかる凹部328や変形例1乃至5の各種構成を、半導体装置300の平面視においてシート部材326の何れの位置に設けるかは、様々な変形が可能である。
 例えば、実施の形態6においても、実施の形態3において図19に示したのと同様の変形が可能である。例えば、図19(A)に示した変形例と同じように、シート部材326の四辺全ての周縁部327に、凹部328や変形例1乃至5の各種構成を設けてもよい。あるいは、図19(B)に示した変形例と同じように、シート部材326の四つの隅に部分的に凹部328や変形例1乃至5の各種構成を設けても良い。あるいは、図19(C)に示す変形例と同じように、シート部材326の対向する2つの長辺の周縁部327に、凹部328や変形例1乃至5の各種構成を設けても良い。
実施の形態7.
 図32は、本発明の実施の形態7にかかる半導体装置302の構成を示す模式的な断面図である。図32(A)は、半導体装置302の製造途中における、ヒートスプレッダ120の搭載前の様子を示す周縁部付近の拡大断面図である。図32(B)は、モールド樹脂封止後における、半導体装置302の周縁部付近を拡大した断面図である。
 半導体装置302も、半導体装置200と同様に、ヒートスプレッダ120、シート部材326、パワー半導体素子としてのIGBT30およびダイオード32と、モールド樹脂42とを備えている。ほかにも、半導体装置200と同様に、ワイヤ、信号端子、及び主端子も備えられている。しかし、モールド樹脂42、ヒートスプレッダ120およびシート部材326以外の構成は、実施の形態3にかかる半導体装置200と同様であるため、説明の便宜上、図示を省略している。
 図32(A)に示すように、実施の形態7では、シート部材326の周縁部には、複数の貫通穴342が設けられている。貫通穴342の縁部には、裏面側に突出するバリ344がそれぞれ設けられている。図32(B)に示すように、モールド樹脂封止がなされた半導体装置302では、モールド樹脂42が、モールド樹脂42は、周縁部の裏面におけるバリ344が設けられた部分を覆うバリ被覆部345を備えることになる。
 これにより、シート部材326の裏面を覆うことで吸湿距離(沿面距離)の拡大を図ることができる。また、バリ被覆部345がバリ344を覆うことで、バリ344がない場合に比して、銅箔である金属シート24とモールド樹脂42との接着面積を増大させることができる。
実施の形態8.
[実施の形態8の構成]
 図33は、本発明の実施の形態8にかかる半導体装置400の断面図である。図34は、本発明の実施の形態8にかかる半導体装置400の平面図である。図33は、図34におけるH-H線に沿って半導体装置400を切断した断面を示している。図34は、図33の半導体装置400を図33の紙面上から下方に見下ろした平面図であり、便宜上、モールド樹脂を透視して半導体装置400の内部構造を図示している。
 半導体装置400は、次の二つの相違点を除き、実施の形態1の半導体装置10と同様の構成を備えている。第1の相違点は、シート部材26に代えてシート部材426を備えている点である。第2の相違点は、ヒートスプレッダ20に代えて、実施の形態2で説明したヒートスプレッダ120を備えている点である。
 図35は、本発明の実施の形態8にかかる半導体装置400の周縁部付近の拡大断面図である。シート部材426は、シート部材26、226、326と同様に、絶縁シートと金属シートとが積層されたものであり、それらのシート部材と同様に周縁部427を有している。ただし、シート部材426は、絶縁シート422よりも、金属シート24のほうが平面視において一回り大きいサイズを有している。つまり、絶縁シート422の外形は金属シート24よりも一回り小さく、金属シート24が絶縁シートの縁から突き出た周縁部428をさらに備えている。モールド樹脂42は、この周縁部428の表面を覆っている。
[実施の形態8の作用]
 本実施の形態によれば、シート部材426の周縁部427とモールド樹脂42の界面の密着性を向上することができる。すなわち、金属シート(本実施の形態では銅箔)とモールド樹脂との間の密着力は、金属シート(本実施の形態では銅箔)と絶縁層(絶縁シート)との間の密着力よりも高い。また、モールド樹脂と接する金属シート(本実施の形態では銅箔)の表面積を拡大することで、アンカー効果が発揮される。これにより、高い密着性による吸湿水進入防止を行うことができる。これにより、絶縁破壊の原因となる吸湿を抑制することができる。これにより、ヒートスプレッダ120の絶縁破壊を抑制することができる。
[実施の形態8の変形例]
 図36乃至図43は、本発明の実施の形態8にかかる半導体装置400の変形例を示す、周縁部付近の模式的な拡大断面図である。
 図36のように、周縁部428に、三角形状の凹凸部430を設けてもよい。
 図37のように、周縁部428を折り曲げて、屈曲部435を設けても良い。ここで、図37(A)のように、周縁部428を全て折り曲げてもよい。また、図37(B)のように、周縁部428を絶縁シート422反部から寸法Lの位置で途中で折り曲げて、屈曲部441および平面部442を設けても良く、この場合には絶縁耐圧も向上できる。図38のように、所定の鈍角であるθだけ折曲げを施して屈曲部444を設けたり、所定の鋭角であるθだけ折曲げを施して屈曲部446を設けたりしてもよい。この折り曲げ角度は、15度~165度の範囲とすることが好ましい。図37、38に示すように、折り曲げた場合、モールド樹脂42は、金属シート24の表面と裏面とを覆う。そうすると、金属シート(本実施の形態では銅箔)の表裏両面にモールド樹脂が接着するので、高い密着性を得ることができる。
 図39に示すように、周縁部428に、複数の凹部458を設けても良い。図39(B)は、図39(A)の矢印Jに沿って見た平面図であり、モールド樹脂42を便宜上透視した図である。
 図40に示すように、周縁部428に複数の貫通穴460を設けても良い。
 図41に示すように、周縁部428に、台形の凹部468を設けても良い。図41(B)は、図41(A)における凹部468近傍の拡大断面図である。台形の凹凸部468によれば、吸湿距離の更なる拡大、金属シートとモールド樹脂との接着面積向上の効果がある。これに加え、モールド樹脂42が凹部468内に入り込むことで、モールド樹脂42と金属シート24とを機械的にも結合させることができる。
 図42は、図41に示した凹部468の製造方法の一例を示す図である。図42(A)の断面図および図42(B)の平面図に示す形状を有するプレス器具先端469を、金属シート24に対して突き刺す。次に、図42(B)の矢印にあるように、180度或いは360度だけプレス器具先端469を回転させる。そうすると、回転により金属シート24が抉り取られ、図42(C)の平面図において点線の円で示す凹部468の底部外縁468aおよび入口部468bが形成される。その後、180度あるいは360度の回転を経た後に、入口部468bからプレス器具先端469を抜き出す。その結果、図42(D)の平面図および図42(E)の断面図(図42(D)のK-K線に沿う断面)に示すように、凹部468が形成される。
 図43(A)および(B)に示すように、金属シート24に複数の貫通穴478を設けて、貫通穴478のふちにバリ479を残しても良い。これは、実施の形態7と同様の技術的思想に基づくものである。その後、モールド樹脂42による樹脂封止により、図43(C)のように、モールド樹脂42が周縁部の裏面におけるバリ479が設けられた部分を覆うバリ被覆部を備えることになる。
 なお、本実施の形態では、シート部材426の四辺において周縁部428が設けられている。しかしながら、半導体装置400の平面視においてシート部材426の何れの位置に周縁部428を設けるかは、様々な変形が可能である。例えば、実施の形態8においても、シート部材426の対向する長辺や短辺や、四隅のみにおいて周縁部428を設けても良い。
 なお、上記の各実施形態は、適宜に組み合わせて用いることができる。また、平面視においてシート部材の両短辺、両長辺および四隅のいずれかの箇所に対して、上記実施の形態2乃至7のコーティング層、屈曲部および穴部等を適宜に設けることができる。
 なお、上記の各実施形態では、パワー半導体素子として、IGBTを用いた。しかしながら、本発明はこれに限られず、パワー半導体素子としてMOSFETを用いてもよい。
 なお、実施の形態1にかかるヒートスプレッダ20を、実施の形態2乃至5における半導体装置のヒートスプレッダとして用いてもよい。また、上記の各実施形態では、パワー半導体素子としてのIGBTとフリーホイールダイオードが1セットだけ樹脂封止された半導体装置を開示したが、本発明はこれに限られない。例えば、インバータ回路として複数セットのパワー半導体素子を内蔵する半導体装置でも本発明は適用可能であり、具体的には、例えば三相インバータとして6セットのIGBTおよびフリーホイールダイオードを備える半導体装置に対して本発明を適用できる。
10、100、200、202、300、302、400 半導体装置
20、120 ヒートスプレッダ
21、51 隅部
22 絶縁シート
24 金属シート
26、140、226、326、426 シート部材
27 周縁部
30 IGBT
32 ダイオード
36、37 主端子
38 信号端子
42 モールド樹脂
44、46 ワイヤ
122、124、126、128、130、132 コーティング層

Claims (19)

  1.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
    を備え、
     前記ヒートスプレッダは、前記底面の隅に、平面視で面取り形状又は曲面形状でありかつ断面視で矩形状である隅部を備えることを特徴とする半導体装置。
  2.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
    を備え、
     前記周縁部の前記表面に、前記封止樹脂体の樹脂よりも、絶縁性および前記シート部材の前記表面に対する密着性のうち少なくとも一方が高い電気絶縁性コーティング材料の層が設けられたことを特徴とする半導体装置。
  3.  前記電気絶縁性コーティング材料は、ポリイミドと、ポリアミドと、多官能基を有するエポキシ系ポリマーとからなる群から選択された1つの材料であることを特徴とする請求項2に記載の半導体装置。
  4.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
     を備え、
     前記シート部材の前記周縁部は、
     前記底面と並行に延びる平面部と、
     前記平面部の外側であって前記ヒートスプレッダの隅の近傍又は前記ヒートスプレッダの辺に沿って設けられ、前記表面側に凸となる屈曲部と
    を備え、
     前記封止樹脂体は、前記屈曲部における前記シート部材の前記裏面を覆うものであることを特徴とする半導体装置。
  5.  前記屈曲部は、
     前記平面部から延び、前記シート部材の前記周縁部を前記表面側に折り曲げた第1折曲部と、
     前記第1折曲部の外側に設けられた第2折曲部と、
    を有するものであることを特徴とする請求項4に記載の半導体装置。
  6.  底面を有する電気伝導性のヒートスプレッダと、前記ヒートスプレッダに固定すべき半導体素子と、表面および裏面を備え前記表面と前記裏面を電気的に絶縁するシート部材と、を準備する工程と、
     モールド金型のキャビティ内に前記シート部材、前記ヒートスプレッダおよび前記ヒートスプレッダに固定した前記半導体素子を入れ、前記モールド金型の前記キャビティ底面に前記裏面を向けて当該キャビティ底面に前記シート部材を載せ、前記ヒートスプレッダの前記底面の縁から突き出した周縁部を生じさせるように前記ヒートスプレッダを前記シート部材の前記表面に載せて、屈曲部形成手段により前記ヒートスプレッダの側へと前記周縁部に折り曲げを施す工程と、
     前記周縁部に折り曲げが施された状態で、前記シート部材の前記表面および前記周縁部における前記裏面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させるように、樹脂封止を行う工程と、
     を備えることを特徴とする半導体装置の製造方法。
  7.  前記屈曲部形成手段が、前記シート部材の端部における前記裏面に設けられた突起であることを特徴とする請求項6に記載の半導体装置の製造方法。
  8.  前記屈曲部形成手段が、前記モールド金型における前記キャビティ底面に設けられ、前記キャビティ内部へと突き出しが可能なピンであることを特徴とする請求項6に記載の半導体装置の製造方法。
  9.  前記屈曲部形成手段が、前記モールド金型における前記キャビティ底面に設けられた凸部であることを特徴とする請求項6に記載の半導体装置の製造方法。
  10.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子とを封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
     を備え、
     前記周縁部は、前記裏面に、前記周縁部の先端にかけて前記表面側に落ち込んだ段差を形成するように薄くされた薄厚部を有し、
     前記封止樹脂体が前記シート部材の前記段差を覆うことを特徴とする半導体装置。
  11.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
    を備え、
     前記周縁部の前記表面には、少なくとも1つの凸部又は凹部が設けられたことを特徴とする半導体装置。
  12.  前記少なくとも1つの凸部は、
     前記周縁部における少なくとも前記底面の隅の近傍に設けられ前記シート部材の中央部分よりも前記表面側に凸となる段差を、
    含むことを特徴とする請求項11に記載の半導体装置。
  13.  前記周縁部の前記表面は、前記シート部材の中央部の前記表面よりも表面粗さが大きくなるように設けられた凹及び凸からなる凹凸部を有し、
     前記少なくとも1つの凸部が、前記凹凸部の凸であり、
     前記少なくとも1つの凹部が、前記凹凸部の凹であることを特徴とする請求項11に記載の半導体装置。
  14.  前記少なくとも1つの凸部は、前記周縁部に設けられ前記封止樹脂体と接する面に凸となる山谷形状を含むことを特徴とする請求項11に記載の半導体装置。
  15.  前記少なくとも1つの凹部は、前記周縁部に設けられた複数の窪みを含むことを特徴とする請求項11に記載の半導体装置。
  16.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接しかつ前記底面の縁から突き出した周縁部を備えるシート部材と、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記シート部材の前記表面、前記ヒートスプレッダ、および前記半導体素子とを封止し、かつ前記シート部材の前記裏面の少なくとも一部を露出させる封止樹脂体と、
     を備え、
     前記シート部材が、前記表面側に位置する絶縁層と前記絶縁層よりも前記裏面側に位置する金属層とを積層したものであり、
     前記周縁部には、前記表面と前記裏面を貫通する少なくとも1つの貫通穴が設けられ、
     前記金属層の前記裏面側の面における前記貫通穴の縁部には、前記裏面側に突出するバリが設けられており、
     前記封止樹脂体は、前記周縁部の前記裏面における前記バリが設けられた部分を覆うことを特徴とする半導体装置。
  17.  底面を有する電気伝導性のヒートスプレッダと、
     表面および裏面を備え、前記表面と前記裏面を電気的に絶縁し、前記表面が前記ヒートスプレッダの前記底面に接する絶縁シートと、
     前記絶縁シートの前記裏面に接し、前記絶縁シートの縁から突き出た周縁部を備え、前記周縁部が前記ヒートスプレッダ側を向く上面を備える金属シートと、
     前記ヒートスプレッダに固定され、前記ヒートスプレッダと電気的に接続された半導体素子と、
     前記金属シートの前記上面、前記ヒートスプレッダ、および前記半導体素子を封止し、かつ前記金属シートの前記裏面の少なくとも一部を露出させる封止樹脂体と、
     を備えることを特徴とする半導体装置。
  18.  前記金属シートの前記周縁部は、前記上面に設けられた、少なくとも1つの凸部又は凹部を備えることを特徴とする請求項17に記載の半導体装置。
  19.  前記金属シートの前記周縁部は、前記ヒートスプレッダの隅の近傍又は前記ヒートスプレッダの辺に沿って設けられかつ前記上面側に凸となる屈曲部を備え、
     前記封止樹脂体は、前記屈曲部における前記金属シートの裏面を覆うものであることを特徴とする請求項17に記載の半導体装置。
PCT/JP2012/054293 2012-02-22 2012-02-22 半導体装置および半導体装置の製造方法 WO2013124988A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/358,917 US9466548B2 (en) 2012-02-22 2012-02-22 Semiconductor device and method of manufacturing semiconductor device
CN201280070502.0A CN104137252B (zh) 2012-02-22 2012-02-22 半导体装置及半导体装置的制造方法
JP2014500798A JP5858135B2 (ja) 2012-02-22 2012-02-22 半導体装置
KR1020147021760A KR101591643B1 (ko) 2012-02-22 2012-02-22 반도체장치 및 반도체장치의 제조방법
DE112012005920.4T DE112012005920B4 (de) 2012-02-22 2012-02-22 Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
PCT/JP2012/054293 WO2013124988A1 (ja) 2012-02-22 2012-02-22 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/054293 WO2013124988A1 (ja) 2012-02-22 2012-02-22 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2013124988A1 true WO2013124988A1 (ja) 2013-08-29

Family

ID=49005210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054293 WO2013124988A1 (ja) 2012-02-22 2012-02-22 半導体装置および半導体装置の製造方法

Country Status (6)

Country Link
US (1) US9466548B2 (ja)
JP (1) JP5858135B2 (ja)
KR (1) KR101591643B1 (ja)
CN (1) CN104137252B (ja)
DE (1) DE112012005920B4 (ja)
WO (1) WO2013124988A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037072A1 (ja) * 2013-09-11 2015-03-19 三菱電機株式会社 半導体装置及びその製造方法
WO2015145752A1 (ja) * 2014-03-28 2015-10-01 三菱電機株式会社 半導体モジュールおよび半導体モジュールを搭載した駆動装置
WO2017086248A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
JP2020088200A (ja) * 2018-11-27 2020-06-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN112820699A (zh) * 2019-11-15 2021-05-18 商升特公司 半导体器件及形成用于预成型基底的脱模结构的方法
WO2021181831A1 (ja) * 2020-03-09 2021-09-16 日立Astemo株式会社 電気回路体、電力変換装置、および電気回路体の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940257B2 (ja) * 2011-08-01 2016-06-29 株式会社三井ハイテック リードフレーム及びリードフレームの製造方法並びにこれを用いた半導体装置
DE102013220880B4 (de) * 2013-10-15 2016-08-18 Infineon Technologies Ag Elektronisches Halbleitergehäuse mit einer elektrisch isolierenden, thermischen Schnittstellenstruktur auf einer Diskontinuität einer Verkapselungsstruktur sowie ein Herstellungsverfahren dafür und eine elektronische Anordung dies aufweisend
JP2016162888A (ja) * 2015-03-02 2016-09-05 株式会社デンソー 電子装置
DE102015120341A1 (de) * 2015-11-24 2017-05-24 Snaptrack, Inc. Bauelement mit Wärmeableitung
DE112016006677B4 (de) * 2016-03-29 2021-12-16 Mitsubishi Electric Corporation Verfahren zum Herstellen einer mit Harz versiegelten Leistungs-Halbleitervorrichtung
EP3471137A4 (en) 2016-06-14 2019-06-19 Mitsubishi Electric Corporation SEMICONDUCTOR COMPONENT
US10074590B1 (en) * 2017-07-02 2018-09-11 Infineon Technologies Ag Molded package with chip carrier comprising brazed electrically conductive layers
TWI746883B (zh) * 2017-09-29 2021-11-21 韓商Jmj韓國有限公司 形成有陰刻圖案的半導體封裝用夾具、引線框架、基板及包括其的半導體封裝體
JP6810279B2 (ja) * 2017-10-26 2021-01-06 新電元工業株式会社 電子部品
JP2019096731A (ja) * 2017-11-22 2019-06-20 トヨタ自動車株式会社 半導体装置
US10879195B2 (en) * 2018-02-15 2020-12-29 Micron Technology, Inc. Method for substrate moisture NCF voiding elimination
US10998255B2 (en) 2018-07-12 2021-05-04 Nxp Usa, Inc. Overmolded microelectronic packages containing knurled flanges and methods for the production thereof
US10998256B2 (en) 2018-12-31 2021-05-04 Texas Instruments Incorporated High voltage semiconductor device lead frame and method of fabrication
EP3951863A1 (de) * 2020-08-07 2022-02-09 Siemens Aktiengesellschaft Kontaktsystem mit zuverlässiger isolierung
CN112635419A (zh) * 2020-12-22 2021-04-09 国网智慧能源交通技术创新中心(苏州)有限公司 一种逆变器igbt模块的封装结构

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357249A (ja) * 1989-07-25 1991-03-12 Mitsubishi Electric Corp 半導体装置
JPH05299528A (ja) * 1992-04-16 1993-11-12 Mitsubishi Electric Corp 集積回路装置
JPH06334069A (ja) * 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd ヒートスプレッダを内蔵した半導体パッケージ
JPH1187567A (ja) * 1997-09-02 1999-03-30 Toshiba Corp 半導体装置
JP2004165281A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp モールド樹脂封止型パワー半導体装置及びその製造方法
JP2005210006A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 半導体装置
JP2006086342A (ja) * 2004-09-16 2006-03-30 Toyota Motor Corp 樹脂封入型半導体装置
JP2007150040A (ja) * 2005-11-29 2007-06-14 Mitsubishi Electric Corp 半導体装置
JP2008028006A (ja) * 2006-07-19 2008-02-07 Mitsubishi Electric Corp 半導体装置
JP2008294284A (ja) * 2007-05-25 2008-12-04 Toyota Industries Corp 半導体装置
JP2011009410A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 半導体モジュール

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302722A (ja) 1993-04-19 1994-10-28 Nippon Steel Corp 放熱部材及びこの放熱部材を用いた半導体パッケージ
JPH088373A (ja) 1994-06-23 1996-01-12 Toshiba Corp 放熱装置
JPH0878578A (ja) 1994-09-08 1996-03-22 Sanyo Special Steel Co Ltd 放熱基板用材料及びその製造方法
KR200171663Y1 (ko) 1994-10-27 2000-03-02 김영환 반도체패키지
JPH10261744A (ja) 1997-01-17 1998-09-29 Toshiba Corp 半導体装置及びその製造方法
JP3440824B2 (ja) 1998-05-28 2003-08-25 株式会社日立製作所 半導体装置
EP0962974B1 (en) 1998-05-28 2005-01-26 Hitachi, Ltd. Semiconductor device
JP2000340719A (ja) 1999-05-26 2000-12-08 Hitachi Ltd パワー半導体装置
JP3807354B2 (ja) 2001-08-06 2006-08-09 株式会社デンソー 半導体装置
JP2006179538A (ja) 2004-12-21 2006-07-06 Hitachi Ltd 半導体パワーモジュール
JP2008258435A (ja) 2007-04-05 2008-10-23 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP5071719B2 (ja) 2008-02-18 2012-11-14 三菱電機株式会社 電力用半導体装置
TW201011869A (en) * 2008-09-10 2010-03-16 Cyntec Co Ltd Chip package structure
JP2010267794A (ja) 2009-05-14 2010-11-25 Mitsubishi Electric Corp パワーモジュール
KR101067980B1 (ko) 2009-12-28 2011-09-26 주식회사 케이이씨 전력 반도체 패키지 및 그 제조 방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357249A (ja) * 1989-07-25 1991-03-12 Mitsubishi Electric Corp 半導体装置
JPH05299528A (ja) * 1992-04-16 1993-11-12 Mitsubishi Electric Corp 集積回路装置
JPH06334069A (ja) * 1993-05-24 1994-12-02 Toyota Autom Loom Works Ltd ヒートスプレッダを内蔵した半導体パッケージ
JPH1187567A (ja) * 1997-09-02 1999-03-30 Toshiba Corp 半導体装置
JP2004165281A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp モールド樹脂封止型パワー半導体装置及びその製造方法
JP2005210006A (ja) * 2004-01-26 2005-08-04 Toshiba Corp 半導体装置
JP2006086342A (ja) * 2004-09-16 2006-03-30 Toyota Motor Corp 樹脂封入型半導体装置
JP2007150040A (ja) * 2005-11-29 2007-06-14 Mitsubishi Electric Corp 半導体装置
JP2008028006A (ja) * 2006-07-19 2008-02-07 Mitsubishi Electric Corp 半導体装置
JP2008294284A (ja) * 2007-05-25 2008-12-04 Toyota Industries Corp 半導体装置
JP2011009410A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 半導体モジュール

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037072A1 (ja) * 2013-09-11 2015-03-19 三菱電機株式会社 半導体装置及びその製造方法
CN105531816A (zh) * 2013-09-11 2016-04-27 三菱电机株式会社 半导体装置及其制造方法
JPWO2015037072A1 (ja) * 2013-09-11 2017-03-02 三菱電機株式会社 半導体装置及びその製造方法
US9978662B2 (en) 2013-09-11 2018-05-22 Mitsubishi Electric Corporation Semiconductor device and manufacturing method for same
DE112013007426B4 (de) 2013-09-11 2024-03-28 Mitsubishi Electric Corporation Halbleitervorrichtung und Herstellungsverfahren dafür
WO2015145752A1 (ja) * 2014-03-28 2015-10-01 三菱電機株式会社 半導体モジュールおよび半導体モジュールを搭載した駆動装置
US10373896B2 (en) 2014-03-28 2019-08-06 Mitsubishi Electric Corporation Semiconductor module and drive device equipped with semiconductor module
WO2017086248A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
JP2020088200A (ja) * 2018-11-27 2020-06-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN112820699A (zh) * 2019-11-15 2021-05-18 商升特公司 半导体器件及形成用于预成型基底的脱模结构的方法
CN112820699B (zh) * 2019-11-15 2023-07-25 商升特公司 半导体器件及形成用于预成型基底的脱模结构的方法
WO2021181831A1 (ja) * 2020-03-09 2021-09-16 日立Astemo株式会社 電気回路体、電力変換装置、および電気回路体の製造方法

Also Published As

Publication number Publication date
JPWO2013124988A1 (ja) 2015-05-21
KR101591643B1 (ko) 2016-02-05
CN104137252B (zh) 2017-07-14
CN104137252A (zh) 2014-11-05
KR20140112055A (ko) 2014-09-22
US20140353814A1 (en) 2014-12-04
DE112012005920T5 (de) 2014-11-27
DE112012005920B4 (de) 2022-03-24
JP5858135B2 (ja) 2016-02-10
US9466548B2 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
JP5858135B2 (ja) 半導体装置
JP2015195415A (ja) 半導体装置および半導体装置の製造方法
EP2922092B1 (en) Semiconductor device
TWI278980B (en) Lead frame and semiconductor package therefor
US9337129B2 (en) Semiconductor device and method of manufacturing the same
TWI302425B (en) Method for making a hybrid integrated circuit device
JP4885046B2 (ja) 電力用半導体モジュール
JP2019212833A (ja) 半導体装置およびその製造方法
JP2014132630A (ja) コイル部品
KR20170092309A (ko) 양면 패키지 모듈 및 기판 스트립
EP2571047A2 (en) Insulating ring for packaging, insulating ring assembly and package
US9159676B2 (en) Semiconductor module
JP6589631B2 (ja) 半導体装置
US10985030B2 (en) Method for manufacturing semiconductor device
KR101833651B1 (ko) 반도체 장치 및 그 제조 방법
JP6115505B2 (ja) 電子装置
US20200035587A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2011035277A (ja) ブスバーアセンブリ及びその製造方法
KR102212340B1 (ko) 렌즈 삽입부 내에 접합 홈을 구비하는 칩 기판
TWI378518B (en) Leadframe for leadless package and package structure thereof
JP2022061719A (ja) 半導体装置
JP2012186370A (ja) 半導体装置及びその製造方法
JP2015005687A (ja) 樹脂パッケージとこの樹脂パッケージを用いた電子機器
TW202329352A (zh) 電子零件
JP5772306B2 (ja) モールドパッケージの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500798

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358917

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147021760

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120059204

Country of ref document: DE

Ref document number: 112012005920

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869446

Country of ref document: EP

Kind code of ref document: A1