WO2013122181A1 - 熱線反射電波透過透明積層体 - Google Patents

熱線反射電波透過透明積層体 Download PDF

Info

Publication number
WO2013122181A1
WO2013122181A1 PCT/JP2013/053640 JP2013053640W WO2013122181A1 WO 2013122181 A1 WO2013122181 A1 WO 2013122181A1 JP 2013053640 W JP2013053640 W JP 2013053640W WO 2013122181 A1 WO2013122181 A1 WO 2013122181A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
transparent
layer
metal layer
heat ray
Prior art date
Application number
PCT/JP2013/053640
Other languages
English (en)
French (fr)
Inventor
阿部 和洋
大谷 寿幸
西田 光生
英二 草野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013508321A priority Critical patent/JP5527480B2/ja
Publication of WO2013122181A1 publication Critical patent/WO2013122181A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Definitions

  • the present invention relates to a heat ray-reflecting radio wave transmission transparent laminate, and relates to a heat ray reflection radio wave transmission transparent laminate suitable for automobile windshields, window glass of buildings, and the like. More specifically, the sun's heat rays are reflected to prevent the temperature inside the vehicle or building from rising, but radio waves in the frequency band of mobile devices such as communication devices and televisions that arrive on the window glass of buildings, automobiles, etc.
  • the present invention also relates to a heat ray reflective radio wave transmitting transparent laminate capable of efficiently transmitting visible light.
  • a window glass in which a conductive thin film such as a metal is coated on the window glass or a film coated with a conductive thin film is attached has been widely used.
  • this conventional technique has a problem that transparency and transparency are insufficient due to hindering transmission of visible light.
  • a glass or a film in which an oxide film, a metal film, and an oxide film are alternately laminated is invented (for example, see Patent Document 1).
  • the present invention has been made against the background of the problems of the prior art. That is, the object of the present invention is to prevent the increase in indoor temperature by solar heat ray shielding, save energy, maintain and improve transparency by transmitting visible light, and to transmit radio waves in the frequency band of communication devices, televisions, mobile phones, etc. An object of the present invention is to provide an excellent heat ray reflective radio wave transmitting transparent laminate.
  • the present invention has the following configuration. 1.
  • a heat ray-reflecting radio wave transmission transparent laminate in which a transparent dielectric layer B, a discontinuous metal layer C, and a transparent dielectric layer D are sequentially laminated on at least one surface of a substrate A, and has a radio wave shielding effect of 1 GHz.
  • a heat ray-reflecting radio wave transmission transparent laminate which is 10 dB or less. 2.
  • the heat ray reflective radio wave transmitting transparent laminate according to the first aspect wherein a layer E having a surface energy of 40 dyn / cm or less is laminated between the transparent dielectric layer B and the metal layer C.
  • the base material A is a transparent plastic film or glass
  • the heat ray reflective radio wave transmitting transparent laminate according to the first or second aspect wherein the base material A is a transparent plastic film or glass. 4).
  • the heat ray reflective radio wave transmitting transparent laminate according to any one of the first to fourth aspects, wherein the visible light transmittance at a wavelength of 550 nm is 70% or more and the infrared transmittance at a wavelength of 1500 nm is 30% or less. . 6).
  • a transparent laminate that is excellent in heat ray reflectivity, transmits radio waves in a frequency band such as communication equipment, television broadcasting, and mobile phones, and is transparent.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of a heat ray reflective radio wave transmission transparent laminate of the present invention in which a transparent dielectric layer B, a metal layer C, and a transparent dielectric layer D are sequentially laminated on a substrate A.
  • FIG. Other heat ray reflective radio wave transmission transparent laminates of the present invention in which a transparent dielectric layer B, a layer E having a surface energy of 40 dyn / cm or less, a metal layer C, and a transparent dielectric layer D are sequentially laminated on a substrate A
  • the heat ray reflective radio wave transmission transparent laminate of the present invention is a laminate in which a transparent dielectric layer, a discontinuous metal layer, and a transparent dielectric layer are sequentially laminated on at least one surface of a substrate.
  • FIG. has a structure as shown in FIG.
  • the substrate is preferably transparent, and is a substrate for each layer that is sequentially laminated, and can give a certain rigidity to the laminate. Any transparent dielectric is provided to prevent reflection of visible light, increase the transmittance of visible light, and improve transparency. Therefore, a dielectric having a large refractive index is preferable.
  • a metal layer is provided to reflect heat rays.
  • this metal layer has a continuous structure, it will reflect radio waves in the television and communication areas, resulting in poor radio wave transmission, which is one of the objects of the present invention. . Therefore, by discontinuous the metal layer, the conductivity of the metal layer is reduced (surface resistance is increased), and radio wave permeability is improved (radio wave shielding property is deteriorated).
  • discontinuous means that the metal layer has an island-like structure or a minute independent layer, and each metal layer is in a physically or electrically non-contact state.
  • the shape of the independent metal layer is not particularly limited, but the thickness is preferably 5 to 30 nm, and the ten-point average roughness (Rz) is preferably 5 to 100 nm.
  • the base material is preferably a transparent base material, considering the workability in the step of laminating each layer to the base material and the adhesion with each layer, and further preferred uses of the present invention, etc.
  • a transparent plastic film or glass is preferred.
  • the substrate A in the case of comprising a transparent plastic film is formed into a film by melt extrusion or solution extrusion of an organic polymer into a film, and stretched in the longitudinal direction and / or the width direction as necessary. It is preferable that the film has been subjected to heat setting and heat relaxation treatment.
  • the organic polymer include polyethylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polycarbonate, polyamide, polyimide, polyamideimide, polytetrafluoroethylene, and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • polyethylene terephthalate, polyethylene naphthalate, polycarbonate and the like are preferable.
  • organic polymers may be copolymerized with a small amount of another organic polymer monomer, or may be blended with another organic polymer.
  • the thickness of the substrate made of the transparent plastic film used in the present invention is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the plastic film is less than 20 ⁇ m, it is not preferable because wrinkles are likely to occur when being bonded to glass, and handling in the metal or transparent dielectric layer forming process becomes difficult.
  • the thickness exceeds 200 ⁇ m, the visible light transmittance is reduced and the weight and thickness of the window are increased, which is not preferable.
  • the substrate made of a transparent plastic film used in the present invention is a range that does not impair the purpose of the present invention, such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc.
  • a surface activation treatment may be performed.
  • the base material made of the transparent plastic film used in the present invention is a cured product mainly composed of a curable resin for the purpose of improving adhesion, imparting chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers.
  • a layer may be provided.
  • the curable resin is not particularly limited as long as it is a resin that is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and silicone resin, acrylic resin, methacrylic resin, epoxy resin, melamine resin, polyester resin, urethane Resin etc. are mentioned. From the viewpoint of productivity, a curable resin containing an ultraviolet curable resin as a main component is preferable.
  • Examples of such ultraviolet curable resins are synthesized from polyfunctional acrylate resins such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid.
  • polyfunctional acrylate resins such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid.
  • polyfunctional urethane acrylate resins can be mentioned.
  • a monofunctional monomer such as vinyl pyrrolidone, methyl methacrylate, or styrene can be added to these polyfunctional resins for copolymerization.
  • Specific methods include a discharge treatment method that irradiates glow discharge or corona discharge, a method of increasing carbonyl group, carboxyl group, hydroxyl group, a chemical treatment method of treating with acid or alkali, and an amino group. And a method of increasing polar groups such as a hydroxyl group and a carbonyl group.
  • the ultraviolet curable resin is usually used by adding a photopolymerization initiator.
  • a photopolymerization initiator known compounds that absorb ultraviolet rays and generate radicals can be used without any particular limitation. Examples of such photopolymerization initiators include various benzoins, phenyl ketones, and benzophenones. And the like.
  • the addition amount of the photopolymerization initiator is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the concentration of the resin component in the coating solution can be appropriately selected in consideration of the viscosity according to the coating method.
  • the proportion of the total amount of the ultraviolet curable resin and the photopolymerization initiator in the coating solution is usually 20 to 80% by mass.
  • the glass includes float plate glass, mold plate glass, ground plate glass, netted glass, tempered plate glass, laminated glass, multi-layer glass, etc. depending on the production method and structure, and borosilicate glass and soda depending on the components.
  • examples include lime glass, quartz glass, lead glass, silica glass, and alkali-free glass.
  • it is highly transparent, resistant to thermal shock, and has a low coefficient of thermal expansion, so it is structurally tempered glass, flow and plate glass, componentally borosilicate glass, soda lime glass, etc. Is preferred.
  • the glass surface may be subjected to surface treatment such as plasma treatment, fluorine treatment, etching treatment, wet coating and the like within a range not impairing transparency and strength.
  • the material of the transparent dielectric layers B and D may be any metal oxide, metal nitride, metal oxynitride or the like which is a transparent dielectric, but Zn, Al, Ti, Sn, Zr, Ta as metal components , Oxides of at least one element selected from the group consisting of W, Bi, Nb and Hf, nitrides of at least one element selected from the group consisting of Si and Al, Sn, Al, Si, Ti, Zr An oxynitride of at least one element selected from the group consisting of Hf and Hf is preferable.
  • an oxide made of Ta or Sn which is a transparent dielectric having a high refractive index, is preferable.
  • the two transparent dielectric layers B and D may be transparent dielectrics composed of the same components or compositions, or may be transparent dielectrics composed of different components or compositions.
  • the thickness of the transparent dielectric layer is preferably 10 nm or more and 100 nm or less, particularly preferably 20 nm or more and 80 nm or less.
  • the thickness of the transparent dielectric layer is less than 10 nm, the antireflection property of visible light becomes insufficient, and when it exceeds 100 nm, the transmittance of visible light is deteriorated.
  • the metal used for the discontinuous metal layer is preferably a layer composed of a metal such as silver, palladium, gold, platinum, Ni, Al or an alloy thereof.
  • a layer made of silver or a metal containing silver as a main component is preferable because infrared reflection performance is high and visible light is not absorbed.
  • a metal element such as Pd, Pt, Au, or Cu as another metal element because a layer having excellent chemical durability and migration resistance can be formed.
  • a metal element such as Pd, Pt, Au, or Cu
  • the addition amount is too large, the visible light transmittance is lowered, so 5.0 at% or less is suitable, and 0.5 at% or more and 2.0 at% or less are particularly preferable.
  • the thickness of the discontinuous metal layer is preferably 5 nm or more and 30 nm or less. In particular, 7 nm or more and 20 nm or less are preferable. When the thickness of the discontinuous metal layer is less than 5 nm, the heat ray reflection becomes insufficient, and when it exceeds 30 nm, the visible light transmittance is deteriorated.
  • the sputtering method can be adjusted by adjusting the pressure in the chamber, the discharge current, and the discharge time.
  • the pressure in the chamber, the heating temperature, and the time can be adjusted. It is possible by adjusting.
  • a wet coating method it is possible to adjust the coating solution concentration and the dry coating thickness.
  • the ten-point average roughness (Rz) of the discontinuous metal layer is preferably 5 nm or more and 100 nm or less. 10 nm or more and 70 nm or less are particularly preferable.
  • Rz of the discontinuous metal layer is less than 5 nm, the radio wave transmission of Tsu TV and communication band is deteriorated, and when it exceeds 100 nm, the visible light transmittance is deteriorated.
  • a method of adjusting Rz a method of adjusting the thickness, a method of adjusting the surface energy of the base layer on which the metal layer is laminated, and a metal layer placed on the base layer when sputtering or vacuum deposition is used.
  • a method of adjusting the hole diameter of the mask or mesh a method of adjusting the shape and size of the discontinuous metal layer by etching or patterning after the continuous metal layer is formed.
  • the average diameter of the island-like discontinuous metal layer is preferably 5 ⁇ m to 10 mm.
  • the average diameter of the discontinuous metal layer is outside these ranges, it is difficult to transmit radio waves in the GHz band, and it is difficult to transmit radio waves in the television and communication bands.
  • discontinuous means that the metal layer has an island-like structure or a minute independent layer, and each metal layer is in a physically or electrically non-contact state.
  • the shape of the independent metal layer is not particularly limited, but a gap between discontinuous metal layers is narrow (the area of the portion without the metal layer is small) and is in a physically or electrically non-contact state.
  • a shape close to a circle may be used, a shape in which a discontinuous metal layer can be present in a close-packed shape is particularly preferable, even if it is a triangle, a quadrangle, a hexagon, or an indefinite shape.
  • the average diameter of each metal island is preferably 5 to 100 ⁇ m or 1 to 10 mm from the relationship with the wavelength.
  • the thickness is preferably 5 to 30 nm. If the average diameter of each metal island exceeds 10 mm, it is difficult to transmit radio waves in a television or communication band, which is not preferable.
  • a layer having a surface energy of 40 dyn / cm or less is preferably provided between the transparent dielectric layer B and the metal layer C in order to form a discontinuous metal layer.
  • the thickness of the layer having a surface energy of 40 dyn / cm or less is preferably 5 nm or more and 40 nm or less, and particularly preferably 8 nm or more and 30 nm or less.
  • the thickness is less than 5 nm, the metal layer is unlikely to be discontinuous, and when it exceeds 40 nm, the transmittance of visible light is deteriorated.
  • a layer having a surface energy of 40 dyn / cm or less is provided, the metal cohesive force is increased when the metal layer is formed by a sputtering method or the like, and as a result, the metal layer is likely to be island-shaped or uneven.
  • the surface energy data is shown at 20 ° C.
  • a layer made of a metal having high chemical stability for example, a metal such as Ta, Ti, Pt, or Au, is provided on the discontinuous metal layer. It is also preferable.
  • the thickness of this layer is preferably 1 nm or more and 5 nm or less. In particular, 1 nm or more and 3 nm or less are preferable. If it is less than 1 nm, it is insufficient to improve the chemical durability of the discontinuous metal layer, and if it exceeds 5 nm, the transparency of visible light or radio waves in the communication area is impaired.
  • a sputtering method as a method for forming a transparent dielectric, a discontinuous metal layer, and other layers on a substrate made of a transparent plastic film or glass, a sputtering method, a vacuum deposition method, a CVD method, an ion plating method can be used.
  • a dry film-forming method such as a coating method, a coating method (such as a bar coating method, a gravure coating method, or a reverse coating method) or a wet film-forming method such as plating can be used. Since it is easy to form a uniform thin film, a dry film forming method is preferable, and a sputtering method is particularly preferable.
  • discontinuous metal layer In order to form a discontinuous metal layer, it is also preferable to form a film by a dry film forming method with a mask, a mesh, or the like placed on the dielectric layer. It is also preferable to form a discontinuous metal layer by etching or patterning after forming a uniform metal layer.
  • the size of each metal island can be adjusted by the mask diameter and the distance between masks. Therefore, the mask diameter is preferably 0.5 to 7.0 mm.
  • the infrared ray transmittance at a wavelength of 1500 nm is 30% or less.
  • the visible light transmittance at a wavelength of 550 nm is preferably 70% or more
  • the radio wave shielding effect at 1 GHz is preferably 10 dB or less.
  • the infrared transmittance was measured at a wavelength of 1500 nm where a difference in transmittance in the infrared region was noticeable, and the visible light transmittance was measured at a wavelength of 550 nm where the difference in transmittance in the visible light region was noticeable.
  • the radio wave shielding effect (radio wave transmittance) was measured at a frequency of 1 GHz within the range because the frequency range of the radio wave of the mobile phone is approximately 800 to 1200 nm.
  • a transparent dielectric layer, a discontinuous metal layer, and a transparent dielectric layer are sequentially laminated.
  • the thickness of the discontinuous metal layer is 5 nm or more and 30 nm or less, and the ten-point average roughness (Rz) is 5 nm. As mentioned above, it is preferable that it is 100 nm or less.
  • the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
  • the performance of the heat ray reflective radio wave transmission transparent laminate was measured by the following method.
  • Visible light transmittance Visible light transmittance at a wavelength of 550 nm was measured using an ultraviolet-visible light spectrophotometer U-3500 manufactured by Hitachi, Ltd.
  • Radio wave shielding performance (attenuation effect) Heat-reflective radio wave transparent film or glass cut into a 5cm x 5cm square was affixed to a sample fixture made of aluminum with conductive tape, and an electric field was applied using a radio shield characteristic tester MA8602C manufactured by "Anritsu” ( KEC method). The radio wave shielding performance at 1 GHz was measured using “Anritsu” spectrum analyzer MS2661C.
  • Average diameter of discontinuous metal layer A sample cut into 5 cm x 5 cm is observed with a differential interference microscope, 10 discontinuous metal layers are selected at random, and the major axis and minor axis of each island are measured. The average diameter was calculated. The major axis is the diameter of the circumscribed circle of the island, and the minor axis is the diameter of the inscribed circle of the island.
  • Example 1 A biaxially oriented transparent PET film (A4300, thickness 50 ⁇ m, Tg 67 ° C., manufactured by Toyobo Co., Ltd.) having an easy-adhesion layer on both sides is cut into 5 ⁇ 5 cm and installed in a high-frequency sputtering apparatus SPC-350UHV manufactured by “Canon Anelpa” First, Ta was used as a target. The pressure in the chamber was evacuated to 2.0 ⁇ 10 ⁇ 3 Pa or less, Ar was introduced at 10 sccm, O 2 was introduced at 5 sccm, and the total flow rate was 15 sccm.
  • the pressure in the chamber was adjusted to 0.4 Pa, and the discharge current was set to 0.3 A using a direct current sputtering method.
  • the substrate (PET film) temperature was room temperature. Thus it was formed a Ta 2 O 5 on the substrate.
  • the target was changed to a PTFE (polytetrafluoroethylene, surface energy 18 dyn / cm) sheet (Fullon made by Asahi Glass), the pressure in the chamber was exhausted to 2.0 ⁇ 10 ⁇ 3 Pa or less, and Ar was 25 sccm as a discharge gas. Introduced. Thereafter, the pressure in the chamber was adjusted to 0.3 Pa, and the input power was set to 30 W using a high frequency sputtering method. At this time, the substrate (PET film) temperature was room temperature. Thereby, a PTFE layer was formed on the Ta 2 O 5 layer.
  • PTFE polytetrafluoroethylene, surface energy 18 dyn / cm
  • the target was changed to Ag
  • the pressure in the chamber was evacuated to 2.0 ⁇ 10 ⁇ 3 Pa or less, and 25 sccm of Ar was introduced as a discharge gas.
  • the pressure in the chamber was adjusted to 0.4 Pa, and the discharge current was set to 0.2 A using a direct current sputtering method.
  • the substrate (PET film) temperature was set to 180 ° C. Thereby, an Ag layer was formed on the PTFE layer.
  • the target was changed to Ta, the pressure in the chamber was evacuated to 2.0 ⁇ 10 ⁇ 3 Pa or less, and 25 sccm of Ar was introduced as a discharge gas. Thereafter, the pressure in the chamber was adjusted to 0.4 Pa, and the discharge current was set to 0.3 A using a direct current sputtering method. At this time, the substrate (PET film) temperature was room temperature. Thereby, a Ta layer was formed on the Ag layer.
  • the target remained Ta
  • the pressure in the chamber was evacuated to 2.0 ⁇ 10 ⁇ 3 Pa or less
  • Ar was introduced at 10 sccm
  • O 2 was introduced at 5 sccm
  • the total flow rate was set at 15 sccm.
  • the pressure in the chamber was adjusted to 0.4 Pa
  • the discharge current was set to 0.3 A using a direct current sputtering method.
  • the substrate (PET film) temperature was room temperature.
  • Ta 2 O 5 was formed on the Ta layer. This produced the heat ray reflective radio wave transmission transparent film. Microscopic observation confirmed that the Ag layer was discontinuous.
  • Example 2 Heat-reflecting radio wave transmitting transparent glass in the same manner as in Example 1 except that the base material is changed to a borosilicate glass having a thickness of 0.5 mm and a length and width of 5 cm ⁇ 5 cm, and the base material temperature during direct current sputtering of Ag is 240 ° C. Was made.
  • Example 3 A heat ray reflective radio wave transparent film was produced in the same manner as in Example 1 except that the Ta layer was not formed.
  • Example 4 A heat ray-reflecting radio wave transmitting transparent glass was produced in the same manner as in Example 2 except that the discharge current during the Ag film formation was 0.1 A.
  • Example 5 A heat ray-reflecting radio wave transmitting transparent glass was produced in the same manner as in Example 2 except that the discharge current during the Ag film formation was 0.4 A.
  • Example 6 A heat ray reflective radio wave transparent film was produced in the same manner as in Example 1 except that the base material was changed to polycarbonate (PC) and the base material temperature during direct current sputtering of Ag was 210 ° C.
  • PC polycarbonate
  • Example 7 Reflection of heat rays in the same manner as in Example 1 except that the Ta target used for forming the Ta 2 O 5 layer was changed to zinc (Zn) and the discharge current using the direct current sputtering method was set to 0.4 A. A radio wave transparent film was produced.
  • Example 8 When PTFE is used as a target, a layer having a surface energy of 40 dyn / cm or less is not formed, and when a film is formed by a direct current sputtering method using Ag as a target, the thickness is 0.1 mm on the substrate. A heat ray reflective radio wave transparent film was produced in the same manner as in Example 1 except that a 5 mm stainless steel mask was installed. Microscopic observation confirmed that the Ag layer was discontinuous.
  • Example 9 A heat ray-reflecting radio wave transmitting transparent glass was prepared in the same manner as in Example 8 except that a borosilicate glass was used as a substrate and a stainless steel mask having a diameter of 1.5 mm was installed to form an Ag layer. Microscopic observation confirmed that the Ag layer was discontinuous.
  • Example 10 A heat ray-reflecting radio wave transmitting transparent glass was produced in the same manner as in Example 9 except that a stainless steel mask having a diameter of 2.0 mm was installed to form an Ag layer. Microscopic observation confirmed that the Ag layer was discontinuous.
  • Example 11 A heat ray reflective radio wave transparent film was produced in the same manner as in Example 1 except that Ni was used for the metal layer.
  • Example 12 A heat ray reflective radio wave transmitting transparent glass was produced in the same manner as in Example 2 except that the layer provided before the metal layer was laminated was changed from PTFE to hexamethyldisiloxane (surface energy 31.0 dyn / cm).
  • Example 1 A laminated film was produced in the same manner as in Example 1 except that the substrate temperature was set to room temperature when forming a film by direct current sputtering using Ag as a target.
  • Example 2 A laminated film was produced in the same manner as in Example 1 except that a layer having a surface energy of 40 dyn / cm or less was not formed and a target was formed by direct current sputtering using Ag as a target.
  • Example 3 Similar to Example 1 except that borosilicate glass is used as the base material, Ag is used as the target, and the base material temperature is 240 ° C. and the discharge current is 1.0 A when the direct current sputtering method is used. Thus, a laminated glass was produced.
  • Example 4 A laminated film was produced in the same manner as in Example 1 except that the transparent dielectric layer was not formed.
  • Example 5 A laminated film was produced in the same manner as in Example 1 except that a discontinuous metal layer was not formed.
  • Example 7 A laminated film was produced in the same manner as in Example 1 except that the transparent dielectric layer was formed on the substrate and not formed on the discontinuous metal layer. That is, the Ta layer was provided on a layer having a surface energy of 40 dyn / cm or less.
  • Example 8 A laminated glass was produced in the same manner as in Example 9 except that the transparent dielectric layer was not formed.
  • Example 9 A laminated film was produced in the same manner as in Example 1 except that neither the transparent dielectric layer nor the layer having a surface energy of 40 dyn / cm or less was formed, and the Ag layer was formed using a direct current sputtering method.
  • the heat ray-reflecting radio wave transmission transparent laminates of Examples 1 to 12 satisfying the scope of the present invention formed a transparent dielectric layer and a discontinuous metal layer, and the heat ray reflectivity, visible light transmittance, and It was confirmed that the radio wave transmission of TV and communication band is excellent.
  • Comparative Example 1 in which the substrate temperature is set to room temperature, the cohesive force does not work when the metal adheres to the substrate by sputtering, and the uniformly attached state is maintained. The radio wave permeability of the band was insufficient. Particularly in Comparative Example 2 where no effort was made to make the metal layer discontinuous, the radio wave transmission was insufficient.
  • Comparative Example 3 in which the thickness of the metal layer was large, the radio wave transmission was not always sufficient, and the visible light transmission was not sufficient.
  • Comparative Example 4 having no transparent dielectric layer, the visible light transmittance was insufficient.
  • Comparative Example 5 having no metal layer has insufficient heat ray reflectivity, and Comparative Example 6 having an extremely fine mask diameter at the time of Ag film formation cannot make the metal layer sufficiently discontinuous. In addition to being insufficient, heat ray reflectivity was also insufficient.
  • Comparative Example 7 having only one transparent dielectric layer and Comparative Example 8 having no transparent dielectric layer had insufficient transparency.
  • Comparative Example 9 in which only the metal layer was formed, the metal layer was not discontinuous and the radio wave permeability was deteriorated.
  • the heat ray-reflecting radio wave transmission transparent laminate of the present invention has excellent heat ray reflectivity, so that the temperature rise in the room due to sunlight in the summer is reduced or the heat in the room in the winter is difficult to escape to the outside. There is an effect to. Moreover, since it is excellent in transparency, it is safe without disturbing the field of view when driving a car, and the outdoor scenery and situation can be comfortably viewed. Further, since radio waves from a television, a communication band, a mobile phone, and the like are transmitted, it is possible to prevent the occurrence of a television ghost and the radio disturbance of a communication device and a mobile phone. For these reasons, the heat ray reflective radio wave transmitting transparent laminate of the present invention is expected to greatly contribute to daily life and industry.

Abstract

熱線反射性、透明性、かつテレビや通信機器、携帯電話等の周波数帯域の電波透過性に優れた熱線反射電波透過透明積層体を提供する。透明プラスチックフィルムなどからなる基材Aの少なくとも一方の面に、透明誘電体層B、不連続な金属層C、透明誘電体層Dが順次積層された熱線反射電波透過透明積層体であって、特定の電波遮蔽効果、特定の可視光線透過率、及び特定の赤外線透過率を有する熱線反射電波透過透明積層体。

Description

熱線反射電波透過透明積層体
 本発明は、熱線反射電波透過透明積層体であり、自動車のフロントガラスや、建築物の窓ガラスなどに適した熱線反射電波透過透明積層体に関する。更に詳しくは、太陽の熱線は反射して車内や建物内の温度上昇を防ぐが、建造物、自動車などの窓ガラス等に到来する通信機器やテレビ、さらには携帯電話等の周波数帯域の電波、および可視光線を効率よく透過させることができる熱線反射電波透過透明積層体に関する。
 従来より、太陽の熱線を防ぐ目的で、窓ガラスに金属などの導電性薄膜を被覆したり、導電性薄膜を被覆したフィルムを貼り付けた窓ガラスが普及している。しかしかかる従来技術は、可視光線の透過を妨げて透明性や透視性が不充分になる問題点があった。また、透明性や透視性を向上させるために酸化物膜、金属膜、酸化物膜を交互に何層も積層したガラスやフィルムも発明させている(例えば、特許文献1参照)。しかしかかる従来技術は、通信機器やテレビ放送の周波数帯域の電波を反射してゴーストを発生したり、電波を受信し難くなる、また最近では携帯電話の電波が妨げられて通話が出来なくなるという問題点があった。一方、かかる電波を受信し難くなるという問題点を解消すべく、屈折率の異なる透明誘電体を何層にも積層し、表面抵抗値を制御して電波を受信し易くするという発明がなされた(例えば、特許文献2参照)。これらの構成にすることにより電波の減衰量が少なくなり、電波を受信し易くなった。しかしこれらの技術は、可視光線の透過率が小さくなってしまう問題点があった。そこでこれら太陽の熱線遮蔽、可視光線の透過、通信用等の電波の透過のいずれをも満足させるべく、屈折率の異なる透明誘電体を多層する技術が多く発明された(例えば、特許文献3参照)。しかしかかる従来技術は、異なる透明誘電体をスパッタリング等の真空製膜技術で多層にするため、製造工程が増えたりコストがかかるという問題点があった。また、金属を含む均一な層に後加工をすることによって、粒状の金属層を形成する方法も発明されている(例えば、特許文献4参照)。しかしかかる従来技術も後加工があるため、製造工程が増えたりコストがかかるという問題点があった。
特開平4-357025号公報 特開平4-139037号公報 特開平3-65531号公報 特開2002-328220号公報
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、太陽の熱線遮蔽による室内温度の上昇防止や省エネ、可視光線の透過による透明性の保持、向上、通信機器やテレビ、携帯電話等の周波数帯域の電波の透過性に優れた熱線反射電波透過透明積層体を提供することにある。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は以下の構成からなる。
1. 基材Aの少なくとも一方の面に、透明誘電体層B、不連続な金属層C、透明誘電体層Dが順次積層された熱線反射電波透過透明積層体であって、1GHzの電波遮蔽効果が10dB以下であることを特徴とする熱線反射電波透過透明積層体。
2. 透明誘電体層Bと金属層Cの間に、表面エネルギーが40dyn/cm以下である層Eが積層されていることを特徴とする上記第1に記載の熱線反射電波透過透明積層体。
3. 基材Aが、透明プラスチックフィルムまたはガラスであることを特徴とする上記第1又は第2に記載の熱線反射電波透過透明積層体。
4. 透明プラスチックフィルムが、ポリエステルフィルム又はポリカーボネートフィルムであることを特徴とする上記第3に記載の熱線反射電波透過透明積層体。
5. 波長550nmの可視光線透過率が70%以上であり、波長1500nmの赤外線透過率が30%以下であることを特徴とする上記第1~第4のいずれかに記載の熱線反射電波透過透明積層体。
6. 金属層Cの厚みが5~30nmであり、金属層Cの十点平均粗さ(Rz)が5~100nmであることを特徴とする上記第1~第5のいずれかに記載の熱線反射電波透過透明積層体。
7. 金属層Cの金属が、銀であることを特徴とする上記第1~第6のいずれかに記載の熱線反射電波透過透明積層体。
 本発明により、熱線反射性に優れ、通信機器やテレビ放送、携帯電話等の周波数帯域の電波は透過し、かつ透明な積層体を提供することができる。
基材A上に、透明誘電体層B、金属層C、透明誘電体層Dを順次積層した本発明の熱線反射電波透過透明積層体の一態様の断面模式図である。 基材A上に、透明誘電体層B、表面エネルギーが40dyn/cm以下である層E、金属層C、透明誘電体層Dを順次積層した本発明の熱線反射電波透過透明積層体の他の一態様の断面模式図である。 基材A上に、透明誘電体層B、金属層C、透明誘電体層Dを順次積層した本発明の一態様の熱線反射電波透過透明積層体の表面模式図である。
 以下、本発明について詳述する。
(熱線反射電波透過透明積層体)
 本発明の熱線反射電波透過透明積層体は、基材の少なくとも一方の面に、透明誘電体層、不連続な金属層、透明誘電体層が順次積層された積層体であり、例えば、図1や図3のような構造を有している。基材は透明であることが好ましく、順次積層される各層のための基材であり、積層体に一定の剛性を与えることができる。透明誘電体はいずれも、可視光線の反射を防ぎ、可視光線の透過率を増やして透明性を向上させるために設ける。そのため屈折率の大きい誘電体が好ましい。また金属層は熱線を反射させるために設けるが、この金属層が連続構造であるとテレビや通信大域の電波を反射してしまい、本発明の目的のひとつである電波透過性が悪くなってしまう。そこで金属層を不連続にすることにより金属層の導電性が小さくなり(表面抵抗が大きくなり)、電波透過性が良くなる(電波シールド性が悪くなる)。ここで不連続とは、金属層が島状構造または微小な独立した層となって、各金属層が物理的または電気的に非接触な状態であることを言う。独立した金属層の形状は特に限定されないが、厚みが5~30nmであり、十点平均粗さ(Rz)が5~100nmであることが好ましい。
(基材)
 基材は本発明の目的を満足させるため、透明な基材が好ましく、基材への各層の積層工
程での作業性や各層との密着性、さらには本発明の好ましい用途等を考慮すると、透明なプラスチックフィルムまたはガラスが好ましい。
(透明プラスチックフィルムからなる基材)
 本発明において、透明プラスチックフィルムからなる場合の基材Aは、有機高分子をフィルム状に溶融押出し又は溶液押出しをしてフィルム状に成形し、必要に応じ、長手方向及び/又は幅方向に延伸、熱固定、熱弛緩処理を施してあるフィルムであることが好ましい。有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体などが挙げられ、特にポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネートなどが好ましい。
 また、これらの有機高分子は他の有機重合体の単量体を少量共重合してもよいし、他の有機高分子をブレンドしてもよい。
 本発明で用いる透明プラスチックフィルムからなる基材の厚みは、10μm以上、200μm以下であることが好ましく、より好ましくは20μm以上、100μm以下である。プラスチックフィルムの厚みが20μm未満では、ガラスに貼り合わせる時に皺が発生し易かったり、金属や透明誘電体層の形成工程でのハンドリングが難しくなるため好ましくない。一方、厚みが200μmを超えると、可視光線透過率が低下したり、窓の重量や厚みが増えるので、あまり好ましくない。
 本発明で用いる透明プラスチックフィルムからなる基材は、本発明の目的を損なわない範囲で、前記フィルムをコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの表面活性化処理を施してもよい。
 また、本発明で用いる透明プラスチックフィルムからなる基材には、密着性向上、耐薬品性の付与、オリゴマーなどの低分子量物の析出防止を目的として、硬化型樹脂を主たる構成成分とする硬化物層を設けてもよい。
 前記の硬化型樹脂は、加熱、紫外線照射、電子線照射などのエネルギー印加により硬化する樹脂であれば特に限定されなく、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂などが挙げられる。生産性の観点からは、紫外線硬化型樹脂を主成分とする硬化型樹脂が好ましい。
 このような紫外線硬化型樹脂としては、例えば、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステルなどから合成されるような多官能性のウレタンアクリレート樹脂などを挙げることができる。必要に応じて、これらの多官能性の樹脂に単官能性の単量体、例えば、ビニルピロリドン、メチルメタクリレート、スチレンなどを加えて共重合させることができる。
 また、塗工膜と硬化物層との付着力を向上するために、硬化物層を更に表面処理することが有効である。具体的な方法としては、グロー放電又はコロナ放電を照射する放電処理法を用いて、カルボニル基、カルボキシル基、水酸基を増加させる方法、酸又はアルカリで処理する化学薬品処理法を用いて、アミノ基、水酸基、カルボニル基などの極性基を増加させる方法、などが挙げられる。
 紫外線硬化型樹脂は、通常、光重合開始剤を添加して使用される。光重合開始剤として
は、紫外線を吸収してラジカルを発生する公知の化合物を特に限定なく使用することができ、このような光重合開始剤としては、例えば、各種ベンゾイン類、フェニルケトン類、ベンゾフェノン類などを挙げることができる。光重合開始剤の添加量は、紫外線硬化型樹脂100質量部に対して、1~5質量部とすることが好ましい。
 塗布液中の樹脂成分の濃度は、コーティング法に応じた粘度などを考慮して適切に選択することができる。例えば、塗布液中に紫外線硬化型樹脂、光重合開始剤の合計量が占める割合は、通常は20~80質量%である。また、この塗布液には、必要に応じて、その他の公知の添加剤、例えば、シリコーン系界面活性剤、フッ素系界面活性剤などのレベリング剤などを添加してもよい。
(ガラスからなる基材)
 基材Aがガラスからなる場合、ガラスには製造方法や構造によってフロート板ガラス、型板ガラス、スリ板ガラス、網入ガラス、強化板ガラス、合わせガラス、複層ガラスなどがあり、成分によってホウ珪酸ガラス、ソーダライムガラス、石英ガラス、鉛ガラス、シリカガラス、無アルカリガラスなどがある。その中でも、本発明の目的から透明性が高く、熱衝撃に強く、熱膨張率が小さいことなどから、構造的には強化ガラスやフローと板ガラス、成分的にはホウ珪酸ガラスやソーダライムガラスなどが好ましい。またガラス表面に、透明性や強度を損なわない範囲で、プラズマ処理、フッ素処理、エッチング処理、湿式塗布等の表面処理が行われていても構わない。
(透明誘電体層)
 透明誘電体層B及びDの材質は、透明な誘電体である金属酸化物や金属窒化物、金属酸窒化物などであればよいが、金属成分としてZn、Al、Ti、Sn、Zr、Ta、W、Bi、NbおよびHfからなる群から選ばれる少なくとも1種の元素の酸化物、SiおよびAlからなる群から選ばれる少なくとも1種の元素の窒化物、Sn、Al、Si、Ti、ZrおよびHfからなる群から選ばれる少なくとも1種の元素の酸窒化物が好ましい。特に透明性を向上させるためには屈折率の高い透明誘電体である、TaまたはSnからなる酸化物が好ましい。
 また2層ある透明誘電体層B及びDは、同じ成分や組成からなる透明誘電体でもよく、また異なる成分や組成からなる透明誘電体のいずれでも構わない。
 透明誘電体層の厚みは、10nm以上、100nm以下が好ましく、特に20nm以上、80nm以下が好ましい。透明誘電体層の厚みが10nm未満だと、可視光線の反射防止性が不充分となり、100nmを超えると可視光線の透過性が悪くなる。
(不連続な金属層)
 本発明において、不連続な金属層に使用される金属は、銀、パラジウム、金、白金、Ni、Alなどの金属やその合金を成分とする層であることが好ましい。特に、銀または銀を主成分とする金属からなる層とすると、赤外線反射性能が高く、可視光の吸収がないことから好ましい。
 さらに他の金属元素として、Pd、Pt、Au、Cu等の金属元素を含むと、化学的耐久性や耐マイグレーション性に優れた層を形成することができるため、好ましい。 ただし添加量をあまり多くすると、可視光線透過率が低下するので、5.0at%以下が適当であり、特に0.5at%以上、2.0at%以下が好ましい。
 不連続な金属層の厚みは、5nm以上、30nm以下が好ましい。特に7nm以上、20nm以下が好ましい。不連続な金属層の厚みが5nm未満だと熱線反射が不充分になり、30nmを超えると可視光線透過率が悪くなる。
 不連続な金属層の厚みを調整する方法としては、スパッタリング法であればチャンバ内圧力や放電電流、放電時間の調節によって可能であり、真空蒸着法であればチャンバ内圧力や加熱温度、時間の調節によって可能である。また湿式塗布法であれば、塗布液濃度、ドライ塗布厚みの調節によって可能である。
 不連続な金属層の十点平均粗さ(Rz)は、5nm以上、100nm以下が好ましい。特に10nm以上、70nm以下が好ましい。不連続な金属層のRzが5nm未満だと津テレビや通信帯域の電波透過性が悪くなり、100nmを超えると可視光線透過率が悪くなる。
 Rzを調節する方法としては、厚みを調節する方法、及び金属層を積層する下地層の表面エネルギーを調節する方法、金属層をスパッタリングや真空蒸着法で積層する際に、下地層の上に載せるマスクやメッシュをの孔径を調節する方法、連続な金属層を形成した後にエッチングやパターニングによって不連続な金属層の形状や大きさを調節方法などがある。
 また、島状の不連続な金属層の平均径は5μm~10mmであることが好ましい。不連続な金属層の平均径がこれらの範囲外であると、GHz帯の電波が透過し難くなり、テレビや通信帯域の電波が透過し難く、好ましくない。
 つまり、金属層を不連続にすることにより金属層の導電性が小さくなり(表面抵抗が大きくなり)、電波透過性が良くなる(電波シールド性が悪くなる)。ここで不連続とは、金属層が島状構造又は微小な独立した層となって、各金属層が物理的又は電気的に非接触な状態であることを言う。独立した金属層の形状は特に限定されないが、不連続な金属層どうしの隙間が狭く(金属層の無い部分の面積が少ない)、かつ物理的又は電気的に非接触な状態が好ましい。円形に近い形状であってもよいが、三角形、四角形、六角形あるいは不定形でも、不連続な金属層が最密に存在できる形状は特に好ましい。
 大きさについては、特にテレビや通信帯域の電波を透過させ易くするためには、その波長との関係から、金属の各島の平均径は5~100μm、又は1~10mmが好ましい。また、厚みが5~30nmであることが好ましい。金属の各島の平均径が10mmを超えると、テレビや通信帯域の電波が透過し難くなり、好ましくない。
(その他の層)
 これらの層以外に、不連続な金属層を形成するために透明誘電体層Bと金属層Cの間に表面エネルギーが40dyn/cm以下である層を設けることが好ましい。フッ素化合物や珪素化合物が好ましく、特にポリテトラフルオロエチレン(表面エネルギー:18dyn/cm=18mN/m(=18mJ/m))、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、シロキサン、シリコーンなどが好ましい。表面エネルギーが40dyn/cm以下である層の厚みは、5nm以上、40nm以下が好ましく、特に8nm以上、30nm以下が好ましい。厚みが5nm未満では、金属層が不連続になり難く、40nmを超えると可視光線の透過性が悪くなる。表面エネルギーが40dyn/cm以下である層を設けると、スパッタリング法等によって金属層を形成する際に金属の凝集力が大きくなり、その結果金属層が島状になったり凹凸が形成され易くなる。尚、表面エネルギーのデータは20℃におけるデータで示している。
 また、不連続な金属層の化学的耐久性を向上させるために、不連続な金属層の上に化学的安定性の高い金属、例えばTa、Ti、Pt、Auなどの金属からなる層を設けるのも好ましい。この層の厚みは1nm以上、5nm以下が好ましい。特に1nm以上、3nm以下が好ましい。1nm未満では不連続な金属層の化学的耐久性を向上させるのが不充分であり、5nmを超えると可視光線や通信領域の電波の透過性を損なってしまう。
 本発明において、透明プラスチックフィルムまたはガラスからなる基材上に、透明誘電体、不連続な金属層、その他の層を成膜する方法としては、スパッタリング法、真空蒸着法、CVD法、イオンプレーティング法等の乾式製膜法や、コーティング法(バーコート法、グラビアコート法、リバースコート法など)やメッキなどの湿式成膜法を使用することができる。均一な薄膜を成膜し易いことから、乾式製膜法が好ましく、特にスパッタリング法が好ましい。
 また、不連続な金属層を形成させるために、マスクやメッシュなどを誘電体層の上に設置した状態で乾式成膜法で成膜することも好ましい。また均一な金属層を形成した後に、エッチングやパターニングで不連続な金属層を形成することも好ましい。
 マスクによって不連続な金属層を形成する場合、マスク径やマスク間距離によって金属の各島の大きさを調節することができ、特にテレビや通信帯域の電波を透過させ易くするためにはその波長との関係から、マスク径は0.5~7.0mmが好ましい。
 本発明の熱線反射電波透過透明積層体が、目的の特性である熱線反射性、透明性、及び電波遮蔽性を満足するためには、具体的には波長1500nmの赤外線透過率が30%以下であり、波長550nmの可視光線透過率が70%以上であり、1GHzでの電波遮蔽効果が10dB以下であることが好ましい。ここで、赤外線透過率は赤外域での透過率の差が顕著に見られる波長1500nmで測定し、可視光線透過率は可視光域での透過率の差が顕著に見られる波長550nmで測定した。また電波遮蔽効果(電波透過率)は、携帯電話の電波の周波数域がおよそ800~1200nmであることから、その範囲にある1GHzの周波数で測定した。
 波長1500nmの赤外線透過率を30%以下に、波長550nmの可視光線透過率を70%以上に、かつ1GHzでの電波遮蔽効果を10dB以下にするためには、基材の少なくとも一方の面に、透明誘電体層、不連続な金属層、透明誘電体層が順次積層されることが好ましく、不連続な金属層の厚みが5nm以上、30nm以下であり、十点平均粗さ(Rz)が5nm以上、100nm以下であることが好ましい。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、熱線反射電波透過透明積層体の性能は、下記の方法により測定した。
(1)膜厚測定(透明誘電体層、金属層、その他の層)
 1mm×10mmに切り出したサンプルを電子顕微鏡用のエポキシ樹脂に包理した後、ウルトラミクロトームの資料ホルダに固定し、包理したサンプル片の短辺に平行な断面薄切片を作製した。次いで、この切片薄膜の著しく損傷のない部位において、透過型電子顕微鏡(日本電子製、JEM2010)を用いて観測した。加速電圧は200kV、20000倍で観測後、各層の膜厚を100点計測し、その平均を膜厚とした。
(2)十点平均粗さ(Rz)(金属層)
 原子間力顕微鏡E-Sweep(SII-NT社製)を用いて金属層表面の形態を観察し(DFMモード、20μmスキャナー、観察視野;10×10μm2、)、十点平均粗さ(Rz)を測定
した。
(3)可視光線透過率
 「(株)日立製作所」製紫外可視光分光光度計U-3500を用いて、波長550nmの可視光線透過率を測定した。
(4)赤外線透過率
 「(株)日立製作所」製紫外可視光分光光度計U-3500を用いて、波長1500nmの赤外線透過率を測定した。
(5)電波遮蔽性能(減衰効果)
 5cm×5cmの正方形に切り取った熱線反射電波透過透明フィルムまたはガラスを、アルミ製のサンプル固定冶具に導電性テープで貼り付け、「Anritsu」製電波シール
ド特性試験器MA8602Cを用いて電界をかけた(KEC法)。1GHzにおける電波遮蔽性能を「Anritsu」製スペクトルアナライザーMS2661Cを用いて測定した。
(6)不連続な金属層の平均径
 5cm×5cmに切り出したサンプルを、微分干渉顕微鏡で観察し、不連続な金属層を、ランダムに10個選定し、各島の長径と短径を測定し、その平均径を算出した。長径とは、島の外接円の直径であり、短径は島の内接円の直径である。
〔実施例1〕
 両面に易接着層を有する二軸配向透明PETフィルム(東洋紡績社製、A4300、厚み50μm、Tg67℃)を5×5cmに切り取り、「キャノンアネルパ」製高周波スパッタ装置SPC-350UHVに設置し、最初にターゲットとしてTaを用いた。チャンバ内圧力を2.0×10-3Pa以下まで排気し、Arを10sccm、 Oを5sccm導入
し, 全流量を15sccmとした。その後チャンバ内圧力を0.4Paに調節し、直流スパッタリング法を用いて放電電流を0.3Aとした。この時、基材(PETフィルム)温度は室温とした。これにより、基材上にTaを成膜した。
 次にターゲットをPTFE(ポリテトラフルオロエチレン、表面エネルギー18dyn/cm)シート(旭硝子製 フルオン)に交換し、チャンバ内圧力を2.0×10-3Pa以下まで排気し、放電ガスとしてArを25sccm導入した。その後チャンバ内圧力を0.3Paに調節し、高周波スパッタリング法を用いて投入電力を30Wとした。この時、基材(PETフィルム)温度は室温とした。これにより、Ta層上にPTFE層を成膜した。
 次にターゲットをAgに交換し、チャンバ内圧力を2.0×10-3Pa以下まで排気し、放電ガスとしてArを25sccm導入した。その後チャンバ内圧力を0.4Paに調節し、直流スパッタリング法を用いて放電電流を0.2Aとした。この時、基材(PETフィルム)温度を180℃にした。これにより、PTFE層上にAg層を成膜した。
 次にターゲットをTaに交換し、チャンバ内圧力を2.0×10-3Pa以下まで排気し、放電ガスとしてArを25sccm導入した。その後チャンバ内圧力を0.4Paに調節し、直流スパッタリング法を用いて放電電流を0.3Aとした。この時、基材(PETフィルム)温度は室温とした。これにより、Ag層上にTa層を成膜した。
 次にターゲットはTaのままで、チャンバ内圧力を2.0×10-3Pa以下まで排気し、Arを10sccm、 Oを5sccm導入し, 全流量を15sccmとした。その後チャンバ
内圧力を0.4Paに調節し、直流スパッタリング法を用いて放電電流を0.3Aとした。この時、基材(PETフィルム)温度は室温とした。これにより、Ta層上にTaを成膜した。これにより、熱線反射電波透過透明フィルムを作製した。顕微鏡観察で、Ag層が不連続であることを把握した。
〔実施例2〕
 基材を厚み0.5mm、縦横5cm×5cmのホウ珪酸ガラスに変更し、Agの直流スパッタリング時の基材温度を240℃にする以外は、実施例1と同様にして熱線反射電波透過透明ガラスを作製した。
〔実施例3〕
 Ta層を形成しなかった以外は、実施例1と同様にして熱線反射電波透過透明フィルムを作製した。
〔実施例4〕
 Ag成膜時の放電電流を0.1Aとする以外は、実施例2と同様にして熱線反射電波透過透明ガラスを作製した。
〔実施例5〕
 Ag成膜時の放電電流を0.4Aとする以外は、実施例2と同様にして熱線反射電波透過透明ガラスを作製した。
〔実施例6〕
 基材をポリカーボネート(PC)に変更し、Agの直流スパッタリング時の基材温度を210℃にする以外は、実施例1と同様にして熱線反射電波透過透明フィルムを作製した。
〔実施例7〕
 Ta層成膜時に使用したTaのターゲットを亜鉛(Zn)に変更して、直流スパッタリング法を用いての放電電流を0.4Aとする以外は、実施例1と同様にして熱線反射電波透過透明フィルムを作製した。
〔実施例8〕
 ターゲットにPTFEを用いて、表面エネルギーが40dyn/cm以下である層を形成せず、さらにターゲットにAgを用いて直流スパッタリング法で成膜する際に、基材上にφ1.0mm、厚み0.5mmのステンレス製マスクを設置する以外は、実施例1と同様にして熱線反射電波透過透明フィルムを作製した。顕微鏡観察で、Ag層が不連続であることを把握した。
〔実施例9〕
 基材にホウ珪酸ガラスを用いて、φ1.5mmのステンレス製マスクを設置してAg層を成膜する以外は、実施例8と同様にして熱線反射電波透過透明ガラスを作製した。顕微鏡観察で、Ag層が不連続であることを把握した。
〔実施例10〕
 φ2.0mmのステンレス製マスクを設置してAg層を成膜する以外は、実施例9と同様にして熱線反射電波透過透明ガラスを作製した。顕微鏡観察で、Ag層が不連続であることを把握した。
〔実施例11〕
 金属層をNiを用いる以外は、実施例1と同様にして熱線反射電波透過透明フィルムを作製した。
〔実施例12〕
 金属層を積層する前に設ける層をPTFEからヘキサメチルジシロキサン(表面エネルギー31.0dyn/cm)に変更する以外は、実施例2と同様にして熱線反射電波透過透明ガラスを作製した。
〔比較例1〕
 ターゲットにAgを用いて直流スパッタリング法で成膜する際に、基材温度を室温にした以外は、実施例1と同様にして積層フィルムを作製した。
〔比較例2〕
 表面エネルギーが40dyn/cm以下である層を形成せずに、ターゲットにAgを用いて直流スパッタリング法で成膜する以外は、実施例1と同様にして積層フィルムを作製した。
〔比較例3〕
 基材にホウ珪酸ガラスを用い、ターゲットにAgを用いて直流スパッタリング法で成膜する際に、基材温度を240℃とし、さらに放電電流を1.0Aとする以外は、実施例1と同様にして積層ガラスを作製した。
〔比較例4〕
 透明誘電体層を形成しない以外は、実施例1と同様にして積層フィルムを作製した。
〔比較例5〕
 不連続な金属層を形成しない以外は、実施例1と同様にして積層フィルムを作製した。
〔比較例6〕
 ターゲットにPTFEを用いて、表面エネルギーが40dyn/cm以下である層を形成せず、さらにターゲットにAgを用いて直流スパッタリング法で成膜する際に、基材上にφ0.05mm、厚み0.4mmのステンレス製マスク(メッシュ)を設置する以外は、実施例1と同様にして積層フィルムを作製した。
〔比較例7〕
 透明誘電体層を基材上に形成して、不連続な金属層上には形成しない以外は、実施例1と同様にして積層フィルムを作製した。即ち、Ta層は表面エネルギーが40dyn/cm以下である層上に設けられた。
〔比較例8〕
 透明誘電体層を形成しなかった以外は、実施例9と同様にして積層ガラスを作製した。
〔比較例9〕
 透明誘電体層も表面エネルギーが40dyn/cm以下である層も形成せずに、直流スパッタリング法を用いてAg層を形成する以外は、実施例1と同様にして積層フィルムを作製した。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の範囲を満足する実施例1~12の熱線反射電波透過透明積層体は、透明誘電体層及び不連続な金属層を形成し、熱線反射性、可視光線透過性、及びテレビや通信帯域の電波透過性に優れることが確認された。一方、基板温度を室温にした比較例1では、スパッタリングによって金属が基板に付着した際に凝集力が働かず、均一に付着した状態が保たれてしまうため、連続した金属層となって、通信帯域の電波透過性が不充分であった。特に金属層を不連続にする工夫をしていない比較例2においても電波透過性が不充分であった。金属層の厚みが大きい比較例3では、電波透過性が必ずしも十分ではなく、可視光線透過性も十分ではなかった。透明誘電体層が無い比較例4は可視光線透過性が不充分であった。また、金属層がない比較例5は熱線反射性が不充分であり、Ag成膜時のマスク径が極めて細かい比較例6は金属層を十分には不連続にできず、電波透過性が必ずしも十分ではない他、熱線反射性も不充分であった。また透明誘電体層が一層だけの比較例7や透明誘電体層が無い比較例8では透明性が不充分であった。また、金属層のみを形成した比較例9では、金属層が不連続にならず、電波透過性が悪くなった。
 本発明の熱線反射電波透過透明積層体は、熱線反射性に優れることから、夏場の太陽光線による室内の温度上昇を減少させたり、冬場の室内の熱を外部に逃がし難いことから暖房効率を良くする効果がある。また透明性に優れることから、自動車運転時の視界を妨げず安全であり、室外の風景や状況を心地よく眺めることができる。さらにテレビや通信帯域、携帯電話等の電波も透過することから、テレビのゴーストの発生や、通信機器や携帯電話の電波障害も防ぐことができる。このようなことから、本発明の熱線反射電波透過透明積層体は、生活や産業界に大きく寄与することが期待される。
1:熱線反射電波透過透明積層体
2:透明プラスチックフィルムまたはガラスからなる基材A
3:透明誘電体層B
4:不連続な金属層C
5:透明誘電体層D
6:表面エネルギーが40dyn/cm以下である層E

Claims (7)

  1.  基材Aの少なくとも一方の面に、透明誘電体層B、不連続な金属層C、透明誘電体層Dが順次積層された熱線反射電波透過透明積層体であって、1GHzの電波遮蔽効果が10dB以下であることを特徴とする熱線反射電波透過透明積層体。
  2.  透明誘電体層Bと金属層Cの間に、表面エネルギーが40dyn/cm以下である層Eが積層されていることを特徴とする請求項1に記載の熱線反射電波透過透明積層体。
  3.  基材Aが、透明プラスチックフィルムまたはガラスであることを特徴とする請求項1又は2に記載の熱線反射電波透過透明積層体。
  4.  透明プラスチックフィルムが、ポリエステルフィルム又はポリカーボネートフィルムであることを特徴とする請求項3に記載の熱線反射電波透過透明積層体。
  5.  波長550nmの可視光線透過率が70%以上であり、波長1500nmの赤外線透過率が30%以下であることを特徴とする請求項1~4のいずれかに記載の熱線反射電波透過透明積層体。
  6.  金属層Cの厚みが5~30nmであり、金属層Cの十点平均粗さ(Rz)が5~100nmであることを特徴とする請求項1~5のいずれかに記載の熱線反射電波透過透明積層体。
  7.  金属層Cの金属が、銀であることを特徴とする請求項1~6のいずれかに記載の熱線反射電波透過透明積層体。
PCT/JP2013/053640 2012-02-16 2013-02-15 熱線反射電波透過透明積層体 WO2013122181A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508321A JP5527480B2 (ja) 2012-02-16 2013-02-15 熱線反射電波透過透明積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031429 2012-02-16
JP2012-031429 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013122181A1 true WO2013122181A1 (ja) 2013-08-22

Family

ID=48984290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053640 WO2013122181A1 (ja) 2012-02-16 2013-02-15 熱線反射電波透過透明積層体

Country Status (2)

Country Link
JP (1) JP5527480B2 (ja)
WO (1) WO2013122181A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126135A1 (ja) * 2013-02-13 2014-08-21 東洋紡株式会社 熱線反射電波透過透明積層体
WO2015144127A1 (de) * 2014-03-25 2015-10-01 Webasto SE Verkleidungselement eines fahrzeugdachs mit glasträger
JP2020097142A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルム
JP2020104430A (ja) * 2018-12-27 2020-07-09 日本ペイントホールディングス株式会社 積層体
JP2020524612A (ja) * 2017-06-27 2020-08-20 エルジー・ケム・リミテッド 装飾部材およびその製造方法
US11511524B2 (en) 2020-03-11 2022-11-29 LabForInvention Energy-efficient window coatings transmissible to wireless communication signals and methods of fabricating thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667266A (zh) * 2016-02-25 2016-06-15 智车优行科技(北京)有限公司 车辆玻璃透明度控制装置及智能车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316443A (ja) * 1993-04-30 1994-11-15 Central Glass Co Ltd 紫外線吸収断熱ガラス
JP2001026071A (ja) * 1999-07-16 2001-01-30 Central Glass Co Ltd 電波透過性波長選択基板およびその製造法
JP2003261355A (ja) * 2002-03-06 2003-09-16 Central Glass Co Ltd 電波透過性波長選択膜の製法
JP2005104793A (ja) * 2003-10-01 2005-04-21 Nippon Sheet Glass Co Ltd 電波透過熱線反射合わせ構造体およびその製造方法
JP2006110808A (ja) * 2004-10-13 2006-04-27 Central Glass Co Ltd 電波透過性波長選択板
JP2010251899A (ja) * 2009-04-13 2010-11-04 Sankei Giken Kogyo Co Ltd 電磁波透過性の金属複合材料及びその製造方法
WO2011024756A1 (ja) * 2009-08-26 2011-03-03 東海ゴム工業株式会社 透明積層フィルムおよびその製造方法
JP2011180562A (ja) * 2010-03-04 2011-09-15 Konica Minolta Holdings Inc 熱線遮断用基材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316443A (ja) * 1993-04-30 1994-11-15 Central Glass Co Ltd 紫外線吸収断熱ガラス
JP2001026071A (ja) * 1999-07-16 2001-01-30 Central Glass Co Ltd 電波透過性波長選択基板およびその製造法
JP2003261355A (ja) * 2002-03-06 2003-09-16 Central Glass Co Ltd 電波透過性波長選択膜の製法
JP2005104793A (ja) * 2003-10-01 2005-04-21 Nippon Sheet Glass Co Ltd 電波透過熱線反射合わせ構造体およびその製造方法
JP2006110808A (ja) * 2004-10-13 2006-04-27 Central Glass Co Ltd 電波透過性波長選択板
JP2010251899A (ja) * 2009-04-13 2010-11-04 Sankei Giken Kogyo Co Ltd 電磁波透過性の金属複合材料及びその製造方法
WO2011024756A1 (ja) * 2009-08-26 2011-03-03 東海ゴム工業株式会社 透明積層フィルムおよびその製造方法
JP2011180562A (ja) * 2010-03-04 2011-09-15 Konica Minolta Holdings Inc 熱線遮断用基材

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126135A1 (ja) * 2013-02-13 2014-08-21 東洋紡株式会社 熱線反射電波透過透明積層体
WO2015144127A1 (de) * 2014-03-25 2015-10-01 Webasto SE Verkleidungselement eines fahrzeugdachs mit glasträger
CN106132741A (zh) * 2014-03-25 2016-11-16 韦巴斯托股份公司 具有玻璃支撑体的车辆顶部的镶板部件
CN106132741B (zh) * 2014-03-25 2019-10-18 韦巴斯托股份公司 具有玻璃支撑体的车辆顶部的镶板部件
JP2020524612A (ja) * 2017-06-27 2020-08-20 エルジー・ケム・リミテッド 装飾部材およびその製造方法
US11448800B2 (en) 2017-06-27 2022-09-20 Lg Chem, Ltd. Decorative member and method for preparing same
JP2020097142A (ja) * 2018-12-17 2020-06-25 日東電工株式会社 導電性フィルム
JP7305342B2 (ja) 2018-12-17 2023-07-10 日東電工株式会社 導電性フィルム
JP2020104430A (ja) * 2018-12-27 2020-07-09 日本ペイントホールディングス株式会社 積層体
US11511524B2 (en) 2020-03-11 2022-11-29 LabForInvention Energy-efficient window coatings transmissible to wireless communication signals and methods of fabricating thereof

Also Published As

Publication number Publication date
JP5527480B2 (ja) 2014-06-18
JPWO2013122181A1 (ja) 2015-05-18

Similar Documents

Publication Publication Date Title
WO2014126135A1 (ja) 熱線反射電波透過透明積層体
JP5527480B2 (ja) 熱線反射電波透過透明積層体
EP2542405B1 (en) Low emissivity and emi shielding window films
JP5798804B2 (ja) 熱線遮蔽フィルム、これを用いた熱線遮蔽ウィンドウ
US10007037B2 (en) Infrared-ray reflective film
CA2548573A1 (en) Interlayer film for laminate glass and laminate glass
JP2011505686A (ja) 電磁放射遮蔽装置
KR20140084169A (ko) 태양광의 파장 스펙트럼에서 유래하는 전자기선의 선택적 반사를 위한 다층 시스템 및 이의 제조 방법
WO2016125823A1 (ja) 遮熱フィルム、遮熱合わせガラスおよびその製造方法
KR101740603B1 (ko) 적외선 차단 다층 필름
KR102325574B1 (ko) 반사 방지, 내스크래치성 유리 기판 및 그의 제조 방법
JP6287533B2 (ja) 熱線遮蔽合わせガラス
US11007753B2 (en) Laminate including panels and a fill material between the panels
JP2016144930A (ja) 遮熱フィルム、遮熱合わせガラス、遮熱フィルムの製造方法および遮熱合わせガラスの製造方法
US20220071071A1 (en) Wave absorber
JP2009075417A (ja) 反射防止フィルムおよびそれを用いた偏光板
JP2021062991A (ja) 車両用窓ガラス
JP2021103786A (ja) 電波吸収体
JP7255179B2 (ja) 熱線遮蔽合わせガラス
CN104476840A (zh) 一种柔性膜
RU2611101C2 (ru) Стекло с покрытием, имеющим малый коэффициент излучения
JP2014124815A (ja) 低放射膜
JP2021098287A (ja) 熱線遮蔽フィルム及び熱線遮蔽合わせガラス
WO2021125091A1 (ja) 光学フィルム
WO2019208430A1 (ja) 熱線遮蔽合わせガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013508321

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13749099

Country of ref document: EP

Kind code of ref document: A1