WO2013122016A1 - 水性顔料分散液及びそれを用いたインクジェット用水性顔料インク - Google Patents

水性顔料分散液及びそれを用いたインクジェット用水性顔料インク Download PDF

Info

Publication number
WO2013122016A1
WO2013122016A1 PCT/JP2013/053136 JP2013053136W WO2013122016A1 WO 2013122016 A1 WO2013122016 A1 WO 2013122016A1 JP 2013053136 W JP2013053136 W JP 2013053136W WO 2013122016 A1 WO2013122016 A1 WO 2013122016A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
parts
polymer chain
meth
acrylate
Prior art date
Application number
PCT/JP2013/053136
Other languages
English (en)
French (fr)
Inventor
嶋中 博之
真一郎 青柳
賀一 村上
克彦 狩野
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to EP13748957.1A priority Critical patent/EP2816088B1/en
Priority to US14/374,318 priority patent/US9260589B2/en
Priority to CA2864384A priority patent/CA2864384C/en
Priority to KR1020147025830A priority patent/KR101623678B1/ko
Priority to CN201380009508.1A priority patent/CN104114654B/zh
Priority to AU2013219442A priority patent/AU2013219442C1/en
Publication of WO2013122016A1 publication Critical patent/WO2013122016A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0008Coated particulate pigments or dyes with organic coatings
    • C09B67/0013Coated particulate pigments or dyes with organic coatings with polymeric coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0041Blends of pigments; Mixtured crystals; Solid solutions mixtures containing one azo dye
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0084Dispersions of dyes
    • C09B67/0085Non common dispersing agents
    • C09B67/009Non common dispersing agents polymeric dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • C09D11/326Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a pigment dispersion containing a pigment as a colorant used in an inkjet aqueous pigment ink, and an inkjet aqueous pigment ink obtained using the pigment dispersion.
  • Inkjet printers have a wide range of uses, such as personal use, office use, business use, recording use, color display use, and color photography use due to their high functionality. Further, in order to cope with higher speed and higher image quality, the size of ejected droplets (ink droplets) has been miniaturized by improving the apparatus. In order to make the discharged droplets minute, it is necessary to make the pigment (particles) in the ink finer and to finely disperse the finer pigment in the dispersion medium.
  • the sharpness, color tone, color density, etc. of printed matter are improving.
  • the saturation which is a color value serving as an index indicating the color tone
  • the gloss value is improved.
  • the ink containing the finer pigment easily penetrates into the paper, the color developability that is the color density tends to decrease.
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is that it can record printed matter with high color development, high saturation, and high gloss, and is also storable.
  • Aqueous pigment dispersion capable of preparing an excellent inkjet aqueous pigment ink, an aqueous inkjet pigment ink obtained using the aqueous pigment dispersion, and a dispersant suitable for obtaining the aqueous pigment dispersion It is to provide a method for preparing a coated pigment.
  • the present inventors have used the graft copolymer or block copolymer having a predetermined structure obtained by using a specific monomer component as a constituent component, thereby achieving the above-described problems.
  • the present inventors have found that this can be solved and have completed the present invention.
  • aqueous pigment dispersion for inkjets containing 5 to 35% by weight of a pigment, 0.5 to 25% by weight of a pigment dispersant, 5 to 30% by weight of an aqueous organic solvent, and 20 to 80% by weight of water.
  • the pigment dispersant is at least one of a graft copolymer in which a polymer chain A is grafted to a polymer chain B, and a block copolymer in which one end of the polymer chain A and one end of the polymer chain B are bonded, and the polymer
  • the chain A is composed of 20 to 60% by mass of the structural unit derived from the first cycloalkyl group-containing (meth) acrylate, 10 to 35% by mass of the structural unit derived from (meth) acrylic acid, and other (meth) acrylates.
  • the pigment has a color index number (CI) pigment blue of 15: 3, 15: 4, C.I. I.
  • aqueous pigment ink for inkjet comprising the aqueous pigment dispersion according to any one of [1] to [5], wherein the content of the pigment is 4 to 10% by mass.
  • a method for preparing a dispersant-coated pigment coated with a pigment dispersant comprising: (i) a pigment dispersion obtained by mixing a pigment, a pigment dispersant, an aqueous organic solvent, water, and an alkali agent.
  • the pigment dispersing agent comprises at least a graft copolymer in which a polymer chain A is grafted to a polymer chain B, and a block copolymer in which one end of the polymer chain A and one end of the polymer chain B are bonded.
  • the aqueous pigment dispersion of the present invention contains at least one of a graft copolymer having a water-soluble polymer chain A into which a cycloalkyl group is introduced and a block copolymer as a pigment dispersant. Since these graft copolymers and block copolymers have a hydrophobic cycloalkyl group, they have properties such as high glass transition point (Tg), high light resistance and high refractive index. Therefore, by using the aqueous pigment dispersion of the present invention using these graft copolymers and block copolymers as pigment dispersants, it is possible to record printed matter with high color development, high saturation and high gloss, and excellent storage stability. An aqueous pigment ink for ink jet can be prepared.
  • the polymer chain B since the polymer chain B has an aromatic ring and / or a cycloalkyl group, it is easily adsorbed on the surface of the hydrophobic pigment and sterically repels with the polymer chain A dissolved in water. This contributes to the stabilization of pigment dispersion.
  • the water-insoluble polymer chain B forms particles without dissolving in the ink, thereby reducing the viscosity of the ink and improving the ejection stability because the viscosity of the ink also exhibits Newtonian properties. .
  • the water-soluble polymer chain A has an alkali-neutralized carboxyl group, for example, even when the ink is dried in the ink head, it can be easily re-dissolved and re-dispersed, and also has an ejection property. It is good.
  • the aqueous pigment ink for inkjet using the aqueous pigment dispersion of the present invention contributes to speeding up printing and improving the image quality of printed matter in inkjet printing.
  • the aqueous pigment dispersion of the present invention is an aqueous pigment dispersion for inkjets containing a pigment, a pigment dispersant, an aqueous organic solvent, and water. The details will be described below.
  • the pigment dispersant is at least one of a graft copolymer in which the polymer chain A is grafted to the polymer chain B and a block copolymer in which one end of the polymer chain A and one end of the polymer chain B are bonded.
  • a graft copolymer in which the polymer chain A is grafted to the polymer chain B and a block copolymer in which one end of the polymer chain A and one end of the polymer chain B are bonded.
  • the graft copolymer one or more polymer chains A are bonded (branched) to a polymer chain B which is a main chain.
  • the number of bonds of the polymer chain A with respect to one polymer chain B is not limited.
  • the polymer chain A is composed of 20 to 60% by mass of structural units derived from the first cycloalkyl group-containing (meth) acrylate, 10 to 35% by mass of structural units derived from (meth) acrylic acid, and other (meth) acrylates. 5 to 70% by mass derived from the structural unit.
  • the carboxyl group contained in the structural unit derived from (meth) acrylic acid is ionized by being neutralized with an alkali. For this reason, the polymer chain A containing the structural unit derived from (meth) acrylic acid is a polymer chain having a property of being dissolved in water.
  • the polymer chain B includes at least one of a structural unit derived from the second cycloalkyl group-containing (meth) acrylate and a structural unit derived from a vinyl monomer having an aromatic ring, and other (meta) used as necessary. And a structural unit derived from acrylate.
  • This polymer chain B is a polymer chain insoluble in water, adsorbs to the pigment by hydrophobic interaction, and deposits to coat (encapsulate) the pigment.
  • the pigment dispersant having the polymer chain A and the polymer chain B having such different properties the pigment can be dispersed in a good state.
  • the first cycloalkyl group-containing (meth) acrylate constituting the polymer chain A and the second cycloalkyl group-containing (meth) acrylate constituting the polymer chain B may be the same or different.
  • the term “cycloalkyl group-containing (meth) acrylate” simply means both “first cycloalkyl group-containing (meth) acrylate” and “second cycloalkyl group-containing (meth) acrylate”. .
  • the polymer chain B forms particles, and the polymer chain A is dissolved and stabilized in the aqueous medium in the ink. For this reason, since this pigment dispersant forms particles having high stability and lowers the viscosity, it does not hinder the dispersion stability of the pigment and the ink dischargeability. Furthermore, since the amount of the carboxyl group in the polymer chain A is appropriately controlled, the pigment dispersant has high solubility in water. For this reason, even when the ink head is dried, it can be easily redissolved and redispersed with another aqueous medium such as a cleaning liquid.
  • Polymer chain A contains a cycloalkyl group.
  • a pigment dispersant containing a polymer chain A having a cycloalkyl group it is possible to prepare an aqueous pigment ink capable of recording a printed matter with high color development, high saturation, and high gloss.
  • first cycloalkyl group-containing (meth) acrylate examples include cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, t-butylcyclohexyl (meth) Examples include acrylate, cyclohexyloxyethyl (meth) acrylate, tricyclodecyl (meth) acrylate, and isobornyl (meth) acrylate. Of these, cyclohexyl (meth) acrylate and 3,3,5-trimethylcyclohexyl (meth) acrylate are preferable.
  • the cycloalkyl group preferably has 6 to 9 carbon atoms. This is because if the cycloalkyl group has 6 to 9 carbon atoms, even if it is introduced in a large amount, the water solubility is not hindered so much and it is easy to obtain.
  • the proportion of the structural unit derived from the first cycloalkyl (meth) acrylate contained in the polymer chain A is less than 20% by mass, the effect is not exhibited. On the other hand, if it exceeds 60% by mass, water solubility may be significantly reduced.
  • the proportion of structural units derived from the first cycloalkyl (meth) acrylate contained in the polymer chain A is preferably 30 to 50% by mass.
  • the polymer chain A contains a structural unit derived from (meth) acrylic acid.
  • the carboxyl group in this structural unit is neutralized and ionized, and the polymer chain A is dissolved in water.
  • the proportion of the structural unit derived from (meth) acrylic acid contained in the polymer chain A is less than 10% by mass, the polymer chain A may not dissolve in water. On the other hand, if it exceeds 35% by mass, the hydrophilicity of the polymer chain A becomes too high, and the water resistance of the resulting printed matter may be significantly reduced.
  • the proportion of structural units derived from (meth) acrylic acid contained in the polymer chain A is preferably 15 to 25% by mass.
  • Polymer chain A includes “structural units derived from other (meth) acrylates”.
  • other (meth) acrylates include aliphatic alkyl (meth) acrylates such as methyl (meth) acrylate, butyl (meth) acrylate, and dodecyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate Aromatic (meth) acrylates such as; hydroxyl group-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate; ethers such as (poly) ethylene glycol monoalkyl ether (meth) acrylate Examples thereof include a group or chain-containing (meth) acrylate; an amino group-containing (meth) acrylate such as dimethylaminoethyl (meth) acrylate.
  • other (meth) acrylates can be used alone or in combination of
  • the number average molecular weight of the polymer chain A is 1,000 to 10,000, preferably 2,000 to 7,000. When the number average molecular weight of the polymer chain A is less than 1,000, the performance as a polymer is not exhibited. On the other hand, if the number average molecular weight of the polymer chain A is more than 10,000, the proportion of the hydrophilic chain in the pigment dispersant is too large, and the desorption of the polymer chain B from the pigment is promoted, and the dispersion stability of the pigment is increased. May decrease.
  • the number average molecular weight of the polymer chain or polymer in the present specification is a molecular weight in terms of polystyrene by gel permeation chromatography (hereinafter also referred to as “GPC”).
  • the polymer chain B is a polymer chain insoluble in water, and has an adsorptivity to the pigment. For this reason, the polymer chain B is adsorbed on the pigment and deposited on the surface to coat (encapsulate) the pigment.
  • Specific examples of the second cycloalkyl group-containing (meth) acrylate include the same as those listed as specific examples of the first cycloalkyl group-containing (meth) acrylate.
  • the proportion of the structural unit derived from the second cycloalkyl (meth) acrylate contained in the polymer chain B is preferably 30 to 70% by mass, and more preferably 40 to 60% by mass.
  • the vinyl monomer having an aromatic ring examples include styrene, vinyl toluene, vinyl naphthalene and the like.
  • Specific examples of the (meth) acrylate having an aromatic ring include phenyl (meth) acrylate, naphthoxy (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, paracumylphenol ethylene oxide modified (meth) An acrylate etc. can be mentioned.
  • the proportion of the structural unit derived from the vinyl monomer having an aromatic ring or (meth) acrylate contained in the polymer chain B is preferably 30 to 70% by mass, and more preferably 40 to 60% by mass. .
  • the polymer chain B includes the above-mentioned “other structural units derived from (meth) acrylate” in order to soften the polymer chain B or introduce a functional group such as a hydroxyl group. Is preferred.
  • the number average molecular weights of the graft copolymer and the block copolymer used as the pigment dispersant are both 2,000 to 20,000, preferably 5,000 to 15,000, and 7,000 to 12,000. More preferably it is.
  • the number average molecular weight is less than 2,000, the function as a pigment dispersant is lowered and dispersion stability is not maintained.
  • the number average molecular weight is more than 20,000, the viscosity of the aqueous pigment dispersion may increase, or a single molecular chain may be adsorbed on a plurality of pigment particles and dispersion may not proceed.
  • the ratio of the polymer chain A which is a hydrophilic chain contained in the graft copolymer or block copolymer is too small, the pigment dispersant becomes insoluble or precipitates in water.
  • the ratio of the polymer chain A is too large, the water resistance of the printed matter to be recorded decreases, or the adsorptivity to the pigment decreases.
  • the ratio of the polymer chain B which is a hydrophobic chain contained in the graft copolymer or block copolymer is too small, the pigment dispersant is not stably adsorbed on the pigment.
  • the graft copolymer can be synthesized according to a conventionally known method.
  • Specific examples of the synthesis method include: (i) a method of polymerizing a macromonomer (polymer chain A) having an unsaturated bond that undergoes radical polymerization at one end thereof and a monomer that is a constituent component of the polymer chain B (macro).
  • Monomer method (ii) a method of polymerizing a monomer that is a constituent of polymer chain A in the presence of polymer chain B to which a polymerization initiating group is bonded (side chain polymerization method); (iii) reactivity at one end thereof Polymer having functional group “Y” in the side chain obtained by polymerizing monomer having functional group “Y” capable of reacting with reactive chain “X” with polymer chain A introduced with group “X”
  • polymer reaction method There is a method of preparing the chain B and reacting the polymer chain A and the polymer chain B (polymer reaction method).
  • the graft copolymer can be synthesized by any synthesis method, but the macromonomer method is particularly preferable.
  • the side chain polymerization method may cause gelation when a coupling reaction, which is a side reaction of radical polymerization, occurs.
  • the polymer reaction method is a reaction between polymers, and since the concentration of reactive groups is low, the reaction rate is low and the polymer chain A and the polymer chain B may remain alone.
  • the polymer reaction method may be preferable because the terminal reactivity becomes uniform and the graft copolymer is easily obtained by aligning the molecular weight by the living radical polymerization method described later.
  • the macromonomer can be synthesized according to a conventionally known method. Specifically, (i) a method of introducing an unsaturated bond at the terminal by polymerizing (meth) acrylate or the like with depolymerization at high temperature and high pressure; (ii) functional groups such as thiol groups and hydroxyl groups.
  • a polymer is obtained using a polymerization initiating compound having a functional group such as a hydroxyl group or halogen, and a compound having an unsaturated bond that can react with the functional group is obtained. And pressurized, there is a method to obtain a macromonomer by introducing an unsaturated bond at the terminal.
  • a graft copolymer can be obtained.
  • a block copolymer is difficult to obtain by a conventionally known radical polymerization method.
  • a polymer chain A having a functional group “X” introduced at one end thereof and a polymer chain B having a functional group “Y” capable of reacting with the functional group “X” introduced at one end thereof are prepared.
  • By reacting functional groups “X” and “Y”, a block copolymer can be obtained.
  • the reaction rate is low, and a large amount of polymer chain A and polymer chain B may remain.
  • Preferable methods for synthesizing block copolymers include living cationic polymerization, living anion polymerization, and living radical polymerization.
  • the living radical polymerization method is particularly preferable as a method for synthesizing the block copolymer.
  • the living radical polymerization method include (i) a method using a compound capable of generating a nitroxide radical (NMP method); (ii) polymerization of a halogenated compound using a metal complex such as copper or ruthenium.
  • a method of livingly polymerizing from the polymerization initiating compound as an initiating compound (ATRP method); (iii) a method using a dithiocarboxylic acid ester or a xanthate compound (RAFT method); (iv) an organic tellurium compound and a polymerization initiating compound (V) a method (RTCP method) obtained by using an iodine compound as a polymerization initiating compound and using a phosphorus compound, a nitrogen compound, a carbon compound, an oxygen compound or the like as a catalyst.
  • living radical polymerization methods can be carried out under conventionally known polymerization conditions.
  • living radical polymerization may be performed under conditions such as bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization.
  • the reaction liquid after polymerization may be used as it is as a pigment dispersant solution
  • the solvent used for polymerization may be replaced with another solvent, or once in a poor solvent. Only the block copolymer may be removed by precipitation.
  • polymerization Thereby, it can be easily used as a pigment dispersant simply by adding an alkali to the reaction solution after polymerization to neutralize the block copolymer.
  • a pigment dispersant can be obtained.
  • the alkali include ammonia; alkylamines such as trimethylamine and triethylamine; glycol amines such as diethanolamine and triethanolamine; cyclic amines such as morpholine and pyridine; hydroxides such as sodium hydroxide and potassium hydroxide.
  • the amount of alkali used is preferably equal to or more than that of the carboxyl groups contained in the graft copolymer or block copolymer.
  • the pigment one or more of organic pigments and inorganic pigments can be used.
  • the pigment include carbon black, quinacridone pigment, phthalocyanine pigment, benzimidazolone pigment, isoindolinone pigment, and azo pigment. More specifically, from the viewpoint of color developability, dispersibility, weather resistance, and the like, the color index number (CI) indicates C.I. I. Pigment Blue-15: 3, 15: 4, C.I. I. Pigment red-122, 269, C.I. I. Pigment violet-19, C.I. I. Pigment yellow-74, 155, 180, C.I. I. Pigment Green-36, 58, C.I. I. Pigment orange-43, and C.I. I. It is preferably at least one selected from the group consisting of CI Pigment Black-7.
  • the number average primary particle diameter of the pigment is preferably less than 150 nm.
  • a pigment having a number average primary particle size of less than 150 nm it is possible to improve the optical density, saturation, color development, and print quality of the printed matter to be recorded, and moderate precipitation of the pigment in the ink. Can be suppressed.
  • the aqueous organic solvent is an organic solvent having miscibility with water.
  • Use at least one selected from the group consisting of glycol monoallyl ether, poly (n 1 or more) alkylene (C2-3) glycol dialkyl ether, alkylene diol, alkylene monool monoalkyl ether, alkylene polyol, and amide solvents. It is preferable.
  • aqueous organic solvent examples include ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, tripropylene glycol monobutyl ether, tetraethylene glycol monomethyl ether, tetraethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, and tripropylene glycol monomethyl ether.
  • the aqueous organic solvent is an essential component, and by containing the aqueous organic solvent, it is possible to prevent the head from drying and the curling of the printed paper.
  • another organic solvent can also be used as needed.
  • organic solvents include methanol, ethanol, ethylene carbonate, propylene carbonate, and the like.
  • the proportion of the pigment contained in the aqueous pigment dispersion of the present invention is 5 to 35% by mass, preferably 5 to 30% by mass, and more preferably 7 to 20% by mass.
  • the content ratio of the pigment dispersant is 0.5 to 25% by mass.
  • the content of the aqueous organic solvent is 5 to 30% by mass, preferably 5 to 20% by mass.
  • the water content is 20 to 80% by mass.
  • the blending ratio of each component is appropriately adjusted in consideration of required quality and cost. For example, it is preferable that the pigment content is 7 to 20% by mass because the chroma, color developability and stability are remarkably improved. If the pigment content is too small, the print density cannot be ensured.
  • the content ratio of the pigment is too large, the ink is thickened and the ejection stability of the ink from the inkjet head tends to be lowered.
  • the pigment content is 5 to 30% by mass
  • the pigment dispersant content is 0.5 to 20% by mass
  • the aqueous organic solvent content is 10 to 30% by mass, and water is contained.
  • the ratio is preferably 50 to 70% by mass.
  • the content of the pigment dispersant with respect to 100 parts by mass of the pigment is preferably 10 to 200 parts by mass, and more preferably 15 to 60 parts by mass.
  • the content of the pigment dispersant with respect to 100 parts by mass of the pigment is less than 10 parts by mass, the dispersion stability tends to decrease.
  • the content of the pigment dispersant with respect to 100 parts by mass of the pigment is more than 200 parts by mass, the viscosity of the aqueous pigment dispersion may increase excessively.
  • the aqueous pigment dispersion of the present invention can be prepared, for example, by mixing and dispersing a pigment, a pigment dispersant, an aqueous organic solvent, and water by a conventionally known method.
  • a dispersing machine may be used for mixing and dispersing each component.
  • Specific examples of the disperser include kneaders, two rolls, three rolls, trade name “Miracle KCK” (manufactured by Asada Steel Corporation), ultrasonic dispersers, high pressure homogenizers (trade name “Microfluidizer”).
  • the size of the grinding media of the disperser is reduced, the filling rate of the grinding media is increased, the processing time is increased, and the discharge is performed.
  • Methods such as slowing down the speed, classifying with a filter or centrifuge after pulverization, and the like are used.
  • a pigment finely divided in advance by a conventionally known method such as a salt milling method.
  • a dispersant-coated pigment that has been coated with a pigment dispersant, that is, a dispersant-coated pigment in which the pigment dispersant is deposited on the surface thereof to coat (encapsulate) the pigment.
  • a dispersant-coated pigment By using such a dispersant-coated pigment, the dispersion stability of the pigment can be further increased. That is, by coating the pigment with the pigment dispersant, even if a large amount of the organic solvent is mixed, the pigment dispersant is not easily detached from the surface of the pigment, and furthermore, the polymer chain A is dissolved in water. The dispersion stability of the pigment can be further increased.
  • the dispersant-coated pigment includes, for example, (i) a step of adding an acid to a pigment dispersion obtained by mixing a pigment, a pigment dispersant, an aqueous organic solvent, water, and an alkali agent to precipitate the pigment dispersant, Or (ii) It can prepare by the preparation method including the process of adding the kneaded material obtained by knead
  • each component is mixed by a conventionally known method to obtain a pigment dispersion in which the pigment is dispersed.
  • the alkali agent include ammonia; alkylamines such as trimethylamine and triethylamine; glycol-based amines such as diethanolamine and triethanolamine; cyclic amines such as morpholine and pyridine; hydroxides such as sodium hydroxide and potassium hydroxide. it can.
  • the obtained pigment dispersion is stirred using a stirrer capable of stirring at a high speed such as a dissolver, and the acid is gradually added.
  • the pigment dispersant can be deposited on the surface of the pigment, and the pigment can be coated (encapsulated) with the polymer chain B which is a hydrophobic chain.
  • the acid inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid; organic acids such as acetic acid, propionic acid and toluenesulfonic acid can be used.
  • the acid may be added as it is, but it is preferably added in an aqueous solution of 10% by mass or less. Further, the amount of the acid added is preferably equimolar or more, more preferably 1.1 times or more moles of the alkali neutralizing the carboxyl group of the polymer chain A of the pigment dispersant.
  • the kneaded product obtained by kneading the pigment and the pigment dispersant is added to the poor solvent for the pigment dispersant.
  • the pigment dispersant By adding to the poor solvent of the pigment dispersant, the pigment dispersant can be deposited on the surface of the pigment, and the pigment can be coated (encapsulated) with the polymer chain B which is a hydrophobic chain.
  • the poor solvent a solvent that does not dissolve the polymer is used although it depends on the properties derived from the composition of the pigment dispersant.
  • Specific examples of such a poor solvent include hydrocarbon solvents such as hexane, polyhydric alcohols such as ethylene glycol, and methanol.
  • the formed dispersant-coated pigment (precipitate) is filtered.
  • a dispersant-coated pigment (precipitate) can be obtained in a water paste state.
  • the water paste may be dried and pulverized, but it is also preferable to use the water paste as it is.
  • the water paste By using the water paste as it is, there is no need to fuse the pigment dispersant due to drying, and there is no need for pulverization. Therefore, the number average particle diameter of the pigment can be maintained as it is during dispersion.
  • after precipitation of a pigment dispersant it may be heated as necessary to aggregate the dispersant-coated pigment and facilitate filtration.
  • the aqueous pigment ink for ink-jet recording of the present invention contains the aforementioned aqueous pigment dispersion, and the pigment content is 4 to 10% by mass.
  • the aqueous pigment ink for inkjet according to the present invention contains, for example, a vehicle component as a component other than the aqueous pigment dispersion.
  • vehicle component include surfactants, organic solvents, and humectants.
  • the surface tension of the aqueous pigment ink for inkjet is preferably 20 to 40 mN / m.
  • the surface tension of the aqueous pigment ink for inkjet can be adjusted by adding a surfactant.
  • a surfactant an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.
  • anionic surfactants include alkyl sulfate salts, alkyl aryl sulfate salts, alkyl aryl sulfonates, alkyl naphthalene sulfonates, polyoxyethylene alkyl ether sulfonates, polyoxyethylene alkyl aryl ether sulfones.
  • examples thereof include acid salts, naphthalenesulfonic acid formalin condensates, polyoxyethylene alkyl phosphoric acid ester salts, polyoxyethylene alkyl aryl phosphoric acid ester salts, and the like.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene polyoxypropylene block polymer, sorbitan fatty acid ester, polyoxyethylene alkylamine ether, fatty acid diethanoldiamide, sorbitan Examples include fatty acid esters, acetylene alcohols, and acetylene glycols.
  • Specific examples of the cationic surfactant include alkylamine salts and quaternary ammonium salts.
  • amphoteric surfactants include alkyl betaines and amine oxides.
  • the content ratio of the surfactant in the aqueous pigment ink for inkjet is preferably 0.01 to 5% by mass, and more preferably 0.1 to 2% by mass. If the content ratio of the surfactant is too large, the dispersion stability of the pigment may be impaired.
  • Mn number average molecular weight (hereinafter referred to as “Mn”) of the macromonomer MM-1 measured using a GPC differential refractometer (hereinafter referred to as “RI”) is 6,800, and the weight average molecular weight (hereinafter referred to as “Mn”).
  • Mw was 10,900, and the degree of dispersion (Mw / Mn) (hereinafter referred to as “PDI”) was 1.60. Further, in the ultraviolet absorption detector (wavelength 254 nm) (hereinafter referred to as “UV detector”), almost no peak was observed.
  • UV detector ultraviolet absorption detector
  • the resulting polymer solution was poured into a large amount of water to precipitate a polymer, and then filtered and washed. After dissolving in THF, it was again poured into a large amount of water to precipitate a polymer, and then filtered and washed.
  • the polymer was obtained by drying with a dryer at 50 ° C. for 24 hours.
  • 1H-NMR of the polymer obtained using a nuclear magnetic resonance apparatus was measured, a monomer peak and an EBMA-derived unsaturated bond proton peak were observed at 6 ppm and 6.4 ppm, respectively. For this reason, the obtained polymer is considered to be a macromonomer having an unsaturated bond at the terminal. Also in the following synthesis examples, it was confirmed that the polymer obtained by performing the same measurement was a macromonomer.
  • Synthesis Example 2 In a reaction vessel similar to that used in Synthesis Example 1, 250 parts of tripropylene glycol monomethyl ether (hereinafter referred to as “MFTG”), 30 parts of MMA, 40 parts of CHMA, 30 parts of MAA, 2.5 parts of EBMA, and V-601 were added. One copy was loaded. After polymerization for 3 hours at 75 ° C. with nitrogen bubbling, 0.5 part of V-601 was added. Polymerization was further performed for 4.5 hours to obtain a polymer solution containing a polymer (macromonomer MM-2). The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. In addition, Mn of the macromonomer MM-2 was 6,400, Mw was 10,200, and PDI was 1.59.
  • MFTG tripropylene glycol monomethyl ether
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • Mn of the macromonomer MM-3 was 6,500
  • Mw was 10,400
  • PDI was 1.60.
  • Synthesis Example 4 In a reaction vessel similar to that used in Synthesis Example 1, 250 parts of MFTG, 36 parts of MMA, 40 parts of CHMA, 24 parts of MAA, 3.5 parts of EBMA, and 1 part of V-601 were charged. After polymerization for 3 hours at 75 ° C. with nitrogen bubbling, 0.5 part of V-601 was added. Polymerization was further performed for 4.5 hours to obtain a polymer solution containing a polymer (macromonomer MM-4). The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. In addition, Mn of the macromonomer MM-4 was 5,400, Mw was 8,500, and PDI was 1.57.
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. Further, Mn of the macromonomer MM-5 was 5,700, Mw was 9,700, and PDI was 1.70.
  • This macromonomer MM-R2 is a macromonomer having no cycloalkyl group.
  • Synthesis Example 7 In a reaction vessel A similar to that used in Synthesis Example 1, 50 parts of MFTG and 300 parts of a solution of macromonomer MM-2 were charged and heated to 80 ° C. Further, St 100 parts, 50 parts of BA, and 2.5 parts of PBO were charged into another reaction vessel and stirred well to prepare a monomer solution. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. 1.25 parts of PBO was added, heated to 85 ° C., and further polymerized for 4 hours.
  • Synthesis Example 8 A reaction vessel A similar to that used in Synthesis Example 1 was charged with 300 parts of the macromonomer MM-2 solution and heated to 80 ° C. Moreover, St67 parts, 33 parts of BA, and 2 parts of PBO were charged into another reaction vessel and stirred well to prepare a monomer solution. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. One part of PBO was added, heated to 85 ° C., and further polymerized for 4 hours. 16.1 parts of KOH and 183.9 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-3).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • Mn of copolymer CP-3 was 11,400, Mw was 27,500, and PDI was 2.41.
  • Synthesis Example 9 A reaction vessel A similar to that used in Synthesis Example 1 was charged with 300 parts of the macromonomer MM-2 solution and heated to 80 ° C. Moreover, St67 part, 33 parts of HEMA, and 2 parts of PBO were charged in another reaction container, and it stirred well, and the monomer liquid was prepared. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. One part of PBO was added, heated to 85 ° C., and further polymerized for 4 hours. 16.1 parts of KOH and 183.9 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-4).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • Mn of copolymer CP-4 was 10,600, Mw was 22,800, and PDI was 2.15.
  • Synthesis Example 10 In a reaction vessel A similar to that used in Synthesis Example 1, 50 parts of TEDM and 300 parts of a solution of macromonomer MM-3 were charged and heated to 80 ° C. Further, St 100 parts, 50 parts of BA, and 2.5 parts of PBO were charged into another reaction vessel and stirred well to prepare a monomer solution. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. 1.25 parts of PBO was added, heated to 85 ° C., and further polymerized for 4 hours.
  • Synthesis Example 11 In a reaction vessel A similar to that used in Synthesis Example 1, 50 parts of MFTG and 300 parts of a solution of macromonomer MM-4 were charged and heated to 80 ° C. Further, St 100 parts, 50 parts of BA, and 2.5 parts of PBO were charged into another reaction vessel and stirred well to prepare a monomer solution. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. 1.25 parts of PBO was added, heated to 85 ° C., and further polymerized for 4 hours.
  • copolymer CP-6 16.2 parts of KOH and 233.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-6). The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. In addition, Mn of copolymer CP-6 was 13,100, Mw was 29,000, and PDI was 2.21.
  • Synthesis Example 12 In a reaction vessel A similar to that used in Synthesis Example 1, 50 parts of MFTG and 300 parts of a solution of macromonomer MM-5 were charged and heated to 80 ° C. Moreover, St67 part, 33 parts of HEMA, and 2 parts of PBO were charged in another reaction container, and it stirred well, and the monomer liquid was prepared. After adding 1 ⁇ 2 of this monomer solution to the reaction vessel A, the remaining 1 ⁇ 2 was slowly added dropwise over 1 hour. After completion of dropping, polymerization was performed for 3 hours. One part of PBO was added, heated to 85 ° C., and further polymerized for 4 hours.
  • copolymer CP-7 16.1 parts of KOH and 183.9 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-7). The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • Mn of copolymer CP-7 was 9,800, Mw was 22,200, and PDI was 2.27.
  • copolymer CP-R1 16.2 parts of KOH and 233.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-R1). The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. In addition, Mn of copolymer CP-R1 was 14,000, Mw was 31,700, and PDI was 2.26. This copolymer CP-R1 is a graft copolymer that does not have a cycloalkyl group in the grafted polymer.
  • copolymer CP-R2 16.2 parts of KOH and 233.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-R2).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • Mn of copolymer CP-R2 was 15,600, Mw was 37,000, and PDI was 2.37.
  • the copolymer CP-R2 is a graft copolymer having no cycloalkyl group in the grafted polymer (polymer chain A).
  • copolymer CP-R3 16.2 parts of KOH and 233.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-R3).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted from the nonvolatile content to be 85%.
  • Mn of copolymer CP-R3 was 10,200, Mw was 23,000, and PDI was 2.25.
  • This copolymer CP-R3 is a graft copolymer having no aromatic ring or cycloalkyl group in the main chain (polymer chain B).
  • copolymer CP-R4 16.2 parts of KOH and 233.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (copolymer CP-R4).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the copolymer CP-R4 had an Mn of 14,700, an Mw of 30,600, and a PDI of 2.08. This copolymer CP-R4 is a random copolymer.
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted from the nonvolatile content to be 86%.
  • the polymer contained in this polymer solution had an Mn of 5,000 and a PDI of 1.19.
  • the polymer solution was cooled to 40 ° C., and 16.8 parts of CHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 8.4 parts of KOH and 49.2 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-1).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content. Further, the Mn of the block polymer BP-1 was 10,300, and the PDI was 1.30.
  • ion-exchange water was added to the obtained polymer solution, and solid content concentration was adjusted to 30%. In the following synthesis examples, the solid concentration was similarly adjusted to 30%.
  • the polymer solution was cooled to 40 ° C., and 16.8 parts of TMCHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 8.4 parts of KOH and 49.2 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-2).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the block copolymer BP-2 had an Mn of 10,300 and a PDI of 1.31.
  • the polymer solution was cooled to 40 ° C., 8.4 parts of CHMA, 25 parts of MMA, 12.9 parts of MAA, and 1.4 parts of V-70 were added and polymerized for 3.5 hours. 8.4 parts of KOH and 47.6 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-3).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the block copolymer BP-3 had a Mn of 9,100 and a PDI of 1.31.
  • the polymer solution was cooled to 40 ° C., 16.8 parts of CHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 8.4 parts of KOH and 47.6 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-4).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted from the nonvolatile content to be 100%.
  • the block copolymer BP-4 had an Mn of 9,600 and a PDI of 1.33.
  • Synthesis Example 17 A reaction vessel similar to that used in Synthesis Example 1 was charged with 173 parts of BTG, 1.0 part of iodine, 3.7 parts of V-70, 42 parts of CHMA, 17.6 parts of BzMA, and 0.17 part of DPM. Polymerization was carried out at 45 ° C. for 5.5 hours with nitrogen bubbling to obtain a polymer solution. The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion was converted from the nonvolatile content to be 89%. Further, the polymer contained in this polymer solution had Mn of 6,000 and PDI of 1.18.
  • the polymer solution was cooled to 40 ° C., 16.8 parts of CHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 6.0 parts of NaOH and 51.6 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-5).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the block copolymer BP-5 had an Mn of 11,100 and a PDI of 1.29.
  • Synthesis Example 18 A reaction vessel similar to that used in Synthesis Example 1 was charged with 172 parts of TEDM, 1.0 part of iodine, 3.7 parts of V-70, 58.8 parts of CHMA, and 0.17 part of DPM. Polymerization was carried out at 45 ° C. for 5.5 hours with nitrogen bubbling to obtain a polymer solution. The obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion was converted from the nonvolatile content to be 84%. Further, the Mn of the polymer contained in this polymer solution was 5,200, and the PDI was 1.19.
  • the polymer solution was cooled to 40 ° C., 16.8 parts of CHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 9.1 parts of 28% aqueous ammonia and 48.2 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-6).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the block copolymer BP-6 had an Mn of 10,000 and a PDI of 1.31.
  • the polymer solution was cooled to 40 ° C., 16.8 parts of CHMA, 20 parts of MMA, 12.9 parts of MAA, and 1.5 parts of V-70 were added and polymerized for 3.5 hours. 8.4 parts of KOH and 47.6 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-7).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was converted to 100% from the nonvolatile content.
  • the block copolymer BP-7 had a Mn of 9,500 and a PDI of 1.29.
  • the polymer solution was cooled to 40 ° C., 20.8 parts of MMA, 40.8 parts of BMA, 15.0 parts of MAA, and 2.3 parts of V-70 were added and polymerized for 3.5 hours. 9.8 parts of KOH and 32.8 parts of water were added for neutralization to obtain a polymer solution containing a polymer (block copolymer BP-R1).
  • the obtained polymer solution was sampled, the solid content concentration was measured, and the polymerization conversion rate was calculated from the nonvolatile content, which was 100%.
  • the block copolymer BP-R1 had an Mn of 9,200 and a PDI of 1.57.
  • the random copolymer RP-R1 had an Mn of 12,100 and a PDI of 2.28.
  • Example 1 Aqueous pigment dispersion (Example 1) 233.3 parts of a polymer solution containing the copolymer CP-1 obtained in Synthesis Example 6, 70 parts of diethylene glycol monobutyl ether, and 311.7 parts of water were mixed to obtain a translucent solution having a slight turbidity. To this solution, 350 parts of azo yellow pigment PY-74 (trade name “Seikafast Yellow 2016G”, manufactured by Dainichi Seika Kogyo Co., Ltd.) was added and stirred for 30 minutes using a disper to prepare a mill base.
  • azo yellow pigment PY-74 trade name “Seikafast Yellow 2016G”, manufactured by Dainichi Seika Kogyo Co., Ltd.
  • a horizontal media disperser (trade name “Dynomill 0.6 liter ECM type”, manufactured by Shinmaru Enterprises Co., Ltd., zirconia bead diameter 0.5 mm), dispersed at a peripheral speed of 10 m / s, and pigment in the mill base was sufficiently dispersed. Thereafter, 316 parts of water were added to make the pigment concentration 18%.
  • the mill base taken out from the disperser was centrifuged (7500 rpm, 20 minutes), and then filtered through a 10 ⁇ m membrane filter. Dilution with water gave an aqueous pigment dispersion 1 for inkjet having a pigment concentration of 14%.
  • the number average particle size of the pigment contained in the obtained aqueous pigment dispersion 1 was 122 nm as measured with a particle size measuring device (trade name “NICOMP 380ZLS-S”, manufactured by International Business Corporation), and the pigment was finely dispersed. Confirmed that it has been. Further, the viscosity of the aqueous pigment dispersion 1 was 3.1 mPa ⁇ s, and the pH was 8.9. When this aqueous pigment dispersion 1 was stored at 70 ° C. for 1 week, the number average particle size of the pigment was 122 nm and the viscosity was 3.0 mPa ⁇ s, and it was confirmed that the storage stability was very good.
  • Examples 2 to 14, Comparative Examples 1 to 6 Aqueous pigment dispersions 2 to 20 were obtained in the same manner as in Example 1 except that the pigment dispersant shown in Table 4 was used. The evaluation results of the obtained aqueous pigment dispersions 2 to 20 are shown in Table 4.
  • aqueous pigment dispersions 2 to 16 and 19 obtained in Examples 2 to 14 and Comparative Examples 1, 2 and 5 the pigment is finely dispersed in the same manner as the aqueous pigment dispersions obtained in Example 1.
  • the storage stability was good.
  • the aqueous pigment dispersions 15, 16, and 19 obtained in Comparative Examples 1, 2, and 5 are all the same pigments as those used in the examples except that the structure does not contain a cycloalkyl group. Since a dispersant is used, it is considered that dispersibility and storage stability are improved.
  • the aqueous pigment dispersion of Comparative Example 3 using the copolymer CP-R3 having no aromatic ring or cycloalkyl group in the polymer chain B (main chain) has a high viscosity during dispersion and is difficult to take out. It was necessary to dilute with water to lower the pigment concentration. Further, the dispersibility was low, the number average particle diameter of the pigment was large, and the storage stability was not good. It is presumed that this is because the polymer chain B (main chain) has a poor pigment adsorptivity.
  • the aqueous pigment dispersions of Comparative Examples 4 and 6 using the copolymer CP-R4 and the random copolymer RP-R1 had good dispersibility, but the pigment particles aggregated during storage and the fluidity was remarkable. Declined. This is because the use of a copolymer having a random structure in which the adsorbed portion is randomly present in the molecular chain as the pigment dispersant causes one molecule of the pigment dispersant to be adsorbed on a plurality of pigment particles, and It is considered that the dispersion did not proceed well and the heating was performed, so that the influence of the solvent became remarkable, and the pigment dispersant was not adsorbed on the pigment and the pigment was aggregated.
  • the molecular structure of the pigment dispersant used in the examples is that the adsorption part to the pigment and the solvent-soluble part are clearly separated in block units, so that the dispersion of the pigment proceeds in a good state and the solvent dissolution It is considered that the aggregation of the pigment was suppressed by the steric effect of the sexing part, and the storage stability was improved.
  • copper phthalocyanine pigment PB-15: 3 (trade name “Cyanine Blue A220JC, manufactured by Dainichi Seika Kogyo Co., Ltd.), quinacridone pigment PR-122 (trade name“ CFR130P ”, large Nissei Kagaku Kogyo Co., Ltd.) and carbon black pigment PB-7 (trade name “S170”, manufactured by Degussa) were used in the same manner as in Examples 1 to 14 and Comparative Examples 1 to 6 described above.
  • a blue aqueous pigment dispersion, a red aqueous pigment dispersion, and a black aqueous pigment dispersion were prepared.
  • the aqueous pigment dispersions obtained using the copolymers CP-1 to CP-7, block copolymers BP-1 to BP-7, CP-R1, CP-R2, and BP-R1 are all yellow aqueous pigments. Similar to the dispersion, the dispersibility and storage stability were good.
  • Example 15 Using the aqueous pigment dispersion 1 prepared in Example 1, an aqueous pigment ink for inkjet was prepared according to the following formulation.
  • Aqueous pigment dispersion 1 40 parts Water 42.2 parts 1,2-hexanediol 5 parts Glycerin 10 parts Product name “Surfinol 465” (manufactured by Air Products) 1 part
  • an aqueous pigment ink 1 After thoroughly mixing the composition of the above formulation, it was filtered through a membrane filter having a pore size of 10 ⁇ m to prepare an aqueous pigment ink 1.
  • the number average particle size of the pigment contained in the aqueous pigment ink 1 was measured and found to be 119 nm. Moreover, the viscosity of the aqueous pigment ink 1 was 2.9 mPa ⁇ s.
  • this aqueous pigment ink 1 was stored at 70 ° C. for 1 week, the number average particle diameter of the pigment was 118 nm and the viscosity was 2.8 mPa ⁇ s, and it was confirmed that the storage stability was very good. This is presumed that the storage stability was improved because the hydrophobic adsorbing portion of the pigment dispersant was adsorbed on the pigment without desorption.
  • Example 16 to 28 Comparative Examples 7 to 9
  • Aqueous pigment inks 2 to 16 and 19 were obtained in the same manner as in Example 15 except that the pigment dispersion shown in Table 5 was used.
  • aqueous pigment inks of respective colors were prepared using the above-described blue aqueous pigment dispersion, red aqueous pigment dispersion, and black aqueous pigment dispersion, respectively. It was confirmed that any of the aqueous pigment inks had good storage stability.
  • Each of the aqueous pigment inks 1 to 16 and 19 is filled in a cartridge, and an ink jet printer (trade name “EM930C”, manufactured by Seiko Epson Corporation) is used, (i) dedicated photographic glossy paper (PGPP), (ii) plain paper (Trade name “4024”, manufactured by Xerox Co., Ltd.) (iii) A printed matter was obtained by printing on a dedicated photo matte paper in a photo 720 dpi print mode. As a result, it was confirmed that any of the aqueous pigment inks can be ejected from the inkjet nozzles without any problem.
  • optical densitometer (trade name “Macbeth RD-914”, manufactured by Macbeth Co., Ltd.) was used to evaluate the obtained printed matter.
  • the optical density OD value, saturation C *, 20 degree gloss, and 60 degree gloss were measured for the dedicated photographic glossy paper (PGPP).
  • PGPP dedicated photographic glossy paper
  • the optical density OD value and the saturation C * were measured five times, and the average values were obtained. Table 5 shows the measurement results.
  • Example 29 A uniform solution was obtained by mixing 164 parts of the polymer solution containing the block copolymer BP-1 obtained in Synthesis Example 13, 80 parts of BDG, and 356 parts of water. To the resulting solution, 200 parts of a red pigment (CI Pigment Red 122 (dimethylquinacridone pigment, manufactured by Dainichi Seika Kogyo Co., Ltd.)) was added and peptized using a disper to prepare a mill base. To 800 parts of the obtained mill base, 3200 parts of water was added so that the pigment content was 5%, and 5% acetic acid was added dropwise with stirring to precipitate the pigment dispersant. The pH before acetic acid dropping (initial) was 9.5, and the pH after acetic acid dropping was 4.5. Filtration and washing with water gave a dispersant-coated pigment paste (solid content concentration: 32.0%).
  • CI Pigment Red 122 dimethylquinacridone pigment, manufactured by Dainichi Seika Kogyo Co., Ltd.
  • a solution obtained by dissolving 667 parts of the obtained paste, 9.4 parts of BDG, and 1.15 parts of sodium hydroxide in 62.2 parts of water was mixed and stirred. Subsequently, it was dispersed again using a horizontal media disperser. Furthermore, an ultra-high pressure homogenizer (trade name “Microfluidizer”, manufactured by Microfluidics Co., Ltd.) was used and dispersed in three passes at a pressure of 150 MPa. After centrifugal separation (7500 rpm, 20 minutes), the mixture was filtered through a 10 ⁇ m membrane filter, and then ion-exchanged water was added to obtain a red aqueous pigment dispersion 1 having a pigment concentration of 14%.
  • an ultra-high pressure homogenizer trade name “Microfluidizer”, manufactured by Microfluidics Co., Ltd.
  • red aqueous pigment dispersion liquid 1 It was 108 nm when the number average particle diameter of the pigment contained in the obtained red aqueous pigment dispersion liquid 1 was measured. Further, the viscosity of the red aqueous pigment dispersion 1 was 2.22 mPa ⁇ s. When this red aqueous pigment dispersion 1 was stored at 70 ° C. for 1 week, no change was observed in the particle diameter and viscosity of the pigment, and it was confirmed that the storage stability was good.
  • red aqueous pigment dispersion 1 For 40 parts of red aqueous pigment dispersion 1, 1.8 parts of BDG, 5 parts of 1,2-hexanediol, 10 parts of glycerin, 1 part of “Surfinol 465” (trade name, manufactured by Air Products), and water 42 . 60 parts of 2 parts of the mixture were added. After sufficiently stirring, the mixture was filtered through a membrane filter having a pore size of 10 ⁇ m to obtain a red aqueous pigment ink for inkjet. The number average particle diameter of the pigment particles contained in the obtained red aqueous pigment ink was 114 nm. The viscosity of the red aqueous pigment ink was 3.06 mPa ⁇ s.
  • Example 30 to 32 instead of the red pigment, (i) azo yellow pigment PY-74 (trade name “Seika Fast Yellow 2016G”, manufactured by Dainichi Seika Kogyo Co., Ltd.), (ii) copper phthalocyanine pigment PB-15: 3 (trade name “cyanine” Blue A220JC ”(manufactured by Dainichi Seika Kogyo Co., Ltd.), (iii) Carbon black pigment PB-7 (trade name“ S170 ”, manufactured by Degussa Co., Ltd.) was used, respectively, and the ink formulation was as shown in Table 6. Except for this, each color aqueous pigment dispersion and each color aqueous pigment ink for inkjet were obtained in the same manner as in Example 29 described above.
  • azo yellow pigment PY-74 trade name “Seika Fast Yellow 2016G”, manufactured by Dainichi Seika Kogyo Co., Ltd.
  • copper phthalocyanine pigment PB-15: 3 trade name “cyanine” Blue A
  • Table 7 shows the measurement results of the number average particle diameter and viscosity (initially and after storage at 70 ° C. for 1 week) of the pigments of the respective color aqueous pigment inks obtained in Examples 29 to 32.
  • Each color aqueous pigment ink is filled in a cartridge, and an inkjet printer (trade name “EM930C”, manufactured by Seiko Epson Corporation) is used on plain paper (trade name “4024”, manufactured by Xerox Corporation) in a print mode of 720 dpi
  • a printed matter was obtained by printing.
  • an optical densitometer (trade name “Macbeth RD-914”, manufactured by Macbeth Co., Ltd.), the print density of the obtained printed matter was measured five times to calculate an average value. The results are shown in Table 7.
  • the pigment coated (encapsulated) with the pigment dispersant also showed good dispersibility and storage stability. This is because the hydrophobic polymer chain B coats the pigment so that the pigment dispersant is not peeled off even by the solvent of the ink, and the water-soluble polymer chain A dissolves in water and prevents aggregation due to steric effects. This is presumed to be due to this. It was also confirmed that printing was possible at a high printing density. This is considered to be because the pigment coated (encapsulated) with the pigment dispersant hardly permeates the paper and remains on the paper surface.
  • the inkjet ink head was dried at 45 ° C. for 24 hours to make it impossible to discharge, and then the head cleaning operation was performed once.
  • the ink could be ejected without any problem. That is, it is clear that once dried, the dried product can be dissolved and dispersed again, that is, the ink has good redissolvability and redispersibility. This is considered to be because the polymer chain A containing a carboxyl group forms ions and is easily dissolved in a liquid medium such as water even when dried.
  • the aqueous pigment dispersion of the present invention is used, it is excellent in dischargeability and long-term stability, can be easily redispersed and re-dissolved even when dried with a head, and has a high level of saturation and gloss. Thus, it is possible to provide an aqueous pigment ink for ink jet recording capable of recording a printed matter having improved color development and light fastness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

 顔料と顔料分散剤を含有するインクジェット用の水性顔料分散液である。顔料分散剤が、ポリマー鎖Aとポリマー鎖Bを含むグラフトコポリマーとブロックコポリマーの少なくともいずれかであり、ポリマー鎖Aが、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含み、ポリマー鎖Bが、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位と、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の少なくともいずれかを含む。

Description

水性顔料分散液及びそれを用いたインクジェット用水性顔料インク
 本発明は、インクジェット用水性顔料インクに用いられる着色剤として顔料を含む顔料分散液、及びこの顔料分散液を用いて得られるインクジェット用水性顔料インクに関する。
 インクジェットプリンタは、その高機能化により、個人用、事務用、業務用、記録用、カラー表示用、カラー写真用と用途が多岐にわたっている。また、高速化及び高画質化に対応するため、装置の改良によって吐出液滴(インク液滴)の微小化が進んでいる。吐出液滴を微小化するためには、インク中の顔料(粒子)を微細化するとともに、微細化した顔料を分散媒体中に微分散させることが必要である。
 微細化された顔料を含むインクを用いることで、印画物の鮮明性、色の冴え、色濃度などが向上しつつある。特に、微細化された顔料を含むインクを用いることで、色の冴えを示す指標となる色彩値である彩度が向上する。また、インクジェット用の加工紙(写真紙、ワイドフォーマット用紙など)に記録した場合には、グロス値が向上する。しかしながら、微細化した顔料を含むインクは紙に浸透しやすくなるので、色濃度である発色性が低下する傾向にある。
 そこで、近年、水性顔料インクの紙への浸透性を抑制し、紙表面に対するインクの濡れを抑えて紙表面の近くに微細化した顔料をとどめ、印字濃度を向上する検討がなされている。例えば、親水性の高い部位と疎水性の高い部位からなるグラフトポリマーやブロックポリマーを用いて顔料を被覆(カプセル化)する試みがなされている。疎水性の高い部位を顔料表面に吸着させて顔料を被覆しているので、インクの紙への浸透が抑制され、顔料が紙の表面に存在しやすくなる。また、親水性の高い部位は分散媒体に親和するので、グラフトポリマーやブロックポリマーは伸びた形態をとることになる。このため、静電及び立体障害斥力によりインクの保存性が向上するとされている(特許文献1~3参照)。
特開2008-231130号公報 特開2009-149912号公報 特開2004-51971号公報
 しかしながら、画像(印字物)の発色性を向上させるように顔料の粒子径を大きくしたり、顔料をカプセル化したりして、紙の表面に顔料をとどめるようにした場合は、印字物の彩度やグロスが低下してしまう場合がある。このため、高発色性と、高彩度及び高グロスとが両立した印字物を得ることが可能なインクを調製することは極めて困難であった。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、高発色、高彩度、及び高グロスな印字物を記録可能であるとともに、保存性に優れたインクジェット用の水性顔料インクを調製することができる水性顔料分散液、この水性顔料分散液を用いて得られるインクジェット用水性顔料インク、並びに、この水性顔料分散液を得るのに好適な分散剤被覆顔料の調製方法を提供することにある。
 本発明者らは上記課題を達成すべく鋭意検討した結果、特定のモノマー成分を構成成分として用いて得られる所定の構造を有するグラフトコポリマーやブロックコポリマーを顔料分散剤として用いることで、上記課題を解決しうることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、以下に示す水性顔料分散液が提供される。
 [1]顔料5~35質量%、顔料分散剤0.5~25質量%、水性有機溶剤5~30質量%、及び水20~80質量%を含有するインクジェット用の水性顔料分散液であって、前記顔料分散剤が、ポリマー鎖Aがポリマー鎖Bにグラフトしたグラフトコポリマーと、前記ポリマー鎖Aの片末端と前記ポリマー鎖Bの片末端が結合したブロックコポリマーの少なくともいずれかであり、前記ポリマー鎖Aが、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含むとともに、その数平均分子量が1,000~10,000であり、前記ポリマー鎖Bが、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位と、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の少なくともいずれかを含み、前記ポリマー鎖Aと前記ポリマー鎖Bの質量比が、A:B=30~70:70~30であり、前記グラフトコポリマー及び前記ブロックコポリマーの数平均分子量が2,000~20,000である水性顔料分散液。
 [2]前記顔料が、カラーインデックスナンバー(C.I.)ピグメントブルー-15:3、15:4、C.I.ピグメントレッド-122、269、C.I.ピグメントバイオレット-19、C.I.ピグメントイエロ-74、155、180、C.I.ピグメントグリーン-36、58、C.I.ピグメントオレンジ-43、及びC.I.ピグメントブラック-7からなる群より選択される少なくとも一種であるとともに、その数平均一次粒子径が150nm未満である前記[1]に記載の水性顔料分散液。
 [3]前記水性有機溶剤が、水に対する25℃における溶解度が20質量%以上の、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアルキルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアリルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールジアルキルエーテル、アルキレンジオール、アルキレンモノオールモノアルキルエーテル、アルキレンポリオール、及びアミド系溶剤からなる群より選択される少なくとも一種である前記[1]又は[2]に記載の水性顔料分散液。
 [4]前記顔料が、前記顔料分散剤で被覆処理されている前記[1]~[3]のいずれかに記載の水性顔料分散液。
 [5]前記第一のシクロアルキル基含有(メタ)アクリレートが、シクロヘキシル(メタ)アクリレートと3,3,5-トリメチルシクロヘキシル(メタ)アクリレートの少なくともいずれかである前記[1]~[4]のいずれかに記載の水性顔料分散液。
 また、本発明によれば、以下に示すインクジェット用水性顔料インクが提供される。
 [6]前記[1]~[5]のいずれかに記載の水性顔料分散液を含有し、前記顔料の含有割合が4~10質量%であるインクジェット用水性顔料インク。
 さらに、本発明によれば、以下に示す分散剤被覆顔料の調製方法が提供される。
 [7]顔料分散剤で被覆処理された分散剤被覆顔料の調製方法であって、(i)顔料、顔料分散剤、水性有機溶剤、水、及びアルカリ剤を混合して得た顔料分散液に酸を添加して、前記顔料分散剤を析出させる工程、又は(ii)前記顔料と前記顔料分散剤を混練して得た混練物を前記顔料分散剤の貧溶媒に添加して、前記顔料分散剤を析出させる工程を含み、前記顔料分散剤が、ポリマー鎖Aがポリマー鎖Bにグラフトしたグラフトコポリマーと、前記ポリマー鎖Aの片末端と前記ポリマー鎖Bの片末端が結合したブロックコポリマーの少なくともいずれかであり、前記ポリマー鎖Aが、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含むとともに、その数平均分子量が1,000~10,000であり、前記ポリマー鎖Bが、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位と、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の少なくともいずれかを含み、前記ポリマー鎖Aと前記ポリマー鎖Bの質量比が、A:B=30~70:70~30であり、前記グラフトコポリマー及び前記ブロックコポリマーの数平均分子量が2,000~20,000である分散剤被覆顔料の調製方法。
 本発明の水性顔料分散液は、シクロアルキル基を導入した水溶解性のポリマー鎖Aを有するグラフトコポリマーとブロックコポリマーの少なくともいずれかを顔料分散剤として含有する。これらのグラフトコポリマーやブロックコポリマーは、疎水性のシクロアルキル基を有するので、ガラス転移点(Tg)が高く、高耐光性であるとともに高屈折率であるといった性質を有する。したがって、これらのグラフトコポリマーやブロックコポリマーを顔料分散剤として用いた本発明の水性顔料分散液を用いれば、高発色、高彩度、及び高グロスな印字物を記録可能であるとともに、保存性に優れたインクジェット用の水性顔料インクを調製することができる。
 また、ポリマー鎖Bは、芳香環及び/又はシクロアルキル基を有するので、疎水性の顔料表面に吸着しやすいとともに、水に溶解したポリマー鎖Aと立体反発する。これにより、顔料の分散安定化に寄与する。水不溶性のポリマー鎖Bは、インク中で溶解せずに粒子を形成することで、インクが低粘度化されるとともに、インクの粘性もニュートニアン性を示すことになって吐出安定性も向上する。加えて、水溶解性のポリマー鎖Aがアルカリ中和されたカルボキシル基を有するので、例えば、インクヘッドにおいてインクが乾燥した場合であっても再溶解及び再分散が容易であるとともに、吐出性も良好である。以上より、本発明の水性顔料分散液を用いたインクジェット用水性顔料インクは、インクジェット印刷における、印字の高速化及び印字物の高画質化に寄与する。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の水性顔料分散液は、顔料、顔料分散剤、水性有機溶剤、及び水を含有するインクジェット用の水性顔料分散液である。以下、その詳細について説明する。
(顔料分散剤)
 顔料分散剤は、ポリマー鎖Aがポリマー鎖Bにグラフトしたグラフトコポリマーと、ポリマー鎖Aの片末端とポリマー鎖Bの片末端が結合したブロックコポリマーの少なくともいずれかである。グラフトコポリマーは、主鎖であるポリマー鎖Bに対して、1本以上のポリマー鎖Aが結合(分岐)している。なお、一のポリマー鎖Bに対するポリマー鎖Aの結合本数は限定されない。ポリマー鎖Aは、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含む。(メタ)アクリル酸に由来する構成単位に含まれるカルボキシル基は、アルカリで中和されることによってイオン化する。このため、(メタ)アクリル酸に由来する構成単位を含むポリマー鎖Aは、水に溶解する性質を有するポリマー鎖である。
 ポリマー鎖Bは、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位、及び芳香環を有するビニル系モノマーに由来する構成単位の少なくともいずれかと、必要に応じて用いられるその他の(メタ)アクリレートに由来する構成単位とを含む。このポリマー鎖Bは、水に不溶なポリマー鎖であり、疎水性相互作用で顔料に吸着し、堆積して顔料を被覆(カプセル化)する。このような異なる性質を有するポリマー鎖Aとポリマー鎖Bを有する顔料分散剤を用いることによって、良好な状態で顔料を分散させることができる。なお、ポリマー鎖Aを構成する第一のシクロアルキル基含有(メタ)アクリレートと、ポリマー鎖Bを構成する第二のシクロアルキル基含有(メタ)アクリレートは、同一であっても異なっていてもよい。以下、単に「シクロアルキル基含有(メタ)アクリレート」というときは、「第一のシクロアルキル基含有(メタ)アクリレート」と「第二のシクロアルキル基含有(メタ)アクリレート」のいずれをも意味する。
 ポリマー鎖Bが粒子を形成するとともに、ポリマー鎖Aでインク中の水性媒体に溶解して安定化する。このため、この顔料分散剤は高い安定性を有する粒子を形成して低粘度化するので、顔料の分散安定性やインクの吐出性を阻害しない。さらに、ポリマー鎖A中のカルボキシル基の量が適切に制御されているので、この顔料分散剤は水への溶解性が高い。このため、インクヘッドで乾燥した場合であっても、例えばクリーニング液等の他の水性媒体で容易に再溶解及び再分散しうる。
(ポリマー鎖A)
 ポリマー鎖Aにはシクロアルキル基が含まれる。シクロアルキル基を有するポリマー鎖Aを含む顔料分散剤を用いることにより、高発色、高彩度、及び高グロスな印字物を記録可能な水性顔料インクを調製可能となる。第一のシクロアルキル基含有(メタ)アクリレートの具体例としては、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシロキシエチル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、イソボロニル(メタ)アクリレートなどを挙げることができる。なかでも、シクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレートが好ましい。また、シクロアルキル基の炭素数は6~9個であることが好ましい。炭素数6~9個のシクロアルキル基であれば、多く導入した場合であっても水溶解性があまり阻害されないとともに、入手も容易だからである。
 ポリマー鎖Aに含まれる第一のシクロアルキル(メタ)アクリレートに由来する構成単位の割合が20質量%未満であると、効果を発揮しない。一方、60質量%超であると、水溶解性が顕著に低下してしまう場合がある。なお、ポリマー鎖Aに含まれる第一のシクロアルキル(メタ)アクリレートに由来する構成単位の割合は、30~50質量%であることが好ましい。
 ポリマー鎖Aには、(メタ)アクリル酸に由来する構成単位が含まれる。この構成単位中のカルボキシル基が中和されてイオン化し、ポリマー鎖Aが水に溶解されることになる。ポリマー鎖Aに含まれる(メタ)アクリル酸に由来する構成単位の割合が10質量%未満であると、ポリマー鎖Aが水に溶解しなくなる場合がある。一方、35質量%超であると、ポリマー鎖Aの親水性が高くなりすぎてしまい、得られる印字物の耐水性が顕著に低下する場合がある。ポリマー鎖Aに含まれる(メタ)アクリル酸に由来する構成単位の割合は、15~25質量%であることが好ましい。
 ポリマー鎖Aには、「その他の(メタ)アクリレートに由来する構成単位」が含まれる。その他の(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ドデシル(メタ)アクリレートなどの脂肪族アルキル(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香族(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;(ポリ)エチレングリコールモノアルキルエーテル(メタ)アクリレートなどのエーテル基又は鎖含有(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレートなどのアミノ基含有(メタ)アクリレートなどを挙げることができる。なお、その他の(メタ)アクリレート一種単独で又は二種以上を組み合わせて用いることができる。
 ポリマー鎖Aの数平均分子量は1,000~10,000であり、好ましくは2,000~7,000である。ポリマー鎖Aの数平均分子量が1,000未満であると、ポリマーとしての性能が発揮されない。一方、ポリマー鎖Aの数平均分子量が10,000超であると、顔料分散剤に占める親水性鎖の割合が大きすぎてしまい、顔料からのポリマー鎖Bの脱着を促され、顔料の分散安定性が低下する場合がある。なお、本明細書におけるポリマー鎖やポリマーの数平均分子量は、ゲルパーミネーションクロマトグラフィー(以下、「GPC」とも記す)によるポリスチレン換算の分子量である。
(ポリマー鎖B)
 ポリマー鎖Bは水に不溶のポリマー鎖であり、顔料に対する吸着性を有する。このため、ポリマー鎖Bは顔料に吸着し、表面上に堆積して顔料を被覆(カプセル化)する。第二のシクロアルキル基含有(メタ)アクリレートの具体例としては、前述の第一のシクロアルキル基含有(メタ)アクリレートの具体例として列挙したものと同様のものを挙げることができる。ポリマー鎖Bに含まれる第二のシクロアルキル(メタ)アクリレートに由来する構成単位の割合は、30~70質量%であることが好ましく、40~60質量%であることがさらに好ましい。
 芳香環を有するビニル系モノマーの具体例としては、スチレン、ビニルトルエン、ビニルナフタレンなどを挙げることができる。また、芳香環を有する(メタ)アクリレートの具体例としては、フェニル(メタ)アクリレート、ナフトキシ(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、パラクミルフェノールエチレンオキサイド変性(メタ)アクリレートなどを挙げることができる。ポリマー鎖Bに含まれる、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の割合は、30~70質量%であることが好ましく、40~60質量%であることがさらに好ましい。
 なお、ポリマー鎖Bには、ポリマー鎖Bを軟質化させたり、水酸基などの官能基を導入したりするため、前述の「その他の(メタ)アクリレートに由来する構成単位」が含まれていることが好ましい。
 顔料分散剤として用いられるグラフトコポリマー及びブロックコポリマーの数平均分子量は、いずれも2,000~20,000であり、5,000~15,000であることが好ましく、7,000~12,000であることがさらに好ましい。数平均分子量が2,000未満であると、顔料分散剤として機能が低下して分散安定性が保持されない。一方、数平均分子量が20,000超であると、水性顔料分散液の粘度が高くなったり、一分子鎖が複数の顔料粒子に吸着して分散が進まなかったりする場合がある。
 グラフトコポリマーやブロックコポリマーに含まれる親水性鎖であるポリマー鎖Aの割合が少なすぎると、顔料分散剤が水に不溶となったり、析出したりする。一方、ポリマー鎖Aの割合が多すぎると、記録される印字物の耐水性が低下したり、顔料に対する吸着性が低下したりする。また、グラフトコポリマーやブロックコポリマーに含まれる疎水性鎖であるポリマー鎖Bの割合が少なすぎると、顔料分散剤が安定して顔料に吸着しない。一方、ポリマー鎖Bの割合が多すぎると、顔料分散剤が水に不溶となったり、分離したりする。したがって、ポリマー鎖Aとポリマー鎖Bの質量比は、A:B=30~70:70~30であり、好ましくは40~60:60~40、さらに好ましくは40~50:50~40である。
(グラフトコポリマーの合成方法)
 グラフトコポリマーは、従来公知の方法に準じて合成することができる。合成方法の具体例としては、(i)その片末端にラジカル重合する不飽和結合が導入されたマクロモノマー(ポリマー鎖A)と、ポリマー鎖Bの構成成分であるモノマーとを重合する方法(マクロモノマー法);(ii)重合開始基を結合させたポリマー鎖Bの存在下、ポリマー鎖Aの構成成分であるモノマーを重合する方法(側鎖重合法);(iii)その片末端に反応性基「X」が導入されたポリマー鎖Aと、反応性基「X」と反応しうる官能基「Y」を有するモノマーを重合して得られる、その側鎖に官能基「Y」を有するポリマー鎖Bとを調製し、これらポリマー鎖Aとポリマー鎖Bとを反応させる方法(高分子反応法)などがある。いずれの合成方法であってもグラフトコポリマーを合成することができるが、なかでもマクロモノマー法が好ましい。
 側鎖重合法は、ラジカル重合の副反応であるカップリング反応が起こった場合にゲル化などが生ずる可能性がある。また、高分子反応法は、高分子同士の反応であり、反応基の濃度が低いので反応率が低く、ポリマー鎖Aやポリマー鎖Bがそれぞれ単独で残ってしまう場合がある。ただし、高分子反応方法は、後述するリビングラジカル重合法により分子量を揃えることで末端反応性が均一となり、グラフトコポリマーを得やすくなるので好ましい場合もある。
 マクロモノマーは、従来公知の方法に準じて合成することができる。具体的には、(i)(メタ)アクリレートなどを高温高圧にて解重合を伴って重合することで、末端に不飽和結合を導入する方法;(ii)チオール基及び水酸基などの官能基を有する連鎖移動剤を用いて末端に水酸基を導入し、導入した水酸基と反応しうる官能基を有するモノマーを反応させる方法;(iii)α位にラジカルとして脱離しやすい基を有するビニル系モノマー(例:α-ブロモメチルアクリレート系化合物、α-メチルスチレン2量体、メタクリル酸メチル2量体)を連鎖移動剤として使用し、不可逆的付加開裂連鎖移動重合する方法;(iv)後述するリビングラジカル重合法において、水酸基やハロゲンなどの官能基を有する重合開始化合物を用いてポリマーを得、その官能基と反応しうる不飽和結合を有する化合物を添加し、末端に不飽和結合を導入してマクロモノマーを得る方法などがある。
 以上のようにして得られるマクロモノマーと、ポリマー鎖Bの構成成分であるモノマーとを、通常のラジカル重合法や、後述するリビングラジカル重合法などの従来公知の方法に準じて重合すれば、目的とするグラフトコポリマーを得ることができる。
(ブロックコポリマーの合成方法)
 ブロックコポリマーは、従来公知のラジカル重合法では得ることが困難である。その片末端に官能基「X」を導入したポリマー鎖Aと、その片末端に官能基「X」と反応しうる官能基「Y」を導入したポリマー鎖Bとを用意し、これらのポリマー鎖の官能基「X」と「Y」とを反応させることでブロックコポリマーを得ることができる。しかしながら、反応率が低く、ポリマー鎖Aやポリマー鎖Bが多く残存してしまう場合がある。ブロックコポリマーの好ましい合成方法としては、リビングカチオン重合法、リビングアニオン重合法、リビングラジカル重合法などがある。ただし、リビングカチオン重合法やリビングアニオン重合法では、(メタ)アクリレートが重合しないなどの不都合が生ずる場合がある。このため、ブロックコポリマーの合成方法としてはリビングラジカル重合法が特に好ましい。
 リビングラジカル重合法の具体例としては、(i)ニトロキサイドラジカルを生じうる化合物を使用する方法(NMP法);(ii)銅やルテニウムなどの金属錯体を使用して、ハロゲン化化合物を重合開始化合物として、その重合開始化合物からリビング的に重合させる方法(ATRP法);(iii)ジチオカルボン酸エステルやザンテート化合物を使用する方法(RAFT法);(iv)有機テルル化合物を重合開始化合物とする方法(TERP法);(v)ヨウ素化合物を重合開始化合物とし、リン化合物、窒素化合物、炭素化合物、又は酸素化合物などを触媒として用いて得る方法(RTCP法)などがある。
 これらのリビングラジカル重合法は、従来公知の重合条件で実施することができる。例えば、塊状重合、懸濁重合、乳化重合、溶液重合などの条件でリビングラジカル重合を実施すればよい。なお、溶液重合の場合は、重合後の反応液を顔料分散剤の溶液としてそのまま使用してもよいし、重合に用いた溶剤を他の溶剤で置換してもよいし、いったん貧溶媒中に析出させてブロックコポリマーだけを取り出してもよい。なかでも、インクジェットインクに含まれる有機溶剤を重合用の溶剤として用いて溶液重合することが好ましい。これにより、重合後の反応液にアルカリを添加してブロックコポリマーを中和するだけで、容易に顔料分散剤として用いることができる。
 上述のようにして得られるグラフトコポリマーやブロックコポリマーをアルカリによって中和(水溶液化)すれば、顔料分散剤とすることができる。アルカリの具体例としては、アンモニア;トリメチルアミン、トリエチルアミンなどのアルキルアミン;ジエタノールアミン、トリエタノールアミンなどのグリコール系アミン;モルホリン、ピリジンなどの環状アミン;水酸化ナトリウム、水酸化カリウムなどの水酸化物などを挙げることができる。アルカリの使用量は、グラフトコポリマー又はブロックコポリマーに含まれるカルボキシル基の当モル以上であることが好ましい。
(顔料)
 顔料としては、有機顔料や無機顔料などを一種又は二種以上用いることができる。顔料の具体例としては、カーボンブラック、キナクリドン系顔料、フタロシアニン系顔料、ベンズイミダゾロン系顔料、イソインドリノン系顔料、アゾ系顔料などを挙げることができる。より具体的には、発色性、分散性、及び耐候性などの観点から、カラーインデックスナンバー(C.I.)で示すと、C.I.ピグメントブルー-15:3、15:4、C.I.ピグメントレッド-122、269、C.I.ピグメントバイオレット-19、C.I.ピグメントイエロ-74、155、180、C.I.ピグメントグリーン-36、58、C.I.ピグメントオレンジ-43、及びC.I.ピグメントブラック-7からなる群より選択される少なくとも一種であることが好ましい。
 また、顔料の数平均一次粒子径は150nm未満であることが好ましい。その数平均一次粒子径が150nm未満の顔料を用いることで、記録される印字物の光学濃度、彩度、発色性、及び印字品質を向上させることができるとともに、インク中における顔料の沈降を適度に抑制することができる。
(水性有機溶剤)
 水性有機溶剤は、水に対する混和性を有する有機溶剤である。水性有機溶剤としては、水に対する溶解度が25℃において20質量%以上の、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアルキルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアリルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールジアルキルエーテル、アルキレンジオール、アルキレンモノオールモノアルキルエーテル、アルキレンポリオール、及びアミド系溶剤からなる群より選択される少なくとも一種を用いることが好ましい。
 より具体的な水性有機溶剤の例としては、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテルなどのポリ(n=1以上)アルキレン(C2~3)グリコールモノアルキルエーテル;フェノキシトリエチレングリコールやスチレン化フェニルポリエチレングリコールなどのポリ(n=1以上)アルキレン(C2~3)グリコールモノアリルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテルなどのポリ(n=1以上)アルキレン(C2~3)グリコールジアルキルエーテル;1,2-プロピレングリコール、1,2-ヘキサンジオール、1,2-オクチレングリコール、イソプレングリコールなどのアルキレンジオール;3-メトキシ-3-メチルブタノールなどのアルキレンモノオールモノアルキルエーテル;グリセリンなどのアルキレンポリオール;2-ピロリドンやN-メチルピロリドンなどのアミド系溶剤などを挙げることができる。
 水性有機溶剤は必須の成分であり、水性有機溶剤を含有させることで、ヘッドの乾燥や印字した紙のカールを防止することができる。なお、水に溶解する溶剤であればその他の有機溶媒も必要に応じて使用することができる。その他の有機溶剤の具体例としては、メタノール、エタノール、エチレンカーボネート、プロピレンカーボネートなどを挙げることができる。
(各成分の配合割合)
 本発明の水性顔料分散液に含有される顔料の割合は5~35質量%であり、5~30質量%であることが好ましく、7~20質量%であることがさらに好ましい。また、顔料分散剤の含有割合は0.5~25質量%である。さらに、水性有機溶剤の含有割合は5~30質量%であり、5~20質量%であることが好ましい。また、水の含有割合は20~80質量%である。各成分の配合割合は、要求される品質やコストなどを考慮して適宜調整される。例えば、顔料の含有割合が7~20質量%であると、彩度、発色性、安定性が顕著に向上するために好ましい。なお、顔料の含有割合が少なすぎると、印字濃度が確保できなくなる。一方、顔料の含有割合が多すぎるとインクが増粘してしまい、インクジェットヘッドからのインクの吐出安定性が低下する傾向にある。また、顔料の含有割合が5~30質量%である場合には、顔料分散剤の含有割合が0.5~20質量%、水性有機溶剤の含有割合が10~30質量%、及び水の含有割合が50~70質量%であることが好ましい。
 また、顔料100質量部に対する顔料分散剤の含有量は、10~200質量部であることが好ましく、15~60質量部であることがさらに好ましい。顔料100質量部に対する顔料分散剤の含有量が10質量部未満であると、分散安定性が低下する傾向にある。一方、顔料100質量部に対する顔料分散剤の含有量が200質量部超であると、水性顔料分散液の粘度が過度に上昇してしまう場合がある。
(水性顔料分散液の調製方法)
 本発明の水性顔料分散液は、例えば、顔料、顔料分散剤、水性有機溶剤、及び水を従来公知の方法で混合して分散させることで調製することができる。各成分の混合及び分散に際しては、分散機を用いればよい。分散機の具体例としては、ニーダー、二本ロール、三本ロール、商品名「ミラクルKCK」(浅田鉄鋼社製)などの混練機;超音波分散機;高圧ホモジナイザー(商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(吉田機械興業社製)、商品名「スターバースト」(スギノマシン社製)、商品名「G-スマッシャー」(リックス社))などを挙げることができる。また、ガラスやジルコンなどのビーズメディアを用いるボールミル、サンドミル、横型メディアミル分散機、コロイドミルなどを使用することもできる。具体的な分散方法は特に限定されない。
 顔料の数平均粒子径(粒度分布)を所望の数値範囲とするためには、例えば、分散機の粉砕メディアのサイズを小さくする、粉砕メディアの充填率を大きくする、処理時間を長くする、吐出速度を遅くする、粉砕後フィルターや遠心分離機などで分級するなどの手法が用いられる。さらには、例えばソルトミリング法などの従来公知の方法によって事前に細かくした顔料を使用することも好ましい。
(分散剤被覆顔料の調製方法)
 本発明においては、顔料分散剤で被覆処理された分散剤被覆顔料、すなわち、その表面に顔料分散剤を堆積させて顔料を被覆(カプセル化)した分散剤被覆顔料を用いることが好ましい。このような分散剤被覆顔料を用いることで、顔料の分散安定性をより高めることができる。すなわち、顔料分散剤によって顔料を被覆することで、有機溶剤が大量に混入しても顔料分散剤が顔料の表面上から脱離しにくくなり、さらには、ポリマー鎖Aが水に溶解しているので顔料の分散安定性をより高めることができる。
 分散剤被覆顔料は、例えば、(i)顔料、顔料分散剤、水性有機溶剤、水、及びアルカリ剤を混合して得た顔料分散液に酸を添加して、顔料分散剤を析出させる工程、又は(ii)顔料と顔料分散剤を混練して得た混練物を顔料分散剤の貧溶媒に添加して、顔料分散剤を析出させる工程を含む調製方法によって調製することができる。
 上記(i)の工程では、従来公知の方法で各成分を混合し、顔料が分散された顔料分散液を得る。アルカリ剤としては、アンモニア;トリメチルアミン、トリエチルアミンなどのアルキルアミン;ジエタノールアミン、トリエタノールアミンなどのグリコール系アミン;モルホリン、ピリジンなどの環状アミン;水酸化ナトリウム、水酸化カリウムなどの水酸化物を用いることができる。次いで、得られた顔料分散液を例えばディゾルバーなどの高速で撹拌することが可能な撹拌機を使用して撹拌し、徐々に酸を添加する。酸を添加することで、顔料の表面に顔料分散剤を析出させ、疎水性鎖であるポリマー鎖Bで顔料を被覆(カプセル化)することができる。
 酸としては、塩酸、硫酸、硝酸などの無機酸;酢酸、プロピオン酸、トルエンスルホン酸などの有機酸を用いることができる。酸はそのまま添加してもよいが、10質量%以下の水溶液にして添加することが好ましい。また、酸の添加量は、顔料分散剤のポリマー鎖Aのカルボキシル基を中和しているアルカリと等モル以上とすることが好ましく、1.1倍モル以上とすることがさらに好ましい。
 上記(ii)の工程では、顔料と顔料分散剤を混練して得た混練物を顔料分散剤の貧溶媒に添加する。顔料分散剤の貧溶媒に添加することで、顔料の表面に顔料分散剤を析出させ、疎水性鎖であるポリマー鎖Bで顔料を被覆(カプセル化)することができる。貧溶媒としては、顔料分散剤の組成に由来する性質にもよるが、ポリマーを溶解しない溶媒が用いられる。そのような貧溶媒の具体例としては、ヘキサンなどの炭化水素系溶媒、エチレングリコールなどの多価アルコール類、メタノールなどを挙げることができる。
 顔料分散剤を析出させた後は、形成された分散剤被覆顔料(析出物)をろ過する。ろ過することで、分散剤被覆顔料(析出物)を水ペーストの状態で得ることができる。この水ペーストは、乾燥及び粉砕してもよいが、水ペーストのまま使用することも好ましい。水ペーストのまま使用することで、乾燥による顔料分散剤の融着がなくなるとともに、粉砕の必要がなくなるので、顔料の数平均粒子径も分散時のままに維持することができる。なお、顔料分散剤の析出後、必要に応じて加温し、分散剤被覆顔料を凝集させてろ過しやすくしてもよい。また、ろ過することで、析出物である分散剤被覆顔料に付着しているイオン性物質や有機溶剤を十分に除去することが好ましい。
(インクジェット用水性顔料インク)
 本発明のインクジェット用水性顔料インクは、前述の水性顔料分散液を含有するものであり、顔料の含有割合が4~10質量%である。本発明のインクジェット用水性顔料インクには、水性顔料分散液以外の成分として、例えばビヒクル成分が含有される。ビヒクル成分の具体例としては、界面活性剤、有機溶剤、及び保湿剤などを挙げることができる。なお、インクジェットで印字するドット径を最適な幅に広げるという観点から、インクジェット用水性顔料インクの表面張力は20~40mN/mであることが好ましい。インクジェット用水性顔料インクの表面張力は、界面活性剤を添加することで調製することができる。界面活性剤としては、アニオン性界面活性剤、非イオン性界面活性剤、カチオン性界面活性剤、及び両性界面活性剤を用いることができる。
 アニオン性界面活性剤の具体例としては、アルキル硫酸エステル塩、アルキルアリール硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ポリオキシエチレンアルキルエーテルスルホン酸塩、ポリオキシエチレンアルキルアリールエーテルスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルリン酸エステル塩、ポリオキシエチレンアルキルアリールリン酸エステル塩などを挙げることができる。非イオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミンエーテル、脂肪酸ジエタノールジアミド、ソルビタン脂肪酸エステル、アセチレンアルコール類、アセチレングリコール類などを挙げることができる。カチオン性界面活性剤の具体例としては、アルキルアミン塩、第4級アンモニウム塩などを挙げることができる。両性界面活性剤の具体例としては、アルキルベタイン、アミンオキサイドなどを挙げることができる。インクジェット用水性顔料インク中の界面活性剤の含有割合は、0.01~5質量%であることが好ましく、0.1~2質量%であることがさらに好ましい。界面活性剤の含有割合が多すぎると、顔料の分散安定性が損なわれる場合がある。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。
[マクロモノマーの合成]
(合成例1)
 撹拌機、逆流コンデンサー、温度計、及び窒素導入管を取り付けた反応容器に、ブチルトリグリコール(以下、「BTG」と記す)500部、メチルメタクリレート(以下、「MMA」と記す)72部、シクロヘキシルメタクリレート(以下、「CHMA」と記す)80部、メタクリル酸(以下、「MAA」と記す)48部、エチル-2-(α-ブロモメチル)アクリレート(以下、「EBMA」と記す)5部、及び2,2’-アゾビス(イソ酪酸)ジメチル(以下、「V-601」と記す)2部を仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を1部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、GPCの示差屈折計(以下、「RI」と記す)を用いて測定したマクロモノマーMM-1の数平均分子量(以下、「Mn」と記す)は6,800であり、重量平均分子量(以下、「Mw」と記す)は10,900であり、分散度(Mw/Mn)(以下、「PDI」と記す)は1.60であった。また、紫外線吸収検出器(波長254nm)(以下、「UV検出器」と記す)では、ピークがほとんど観測されなかった。
 得られたポリマー溶液を大量の水に投入してポリマーを析出させた後、ろ過及び洗浄した。THFに溶解させた後に再度大量の水に投入してポリマーを析出させた後、ろ過及び洗浄した。50℃の乾燥機で24時間乾燥してポリマーを得た。核磁気共鳴装置を使用して得られたポリマーの1H-NMRを測定したところ、モノマーのピークと、EBMA由来の不飽和結合のプロトンのピークが、6ppm及び6.4ppmにそれぞれ観測された。このため、得られたポリマーは、末端に不飽和結合を有するマクロモノマーであると考えられる。以下の合成例においても、同様の測定を行って得られたポリマーがマクロモノマーとなっていることを確認した。
(合成例2)
 合成例1で用いたものと同様の反応容器に、トリプロピレングリコールモノメチルエーテル(以下、「MFTG」と記す)250部、MMA30部、CHMA40部、MAA30部、EBMA2.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-2)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、マクロモノマーMM-2のMnは6,400であり、Mwは10,200であり、PDIは1.59であった。
(合成例3)
 合成例1で用いたものと同様の反応容器に、テトラエチレングリコールジメチルエーテル(以下、「TEDM」と記す)250部、MMA36部、3,3,5-トリメチルシクロヘキシルメタクリレート(以下、「TMCHMA」と記す)40部、MAA24部、EBMA2.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-3)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、マクロモノマーMM-3のMnは6,500であり、Mwは10,400であり、PDIは1.60であった。
(合成例4)
 合成例1で用いたものと同様の反応容器に、MFTG250部、MMA36部、CHMA40部、MAA24部、EBMA3.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-4)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、マクロモノマーMM-4のMnは5,400であり、Mwは8,500であり、PDIは1.57であった。
(合成例5)
 合成例1で用いたものと同様の反応容器に、MFTG250部、MMA20部、エチルメタクリレート(以下、「EMA」と記す)15部、ヒドロキシエチルメタクリレート(以下HEMA)5部、CHMA40部、MAA20部、EBMA3.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-5)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、マクロモノマーMM-5のMnは5,700であり、Mwは9,700であり、PDIは1.70であった。
(比較合成例1)
 合成例1で用いたものと同様の反応容器に、MFTG250部、MMA36部、ブチルメタクリレート(以下、「BMA」と記す)40部、MAA24部、EBMA2.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-R1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、マクロモノマーMM-R1のMnは6,300であり、Mwは10,000であり、PDIは1.59であった。なお、このマクロモノマーMM-R1は、シクロアルキル基を有しないマクロモノマーである。
(比較合成例2)
 合成例1で用いたものと同様の反応容器に、MFTG250部、MMA36部、エチルメタクリレート(以下、「EMA」と記す)10部、2-エチルヘキシルメタクリレート(以下、「2EHMA」と記す)30部、MAA24部、EBMA2.5部、及びV-601を1部仕込んだ。窒素バブリングしながら75℃で3時間重合後、V-601を0.5部添加した。さらに4.5時間重合させて、ポリマー(マクロモノマーMM-R2)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、このマクロモノマーMM-R2のMnは7,400であり、Mwは11,000であり、PDIは1.49であった。このマクロモノマーMM-R2は、シクロアルキル基を有しないマクロモノマーである。
 合成例1~5、比較合成例1及び2で得たマクロモノマーの詳細を表1に示す。
Figure JPOXMLDOC01-appb-I000001
[グラフトコポリマーの合成]
(合成例6)
 合成例1で用いたものと同様の反応容器Aに、BTG100部、及びマクロモノマーMM-1の溶液600部を仕込んで80℃に加熱した。また、別の反応容器にスチレン(以下、「St」と記す)200部、ブチルアクリレート(以下、「BA」と記す)100部、及びt-ブチルパーオキシ-2-エチルヘキサノアート(以下、「PBO」と記す)5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを2.5部添加して85℃に加熱し、さらに4時間重合させた。水酸化カリウム(KOH)32.3部、及び水467.7部を添加して中和し、ポリマー(コポリマーCP-1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-1のMnは15,900であり、Mwは38,500であり、PDIは2.42であった。なお、マクロモノマー由来の分子量のピークは見られなかった。また、UV検出器を使用して分子量を測定したところ、Mnは15,600、Mw39,100、PDIは2.51であった。これは、ポリマー鎖Bを構成するモノマー成分が芳香環を有するものであり、大きな吸収が観測されたためであると考えられる。なお、マクロモノマーMM-1がポリマー鎖Bを構成するモノマー成分と重合して分子量が増大し、グラフトコポリマーが得られたと考えられる。以下の合成例においても、同様の測定を行って得られたコポリマーCP-1がグラフトコポリマーとなっていることを確認した。また、固形分濃度を測定した結果に基づき、得られたポリマー溶液にイオン交換水を加え、固形分濃度を30%に調整した。以下の合成例においても、同様にして固形分濃度を30%に調整した。
(合成例7)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、及びマクロモノマーMM-2の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt100部、BA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-2)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を算出したところ100%であった。また、コポリマーCP-1のMnは14,800であり、Mwは34,200であり、PDIは2.31であった。
(合成例8)
 合成例1で用いたものと同様の反応容器Aに、マクロモノマーMM-2の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt67部、BA33部、及びPBO2部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1部添加して85℃に加熱し、さらに4時間重合させた。KOH16.1部、及び水183.9部を添加して中和し、ポリマー(コポリマーCP-3)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-3のMnは11,400であり、Mwは27,500であり、PDIは2.41であった。
(合成例9)
 合成例1で用いたものと同様の反応容器Aに、マクロモノマーMM-2の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt67部、HEMA33部、及びPBO2部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1部添加して85℃に加熱し、さらに4時間重合させた。KOH16.1部、及び水183.9部を添加して中和し、ポリマー(コポリマーCP-4)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-4のMnは10,600であり、Mwは22,800であり、PDIは2.15であった。
(合成例10)
 合成例1で用いたものと同様の反応容器Aに、TEDM50部、及びマクロモノマーMM-3の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt100部、BA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-5)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-5のMnは14,700であり、Mwは28,000であり、PDIは1.90であった。
(合成例11)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、マクロモノマーMM-4の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt100部、BA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-6)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-6のMnは13,100であり、Mwは29,000であり、PDIは2.21であった。
(合成例12)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、マクロモノマーMM-5の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt67部、HEMA33部、及びPBO2部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1部添加して85℃に加熱し、さらに4時間重合させた。KOH16.1部、及び水183.9部を添加して中和し、ポリマー(コポリマーCP-7)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-7のMnは9,800であり、Mwは22,200であり、PDIは2.27であった。
(比較合成例3)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、マクロモノマーMM-R1の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt100部、BA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-R1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-R1のMnは14,000であり、Mwは31,700であり、PDIは2.26であった。このコポリマーCP-R1は、グラフトしているポリマーにシクロアルキル基を有しないグラフトコポリマーである。
(比較合成例4)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、マクロモノマーMM-R2の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にSt100部、HEMA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-R2)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-R2のMnは15,600であり、Mwは37,000であり、PDIは2.37であった。このコポリマーCP-R2は、グラフトしているポリマー(ポリマー鎖A)にシクロアルキル基を有しないグラフトコポリマーである。
(比較合成例5)
 合成例1で用いたものと同様の反応容器Aに、MFTG50部、マクロモノマーMM-2の溶液300部を仕込んで80℃に加熱した。また、別の反応容器にMMA100部、BA50部、及びPBO2.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。PBOを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-R3)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ85%であった。また、コポリマーCP-R3のMnは10,200、Mwは23,000であり、PDIは2.25であった。このコポリマーCP-R3は、主鎖(ポリマー鎖B)に芳香環やシクロアルキル基を有しないグラフトコポリマーである。
(比較合成例6)
 合成例1で用いたものと同様の反応容器Aに、MFTG250部を仕込んで80℃に加熱した。また、別の反応容器にMMA36部、CHMA40部、MAA24部、St100部、BA50部、及びアゾビスイソブチロニトリル(以下、「AIBN」と記す)7.5部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。AIBNを1.25部添加して85℃に加熱し、さらに4時間重合させた。KOH16.2部、及び水233.8部を添加して中和し、ポリマー(コポリマーCP-R4)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、コポリマーCP-R4のMnは14,700であり、Mwは30,600であり、PDIは2.08であった。このコポリマーCP-R4はランダムコポリマーである。
 合成例6~12、比較合成例3~6で得たコポリマーの詳細を表2に示す。
Figure JPOXMLDOC01-appb-I000002
[ブロックコポリマーの合成]
(合成例13)
 合成例1で用いたものと同様の反応容器に、MFTG173部、ヨウ素1.0部、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(以下、「V-70」と記す)3.7部、CHMA42部、ベンジルメタクリレート(以下、「BzMA」と記す)17.6部、及びジフェニルメタン(以下、「DPM」と記す)0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ86%であった。このポリマー溶液に含有されるポリマーのMnは5,000であり、PDIは1.19であった。次に、ポリマー溶液を40℃に冷却し、CHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加えて3.5時間重合させた。KOH8.4部、及び水49.2部を添加して中和し、ポリマー(ブロックコポリマーBP-1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックポリマーBP-1のMnは10,300であり、PDIは1.30であった。なお、固形分濃度を測定した結果に基づき、得られたポリマー溶液にイオン交換水を加え、固形分濃度を30%に調整した。以下の合成例においても、同様にして固形分濃度を30%に調整した。
(合成例14)
 合成例1で用いたものと同様の反応容器に、MFTG174部、ヨウ素1.0部、V-70を3.7部、CHMA29.4部、BzMA30.8部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ82%であった。また、このポリマー溶液に含有されるポリマーのMnは5,700であり、PDIは1.20であった。次に、ポリマー溶液を40℃に冷却し、TMCHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加えて3.5時間重合させた。KOH8.4部、及び水49.2部を添加して中和し、ポリマー(ブロックコポリマーBP-2)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-2のMnは10,300であり、PDIは1.31であった。
(合成例15)
 合成例1で用いたものと同様の反応容器に、MFTG168部、ヨウ素1.0部、V-70を3.7部、CHMA42部、BzMA17.6部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ80%であった。また、このポリマー溶液に含有されるポリマーのMnは5,000であり、PDIは1.17であった。次に、ポリマー溶液を40℃に冷却し、CHMA8.4部、MMA25部、MAA12.9部、及びV-70を1.4部加え、3.5時間重合させた。KOH8.4部、及び水47.6部を添加して中和し、ポリマー(ブロックコポリマーBP-3)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-3のMnは9,100であり、PDIは1.31であった。
(合成例16)
 合成例1で用いたものと同様の反応容器に、MFTG168部、ヨウ素1.0部、V-70を3.7部、CHMA42部、ヒドロキシエチルメタクリレート(以下、「HEMA」と記す)13部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ81%であった。また、このポリマー溶液に含有されるポリマーのMnは5,100であり、PDIは1.22であった。次に、ポリマー溶液を40℃に冷却し、CHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加え、3.5時間重合させた。KOH8.4部、及び水47.6部を添加して中和し、ポリマー(ブロックコポリマーBP-4)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-4のMnは9,600であり、PDIは1.33であった。
(合成例17)
 合成例1で用いたものと同様の反応容器に、BTG173部、ヨウ素1.0部、V-70を3.7部、CHMA42部、BzMA17.6部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ89%であった。また、このポリマー溶液に含有されるポリマーのMnは6,000であり、PDIは1.18であった。次に、ポリマー溶液を40℃に冷却し、CHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加え、3.5時間重合させた。NaOH6.0部、及び水51.6部を添加して中和し、ポリマー(ブロックコポリマーBP-5)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-5のMnは11,100であり、PDIは1.29であった。
(合成例18)
 合成例1で用いたものと同様の反応容器に、TEDM172部、ヨウ素1.0部、V-70を3.7部、CHMA58.8部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ84%であった。また、このポリマー溶液に含有されるポリマーのMnは5,200であり、PDIは1.19であった。次に、ポリマー溶液を40℃に冷却し、CHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加え、3.5時間重合させた。28%アンモニア水9.1部、及び水48.2部を添加して中和し、ポリマー(ブロックコポリマーBP-6)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-6のMnは10,000であり、PDIは1.31であった。
(合成例19)
 合成例1で用いたものと同様の反応容器に、3-メトキシ-3-メチル-1-ブタノール(以下、「MMB」と記す)169部、ヨウ素1.0部、V-70を3.7部、CHMA42部、BMA14.2部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ88%であった。また、このポリマー溶液に含有されるポリマーのMnは4,800であり、PDIは1.16であった。次に、ポリマー溶液を40℃に冷却し、CHMA16.8部、MMA20部、MAA12.9部、及びV-70を1.5部加え、3.5時間重合させた。KOH8.4部、及び水47.6部を添加して中和し、ポリマー(ブロックコポリマーBP-7)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ブロックコポリマーBP-7のMnは9,500であり、PDIは1.29であった。
(比較合成例7)
 合成例1で用いたものと同様の反応容器に、MFTG128部、ヨウ素1.0部、V-703.7部、BzMA52.2部、HEMA9.8部、及びDPM0.17部を仕込んだ。窒素バブリングしながら45℃で5.5時間重合させてポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ80%であった。また、このポリマー溶液に含有されるポリマーのMnは4,900であり、PDIは1.26であった。次に、ポリマー溶液を40℃に冷却し、MMA20.8部、BMA40.8部、MAA15.0部、及びV-70を2.3部加え、3.5時間重合させた。KOH9.8部、及び水32.8部を添加して中和し、ポリマー(ブロックコポリマーBP-R1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を算出したところ100%であった。また、ブロックコポリマーBP-R1のMnは9,200であり、PDIは1.57であった。
(比較合成例8)
 合成例1で用いたものと同様の反応容器AにMFTG375部を仕込んで80℃に加熱した。また、別の容器にCHMA110部、BzMA70部、MMA40部、MAA30部、及びアゾビスイソブチロニトリル(以下、「AIBN」と記す)12部を仕込んでよく撹拌し、モノマー液を調製した。このモノマー液を反応容器Aに1/2添加した後、残り1/2を1時間かけてゆっくりと滴下した。滴下終了後、3時間重合させた。AIBNを1.5部添加して85℃に加熱し、さらに4時間重合させた。KOH19.6部、及び水105.4部を添加して中和し、ポリマー(ランダムコポリマーRP-R1)を含有するポリマー溶液を得た。得られたポリマー溶液をサンプリングして固形分濃度を測定し、不揮発分から重合転化率を換算したところ100%であった。また、ランダムコポリマーRP-R1のMnは12,100であり、PDIは2.28であった。
 合成例13~19、比較合成例7及び8で得たコポリマーの詳細を表3に示す。
Figure JPOXMLDOC01-appb-I000003
[水性顔料分散液]
(実施例1)
 合成例6で得たコポリマーCP-1を含有するポリマー溶液233.3部、ジエチレングリコールモノブチルエーテル70部、及び水311.7部を混合して若干濁りのある半透明の溶液を得た。この溶液にアゾ系黄色顔料PY-74(商品名「セイカファストイエロー2016G」、大日精化工業社製)350部を添加し、ディスパーを使用して30分撹拌してミルベースを調製した。横型媒体分散機(商品名「ダイノミル0.6リットルECM型」、シンマルエンタープライゼス社製、ジルコニア製ビーズ 径0.5mm)を使用し、周速10m/sで分散処理し、ミルベース中に顔料を十分に分散させた。その後、水316部を添加して顔料濃度を18%とした。分散機から取り出したミルベースを遠心分離処理(7500回転、20分間)した後、10μmのメンブレンフィルターでろ過した。水で希釈して、顔料濃度14%のインクジェット用の水性顔料分散液1を得た。
 得られた水性顔料分散液1に含まれる顔料の数平均粒子径を、粒度測定器(商品名「NICOMP 380ZLS-S」、インターナショナル・ビジネス社製)で測定したところ122nmであり、顔料が微分散されていることを確認した。また、水性顔料分散液1の粘度は3.1mPa・s、pHは8.9であった。この水性顔料分散液1を70℃で1週間保存したところ、顔料の数平均粒子径が122nm、粘度3.0mPa・sとなり、保存安定性が非常に良好であることを確認した。
(実施例2~14、比較例1~6)
 表4に示す顔料分散剤を用いたこと以外は、上述の実施例1と同様にして水性顔料分散液2~20を得た。得られた水性顔料分散液2~20の評価結果を表4に示す。
Figure JPOXMLDOC01-appb-I000004
 実施例2~14、比較例1、2及び5で得た水性顔料分散液2~16及び19は、実施例1で得た水性顔料分散液と同様に、顔料が微分散されているとともに、保存安定性が良好であった。なお、比較例1、2及び5で得た水性顔料分散液15、16及び19は、いずれも、その構造中にシクロアルキル基が入っていないこと以外は実施例で用いたものと同様の顔料分散剤を用いたものであるので、分散性及び保存安定性が向上したものと考えられる。
 これに対して、ポリマー鎖B(主鎖)に芳香環やシクロアルキル基を有しないコポリマーCP-R3を用いた比較例3の水性顔料分散液は、分散中に粘度が高くなって取り出しが困難になり、水で希釈して顔料濃度を下げる必要があった。また、分散性が低く、顔料の数平均粒子径も大きく、保存安定性も良好ではなかった。これは、ポリマー鎖B(主鎖)の顔料吸着性が乏しいためではないかと推測される。
 また、コポリマーCP-R4、及びランダムコポリマーRP-R1を用いた比較例4及び6の水性顔料分散液は、分散性は良好であったが、保存中に顔料粒子が凝集し、流動性が顕著に低下した。これは、吸着部分が分子鎖中にランダムに存在して明確でないランダム構造を有するコポリマーを顔料分散剤として用いたことで、顔料分散剤一分子が複数の顔料粒子に吸着してしまい、顔料の分散がうまく進行しなかったこと、及び加温したことで、溶剤の影響が顕著になって顔料に顔料分散剤が吸着しなくなり、顔料が凝集したものと考えられる。実施例で用いた顔料分散剤の分子構造は、顔料への吸着部分と溶剤溶解性部分とがブロック単位で明確に分かれていることで、顔料の分散が良好な状態で進行したとともに、溶媒溶解性部分の立体効果によって顔料の凝集が抑制され、保存安定性が向上したと考えられる。
 なお、アゾ系黄色顔料PY-74に代えて、銅フタロシアニン顔料PB-15:3(商品名「シアニンブルーA220JC、大日精化工業社製)、キナクリドン顔料PR-122(商品名「CFR130P」、大日精化工業社製)、及びカーボンブラック顔料PB―7(商品名「S170」、デグザ社製)をそれぞれ用いたこと以外は、前述の実施例1~14及び比較例1~6と同様にして、青色水性顔料分散液、赤色水性顔料分散液、及び黒色水性顔料分散液を調製した。その結果、コポリマーCP-1~CP-7、ブロックコポリマーBP-1~BP-7、CP-R1、CP-R2、及びBP-R1を用いて得た水性顔料分散液は、いずれも黄色水性顔料分散液と同様、分散性及び保存安定性が良好であった。
[水性顔料インク(1)]
(実施例15)
 実施例1で調製した水性顔料分散液1を用いて、以下に示す処方でインクジェット用の水性顔料インクを調製した。
  水性顔料分散液1                    40部
  水                         42.2部
  1,2-ヘキサンジオール                 5部
  グリセリン                       10部
  商品名「サーフィノール465」(エアープロダクト社製)  1部
 上記の処方の配合物を十分撹拌した後、ポアサイズ10μmのメンブランフィルターでろ過して水性顔料インク1を調製した。この水性顔料インク1に含まれる顔料の数平均粒子径を測定したところ119nmであった。また、水性顔料インク1の粘度は2.9mPa・sであった。この水性顔料インク1を70℃で1週間保存したところ、顔料の数平均粒子径が118nm、粘度2.8mPa・sとなり、保存安定性が非常に良好であることを確認した。これは、顔料分散剤の疎水性の吸着部分が脱離することなく顔料に吸着したことによって、保存安定性が向上したものと推測される。
(実施例16~28、比較例7~9)
 表5に示す顔料分散液を用いたこと以外は、上述の実施例15と同様にして水性顔料インク2~16及び19を得た。また、前述の青色水性顔料分散液、赤色水性顔料分散液、及び黒色水性顔料分散液をそれぞれ用いて各色の水性顔料インクを調製した。いずれの水性顔料インクについても、保存安定性が良好であることを確認した。
 水性顔料インク1~16及び19をそれぞれカートリッジに充填し、インクジェットプリンタ(商品名「EM930C」、セイコーエプソン社製)を使用し、(i)専用写真用光沢紙(PGPP)、(ii)普通紙(商品名「4024」、ゼロックス社製)(iii)専用フォトマット紙に、フォト720dpiの印刷モードで印刷して印刷物を得た。その結果、いずれの水性顔料インクもインクジェットのノズルから問題なく吐出可能であることを確認した。
 光学濃度計(商品名「マクベスRD-914」、マクベス社製)を使用し、得られた印刷物を評価した。なお、専用写真用光沢紙(PGPP)については、光学濃度OD値、彩度C*、20度グロス、及び60度グロスを測定した。また、普通紙と専用フォトマット紙については、光学濃度OD値及び彩度C*を各5回測定し、それぞれ平均値とした。測定結果を表5に示す。
Figure JPOXMLDOC01-appb-I000005
 表5に示す結果から、ポリマー鎖Aにシクロアルキル基が導入されているグラフトコポリマー又はブロックコポリマーを顔料分散剤とする水性顔料分散液を用いて調製した水性顔料インクは、いずれの用紙に印刷した場合であっても、発色性及び彩度に優れていることが分かる。また、専用写真用光沢紙(PGPP)に印刷した場合には、20度グロス及び60度グロスが高いことが分かる。
 なお、前述の青色水性顔料分散液、赤色水性顔料分散液、及び黒色水性顔料分散液をそれぞれ用いて調製した各色の水性顔料インクについても同様に試験を行った。その結果、いずれのインクを用いた場合でも、発色性、彩度、及びグロスが高くなることを確認した。
[水性顔料インク(2)]
(実施例29)
 合成例13で得たブロックコポリマーBP-1を含有するポリマー溶液164部、BDG80部、及び水356部を混合して均一な溶液を得た。得られた溶液に赤色顔料(C.I.ピグメントレッド122(ジメチルキナクリドン顔料、大日精化工業社製))200部を添加し、ディスパーを使用して解膠し、ミルベースを調製した。得られたミルベース800部に対して、顔料分5%となるよう水3200部を加えた後、撹拌しながら5%酢酸を滴下して顔料分散剤を析出させた。酢酸滴下前(初期)のpHは9.5であり、酢酸滴下後のpHは4.5であった。ろ過及び水で洗浄して、分散剤被覆顔料のペースト(固形分濃度:32.0%)を得た。
 得られたペースト667部、BDG9.4部、及び水酸化ナトリウム1.15部を水62.2部に溶解したものを混合及び撹拌した。次いで、横型メディア分散機を使用して再度分散させた。さらに、超高圧ホモジナイザー(商品名「マイクロフルイダイザー」、マイクロフルイディクス社製)を使用し、圧力150MPaで3パスして分散させた。遠心分離処理(7500回転、20分間)後に10μmのメンブレンフィルターでろ過し、次いで、イオン交換水を添加して顔料濃度が14%である赤色水性顔料分散液1を得た。得られた赤色水性顔料分散液1に含有される顔料の数平均粒子径を測定したところ108nmであった。また、赤色水性顔料分散液1の粘度は2.22mPa・sであった。この赤色水性顔料分散液1を70℃で1週間保存したところ、顔料の粒子径及び粘度に変化は見られず、保存安定性が良好であることを確認した。
 赤色水性顔料分散液1の40部に対し、BDG1.8部、1,2-ヘキサンジオール5部、グリセリン10部、「サーフィノール465」(商品名 エア・プロダクツ社製)1部、及び水42.2部の混合液60部を加えた。十分撹拌した後、ポアサイズ10μmのメンブランフィルターでろ過してインクジェット用の赤色水性顔料インクを得た。得られた赤色水性顔料インクに含有される顔料粒子の数平均粒子径は114nmであった。また、赤色水性顔料インクの粘度は3.06mPa・sであった。
(実施例30~32)
 赤色顔料に代えて、(i)アゾ系黄色顔料PY-74(商品名「セイカファストイエロー2016G」、大日精化工業社製)、(ii)銅フタロシアニン顔料PB-15:3(商品名「シアニンブルーA220JC」、大日精化工業社製)、(iii)カーボンブラック顔料PB-7(商品名「S170」、デグザ社製)をそれぞれ用いたこと、並びにインクの合処方を表6に示すようにしたこと以外は、前述の実施例29と同様にして各色水性顔料分散液、及びインクジェット用の各色水性顔料インクを得た。
Figure JPOXMLDOC01-appb-I000006
 実施例29~32で得た各色水性顔料インクの顔料の数平均粒子径と粘度(初期及び70℃で1週間保存後)の測定結果を表7に示す。各色水性顔料インクをそれぞれカートリッジに充填し、インクジェットプリンタ(商品名「EM930C」、セイコーエプソン社製)を使用し、普通紙(商品名「4024」、ゼロックス社製)に、フォト720dpiの印刷モードで印刷して印刷物を得た。光学濃度計(商品名「マクベスRD-914」、マクベス社製)を使用し、得られた印刷物の印字濃度を5回測定して平均値を算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-I000007
 表7に示すように、顔料分散剤で被覆(カプセル化)された顔料についても、良好な分散性及び保存安定性を示すことが判明した。これは、疎水性のポリマー鎖Bが顔料を被覆することによって、顔料分散剤がインクの溶剤によっても剥がれることなく、さらには水可溶性のポリマー鎖Aが水に溶解し、立体効果によって凝集を防止したためであると推測される。また、高い印字濃度で印字可能であることが確認された。これは、顔料分散剤で被覆(カプセル化)された顔料が紙に浸透しにくく、紙の表面に残ったためであると考えられる。
 なお、印刷後、インクジェットインクヘッドを45℃で24時間乾燥して吐出不可能にした後、ヘッドクリーニング操作を1回行なった。その結果、いずれのインクを用いた場合でも、問題なく吐出することができた。すなわち、いったん乾燥しても、乾燥物は再度溶解及び分散可能であること、すなわち、インクの再溶解性及び再分散性が良好であるとことが明らかである。これは、カルボキシル基を含むポリマー鎖Aがイオンを形成し、乾燥しても水などの液媒体に容易に溶解するためであると考えられる。
 本発明の水性顔料分散液を用いれば、吐出性及び長期安定性に優れているとともに、ヘッドで乾燥しても容易に再分散及び再溶解させることができ、かつ、彩度とグロスを高いレベルに保ちながらも、発色性と耐光性が向上した印字物を記録可能なインクジェット用水性顔料インクを提供することができる。

Claims (7)

  1.  顔料5~35質量%、顔料分散剤0.5~25質量%、水性有機溶剤5~30質量%、及び水20~80質量%を含有するインクジェット用の水性顔料分散液であって、
     前記顔料分散剤が、ポリマー鎖Aがポリマー鎖Bにグラフトしたグラフトコポリマーと、前記ポリマー鎖Aの片末端と前記ポリマー鎖Bの片末端が結合したブロックコポリマーの少なくともいずれかであり、
     前記ポリマー鎖Aが、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含むとともに、その数平均分子量が1,000~10,000であり、
     前記ポリマー鎖Bが、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位と、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の少なくともいずれかを含み、
     前記ポリマー鎖Aと前記ポリマー鎖Bの質量比が、A:B=30~70:70~30であり、
     前記グラフトコポリマー及び前記ブロックコポリマーの数平均分子量が2,000~20,000である水性顔料分散液。
  2.  前記顔料が、カラーインデックスナンバー(C.I.)ピグメントブルー-15:3、15:4、C.I.ピグメントレッド-122、269、C.I.ピグメントバイオレット-19、C.I.ピグメントイエロ-74、155、180、C.I.ピグメントグリーン-36、58、C.I.ピグメントオレンジ-43、及びC.I.ピグメントブラック-7からなる群より選択される少なくとも一種であるとともに、その数平均一次粒子径が150nm未満である請求項1に記載の水性顔料分散液。
  3.  前記水性有機溶剤が、水に対する25℃における溶解度が20質量%以上の、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアルキルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールモノアリルエーテル、ポリ(n=1以上)アルキレン(C2~3)グリコールジアルキルエーテル、アルキレンジオール、アルキレンモノオールモノアルキルエーテル、アルキレンポリオール、及びアミド系溶剤からなる群より選択される少なくとも一種である請求項1又は2に記載の水性顔料分散液。
  4.  前記顔料が、前記顔料分散剤で被覆処理されている請求項1~3いずれか一項に記載の水性顔料分散液。
  5.  前記第一のシクロアルキル基含有(メタ)アクリレートが、シクロヘキシル(メタ)アクリレートと3,3,5-トリメチルシクロヘキシル(メタ)アクリレートの少なくともいずれかである請求項1~4いずれか一項に記載の水性顔料分散液。
  6.  請求項1~5のいずれか一項に記載の水性顔料分散液を含有し、
     前記顔料の含有割合が4~10質量%であるインクジェット用水性顔料インク。
  7.  顔料分散剤で被覆処理された分散剤被覆顔料の調製方法であって、
     (i)顔料、顔料分散剤、水性有機溶剤、水、及びアルカリ剤を混合して得た顔料分散液に酸を添加して、前記顔料分散剤を析出させる工程、又は
     (ii)前記顔料と前記顔料分散剤を混練して得た混練物を前記顔料分散剤の貧溶媒に添加して、前記顔料分散剤を析出させる工程を含み、
     前記顔料分散剤が、ポリマー鎖Aがポリマー鎖Bにグラフトしたグラフトコポリマーと、前記ポリマー鎖Aの片末端と前記ポリマー鎖Bの片末端が結合したブロックコポリマーの少なくともいずれかであり、
     前記ポリマー鎖Aが、第一のシクロアルキル基含有(メタ)アクリレートに由来する構成単位20~60質量%、(メタ)アクリル酸に由来する構成単位10~35質量%、及びその他の(メタ)アクリレートに由来する構成単位5~70質量%を含むとともに、その数平均分子量が1,000~10,000であり、
     前記ポリマー鎖Bが、第二のシクロアルキル基含有(メタ)アクリレートに由来する構成単位と、芳香環を有するビニル系モノマー又は(メタ)アクリレートに由来する構成単位の少なくともいずれかを含み、
     前記ポリマー鎖Aと前記ポリマー鎖Bの質量比が、A:B=30~70:70~30であり、
     前記グラフトコポリマー及び前記ブロックコポリマーの数平均分子量が2,000~20,000である分散剤被覆顔料の調製方法。
PCT/JP2013/053136 2012-02-16 2013-02-08 水性顔料分散液及びそれを用いたインクジェット用水性顔料インク WO2013122016A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13748957.1A EP2816088B1 (en) 2012-02-16 2013-02-08 Aqueous pigment dispersion liquid and aqueous pigment inkjet ink using same
US14/374,318 US9260589B2 (en) 2012-02-16 2013-02-08 Aqueous pigment dispersion liquid and aqueous pigment inkjet ink using same
CA2864384A CA2864384C (en) 2012-02-16 2013-02-08 Aqueous pigment dispersion liquid and aqueous pigment inkjet ink using same
KR1020147025830A KR101623678B1 (ko) 2012-02-16 2013-02-08 수성 안료 분산액 및 그것을 이용한 잉크젯용 수성 안료 잉크
CN201380009508.1A CN104114654B (zh) 2012-02-16 2013-02-08 水性颜料分散液和使用了其的喷墨用水性颜料墨
AU2013219442A AU2013219442C1 (en) 2012-02-16 2013-02-08 Aqueous pigment dispersion liquid and aqueous pigment inkjet ink using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031222A JP5782394B2 (ja) 2012-02-16 2012-02-16 水性顔料分散液及びそれを用いたインクジェット用水性顔料インク
JP2012-031222 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013122016A1 true WO2013122016A1 (ja) 2013-08-22

Family

ID=48984128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053136 WO2013122016A1 (ja) 2012-02-16 2013-02-08 水性顔料分散液及びそれを用いたインクジェット用水性顔料インク

Country Status (9)

Country Link
US (1) US9260589B2 (ja)
EP (1) EP2816088B1 (ja)
JP (1) JP5782394B2 (ja)
KR (1) KR101623678B1 (ja)
CN (1) CN104114654B (ja)
AU (1) AU2013219442C1 (ja)
CA (1) CA2864384C (ja)
TW (1) TWI535744B (ja)
WO (1) WO2013122016A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990447A1 (en) * 2014-08-28 2016-03-02 Seiko Epson Corporation Ink composition and ink set
JP7122482B1 (ja) 2022-01-13 2022-08-19 大日精化工業株式会社 バインダー成分、エマルジョン、エマルジョンの製造方法、及び水性インク

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727366B (zh) 2013-08-09 2021-05-11 日商半導體能源研究所股份有限公司 發光元件、顯示模組、照明模組、發光裝置、顯示裝置、電子裝置、及照明裝置
EP3070132B1 (en) * 2013-11-14 2019-01-09 DIC Corporation Aqueous pigment dispersion and aqueous ink for inkjet recording use
JP6468087B2 (ja) 2014-06-23 2019-02-13 セイコーエプソン株式会社 液体収容容器
JP6624845B2 (ja) * 2015-08-17 2019-12-25 キヤノン株式会社 樹脂組成物の製造方法、及び樹脂粒子の製造方法
JP6373813B2 (ja) * 2015-09-18 2018-08-15 大日精化工業株式会社 カラーフィルター用着色剤組成物及び顔料分散剤の製造方法
CN108699201B (zh) * 2016-02-03 2020-05-05 大塚化学株式会社 Aba型嵌段共聚物、分散剂和颜料分散组合物
US9828514B2 (en) 2016-04-07 2017-11-28 Eastman Kodak Company Preparation of aqueous green dispersions
WO2017176471A1 (en) * 2016-04-07 2017-10-12 Eastman Kodak Company Aqueous green pigment dispersions and inkjet compositions
US9828513B2 (en) 2016-04-07 2017-11-28 Eastman Kodak Company Aqueous green pigment dispersions and inkjet compositions
JP6704461B2 (ja) * 2016-09-30 2020-06-03 富士フイルム株式会社 水性顔料分散物、及び、水性インク組成物
JP6977262B2 (ja) 2016-12-29 2021-12-08 セイコーエプソン株式会社 インク組成物、インクセット
CN110366586A (zh) * 2017-03-14 2019-10-22 Dic株式会社 水性颜料分散体和水性颜料分散体的制造方法
JP2018154790A (ja) * 2017-03-21 2018-10-04 セイコーエプソン株式会社 分散剤及び捺染インク組成物
US11999810B2 (en) * 2018-07-05 2024-06-04 Basf Se Process for producing an aqueous polymer dispersion
JP7153623B2 (ja) * 2019-09-18 2022-10-14 大日精化工業株式会社 顔料分散液組成物及びカラーフィルター用着色剤
JPWO2022025166A1 (ja) * 2020-07-30 2022-02-03
JP6886062B1 (ja) * 2020-08-25 2021-06-16 大日精化工業株式会社 A−bブロックコポリマー、ポリマーエマルジョン、及び水性インクジェットインク
CN112759981A (zh) * 2021-01-22 2021-05-07 传美讯电子科技(珠海)有限公司 一种高附着力玻璃用水性颜料墨水

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051971A (ja) 2002-05-31 2004-02-19 Dainichiseika Color & Chem Mfg Co Ltd 水性顔料インク、画像記録方法および画像記録装置
JP2008231130A (ja) 2007-03-16 2008-10-02 Seiko Epson Corp インクジェット記録用インク
JP2009149912A (ja) 2004-01-19 2009-07-09 Dainichiseika Color & Chem Mfg Co Ltd 優れた顔料分散性を有するグラフトコポリマー
WO2010013651A1 (ja) * 2008-07-28 2010-02-04 大日精化工業株式会社 水性顔料分散液、および使用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063277A (ja) 2004-08-30 2006-03-09 Fuji Photo Film Co Ltd インクジェット記録用インク組成物およびインクジェット記録方法
WO2006082158A1 (en) * 2005-02-04 2006-08-10 Agfa Graphics Nv Stable pigment dispersions comprising a block copolymer consisting of ionic aromatic monomers
JP5221843B2 (ja) * 2005-06-10 2013-06-26 Dic株式会社 インクジェットインク用水性顔料分散体およびインクジェット記録用水性インク
JP5263793B2 (ja) 2010-05-14 2013-08-14 大日精化工業株式会社 A−bブロックコポリマー、その製造方法及び顔料分散体
JP5717134B2 (ja) 2011-03-15 2015-05-13 大日精化工業株式会社 エマルジョンバインダー及びそれを含有するインクジェット用水性顔料インク、並びにエマルジョンバインダーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051971A (ja) 2002-05-31 2004-02-19 Dainichiseika Color & Chem Mfg Co Ltd 水性顔料インク、画像記録方法および画像記録装置
JP2009149912A (ja) 2004-01-19 2009-07-09 Dainichiseika Color & Chem Mfg Co Ltd 優れた顔料分散性を有するグラフトコポリマー
JP2008231130A (ja) 2007-03-16 2008-10-02 Seiko Epson Corp インクジェット記録用インク
WO2010013651A1 (ja) * 2008-07-28 2010-02-04 大日精化工業株式会社 水性顔料分散液、および使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816088A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2990447A1 (en) * 2014-08-28 2016-03-02 Seiko Epson Corporation Ink composition and ink set
JP7122482B1 (ja) 2022-01-13 2022-08-19 大日精化工業株式会社 バインダー成分、エマルジョン、エマルジョンの製造方法、及び水性インク
JP2023103032A (ja) * 2022-01-13 2023-07-26 大日精化工業株式会社 バインダー成分、エマルジョン、エマルジョンの製造方法、及び水性インク

Also Published As

Publication number Publication date
JP5782394B2 (ja) 2015-09-24
US20150011687A1 (en) 2015-01-08
EP2816088A1 (en) 2014-12-24
AU2013219442A1 (en) 2014-08-14
EP2816088B1 (en) 2018-04-11
CA2864384C (en) 2016-07-19
CA2864384A1 (en) 2013-08-22
AU2013219442C1 (en) 2016-05-26
CN104114654B (zh) 2016-08-24
TW201336878A (zh) 2013-09-16
JP2013166867A (ja) 2013-08-29
TWI535744B (zh) 2016-06-01
KR20140126382A (ko) 2014-10-30
CN104114654A (zh) 2014-10-22
EP2816088A4 (en) 2015-08-19
US9260589B2 (en) 2016-02-16
KR101623678B1 (ko) 2016-05-23
AU2013219442B2 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5782394B2 (ja) 水性顔料分散液及びそれを用いたインクジェット用水性顔料インク
EP2687561B1 (en) Emulsion binder, aqueous pigment ink for inkjet containing same, and method for producing emulsion binder
CN108350298B (zh) 水基颜料分散体
JP6049027B2 (ja) 水性顔料分散液の製造方法
JP5636580B2 (ja) インクジェットインク用水性顔料分散液およびインクジェット用水性顔料インク
US8710117B2 (en) Crosslinked core/shell polymer particles
JP6948285B2 (ja) 顔料分散剤及びその製造方法、水性顔料分散液、並びに水性インクジェットインク
WO2010071177A1 (ja) インクジェット記録用水系インク
JP7216694B2 (ja) 顔料分散剤及びその製造方法、インクジェットインク用顔料分散液、及び水性インクジェットインク
JP6482025B2 (ja) ポリマー水分散体、その製造方法、水性顔料分散液及びインクジェット記録用インク
JP6870261B2 (ja) インクジェット記録用水性インク及びインクカートリッジ
AU2015264862B2 (en) Aqueous pigment dispersion liquid and aqueous pigment inkjet ink using same
JP7316470B1 (ja) 顔料分散液
JP6697405B2 (ja) 顔料分散液、水性インクジェットインク、及び顔料分散液の製造方法
JP2006176623A (ja) インクジェット記録用水系インク
JP4769446B2 (ja) インクジェット記録用顔料水分散体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013748957

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374318

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2864384

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013219442

Country of ref document: AU

Date of ref document: 20130208

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025830

Country of ref document: KR

Kind code of ref document: A