WO2013121603A1 - 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置 - Google Patents

単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置 Download PDF

Info

Publication number
WO2013121603A1
WO2013121603A1 PCT/JP2012/068917 JP2012068917W WO2013121603A1 WO 2013121603 A1 WO2013121603 A1 WO 2013121603A1 JP 2012068917 W JP2012068917 W JP 2012068917W WO 2013121603 A1 WO2013121603 A1 WO 2013121603A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
steam turbine
chamber
high pressure
rotor
Prior art date
Application number
PCT/JP2012/068917
Other languages
English (en)
French (fr)
Inventor
丸山 隆
朝春 松尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280068547.4A priority Critical patent/CN104105847B/zh
Priority to EP12868914.8A priority patent/EP2816201B1/en
Priority to KR1020147020487A priority patent/KR101644254B1/ko
Publication of WO2013121603A1 publication Critical patent/WO2013121603A1/ja
Priority to IN1437MUN2014 priority patent/IN2014MN01437A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/243Flange connections; Bolting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/02Plural gas-turbine plants having a common power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present disclosure relates to a single-chamber steam turbine used in a power plant or the like and a single-shaft combined cycle power generator using the same.
  • a single-chamber type steam turbine for example, a single cabin
  • a high pressure cascade and a low pressure cascade are housed in a single casing for shortening the total axial length and compacting the steam turbine.
  • Single-casing Reheat Turbine (SRT) is known.
  • the low pressure chamber which is the largest in weight is fixed by an anchor, and the entire casing (especially high pressure chamber and medium pressure chamber) is thermally expanded freely from this anchor To prevent thermal strain.
  • the rotor thermally extends from a thrust bearing that rotatably supports the rotor. Therefore, from the viewpoint of reducing the thermal expansion difference by aligning the direction of thermal expansion between the rotor and the casing, the low pressure chamber provided with the anchor that is the starting point of the thermal expansion of the casing is the starting point of the thermal expansion of the rotor It is necessary to arrange it on the side close to the thrust bearing.
  • Some combined cycle power generation systems include a single-shaft type in which a steam turbine and a gas turbine are connected on one axis to drive a common generator.
  • a single-shaft combined cycle power generation system using a single-chamber type steam turbine has come to be positioned as one of the mainstream power generation apparatuses with the recent increase in size of final blades.
  • a thrust bearing is provided between the steam turbine and the gas turbine, and the rotor thermally extends from the thrust bearing.
  • the low pressure chamber fixed by the anchor that is the starting point of the thermal expansion of the casing is closer to the thrust bearing that is the starting point of the thermal expansion of the rotor It is arranged towards the turbine side. Therefore, even in a single-shaft combined power generation system using a single-chamber steam turbine, in order to cope with a large thermal expansion difference between the high-pressure chamber and the rotor disposed on the far side from the thrust bearing, On the other hand, since the clearance between the rotating part and the stationary part in the high pressure chamber has to be set large, the performance deterioration of the high pressure blade row becomes a problem.
  • Patent Document 1 does not cover a single-chamber type steam turbine, a gap adjusting device is disclosed which adjusts a gap between a stationary portion and a rotating portion of the steam turbine.
  • this clearance adjustment device the axial movement of the collar projecting from the rotor is detected by the expansion difference detector, and the casing of the steam turbine is moved by the hydraulic jack based on the detection signal of the expansion difference detector.
  • the clearance adjustment device described in Patent Document 1 is not directed to a single-chamber steam turbine in which the high-pressure cascade and the low-pressure cascade are housed in a single cabin.
  • moving the cabin with a hydraulic jack causes problems such as enlargement of a hydraulic system. Therefore, it is difficult to suppress the performance degradation of the high-pressure cascade by adjusting the gap between the high pressure chamber of the single-chamber steam turbine and the rotor using the gap adjusting device described in Patent Document 1.
  • At least one embodiment of the present invention has been made in view of the above-described circumstances, and provides a single-chamber steam turbine capable of suppressing the performance deterioration of a high pressure cascade and a single-shaft combined cycle power generator using the same.
  • the purpose is
  • the single-chamber type steam turbine is a single-chamber type steam turbine having at least a high pressure cascade and a low pressure cascade, and includes a high pressure chamber in which the high pressure cascade is accommodated; A low pressure chamber in which a row is stored, and an expansion joint which connects the high pressure chamber and the low pressure chamber and seals the internal space of the high pressure chamber and the low pressure chamber.
  • single-chamber steam turbine refers to a steam turbine in which at least a high pressure cascade and a low pressure cascade are housed in a single compartment
  • high pressure chamber includes low pressure, including high pressure cascades. It refers to the part where the blade row other than the blade row is stored.
  • a single-chamber steam turbine may have a high pressure cascade and a low pressure cascade, and may have an intermediate pressure cascade, in which case the high pressure chamber houses a high pressure cascade and an intermediate pressure cascade.
  • the “expansion joint” refers to a joint that seals the internal space of the casing and can absorb the thermal expansion of the high pressure chamber and / or the low pressure chamber.
  • the expansion joint can be composed of an elastic body or a bellows that can be deformed according to the thermal elongation.
  • the high pressure chamber can be disposed closer to the thrust bearing which is the starting point of the thermal expansion of the rotor. This is because the high pressure chamber is separated from the low pressure chamber fixed by the anchor, and the high pressure chamber can be thermally expanded independently, so even if the high pressure chamber is disposed closer to the thrust bearing, the heat of the casing and rotor It is because the extension direction does not become reverse. Therefore, if the high pressure chamber is disposed closer to the thrust bearing, the difference in thermal expansion between the high pressure chamber and the rotor is suppressed, so that the clearance between the rotating part and the stationary part in the high pressure chamber is reduced. It is possible to suppress the performance degradation of the row.
  • the single-chamber steam turbine further includes position adjustment means for adjusting the position of the high pressure chamber in the axial direction of the rotor.
  • the position adjusting means By adjusting the position of the high pressure chamber by the position adjusting means in this way, even if the clearance between the rotating part and the stationary part in the high pressure chamber is relatively small, the thermal expansion difference between the high pressure chamber and the rotor is canceled out. Thus, the contact between the rotating part and the stationary part can be prevented. Therefore, the clearance between the rotating portion and the stationary portion in the high pressure chamber can be further reduced, and the performance deterioration of the high pressure cascade can be reliably suppressed.
  • the position adjustment means can adjust the position of the high pressure chamber because the high pressure chamber is separated from the low pressure chamber which is the heaviest part in the single-chamber type steam turbine. That is, if it is only a relatively lightweight high pressure chamber, the position can be easily adjusted by position adjusting means comprising a known actuator such as a hydraulic jack.
  • the position adjusting means is attached to a casing support of the high pressure chamber, and moves the casing support in a direction opposite to each other in the axial direction of the rotor. It includes a hydraulic device that supplies hydraulic pressure to the pair of hydraulic cylinders, and a switching valve that is provided between the pair of hydraulic cylinders and the hydraulic device and switches the hydraulic cylinder to which the hydraulic pressure is supplied.
  • the high pressure chamber is advanced / retracted along the axial direction of the rotor by switching the hydraulic cylinder to be used by the switching valve, and the heat of the high pressure chamber and the rotor according to the operating condition of the steam turbine By canceling the expansion difference, the contact between the rotating portion and the stationary portion can be prevented.
  • the single-chamber type steam turbine is based on a detection unit that detects a thermal expansion difference between the rotor of the steam turbine and the high pressure chamber, and a detection result of the thermal expansion difference by the detection unit. And control means for controlling the position adjusting means.
  • the position of the high pressure chamber can be adjusted to cancel the thermal expansion difference between the rotor and the high pressure chamber, and the contact between the rotating portion and the stationary portion can be reliably prevented.
  • the rotor has a disk portion whose shaft diameter is different from that of the other portion of the rotor, or a tapered surface whose shaft diameter is not constant, outside the casing of the steam turbine.
  • the detection means may include a sensor that measures the distance to the end face or the tapered surface of the disk portion of the rotor.
  • a single-shaft combined cycle power generation apparatus is a single-shaft combined cycle power generation apparatus in which a generator, the single-chamber type steam turbine, and a gas turbine are connected in this order.
  • a thrust bearing is provided between the steam turbine and the high pressure chamber and the low pressure chamber arranged in this order from the side close to the thrust bearing, and the low pressure chamber is fixed by an anchor.
  • the high pressure chamber is disposed on the side close to the thrust bearing which is the starting point of the thermal expansion of the rotor, the thermal expansion difference between the high pressure chamber and the rotor is suppressed. Therefore, the clearance between the rotating part and the stationary part in the high pressure chamber can be reduced to suppress the performance deterioration of the high pressure cascade.
  • the reason why the high pressure chamber can be arranged closer to the thrust bearing in this way is that the low pressure chamber and the high pressure chamber fixed by the anchor are separated, and even if the high pressure chamber is provided near the thrust bearing And the thermal expansion direction of the rotor is not reversed.
  • position adjusting means is provided to adjust the position of the high pressure chamber in the axial direction of the rotor.
  • the position adjusting means By adjusting the position of the high pressure chamber by the position adjusting means in this way, even if the clearance between the rotating part and the stationary part in the high pressure chamber is relatively small, the thermal expansion difference between the high pressure chamber and the rotor is canceled out. Thus, the contact between the rotating part and the stationary part can be prevented. Therefore, the clearance between the rotating portion and the stationary portion in the high pressure chamber can be further reduced, and the performance deterioration of the high pressure cascade can be reliably suppressed.
  • the single-shaft combined cycle power generation system is a single-shaft combined cycle power generation system in which a generator, the single-chamber steam turbine, and a gas turbine are connected in this order, A thrust bearing is provided between the steam turbine and the low pressure chamber and the high pressure chamber arranged in this order from the side close to the thrust bearing, and the casing of the steam turbine is arranged and the position of the high pressure chamber in the rotor axial direction is adjusted.
  • the low pressure chamber may be fixed by an anchor.
  • the high pressure chamber can be disposed closer to the thrust bearing which is the starting point of the thermal expansion of the rotor. This is because the high pressure chamber is separated from the low pressure chamber fixed by the anchor, and the high pressure chamber can be thermally expanded independently, so even if the high pressure chamber is disposed closer to the thrust bearing, the heat of the casing and rotor It is because the extension direction does not become reverse. Therefore, if the high pressure chamber is disposed closer to the thrust bearing, the difference in thermal expansion between the high pressure chamber and the rotor is suppressed, so that the clearance between the rotating part and the stationary part in the high pressure chamber is reduced.
  • FIG. 1 is a top view showing a configuration of a steam turbine of a single-shaft combined cycle power generator according to an embodiment. It is the side view seen from the arrow A direction of FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG. 2; It is sectional drawing which shows the structure of the connection part of the high-medium pressure chamber and low-pressure chamber of the steam turbine in one Embodiment. It is a figure which shows the structure of the position adjustment means which adjusts the position of the high-intermediate pressure chamber in one Embodiment.
  • FIG. 1 is a schematic configuration view showing a single-shaft combined cycle power generator according to one embodiment.
  • FIG. 2 is a top view showing the configuration of the steam turbine of the single-shaft combined cycle power generator according to one embodiment.
  • FIG. 3 is a side view as viewed in the direction of arrow A in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 5 is a cross-sectional view showing the structure of the connection portion between the high and medium pressure chambers and the low pressure chamber of the steam turbine (the lower side of the two portions indicated by symbol C in FIG. 4).
  • a generator 2 As shown in FIG. 1, in the single-shaft combined cycle power generator 1, a generator 2, a steam turbine 3, and a gas turbine 4 are arranged in the same axis (rotor 9) in this order.
  • the exhaust gas discharged from the gas turbine 4 is supplied to the exhaust heat recovery boiler 5.
  • the exhaust heat recovery boiler 5 In the exhaust heat recovery boiler 5, the exhaust gas discharged from the gas turbine 4 and the feed water are subjected to heat exchange, and the steam generated there is supplied to the steam turbine 3 via the steam control valve 6.
  • the steam which has done work in the steam turbine 3 is condensed by the condenser 7, and is fed to the exhaust heat recovery boiler 5 by the feed pump 8. It is refluxed.
  • the steam turbine 3 has a high medium pressure chamber 10 and a low pressure chamber 12 as shown in FIGS. 2 and 3. As shown in FIG. 4, a high pressure blade row 22 and a medium pressure blade row 24 are housed in the high and medium pressure chamber 10, and a low pressure blade row 26 is housed in the low pressure chamber 12. In the steam turbine 3, the high and medium pressure chamber 10 and the low pressure chamber 12 are connected to each other to form a single compartment. In addition, the structure of the connection part C (refer FIG. 4) of the high medium pressure chamber 10 and the low pressure chamber 12 is explained in full detail later using FIG.
  • a first bearing housing 14 for housing a thrust bearing 15 and a radial bearing 17 is provided between the gas turbine 4 and the steam turbine 3, and the steam turbine 3 and the generator 2
  • a second bearing box 16 for accommodating the radial bearing 17 is provided between them.
  • the thrust bearing 15 and the radial bearing 17 pivotally support the rotor 9 at both ends of the casing (high medium pressure chamber 10 and low pressure chamber 12) of the steam turbine 3.
  • the first bearing box 14 and the second bearing box 16 are installed on the foundation 18.
  • the low pressure chamber 12 of the steam turbine 3 is fixed by an anchor 20.
  • the high and medium pressure chamber 10 has a half structure of the upper half chamber 10A and the lower half chamber 10B, and is supported by the foundation 18 via the vehicle room support portion 11 projecting from the lower half chamber 10B ( However, since the foundation 18 in Fig. 3 shows a cross section cut along a vertical plane passing through the central axis of the rotor, how the casing support portion 11 is supported by the foundation 18 does not appear in Fig. 3.
  • the manner in which the chamber support 11 is supported by the foundation 18 is illustrated in FIG. 2 and in FIG.
  • high pressure steam 40 generated in the exhaust heat recovery boiler 5 flows into the high and medium pressure chamber 10 to work in the high pressure cascade 22 and then flows out as high pressure exhaust steam 41. .
  • the high pressure exhaust steam 41 is heated by a reheater (not shown), and then reenters the high and medium pressure chamber 10 as reheated steam 42 to work in the medium pressure blade row 24.
  • the low pressure steam 43 flows into the low pressure chamber 12 and works in the low pressure blade row 26, and then is led as the low pressure exhaust steam 44 through the exhaust chamber 46 to the condenser 7.
  • the high and medium pressure chamber 10 is disposed on the gas turbine 4 side (that is, the side close to the thrust bearing 15 which is the starting point of thermal expansion of the rotor 9). .
  • the difference in thermal expansion between the high and medium pressure chamber 10 and the rotor 9 is suppressed, so the clearance between the rotating portion (moving blade row) and the stationary portion (stationary blade row) in the high and medium pressure chamber 10 is set small. It is possible to Therefore, the performance degradation of the high pressure cascade 22 can be suppressed.
  • the high medium pressure chamber 10 and the low pressure chamber 12 are separated, and both are connected by the expansion joint 30. There is.
  • the high intermediate pressure chamber 10 is provided on the side close to the thrust bearing 15 by separating the high intermediate pressure chamber 10 from the low pressure chamber 12 fixed by the anchor 20, the thermal expansion of the high intermediate pressure chamber 10 and the rotor 9 The direction is not reversed. Therefore, the above-described arrangement in which the high and medium pressure chamber 10 is provided on the side close to the thrust bearing 15 is possible.
  • the expansion joint 30 is a joint which seals the internal space 31 of the casing (high medium pressure chamber 10 and low pressure chamber 12) of the steam turbine 3 and can absorb the thermal expansion of the high medium pressure chamber 10 and / or low pressure chamber 12
  • it can be composed of an elastic body or a bellows that can be deformed according to thermal elongation.
  • connection block 32 and fixed bolt 34 are fixed to rigid by connection block 32 and fixed bolt 34, and it is possible to lift the whole vehicle room with a crane.
  • the high medium pressure chamber 10 and the low pressure chamber 12 are separated by removing the fixing bolt 34 or removing the connection block 32 itself. The thermal expansion of the high and medium pressure chamber 10 and / or the low pressure chamber 12 is absorbed.
  • the high and medium pressure of the steam turbine 3 is obtained.
  • a chamber 10 and a low pressure chamber 12 are connected by an expansion joint 30 and a thrust bearing 15 is provided between the gas turbine 4 and the steam turbine 3, and the high medium pressure chamber 10 and the low pressure chamber 12 are provided from the side close to the thrust bearing 15.
  • the casings of the steam turbine 3 are arranged in order, and the low pressure chamber 12 is fixed by the anchor 20.
  • the high and medium pressure chamber 10 is disposed on the side close to the thrust bearing 15 which is the starting point of the thermal expansion of the rotor 9, the thermal expansion difference between the high and intermediate pressure chamber 10 and the rotor 9 is suppressed. Therefore, the clearance between the rotating portion and the stationary portion in the high and medium pressure chamber 10 can be reduced, and the performance deterioration of the high pressure blade row 22 can be suppressed.
  • the steam turbine of the present embodiment is in common with the steam turbine 3 of the first embodiment except that a position adjusting means for adjusting the position of the high / medium pressure chamber 10 in the rotor axial direction is provided. Therefore, the description of the parts in common with the first embodiment will be omitted, and the parts different from the first embodiment will be mainly described.
  • FIG. 6 is a view showing an example of the configuration of position adjustment means for adjusting the position of the high-medium pressure chamber 10 in one embodiment.
  • the position adjusting means 50 includes a pair of hydraulic cylinders 52 (52A, 52B) attached to the compartment support 11 (see FIGS. 2 and 3) of the high and medium pressure chamber 10 and the hydraulic cylinders 52. It includes a hydraulic device 54 for supplying the hydraulic pressure, and a switching valve 56 for switching the hydraulic cylinder 52 to which the hydraulic pressure is supplied.
  • the pair of hydraulic cylinders 52 are attached to the passenger compartment support 11 so as to face each other.
  • the piston portion 53 of the hydraulic cylinder 52 (52A, 52B) is attached to the inner wall surface of the recess 51 provided in the compartment support portion 11.
  • the hydraulic pressure is supplied to the hydraulic cylinder 52A
  • the casing support portion 11 moves toward the left side in FIG. 6 along the axial direction of the rotor.
  • the hydraulic pressure is supplied to the hydraulic cylinder 52B
  • the casing support portion 11 moves to the right in FIG. 6 along the axial direction of the rotor.
  • the hydraulic piston 52 is supported by the foundation 18 so as not to move even when receiving a reaction force from the casing support portion 11.
  • a relief valve (not shown) is provided so that the pressure in the other hydraulic cylinder 52 does not become excessive when one hydraulic cylinder 52 receives the supply of hydraulic pressure.
  • the hydraulic device 54 can use, for example, a hydraulic pump. Further, the switching valve 56 is a three-way valve connected to the hydraulic cylinder 52 (52A, 52B) and the hydraulic device 54.
  • a control device 58 for controlling the switching valve 56 and a differential expansion gauge 59 for detecting the thermal expansion difference between the high and medium pressure chamber 10 and the rotor 9 are provided. Then, the control device 58 controls the switching valve 56 based on the thermal expansion difference detected by the expansion difference meter 59 to switch the supply destination of the hydraulic pressure generated by the hydraulic device 54. For example, when the high / medium pressure chamber 10 thermally extends in the right direction of FIG. 6 relative to the rotor 9, the control device 58 applies hydraulic pressure to the hydraulic cylinder 52A based on the detection result of the differential expansion gauge 59. The switching valve 56 is controlled so as to supply and move the passenger compartment support 11 toward the left side in FIG. As a result, the thermal expansion difference between the high and medium pressure chamber 10 and the rotor 9 is canceled out, and the contact between the rotating portion and the stationary portion in the high and medium pressure chamber 10 is prevented.
  • FIG. 7A and FIG. 7B are diagrams showing the configuration of the differential expansion meter 59 according to the embodiment.
  • the extensometer 59 includes a tapered surface 59A provided on the rotor 9 and having a non-uniform shaft diameter, and a non-contact sensor 59B disposed opposite to the tapered surface 59A.
  • the tapered surface 59 ⁇ / b> A and the non-contact sensor 59 ⁇ / b> B are provided outside the cabin of the steam turbine 3.
  • the non-contact sensor 59B measures the distance ⁇ X to the tapered surface 59A, and calculates the amount of thermal elongation of the rotor 9 from ⁇ X.
  • FIG. 7A the extensometer 59 includes a tapered surface 59A provided on the rotor 9 and having a non-uniform shaft diameter, and a non-contact sensor 59B disposed opposite to the tapered surface 59A.
  • the rotor 9 is provided with a disk portion 59C having a shaft diameter different from that of the other portion, and the non-contact sensor 59B measures the distance ⁇ X to the disk portion 59C, whereby the thermal elongation of the rotor 9 is obtained.
  • the amount may be calculated.
  • the difference between the calculated thermal expansion of the rotor 9 and the thermal expansion of the casing of the steam turbine 3 separately measured is obtained, whereby the thermal expansion difference between the rotor 9 and the high / medium pressure chamber 10 can be obtained.
  • the non-contact sensor 59B when the non-contact sensor 59B is fixed directly or indirectly to the casing of the steam turbine 3 (for example, when the non-contact sensor 59B is fixed to a bearing box integrated with the casing)
  • the thermal expansion difference between the rotor and the high / medium pressure chamber 10 may be directly obtained from the distance ⁇ X (see FIGS. 7A and 7B) measured by the non-contact sensor 59B.
  • the position adjusting means 50 is provided to arbitrarily adjust the position of the high intermediate pressure chamber 10 in the rotor axial direction, the position between the rotating portion and the stationary portion in the high intermediate pressure chamber 10 can be adjusted. Even when the clearance is relatively small, the thermal expansion difference between the high and medium pressure chamber 10 and the rotor 9 can be canceled to prevent the contact between the rotating portion and the stationary portion. Therefore, the clearance between the rotating part and the stationary part in the high and medium pressure chamber 10 can be further reduced, and the performance deterioration of the high pressure blade row 22 can be reliably suppressed.
  • the high intermediate pressure chamber 10 is separated from the low pressure chamber 12 which is the heaviest part of the high intermediate pressure chamber 10 (the high intermediate pressure chamber 10 can be adjusted by the expansion joint 30).
  • the pressure chamber 10 and the low pressure chamber 12 are connected). That is, if only the relatively light high medium pressure chamber 10 is used, the position can be easily adjusted by the position adjusting means 50 using the hydraulic pressure.
  • the switching valve 56 is controlled by the control means 58 based on the detection result of the thermal expansion difference between the high and medium pressure chamber 10 and the rotor 9 by the differential expansion meter 59, the high and intermediate pressure chamber 10 and the rotor 9 The thermal expansion difference can be reliably cancelled, and the contact between the rotating part and the stationary part can be more reliably prevented.
  • the steam turbine according to the present embodiment is the same as the steam turbine according to the present embodiment except that the position adjusting means 50 is provided to adjust the position of the high and medium pressure chamber 10 in the rotor axial direction It is common to the steam turbine 3 of the first embodiment.
  • the position adjusting means 50 has already been described in the second embodiment. Therefore, the description of the parts common to the first embodiment or the second embodiment will be omitted here, and the parts different from the first and second embodiments will be mainly described.
  • FIG. 8 is a side view showing the configuration of the steam turbine of the single-shaft combined cycle power generator according to one embodiment.
  • the low pressure chamber 12 is disposed on the side closer to the first bearing housing 14 (ie, the side closer to the thrust bearing 15 (see FIG. 4) which is the starting point of thermal expansion of the rotor 9). It is done.
  • the low pressure chamber 12 is disposed closer to the thrust bearing 15 in the same manner as a conventional single-chamber steam turbine.
  • the high medium pressure chamber 10 and the low pressure chamber 12 are connected by an expansion joint 30 (see FIG. 5) as in the first embodiment.
  • position adjustment means 50 is provided which adjusts the position of the high medium pressure chamber 10 in the axial direction of the rotor in the chamber support portion 11 of the high medium pressure chamber 10.
  • the position adjustment means 50 can arbitrarily adjust the position of the high-intermediate pressure chamber 10, the thermal expansion difference between the high-intermediate pressure chamber 10 and the rotor 9 is cancelled, and the rotating portion and the stationary portion Contact can be prevented. Therefore, even in the case where the low pressure chamber 12 fixed by the anchor 20 is provided on the side close to the thrust bearing 15 which is the starting point of the thermal expansion of the rotor 9 as in the prior art, the high and medium pressure chamber 10 is employed.
  • the reduction of the performance of the high-pressure cascade 22 can be suppressed by reducing the clearance between the rotating part and the stationary part in the inside.
  • the high intermediate pressure chamber 10 is separated from the low pressure chamber 12 which is the heaviest part of the high intermediate pressure chamber 10 (the high intermediate pressure chamber 10 can be adjusted by the expansion joint 30).
  • the pressure chamber 10 and the low pressure chamber 12 are connected). That is, if only the relatively light high medium pressure chamber 10 is used, the position can be easily adjusted by the position adjusting means 50 using the hydraulic pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

高圧翼列の性能低下を抑制しうる単車室型蒸気タービン及びこれを用いた一軸型コンバインドサイクル発電装置を提供することを目的とし、蒸気タービン3は、高圧翼列22および低圧翼列26を有する単車室型蒸気タービンであって、高圧翼列22が収納される高中圧室10と、低圧翼列26が収納される低圧室12と、高中圧室10および低圧室12を連結するとともに、高中圧室10および低圧室12の内部空間31を密封する伸縮継手30とを備える。

Description

単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置
 本開示は、発電所等で用いられる単車室型蒸気タービン及びこれを用いた一軸型コンバインドサイクル発電装置に関する。
 発電所等で用いられる蒸気タービンとして、全軸長の短縮や蒸気タービンのコンパクト化のために高圧翼列および低圧翼列を単一の車室に収納した単車室型蒸気タービン(例えば、単車室再熱タービン:SRT;Single casing Reheat Turbine)が知られている。
 蒸気タービンでは、運転条件から想定される回転部と静止部との軸方向間隙の変動量を踏まえて、回転部および静止部が接触しないようなクリアランスを設けるとともに、静止部に対して回転部をオフセットして据え付けるのが一般的である。これは、蒸気タービンの停止状態から定格運転状態に至るまでの温度変化等により、ロータと車室との間に熱伸び差が生じ、回転部と静止部との間隙が変動することを考慮したものである。
 ここで、単車室型蒸気タービンの場合、最も重量が大きい箇所である低圧室をアンカーで固定し、このアンカーを起点に車室全体(特に、高圧室及び中圧室)を自由に熱伸びさせて、熱ひずみを防止するようになっている。一方、ロータは、ロータを回転自在に支持するスラスト軸受を起点として熱伸びする。
 このため、ロータと車室との熱伸びの方向を揃えて熱伸び差を低減する観点から、車室の熱伸びの起点となるアンカーが設けられた低圧室を、ロータの熱伸びの起点となるスラスト軸受に近い側に配置する必要がある。
 ところで、単車室型蒸気タービンの低圧室をスラスト軸受に近い側に配置すると、必然的に高圧室はスラスト軸受から遠い側に配置することになり、その分だけ高圧室とロータとの熱伸び差が大きくなるから、高圧室内における回転部と静止部との間に大きなクリアランスを設ける必要がある。ところが、高圧室内における回転部と静止部との間に大きなクリアランスを設けると、高圧翼列の性能が低下してしまう問題がある。特に、高圧室に収納される高圧翼列の翼体格は小さいため、高圧室内における回転部と静止部との間のクリアランスの増大によって高圧翼列の性能が大きく低下する傾向にある。
 したがって、単車室型蒸気タービンの高圧室内における回転部と静止部との間のクリアランスを低減するために、高圧室とロータとの熱伸び差を小さく抑える技術の開発が望まれる。
 一方、近年、火力発電所等に用いられる発電設備として、蒸気タービンとガスタービンとを組み合わせたコンバインドサイクル発電装置が脚光を浴びている。コンバインドサイクル発電装置には、蒸気タービンとガスタービンとが一軸上に連結され共通の発電機を駆動する一軸型のものがある。中でも、単車室型蒸気タービンを用いた一軸型コンバインドサイクル発電装置は、近年の最終翼の長大化に伴って、現在主流の発電装置の一つとして位置づけられるに至っている。
 単車室型蒸気タービンを用いた一軸型コンバインドサイクル発電装置では、蒸気タービンとガスタービンとの間にスラスト軸受が設けられ、ロータはこのスラスト軸受を起点として熱伸びする。よって、ロータと車室との熱伸び方向を揃える観点から、車室の熱伸びの起点となるアンカーで固定された低圧室は、ロータの熱伸びの起点となるスラスト軸受に近い側、すなわちガスタービン側に向けて配置される。したがって、単車室型蒸気タービンを用いた一軸型コンバインド発電装置においても、スラスト軸受から遠い側に配置される高圧室とロータとの大きな熱伸び差に対応するために、高圧翼列の翼体格に対して高圧室内における回転部と静止部との間のクリアランスを大きく設定せざるを得ないから、高圧翼列の性能低下が問題となる。
 特に、コンバインドサイクル発電装置は、大規模な火力発電所に設置されるのが通常であり、蒸気タービンの全軸長も大きい。したがって、単車室型蒸気タービンを用いたコンバインドサイクル発電装置では、高圧室内における回転部と静止部との間のクリアランスを相当大きく設定する必要があるから、高圧翼列の性能低下が問題となりやすい。
 この点、特許文献1には、単車室型蒸気タービンを対象とするものではないが、蒸気タービンの静止部と回転部との隙間を調節する隙間調整装置が開示されている。この隙間調整装置では、ロータから突出したつばの軸方向の移動を伸び差検出器で検知し、伸び差検出器の検出信号に基づいて、蒸気タービンのケーシングを油圧ジャッキにより移動させるようになっている。
特開昭59-18207号公報
 しかしながら、特許文献1に記載された隙間調整装置は、高圧翼列および低圧翼列が単一の車室に収納された単車室型蒸気タービンを対象とするものではない。車室全体の重量が大きい単車室型蒸気タービンの場合、特許文献1記載の隙間調整装置のように、油圧ジャッキで車室を移動させることは油圧装置の大型化等の問題が生じる。
 よって、特許文献1に記載の隙間調整装置を用いて、単車室型蒸気タービンの高圧室とロータとの隙間を調節して、高圧翼列の性能低下を抑制することは難しい。
 本発明の少なくとも一実施形態は、上述の事情に鑑みてなされたものであり、高圧翼列の性能低下を抑制しうる単車室型蒸気タービン及びこれを用いた一軸型コンバインドサイクル発電装置を提供することを目的とする。
 本発明の少なくとも一実施形態に係る単車室型蒸気タービンは、少なくとも高圧翼列および低圧翼列を有する単車室型蒸気タービンであって、前記高圧翼列が収納される高圧室と、前記低圧翼列が収納される低圧室と、前記高圧室および前記低圧室を連結するとともに、前記高圧室および前記低圧室の内部空間を密封する伸縮継手とを備えることを特徴とする。
 本明細書において、「単車室型蒸気タービン」は、少なくとも高圧翼列および低圧翼列が単一の車室に収納された蒸気タービンをいい、「高圧室」は、高圧翼列を含め、低圧翼列以外の翼列が収納される部分をいう。例えば、単車室型蒸気タービンは高圧翼列および低圧翼列に加えて中圧翼列を有していてもよく、この場合、高圧室には高圧翼列および中圧翼列が収納される。
 また「伸縮継手」とは、車室の内部空間を密封するとともに、高圧室及び/又は低圧室の熱伸びを吸収しうる継手をいう。例えば、伸縮継手は、熱伸びに応じて変形可能な弾性体やベローズで構成することができる。
 上記単車室型蒸気タービンによれば、高圧室と低圧室とを伸縮継手で連結したので、高圧室は、ロータの熱伸びの起点となるスラスト軸受に近い側に配置することができる。これは、アンカーで固定される低圧室から高圧室が分離されており、高圧室は独自に熱膨張しうるから、高圧室をスラスト軸受に近い側に配置しても、車室とロータの熱伸び方向が逆にならないためである。よって、高圧室をスラスト軸受に近い側に配置すれば、高圧室とロータとの熱伸び差が抑制されるから、高圧室内における回転部と静止部との間のクリアランスを低減して、高圧翼列の性能低下を抑えることができる。
 幾つかの実施形態において、上記単車室型蒸気タービンは、ロータ軸方向における前記高圧室の位置を調節する位置調節手段をさらに備える。
 このように位置調節手段によって高圧室の位置を調節することで、高圧室内における回転部と静止部との間のクリアランスが比較的小さい場合であっても、高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できる。したがって、高圧室内における回転部と静止部との間のクリアランスをより一層低減して、高圧翼列の性能低下を確実に抑制できる。
 さらに、高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できることから、従来のように、ロータの熱伸びの起点となるスラスト軸受に近い側に、アンカーで固定される低圧室を設ける配置を採用する場合であっても、高圧室内における回転部と静止部との間のクリアランスを低減して高圧翼列の性能低下を抑えることができる。
 なお、位置調節手段による高圧室の位置の調節が可能なのは、上記単車室型蒸気タービンにおいて、最も重い箇所である低圧室から高圧室が分離されているためである。すなわち、比較的軽量の高圧室だけであれば、油圧ジャッキ等の公知のアクチュエータからなる位置調節手段によって、容易に位置を調節することができる。
 幾つかの実施形態において、前記位置調整手段は、前記高圧室の車室サポート部に取り付けられ、該車室サポート部をロータ軸方向に沿って、互いに逆方向に押し動かす一対の油圧シリンダと、前記一対の油圧シリンダに油圧を供給する油圧装置と、前記一対の油圧シリンダ及び前記油圧装置の間に設けられ、前記油圧が供給される油圧シリンダを切り替える切替弁とを含む。
 これにより、切替弁によって使用する油圧シリンダを切り替えることで、ロータ軸方向に沿って高圧室を進退させて、蒸気タービンの運転状態(昇温中又は降温中等)に応じて高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できる。
 幾つかの実施形態において、上記単車室型蒸気タービンは、前記蒸気タービンの前記ロータと前記高圧室との熱伸び差を検出する検出手段と、前記検出手段による熱伸び差の検出結果に基づいて前記位置調整手段を制御する制御手段とをさらに備える。
 これにより、ロータと高圧室の熱伸び差を打ち消すように高圧室の位置を調節し、回転部と静止部との接触を確実に防止できる。
 幾つかの実施形態において、前記ロータは、前記蒸気タービンの車室の外部において、ロータのそれ以外の部分と軸径を異ならせたディスク部、あるいは軸径が一定でないテーパ面を有し、前記検出手段は、前記ロータの前記ディスク部の端面あるいはテーパ面までの距離を計測するセンサを含んでいてもよい。
 本発明の少なくとも一実施形態に係る一軸型コンバインドサイクル発電装置は、発電機、上記単車室型蒸気タービン、ガスタービンがこの順に連結された一軸型コンバインドサイクル発電装置であって、前記ガスタービンと前記蒸気タービンとの間にスラスト軸受を設け、該スラスト軸受に近い側から前記高圧室、前記低圧室の順で前記蒸気タービンの車室を配列し、前記低圧室をアンカーによって固定したことを特徴とする。
 この一軸型コンバインドサイクル発電装置によれば、ロータの熱伸びの起点となるスラスト軸受に近い側に高圧室を配置したので、高圧室とロータとの熱伸び差が抑制される。よって、高圧室内における回転部と静止部との間のクリアランスを低減して、高圧翼列の性能低下を抑えることができる。
 なお、このようにスラスト軸受に近い側に高圧室を配置できるのは、アンカーで固定される低圧室と高圧室が分離されており、スラスト軸受の近い側に高圧室を設けても、車室とロータの熱伸び方向が逆にならないからである。
 幾つかの実施形態において、ロータ軸方向における前記高圧室の位置を調節する位置調整手段が設けられる。
 このように位置調節手段によって高圧室の位置を調節することで、高圧室内における回転部と静止部との間のクリアランスが比較的小さい場合であっても、高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できる。したがって、高圧室内における回転部と静止部との間のクリアランスをより一層低減して、高圧翼列の性能低下を確実に抑制できる。
 あるいは、幾つかの実施形態において、一軸型コンバインドサイクル発電装置は、発電機、上記単車室型蒸気タービン、ガスタービンがこの順に連結された一軸型コンバインドサイクル発電装置であって、前記ガスタービンと前記蒸気タービンとの間にスラスト軸受を設け、該スラスト軸受に近い側から前記低圧室、前記高圧室の順で前記蒸気タービンの車室を配列するとともに、ロータ軸方向における前記高圧室の位置を調節する位置調整手段を設け、前記低圧室をアンカーによって固定してもよい。
 このように位置調節手段を設けることで、高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できる。よって、ロータの熱伸びの起点となるスラスト軸受に近い側に、アンカーで固定される低圧室を設ける配置を採用する場合であっても、高圧室内における回転部と静止部との間のクリアランスを低減して高圧翼列の性能低下を抑えることができる。
 本発明の少なくとも一実施形態によれば、高圧室と低圧室とを伸縮継手で連結したので、高圧室は、ロータの熱伸びの起点となるスラスト軸受に近い側に配置することができる。これは、アンカーで固定される低圧室から高圧室が分離されており、高圧室は独自に熱膨張しうるから、高圧室をスラスト軸受に近い側に配置しても、車室とロータの熱伸び方向が逆にならないためである。よって、高圧室をスラスト軸受に近い側に配置すれば、高圧室とロータとの熱伸び差が抑制されるから、高圧室内における回転部と静止部との間のクリアランスを低減して、高圧翼列の性能低下を抑えることができる。
 また、幾つかの実施形態においてロータ軸方向における高圧室の位置を調節する位置調節手段を設ける場合には、高圧室とロータの熱伸び差を打ち消して、回転部と静止部との接触を防止できる。よって、従来のように、ロータの熱伸びの起点となるスラスト軸受に近い側に、アンカーで固定される低圧室を設ける配置を採用する場合であっても、高圧室内における回転部と静止部との間のクリアランスを低減して高圧翼列の性能低下を抑えることができる。
一実施形態に係る一軸型コンバインドサイクル発電装置を示す概略構成図である。 一実施形態に係る一軸型コンバインドサイクル発電装置の蒸気タービンの構成を示す上面図である。 図2の矢印A方向から視た側面図である。 図2のB-B線に沿った断面図である。 一実施形態における蒸気タービンの高中圧室と低圧室との連結部の構造を示す断面図である。 一実施形態における高中圧室の位置を調節する位置調節手段の構成を示す図である。 一実施形態に係る伸び差計の構成を示す図である。 一実施形態に係る伸び差計の構成を示す図である。 一実施形態に係る一軸型コンバインドサイクル発電装置の蒸気タービンの構成を示す側面図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
 まず、第1実施形態に係る一軸型コンバインドサイクル装置の蒸気タービンについて説明する。
 図1は、一実施形態に係る一軸型コンバインドサイクル発電装置を示す概略構成図である。図2は、一実施形態に係るに係る一軸型コンバインドサイクル発電装置の蒸気タービンの構成を示す上面図である。図3は、図2の矢印A方向から視た側面図である。図4は、図2のB-B線に沿った断面図である。図5は、蒸気タービンの高中圧室と低圧室との連結部(図4において符号Cで示した2箇所の部分のうち下側)の構造を示す断面図である。
 図1に示すように、一軸型コンバインドサイクル発電装置1では、発電機2、蒸気タービン3及びガスタービン4が、この順で同一軸(ロータ9)上に並んでいる。
 ガスタービン4から排出された排ガスは、排熱回収ボイラ5に供給される。排熱回収ボイラ5では、ガスタービン4から排出される排ガスと給水とが熱交換され、そこで発生した蒸気が蒸気加減弁6を介して蒸気タービン3に供給される。そして、この蒸気タービン3およびガスタービン4によって発電機2が駆動される一方、蒸気タービン3で仕事を行った蒸気は、復水器7で復水され、給水ポンプ8によって排熱回収ボイラ5に還流される。
 蒸気タービン3は、図2及び3に示すように、高中圧室10及び低圧室12を有する。図4に示すように、高中圧室10には高圧翼列22及び中圧翼列24が収納され、低圧室12には低圧翼列26が収納されている。蒸気タービン3では、高中圧室10と低圧室12とが互いに連結されて単車室化されている。なお、高中圧室10と低圧室12との連結部C(図4参照)の構造は、図5を用いて後で詳述する。
 図2~4に示すように、ガスタービン4と蒸気タービン3との間にはスラスト軸受15とラジアル軸受17を収納する第1軸受箱14が設けられており、蒸気タービン3と発電機2との間にはラジアル軸受17を収納する第2軸受箱16が設けられている。スラスト軸受15及びラジアル軸受17は、蒸気タービン3の車室(高中圧室10及び低圧室12)の両端においてロータ9を軸支する。なお、第1軸受箱14及び第2軸受箱16は基礎18上に設置される。
 また、図3に示すように、蒸気タービン3の低圧室12は、アンカー20により固定されている。一方、高中圧室10は、上半室10Aと下半室10Bとの半割構造になっており、下半室10Bから突出した車室サポート部11を介して基礎18によって支持されている(ただし、図3における基礎18はロータ中心軸を通る鉛直面に沿って切断した断面を示しているため、車室サポート部11が基礎18によって支持されている様子は図3に表れていない。車室サポート部11が基礎18によって支持される様子は、図2および後で説明する図6に示している。)。
 図4に示すように、排熱回収ボイラ5(図1参照)で発生する高圧蒸気40は、高中圧室10に流入して高圧翼列22で仕事をした後、高圧排気蒸気41として流出する。高圧排気蒸気41は、再熱器(不図示)で加熱された後、再熱蒸気42として高中圧室10に再び流入して中圧翼列24で仕事をする。一方、低圧蒸気43は、低圧室12に流入して低圧翼列26で仕事をした後、低圧排気蒸気44として排気室46を経て復水器7に導かれるようになっている。
 このような構成のコンバインドサイクル発電装置1において、本実施形態では、高中圧室10をガスタービン4側(すなわち、ロータ9の熱伸びの起点となるスラスト軸受15に近い側)に配置している。これにより、高中圧室10とロータ9との熱伸び差が抑制されるので、高中圧室10内における回転部(動翼列)と静止部(静翼列)との間のクリアランスを小さく設定することが可能となる。よって、高圧翼列22の性能低下を抑えることができる。
 そして、スラスト軸受15に近い側に高中圧室10を配置するために、図5に示すように、高中圧室10と低圧室12とを分離して、両者間を伸縮継手30で連結している。このように、アンカー20で固定される低圧室12から高中圧室10を分離することで、スラスト軸受15に近い側に高中圧室10を設けても、高中圧室10とロータ9の熱伸び方向が逆にならない。よって、高中圧室10をスラスト軸受15に近い側に設ける上述の配置が可能となる。
 伸縮継手30は、蒸気タービン3の車室(高中圧室10および低圧室12)の内部空間31を密封するとともに、高中圧室10及び/又は低圧室12の熱伸びを吸収しうる継手であり、例えば、熱伸びに応じて変形可能な弾性体やベローズで構成することができる。
 なお、蒸気タービン3の定検分解時には、高中圧室10及び低圧室12は、連結ブロック32及び固定ボルト34によってリジッドに固定されて、車室全体をクレーンで吊り上げることが可能になっている。一方、蒸気タービン3の運転時には、固定ボルト34を抜き取るか、あるいは、連結ブロック32自体を取り外すことで、高中圧室10と低圧室12とが分離された状態になっており、伸縮継手30によって高中圧室10及び/又は低圧室12の熱伸びが吸収されるようになっている。
 以上説明したように、第1実施形態は、発電機2、単車室型の蒸気タービン3、ガスタービン4がこの順で連結された一軸型のコンバインドサイクル発電装置1において、蒸気タービン3の高中圧室10と低圧室12とを伸縮継手30で連結するとともに、ガスタービン4と蒸気タービン3との間にスラスト軸受15を設け、該スラスト軸受15に近い側から高中圧室10、低圧室12の順で蒸気タービン3の車室を配列し、低圧室12をアンカー20によって固定するものである。
 第1実施形態によれば、ロータ9の熱伸びの起点となるスラスト軸受15に近い側に高中圧室10を配置したので、高中圧室10とロータ9との熱伸び差が抑制される。よって、高中圧室10内における回転部と静止部との間のクリアランスを低減して、高圧翼列22の性能低下を抑えることができる。
[第2実施形態]
 次に、第2実施形態に係る一軸型コンバインドサイクル装置の蒸気タービンについて説明する。本実施形態の蒸気タービンは、ロータ軸方向における高中圧室10の位置を調節する位置調節手段を設けた点を除けば、第1実施形態の蒸気タービン3と共通する。したがって、ここでは、第1実施形態と共通する部分については説明を省略し、第1実施形態と異なる部分を中心に説明する。
 図6は、一実施形態における高中圧室10の位置を調節する位置調節手段の構成例を示す図である。同図に示すように、位置調節手段50は、高中圧室10の車室サポート部11(図2及び3参照)に取り付けられた一対の油圧シリンダ52(52A,52B)と、油圧シリンダ52に油圧を供給する油圧装置54と、油圧が供給される油圧シリンダ52を切り替える切替弁56とを含んでいる。
 一対の油圧シリンダ52(52A,52B)は、互いに対向するように車室サポート部11に取り付けられる。具体的には、油圧シリンダ52(52A,52B)のピストン部53が車室サポート部11に設けられた凹部51の内壁面に取り付けられる。
 油圧シリンダ52Aに油圧が供給されると、車室サポート部11はロータ軸方向に沿って図6の左側に向かって移動する。一方、油圧シリンダ52Bに油圧が供給されると、車室サポート部11はロータ軸方向に沿って図6の右側に移動する。なお、油圧ピストン52は、車室サポート部11からの反力を受けても動かないように、基礎18によって支持されている。また、一方の油圧シリンダ52が油圧の供給を受けたとき、他方の油圧シリンダ52内の圧力が過剰にならないように、リリーフバルブ(不図示)が設けられている。
 油圧装置54は、例えば油圧ポンプを用いることができる。また、切替弁56は、油圧シリンダ52(52A,52B)および油圧装置54に接続された三方弁である。
 また、切替弁56を制御する制御装置58と、高中圧室10とロータ9との熱伸び差を検出する伸び差計59とが設けられている。そして、伸び差計59で検出された熱伸び差に基づいて、制御装置58が切替弁56を制御して、油圧装置54で発生した油圧の供給先を切り替えるようになっている。
 例えば、高中圧室10がロータ9に対して相対的に図6の右方向に熱伸びしている場合、制御装置58は、伸び差計59の検出結果に基づいて、油圧シリンダ52Aに油圧を供給し、車室サポート部11を図6の左側に向かって移動させるように切替弁56を制御する。これにより、高中圧室10がロータ9との熱伸び差が打ち消され、高中圧室10における回転部と静止部との接触が防止される。
 図7A及び図7Bは、実施形態に係る伸び差計59の構成を示す図である。図7Aに示すように、伸び差計59は、ロータ9に設けられた軸径が一定でないテーパ面59Aと、テーパ面59Aに対向して配置される非接触センサ59Bとを有する。なお、テーパ面59A及び非接触センサ59Bは、蒸気タービン3の車室の外に設けられる。非接触センサ59Bは、テーパ面59Aまでの距離ΔXを計測し、ΔXからロータ9の熱伸び量を算出する。あるいは、図7Bに示すように、ロータ9に他の部分とは軸径が異なるディスク部59Cを設け、非接触センサ59Bがディスク部59Cまでの距離ΔXを計測することで、ロータ9の熱伸び量を算出してもよい。
 そして、算出したロータ9の熱伸び量と、別途計測された蒸気タービン3の車室の熱伸び量との差を求めることで、ロータ9と高中圧室10との熱伸び差が得られる。あるいは、非接触センサ59Bが直接的に又は間接的に蒸気タービン3の車室に固定されている場合(例えば、車室と一体化された軸受箱に非接触センサ59Bが固定されている場合)、非接触センサ59Bで計測した距離ΔX(図7A及び図7B参照)からロータと高中圧室10との熱伸び差を直接求めてもよい。
 第2実施形態によれば、位置調節手段50を設けて、ロータ軸方向における高中圧室10の位置を任意に調節可能としたので、高中圧室10内における回転部と静止部との間のクリアランスが比較的小さい場合であっても、高中圧室10とロータ9の熱伸び差を打ち消して、回転部と静止部との接触を防止できる。したがって、高中圧室10内における回転部と静止部との間のクリアランスをより一層低減して、高圧翼列22の性能低下を確実に抑制できる。
 なお、位置調節手段50による高中圧室10の位置の調節が可能なのは、蒸気タービン3において、最も重い箇所である低圧室12から高中圧室10が分離されている(伸縮継手30を介して高中圧室10と低圧室12とが連結されている)ためである。すなわち、比較的軽量の高中圧室10だけであれば、油圧を利用した位置調節手段50によって、容易に位置を調節することができる。
 また、一対の油圧シリンダ52(52A,52B)に対する油圧の供給状態を切替弁56によって切り替えることで、高中圧室10(具体的には車室サポート部11)をロータ軸に沿っていずれの方向にも移動させることができる。よって、昇温時及び降温時における高中圧室10とロータ9の熱伸び差を打ち消して、回転部と静止部との接触を防止できる。
 特に、伸び差計59による高中圧室10とロータ9との熱伸び差の検出結果に基づいて、制御手段58によって切替弁56を制御するようにしたので、高中圧室10とロータ9との熱伸び差を確実に打ち消して、回転部と静止部との接触をより確実に防止できる。
[第3実施形態]
 次に、第3実施形態に係る一軸型コンバインドサイクル装置の蒸気タービンについて説明する。本実施形態の蒸気タービンは、ロータ軸方向における高中圧室10の位置を調節する位置調節手段50を設けた点と、高中圧室10と低圧室12との配置を入れ替えた点を除けば、第1実施形態の蒸気タービン3と共通する。また、位置調節手段50については第2実施形態で既に説明した。したがって、ここでは、第1実施形態又は第2実施形態と共通する部分については説明を省略し、第1及び第2実施形態と異なる部分を中心に説明する。
 図8は、一実施形態に係る一軸型コンバインドサイクル発電装置の蒸気タービンの構成を示す側面図である。同図に示すように、蒸気タービン60は、第1軸受箱14に近い側(すなわち、ロータ9の熱伸びの起点となるスラスト軸受15(図4参照)に近い側)に低圧室12が配置されている。
 低圧室12をスラスト軸受15に近い側に配置する点については、従来の単車室型蒸気タービンと同様である。ただし、高中圧室10と低圧室12は、第1実施形態と同様に伸縮継手30(図5参照)によって連結されている。さらに、第2実施形態と同様に、高中圧室10の車室サポート部11をロータ軸方向における高中圧室10の位置を調節する位置調節手段50(図6参照)が設けられている。
 第3実施形態によれば、位置調節手段50によって高中圧室10の位置を任意に調節可能としたので、高中圧室10とロータ9との熱伸び差を打ち消して、回転部と静止部との接触を防止できる。このため、従来のように、ロータ9の熱伸びの起点となるスラスト軸受15に近い側に、アンカー20で固定される低圧室12を設ける配置を採用する場合であっても、高中圧室10内における回転部と静止部との間のクリアランスを低減して高圧翼列22の性能低下を抑えることができる。
 なお、位置調節手段50による高中圧室10の位置の調節が可能なのは、蒸気タービン3において、最も重い箇所である低圧室12から高中圧室10が分離されている(伸縮継手30を介して高中圧室10と低圧室12とが連結されている)ためである。すなわち、比較的軽量の高中圧室10だけであれば、油圧を利用した位置調節手段50によって、容易に位置を調節することができる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、上述の実施形態では、蒸気タービン3がコンバインドサイクル発電装置1に組み込まれた例について説明したが、単独で用いられる単車室型蒸気タービンに適用できることは言うまでもない。
 1     コンバインドサイクル発電装置
 2     発電機
 3     蒸気タービン
 4     ガスタービン
 5     排熱回収ボイラ
 6     蒸気加減弁
 7     復水器
 8     循環ポンプ
 9     ロータ
 10    高中圧室
 10A   上半室
 10B   下半室
 11    車室サポート部
 12    低圧室
 14    第1軸受箱
 15    スラスト軸受
 16    第2軸受箱
 17    ラジアル軸受
 18    基礎
 20    アンカー
 30    伸縮継手
 31    内部空間
 32    連結ブロック
 34    固定ボルト
 40    高圧蒸気
 41    高圧排気蒸気
 42    再熱蒸気
 43    低圧蒸気
 44    低圧排気蒸気
 46    排気部
 50    位置調節手段
 52A   油圧シリンダ
 52B   油圧シリンダ
 53    ピストン部
 54    油圧装置
 56    切替弁
 58    制御装置
 59    伸び差計
 59A   テーパ面
 59B   非接触センサ

Claims (8)

  1.  少なくとも高圧翼列および低圧翼列を有する単車室型蒸気タービンであって、
     前記高圧翼列が収納される高圧室と、
     前記低圧翼列が収納される低圧室と、
     前記高圧室および前記低圧室を連結するとともに、前記高圧室および前記低圧室の内部空間を密封する伸縮継手とを備えることを特徴とする単車室型蒸気タービン。
  2.  ロータ軸方向における前記高圧室の位置を調節する位置調節手段をさらに備えることを特徴とする請求項1に記載の単車室型蒸気タービン。
  3.  前記位置調整手段は、
     前記高圧室の車室サポート部に取り付けられ、該車室サポート部をロータ軸方向に沿って、互いに逆方向に押し動かす一対の油圧シリンダと、
     前記一対の油圧シリンダに油圧を供給する油圧装置と、
     前記一対の油圧シリンダ及び前記油圧装置の間に設けられ、前記油圧が供給される油圧シリンダを切り替える切替弁とを含むことを特徴とする請求項2に記載の単車室型蒸気タービン。
  4.  前記蒸気タービンの前記ロータと前記高圧室との熱伸び差を検出する検出手段と、
     前記検出手段による熱伸び差の検出結果に基づいて前記位置調整手段を制御する制御手段とをさらに備えることを特徴とする請求項2又は3に記載の単車室型蒸気タービン。
  5.  前記ロータは、前記蒸気タービンの車室の外部において、軸径が一定でないテーパ面を有し、
     前記検出手段は、前記ロータの前記テーパ面までの距離を計測するセンサを含むことを特徴とする請求項4に記載の単車室型蒸気タービン。
  6.  発電機、請求項1に記載の単車室型蒸気タービン、ガスタービンがこの順に連結された一軸型コンバインドサイクル発電装置であって、
     前記ガスタービンと前記蒸気タービンとの間にスラスト軸受を設け、該スラスト軸受に近い側から前記高圧室、前記低圧室の順で前記蒸気タービンの車室を配列し、前記低圧室をアンカーによって固定したことを特徴とする一軸型コンバインドサイクル発電装置。
  7.  ロータ軸方向における前記高圧室の位置を調節する位置調整手段を設けたことを特徴とする請求項6に記載の一軸型コンバインドサイクル発電装置。
  8.  発電機、請求項1に記載の単車室型蒸気タービン、ガスタービンがこの順に連結された一軸型コンバインドサイクル発電装置であって、
     前記ガスタービンと前記蒸気タービンとの間にスラスト軸受を設け、該スラスト軸受に近い側から前記低圧室、前記高圧室の順で前記蒸気タービンの車室を配列するとともに、ロータ軸方向における前記高圧室の位置を調節する位置調整手段を設け、前記低圧室をアンカーによって固定したことを特徴とする一軸型コンバインドサイクル発電装置。
PCT/JP2012/068917 2012-02-17 2012-07-26 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置 WO2013121603A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280068547.4A CN104105847B (zh) 2012-02-17 2012-07-26 单机室型蒸汽轮机及单轴型联合循环发电装置
EP12868914.8A EP2816201B1 (en) 2012-02-17 2012-07-26 Single-casing steam turbine and single-shaft combined-cycle power generation apparatus
KR1020147020487A KR101644254B1 (ko) 2012-02-17 2012-07-26 단차실형 증기 터빈 및 1축형 컴바인드 사이클 발전 장치
IN1437MUN2014 IN2014MN01437A (ja) 2012-02-17 2014-07-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012033262A JP5999919B2 (ja) 2012-02-17 2012-02-17 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置
JP2012-033262 2012-02-17

Publications (1)

Publication Number Publication Date
WO2013121603A1 true WO2013121603A1 (ja) 2013-08-22

Family

ID=48982382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068917 WO2013121603A1 (ja) 2012-02-17 2012-07-26 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置

Country Status (7)

Country Link
US (1) US9334757B2 (ja)
EP (1) EP2816201B1 (ja)
JP (1) JP5999919B2 (ja)
KR (1) KR101644254B1 (ja)
CN (1) CN104105847B (ja)
IN (1) IN2014MN01437A (ja)
WO (1) WO2013121603A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028731B2 (en) 2016-03-31 2021-06-08 Mitsubishi Power, Ltd. Casing position adjustment device
JP7406998B2 (ja) 2020-01-22 2023-12-28 三菱重工業株式会社 回転機械の支持装置、支持方法および回転機械

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119520A (ja) * 2013-12-17 2015-06-25 三菱電機株式会社 発電プラント
US10227894B2 (en) 2014-02-19 2019-03-12 Mitsubishi Heavy Industries Compressor Corporation Rotary system
JP2016070225A (ja) * 2014-09-30 2016-05-09 富士電機株式会社 蒸気タービン設備
DE102014224419A1 (de) * 2014-11-28 2016-06-02 Siemens Aktiengesellschaft Turbinengehäuseanordnung, insbesondere mit einem Außengehäuseteil und einem Abdampfgehäuseteil einer Dampfturbine, sowie Verwendung hierfür
JP7093238B2 (ja) * 2018-06-18 2022-06-29 三菱重工業株式会社 蒸気タービン設備及びコンバインドサイクルプラント
JP7134002B2 (ja) * 2018-07-04 2022-09-09 三菱重工業株式会社 蒸気タービン設備及びコンバインドサイクルプラント
US11668208B2 (en) * 2018-08-17 2023-06-06 Mitsubishi Heavy Industries, Ltd. Positioning method of arc-like member and positioning jig
CN112459848A (zh) * 2020-11-23 2021-03-09 东方电气集团东方汽轮机有限公司 一种方便纯凝背压切换的三缸三排汽汽轮机及其切换方法
CN112343675A (zh) * 2020-11-25 2021-02-09 哈尔滨汽轮机厂有限责任公司 一种25mw等级高转速抽汽凝汽式汽轮机
CN112523817A (zh) * 2020-12-18 2021-03-19 哈尔滨汽轮机厂有限责任公司 一种新型40mw等级反动式抽凝式联合循环汽轮机
CN113279828B (zh) * 2021-06-24 2022-06-14 武汉大学 一种带轴封支承调节装置的核电汽轮机低压排汽结构
CN113982705A (zh) * 2021-11-02 2022-01-28 哈尔滨汽轮机厂有限责任公司 一种40mw超高压高转速单缸空冷汽轮机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918207A (ja) 1982-07-21 1984-01-30 Toshiba Corp 蒸気タ−ビンの隙間調整装置
JPH0337305A (ja) * 1989-07-03 1991-02-18 General Electric Co <Ge> 一軸形コンバインドサイクルタービン
JPH04132805A (ja) * 1990-09-25 1992-05-07 Fuji Electric Co Ltd 低圧タービンの伸び差制御装置
JPH05149106A (ja) * 1991-11-27 1993-06-15 Mitsubishi Heavy Ind Ltd 蒸気タービン車室
JPH07158410A (ja) * 1993-12-09 1995-06-20 Toshiba Corp 一軸型コンバインドサイクルプラント
JPH08512380A (ja) * 1994-05-03 1996-12-24 ジエ・ウー・セー・アルストム・エレクトロメカニク・エス・アー 組合せサイクルを有し、ガス・タービン及び複数のモジュールを持つ蒸気タービンを含む発電ユニット
JPH0932505A (ja) * 1995-07-20 1997-02-04 Mitsubishi Heavy Ind Ltd 蒸気タービンの低圧車室
JPH1089013A (ja) * 1996-07-23 1998-04-07 Fuji Electric Co Ltd 再熱式軸流蒸気タービン
JP2009121477A (ja) * 2007-11-16 2009-06-04 Alstom Technology Ltd タービンケーシングを製造するための方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156105A (ja) 1982-03-10 1983-09-17 Toshiba Corp パルス燃焼機
JPH01280603A (ja) 1988-05-06 1989-11-10 Hitachi Ltd 蒸気タービン軸受分解構造
DE3941089A1 (de) * 1988-12-22 1990-06-28 Gen Electric Gasdichtung
JP3626837B2 (ja) 1997-07-17 2005-03-09 三菱重工業株式会社 蒸気タービンの低圧車室
JP4064532B2 (ja) 1998-06-05 2008-03-19 三菱重工業株式会社 蒸気タービンの外車室冷却構造
EP1249579A1 (de) * 2001-04-11 2002-10-16 Siemens Aktiengesellschaft Turbinenanlage, inbesondere Dampfturbinenanlage
JP3702212B2 (ja) * 2001-09-28 2005-10-05 三菱重工業株式会社 軸シール機構及びタービン
JP2005098319A (ja) * 2003-09-22 2005-04-14 Toshiba Corp 弁駆動装置およびそれを備えた弁
US20110030335A1 (en) * 2009-08-06 2011-02-10 General Electric Company Combined-cycle steam turbine and system having novel cooling flow configuration
CN102140938B (zh) * 2011-03-18 2014-04-30 上海电气电站设备有限公司 双缸同轴联合循环供热汽轮机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918207A (ja) 1982-07-21 1984-01-30 Toshiba Corp 蒸気タ−ビンの隙間調整装置
JPH0337305A (ja) * 1989-07-03 1991-02-18 General Electric Co <Ge> 一軸形コンバインドサイクルタービン
JPH04132805A (ja) * 1990-09-25 1992-05-07 Fuji Electric Co Ltd 低圧タービンの伸び差制御装置
JPH05149106A (ja) * 1991-11-27 1993-06-15 Mitsubishi Heavy Ind Ltd 蒸気タービン車室
JPH07158410A (ja) * 1993-12-09 1995-06-20 Toshiba Corp 一軸型コンバインドサイクルプラント
JPH08512380A (ja) * 1994-05-03 1996-12-24 ジエ・ウー・セー・アルストム・エレクトロメカニク・エス・アー 組合せサイクルを有し、ガス・タービン及び複数のモジュールを持つ蒸気タービンを含む発電ユニット
JPH0932505A (ja) * 1995-07-20 1997-02-04 Mitsubishi Heavy Ind Ltd 蒸気タービンの低圧車室
JPH1089013A (ja) * 1996-07-23 1998-04-07 Fuji Electric Co Ltd 再熱式軸流蒸気タービン
JP2009121477A (ja) * 2007-11-16 2009-06-04 Alstom Technology Ltd タービンケーシングを製造するための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816201A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028731B2 (en) 2016-03-31 2021-06-08 Mitsubishi Power, Ltd. Casing position adjustment device
JP7406998B2 (ja) 2020-01-22 2023-12-28 三菱重工業株式会社 回転機械の支持装置、支持方法および回転機械

Also Published As

Publication number Publication date
EP2816201A4 (en) 2015-12-02
EP2816201B1 (en) 2017-02-01
EP2816201A1 (en) 2014-12-24
US20130216354A1 (en) 2013-08-22
CN104105847B (zh) 2015-11-25
KR20140105600A (ko) 2014-09-01
IN2014MN01437A (ja) 2015-04-03
US9334757B2 (en) 2016-05-10
CN104105847A (zh) 2014-10-15
JP2013170468A (ja) 2013-09-02
KR101644254B1 (ko) 2016-07-29
JP5999919B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2013121603A1 (ja) 単車室型蒸気タービンおよび一軸型コンバインドサイクル発電装置
EP2410134B1 (en) Sealing device for steam turbines and method for controlling sealing device
US8540479B2 (en) Active retractable seal for turbo machinery and related method
KR101504848B1 (ko) 증기 터빈의 차실 위치 조정 장치
JP2013170468A5 (ja)
KR20080069131A (ko) 터빈 로터 지지 장치 및 시스템
JP2014510872A (ja) 有機ランキンサイクルにおいて用いられるターボエクスパンダのための封止システム
JP2010270757A (ja) 能動的ロータアライメント制御システム及び方法
JP5517785B2 (ja) 蒸気タービンおよび蒸気タービンのスラスト調整方法
CN108884724B (zh) 机室位置调整装置
US8882449B2 (en) Inner-to-outer shell differential expansion measurement
US9464537B2 (en) Clutched turbine wheels
ITBS20090051A1 (it) Turbina per espansione di gas/vapore perfezionata
JP2014080920A (ja) シール装置
KR101518169B1 (ko) 터보머신의 로터 베어링 장치
JP2000282807A (ja) 蒸気タービン設備
ITBS20090052A1 (it) Turbina per espansione di gas/vapore con mezzi di contrasto della spinta assiale sull&#39;albero di uscita
JP2008255967A (ja) 蒸気タービン装置
PL210104B1 (pl) Uszczelnienie nadbandażowe stopnia przepływowej maszyny wirnikowej

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147020487

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012868914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012868914

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE