WO2013120421A1 - 近红外光吸收玻璃、元件及滤光器 - Google Patents

近红外光吸收玻璃、元件及滤光器 Download PDF

Info

Publication number
WO2013120421A1
WO2013120421A1 PCT/CN2013/071338 CN2013071338W WO2013120421A1 WO 2013120421 A1 WO2013120421 A1 WO 2013120421A1 CN 2013071338 W CN2013071338 W CN 2013071338W WO 2013120421 A1 WO2013120421 A1 WO 2013120421A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
light absorbing
glass
absorbing glass
content
Prior art date
Application number
PCT/CN2013/071338
Other languages
English (en)
French (fr)
Inventor
孙伟
匡波
邓宇
王东俊
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012100368404A external-priority patent/CN102557434B/zh
Priority claimed from CN201210036873.9A external-priority patent/CN102603189B/zh
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to KR1020147025860A priority Critical patent/KR20140135987A/ko
Priority to US14/379,113 priority patent/US9546105B2/en
Priority to JP2014556909A priority patent/JP6357109B2/ja
Publication of WO2013120421A1 publication Critical patent/WO2013120421A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters

Definitions

  • the present invention relates to a near-infrared light absorbing glass, a near-infrared light absorbing element, and a near-infrared light absorbing filter. Specifically, the present invention relates to a near-infrared light absorbing glass for a near-infrared light absorbing filter suitable for color sensitivity correction, and a near-infrared light absorbing element composed of the glass and a filter.
  • the spectral sensitivity of semiconductor imaging elements such as CCDs and CMOSs used in digital cameras and VTR cameras has spread to the near-infrared field around l lOOnm from the field of view, and can be approximated by using filters that absorb light in the near-infrared field.
  • the degree of human vision Therefore, the demand for color sensitivity correction filters is increasing, which places higher demands on the near-infrared light absorbing functional glass used for manufacturing such filters, that is, it is required to be supplied in large quantities at low prices.
  • Such glass, and glass has better stability.
  • a near-infrared light absorbing glass is a near-infrared light absorbing glass by adding ClT to a phosphate glass or a fluorophosphate glass.
  • phosphate glass is less chemically stable than fluorophosphate glass. If the glass is exposed to high temperature and high humidity for a long time, the surface of the glass will be cracked and white turbid.
  • the technical problem to be solved by the present invention is to provide a near-infrared light absorbing glass, an element, and a filter which are environmentally friendly and have excellent transmission characteristics in a visible region.
  • the technical solution adopted by the present invention to solve the technical problem is: a near-infrared light absorbing glass, wherein the near-infrared light absorbing glass has a thickness of 1 mm, a transmittance of more than 80% at a wavelength of 400 nm, and a transmittance of more than 85 at a wavelength of 500 nm.
  • the near-infrared light absorbing glass contains P 5+ , Al 3+ , Li+, R 2+ and Cu 2+ represented by cations, and the R 2+ represents Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ , which also contains 0 2 - and F - represented by an anion, the water resistance stability of the near-infrared light absorbing glass is 0 diary1 grade, and the acid resistance stability D A is 4 or more.
  • the transmittance at a wavelength of 400 nm shows more than 88%, and the transmittance at a wavelength of 500 nm shows more than 90%. Enter one;
  • the F_ _0 2 — is 0. 1-20%.
  • the F - -0 2 - is 0. 1- 10%.
  • R 2+ content is 30-65%, the R 2+ represents Mg 2+ , Ca
  • Ho ho eleven enter the 2211--2255 have %% ,, containing containing a P 5+; 10- 15% of Al 3+; 1- 10% of Li +;. 0 5-3% of Na + 0-3% K+; 1. 2-3% Cu 2 R 2+ content is greater than 50% but less than or equal to 65%; greater than 50% but less than or equal to 57% F-; : at or equal to 43 % but less than 50% of 0 2 —.
  • a near-infrared light absorbing glass characterized by containing 15-35% of P 5+ ; 5-20% of Al 3+ ;
  • R 2+ content is greater than 50% but less than or equal to 65%; greater than 50% but less than or equal to 57% of F-; greater than or equal to 43% but less than 50% of 0 2 —.
  • P 5+ contains 21-25% P 5+ ; 10-15% Al 3+ ; 1-10% Li + ; 0 . 5-3% Na + ; 0-3% K + ; 2-3% Cu 2+ ; 3-7% Mg 2+ ; 7-11% Ca 2+ ; 23-28% Sr 2+ ; 21-30% of Ba 2+ ; greater than 50% but less than or equal to 57% of F-; greater than or equal to 43% but less than 50% of 0 2 -.
  • the near-infrared light absorbing element is composed of the above-described near-infrared light absorbing glass.
  • the near-infrared light absorbing filter is composed of the above-described near-infrared light absorbing glass.
  • the invention has the beneficial effects that: the fluorophosphate glass is used as the matrix glass, and the specific component design can effectively reduce the melting temperature of the glass, and can also make the glass have excellent chemical stability, and the main performance is stable water resistance.
  • the property D w reaches the first grade, the acid resistance stability 3 ⁇ 4 reaches the grade 4 or better than the grade 4;
  • the present invention preferably increases the content of the fluorophosphate matrix glass anion component F-, and the F-content is greater than 0 2 - content, which can be effective Decreasing the melting temperature of the glass to make the glass chemically excellent;
  • the invention increases the basic content of the glass by increasing the R 2+ content in the fluorophosphate matrix glass composition, and inhibits the reduction of CiT to Cu + , so that the glass The near-infrared light absorption performance is excellent.
  • the transmittance at a wavelength of 400 nm is more than 80%
  • the transmittance at a wavelength of 500 nm is more than 85%
  • the transmittance in a wavelength range of 500 to 700 nm is a transmittance.
  • the corresponding wavelength at 50% i.e., ⁇ 5 . corresponding wavelength value
  • Fig. 1 is a graph showing the spectral transmittance of a near-infrared light absorbing glass of Example 1 of the present invention. detailed description
  • the near-infrared light absorbing glass of the present invention is obtained by adding a fluorophosphoric acid glass as a base and adding a CiT having a near-infrared light absorbing effect.
  • the content of the cationic component is expressed as a percentage of the weight of the cation to the total weight of all the cations
  • the content of the anionic component is expressed as a percentage of the total weight of the anion by the weight of the anion.
  • P 5+ is an essential component of fluorophosphate glass and is an important component for generating absorption in the infrared region of ClT.
  • the content is less than 15%, the color correction function is deteriorated and is greenish; when it exceeds 35%, the weather resistance and the devitrification resistance are deteriorated, so the content of P 5+ is limited to 15-35%, preferably 20-30%. More preferably, it is 21-25%.
  • Al 3+ is a component that improves the devitrification resistance, weather resistance, thermal shock resistance, mechanical strength and chemical resistance of fluorophosphate glass.
  • the Al 3+ content is less than 5%, the above effects are not obtained; when the Al 3+ content exceeds 20%, the near-infrared absorption characteristics are lowered. Therefore, the Al 3+ content is 5-20%, more preferably 10-15%.
  • Li + , Na + and K + are components which increase the meltability, glass-forming and transmittance in the visible light region of the glass. Compared to Na + and K + , the introduction of a small amount of Li + has a better effect on the chemical stability of the glass. However, when the Li + content exceeds 30%, the durability and processability of the glass deteriorate. Therefore, the Li + content is from 1 to 30%, preferably from 1 to 15%, more preferably from 1 to 10%, and most preferably from 2 to 5%.
  • the present invention can also preferably incorporate a small amount of Na + and Li + mixed, which can effectively improve the weather resistance of the glass. 5 ⁇ 3% ⁇
  • the Na + content is 0-10%, preferably 0-5%, more preferably 0. 5_3%.
  • the K + content is 0 to 3%, and if the content exceeds 3%, the durability of the glass is rather lowered.
  • R 2+ is a component effective for improving the glass forming property, devitrification resistance and workability of the glass, where R 2+ represents Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • R 2+ represents Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • the introduced copper ions are not Cu + and must be Cu 2+ .
  • CiT becomes Cu + , and as a result, the transmittance near a wavelength of 400 nm is lowered.
  • the invention increases the basic content of the glass liquid by increasing the total amount of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ , and can suppress the reduction of CiT to Cu + , so that the near-infrared light absorption property of the glass is improved. Excellent.
  • the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is less than 30%, the devitrification resistance tends to be deteriorated, and if it exceeds 65%, the devitrification resistance tends to be deteriorated.
  • the total content of Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ is 30-65%, preferably the total content is 40-65%, and more preferably the total content is more than 50% but less than or equal to 65%.
  • the total content is 54-65%, and most preferably the total content is 54-60%.
  • Mg 2+ and Ca 2+ have an effect of improving the resistance to devitrification, chemical stability, and processability of the glass.
  • the Mg 2+ content is from 0.1 to 10%, more preferably from 2 to 8%, further preferably from 3 to 7%.
  • the Ca 2+ content is preferably from 1 to 20%, more preferably from 5 to 15%, further more preferably from 7 to 11%.
  • the present invention mainly introduces a high content of Sr 2+ and Ba 2+ , which effectively increases the R 2+ content and brings about an increase in light transmittance while Sr 2+ And Ba 2+ also has an effect of improving glassability, glass resistance to devitrification, and meltability.
  • the Sr 2+ content is preferably from 15 to 35%, more preferably from 21 to 30%, further preferably from 23 to 28%.
  • the Ba 2+ content is preferably from 10 to 30%, more preferably from 15 to 30%, further preferably from 21 to 30%, and most preferably from 2 to 25%.
  • CiT near-infrared absorption characteristics
  • the Cu 2+ content is 0. 1-8%, preferably 1. 2-5%, more preferably 1. 2-3%
  • the glass of the present invention contains 0 2 - and F- as an anion component.
  • CiT In the near-infrared absorbing glass, when the melting temperature is raised, CiT is easily reduced to Cu + , and the color of the glass changes from blue to green, thereby impairing the characteristics necessary for applying color sensitivity correction to the semiconductor imaging element.
  • F - is an important anionic component that lowers the melting temperature of the glass and increases chemical stability.
  • the chemical stability is lowered; when the F-content is more than 60%, since the content of 0 2 - is decreased, the reduction of CiT is not suppressed, and the Cu + content in the glass is When it rises, the short-wave partial absorption increases and the infrared absorption decreases.
  • the F-content is 45-60%, preferably 48-57%, more preferably more than 50% but less than or equal to 57%, further preferably 51-55%, most preferably 51-53%.
  • 0 2 — is an important anion component in the glass of the present invention.
  • the content of 0 2 - is 40-55%, preferably 43-52%, more preferably 43% or more but less than 50%, further preferably 45-49%, more preferably 47- 49%.
  • the present invention preferably increases the content of F- in an appropriate amount, and the F-content is greater than 0 2 - content, which can effectively lower the melting temperature of the glass, and an appropriate amount of F- can also make the glass chemically excellent.
  • 1-3% ⁇ The preferred range of F - -0 2 - is 0. 1-20%, further preferably 0. 1-10%, the most preferred range is 0. 1-3%
  • the invention is designed by specific components, and the chemical stability characteristics of the glass are as follows: Water resistance stability 0 niethacy can reach level 1; acid resistance stability D A reaches level 4, preferably reaches 3 Level, more preferably up to level 2.
  • the optical glass is stable in water resistance D w is divided into 6 categories.
  • D A is divided into 6 categories.
  • the preferred transmittance characteristics of the glass of the present invention are as follows:
  • the spectral transmittance in the wavelength range of 400 to 1200 nm has More preferably, it is greater than or equal to 88%.
  • the spectral transmittance at a wavelength of 500 nm is greater than or equal to 85%, preferably greater than or equal to 88%, more preferably greater than or equal to 90%.
  • the spectral transmittance at a wavelength of 600 nm is greater than or equal to 58%, preferably greater than or equal to 61%, more preferably greater than or equal to 64%.
  • the spectral transmittance at a wavelength of 700 nm is less than or equal to 12%, preferably less than or equal to 10%, more preferably less than or equal to 9%.
  • the spectral transmittance at a wavelength of 800 nm is less than or equal to 5%, preferably less than or equal to 3%, more preferably less than or equal to 2.5%, still more preferably less than or equal to 2%.
  • the spectral transmittance at a wavelength of 900 nm is less than or equal to 5%, preferably less than or equal to 3%, more preferably less than or equal to 2.5%.
  • the spectral transmittance at a wavelength of lOOOnm is less than or equal to 7%, preferably less than or equal to 6%, more preferably less than or equal to 5%.
  • the spectral transmittance at a wavelength of l lOOnm is less than or equal to 15%, preferably less than or equal to 13%, more preferably less than or equal to 11%.
  • the spectral transmittance at a wavelength of 1200 nm is less than or equal to 24%, preferably less than or equal to 22%, more preferably less than or equal to 21%.
  • the absorption in the wavelength range of the near-infrared region of 700 nm to 1200 nm is large, and the absorption in the wavelength range of the visible light region of 400 nm to 600 nm is small.
  • the corresponding wavelength i.e., ⁇ 5 . corresponding wavelength value
  • the range of 50% transmittance is 615 ⁇ 10 nm.
  • the transmittance of the glass of the present invention refers to the value obtained by the spectrophotometer in the manner described: Assuming that the glass sample has two planes parallel to each other and optically polished, the light is incident perpendicularly from one parallel plane and exits from the other parallel plane. The intensity of the emitted light divided by the intensity of the incident light is the transmittance, which is also referred to as the external transmittance.
  • color correction of a semiconductor imaging element such as CCD or CMOS can be excellently achieved.
  • the near-infrared light absorbing element according to the present invention is composed of the near-infrared light absorbing glass, and may be a thin plate-shaped glass element or a lens used in a near-infrared light absorbing filter, etc. It is used for color correction of solid-state imaging devices, and has good transmission performance and chemical stability.
  • the near-infrared filter according to the present invention is a near-infrared light absorbing element composed of near-infrared light absorbing glass, and thus has good light transmission performance and chemical stability.
  • fluoride, metaphosphate, oxide, nitrate and carbonate are used as glass raw materials, and the raw materials are weighed to have a composition having the compositions shown in Tables 1-3. After thorough mixing, the raw materials are mixed. It is put into a platinum crucible sealed with a lid, heated and melted at a temperature of 700-90 CTC, and clarified by oxygen protection while homogenizing, and then the molten glass is continuously discharged from the temperature control pipe at a constant flow rate, and the optical of the present invention is obtained after molding. glass.
  • the above glass was processed into a plate shape, and both surfaces opposed to each other were optically polished to prepare a sample for measuring transmittance, and the spectral transmittance of each sample was measured using a spectroscopic transmissor to obtain a sample having a thickness of 1 mm. Transmittance of typical wavelengths.
  • the transmittance values of the glass of the present invention at a thickness of 1 mm are shown in Table 4-6, and it can be confirmed that the glass has excellent properties as a color sensitivity correction glass for a semiconductor imaging element.
  • Fig. 1 is a graph showing the spectral transmittance of the first embodiment, in which the abscissa represents the wavelength and the ordinate represents the transmittance.
  • the transmittance at a wavelength of 400 nm is preferably 80% or more.
  • the corresponding wavelength range is 615 ⁇ 10 nm when the transmittance is 50%.
  • the transmittance in the wavelength region of the wavelength of 800 to 1000 nm is the lowest.
  • this region is a near-infrared region, the sensitivity of the semiconductor image pickup element in this region is not so low, and therefore it is necessary to suppress the transmittance of the color correction filter to a sufficiently low level.
  • the wavelength is in the region of 1000 to 1200 nm, the sensitivity of the semiconductor imaging element is relatively lowered, so that the transmittance of the glass of the present invention is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

一种对环境无污染、均匀性更好和可见光透过率优异的近红外光吸收玻璃、元件及滤光器。所述近红外光吸收玻璃厚度为1mm时,在波长400nm透射率大于80%,在波长500nm透射率大于85%,所述近红外光吸收玻璃含有用阳离子表示的P5+、Al3+、Li+、R2+及Cu2+,所述R2+代表Mg2+、Ca2+、Sr2+和Ba2+,同时含有用阴离子表示的O2—及F-。所述近红外光吸收玻璃耐水作用稳定性Dw可以达到1级,耐酸作用稳定性DA达到4级以上。所述近红外光吸收玻璃以具有优越耐候性的氟磷酸盐玻璃作为基质玻璃,通过特定组分设计,可有效降低玻璃熔融温度,还可使玻璃化学稳定性优异。

Description

近红外光吸收玻璃、 元件及滤光器 技术领域
本发明涉及一种近红外光吸收玻璃、 近红外光吸收元件以及近红外光 吸收滤光器。 具体地, 本发明涉及一种适合色灵敏度修正的近红外光吸收 滤光器用的近红外光吸收玻璃, 以及由该玻璃构成的近红外光吸收元件以 及滤光器。
背景技术
近年来, 用于数码照相机及 VTR照相机的 CCD、 CMOS等半导体摄像元 件的光谱灵敏度, 普及到从可视领域开始 l lOOnm附近的近红外领域, 使用 吸收近红外领域光的滤光器可以得到近似于人的视感度。 因此, 色灵敏度 修正用滤光器的需求越来越大, 这就对用于制造此类滤光器的近红外光吸 收功能玻璃提出了更高的要求, 即要求能够大量、 低价地供应此类玻璃, 并且玻璃具有较好的稳定性能。
现有技术中, 近红外线光吸收玻璃是通过在磷酸盐玻璃或氟磷酸盐玻 璃中添加 ClT来制造近红外光吸收玻璃。 但是相对氟磷酸盐玻璃而言, 磷 酸盐玻璃化学稳定性较差, 玻璃如果长时间暴露在高温高湿的环境下, 玻 璃表面会产生龟裂和白浊的缺陷。
发明内容
本发明所要解决的技术问题是提供一种对环境无污染和在可视域优异 透过特性的近红外光吸收玻璃、 元件及滤光器。
本发明解决技术问题所采用的技术方案是: 近红外光吸收玻璃, 所述 近红外光吸收玻璃厚度为 1mm时,在波长 400nm透过率显示大于 80%, 在波 长 500nm透过率显示大于 85%, 所述近红外光吸收玻璃含有用阳离子表示 的 P5+、 Al3+、 Li+、 R2+及 Cu2+, 所述 R2+代表 Mg2+、 Ca2+、 Sr2+和 Ba2+,同时含有 用阴离子表示的 02—及 F—, 所述近红外光吸收玻璃的耐水作用稳定性 0„达 到 1级, 耐酸作用稳定性 DA达到 4级以上。
进一歩的,所述近红外光吸收玻璃厚度为 1mm时,在波长 400nm透过率 显示大于 88%, 在波长 500nm透过率显示大于 90%。 进一;
进一; 的, 所述 F— _02—为 0. 1-20%。
进一; 的, 所述 F— -02—为 0. 1- 10%。
进一; 的, 所述 F— -02—为 0. 1-3%。
进一; 的, 含有 15-35%的 P5+; 5- 20%的 Al3+; 1-30%的 Li+; 0 - 10%的 ; 0-3%的 K+; 0. 1-8%的 Cu2+; R2+含量为 30-65%,所述 R2+代表 Mg2+、 Ca
Sr' +禾口 Ba2+; 45-60%的 F—; 40- 55%的 02—。
进一歩的, 含有 20-30%的 P5+; 10- 15%的 Al3+; 1- 15%的 Li+; 0 -5%的
Na ; 0-3%的 K+ ; 1. 2-5%的 Cu2+; R2+含量为 40-65%; 48- 57%的 F—; 43- 52%的 02
进进一一歩歩的的,, 含含有有 2211--2255%%的的 P5+; 10- 15%的 Al3+; 1- 10%的 Li+; 0 . 5-3% 的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2 R2+含量为大于 50%但小于或等于 65%; 大于 50%但小于或等于 57%的 F—; :于或等于 43%但小于 50%的 02—。
进一歩的, 含有 21-25%的 P5 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的
Na ; 0-3%的 K+ ; 1. 2-3%的 Cu2+; R2+含量为 54-65% ; 51- 55%的 F—; 45- 49%的
02c
进一歩的, 含有 21-25%的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5- 3%的
Na+; 0-3%的 K+ ; 1. 2-3%的 Cu2+; R2+含量为 54-60% ; 51- 53%的 F—; 47- 49%的 02c
进一歩的, 含有 15-35%的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 - 10%的
Na+; 0-3%的 K+; 0. 1-8%的 Cu2+; 0 . 1- 10%的 Mg2+; 1-20%的 Ca2+; 15-35%的 Sr2 !+; 10-30%的 Ba2+ ; 45-60%的 F—; 40- 55%的 02—。
进一歩的, 含有 20-30%的 P5+; 10- 15%的 A13 ; 1- 15%的 Li+; 0 -5%的
Na+; 0-3%的 K+ ; 1. 2-5%的 Cu2+; 2- 8%的 Mg2+; 5- 15%的 Ca2+; 21-30%的 Sr2+; 15- -30%的 Ba2+; 48- 57%的 F—; 43- 52%的 02—。
进一歩的, 含有 21-25%的 P5+; 10- 15%的 Al3+; 1- 10%的 Li+; 0 . 5-3% 的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7- 1 1%的 Ca2+; 23-28%的 Sr2+; 21 -30%的 Ba2+;大于 50%但小于或等于 57%的 F—;大于或等于 43%但小于 50% 的 02—。 进一歩的, 含有 21-25%的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的
Na+ ; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+; 21- 25%的 Ba2+ ; 51- 55%的 F—; 45- 49%的 02—。
进一歩的, 含有 21-25%的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5- 3%的 Na+ ; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+; 21- 25%的 Ba2+; 51- 53%的 F—; 47-49%的 02—。
近红外光吸收玻璃, 其特征在于, 含有 15-35%的 P5+; 5-20%的 Al3+;
1- 30%的 Li+; 0 -10%的 Na+; 0-3%的 K+; 0. 1-8%的 Cu2+; R2+含量为 30-65%, 所述 R2+代表 Mg2+、 Ca2+、 Sr2+和 Ba2+; 45-60%的 F—; 40- 55%的 02—。
进一歩的, 含有 20-30%的 P5+; 10-15%的 Al3+; 1-15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; R2+含量为 40-65%; 48- 57%的 F—; 43- 52%的
02—。
进一歩的, 含有 21-25%的 P5+; 10-15%的 Al3+; 1-10%的 Li+; 0 . 5-3% 的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; R2+含量为大于 50%但小于或等于 65%; 大于 50%但小于或等于 57%的 F—; 大于或等于 43%但小于 50%的 02—。
进一歩的 含有 21-25%的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5- 3%的
Na+; 0-3%的 K 1. 2-3%的 Cu2+; R2+含量为 54-65%; 51- 55%的 F—; 45- 49%的 02—。
进一歩的 含有 21-25%的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5- 3%的 Na+; 0-3%的 K 1. 2-3%的 Cu2+; R2+含量为 54-60%; 51- 53%的 F—; 47- 49%的 02—。
进一歩的 含有 15-35%的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 -10%的 Na+; 0-3%的 K 0. 1-8%的 Cu2+; 0 · 1-10%的 Mg2+ ; 1-20%的 Ca2+; 15- 35%的 Sr2+ ; 10-30%的 Ba2+ ; 45- 60%的 F—; 40- 55%的 02—。
进一歩的, 含有 20-30%的 P5+; 10-15%的 Al3+; 1-15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; 2- 8%的 Mg2+; 5- 15%的 Ca2+; 21-30%的 Sr2+; 15-30%的 Ba2+ ; 48-57%的 F—; 43- 52%的 02—。
进一歩的, 含有 21-25%的 P5+; 10-15%的 Al3+; 1-10%的 Li+; 0 . 5-3% 的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+; 21-30%的 Ba2+;大于 50%但小于或等于 57%的 F—;大于或等于 43%但小于 50% 的 02-。
进一歩的, 含有 21-25%的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5- 3%的
Na+ ; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+;
21- 25%的 Ba2+ ; 51- 55%的 F—; 45- 49%的 02—。
进一歩的, 含有 21-25%的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的
Na+ ; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+;
21- 25%的 Ba2+ ; 51- 53%的 F—; 47- 49%的 02—。
近红外光吸收元件, 由上述的近红外光吸收玻璃构成。
近红外光吸收滤光器, 由上述的近红外光吸收玻璃构成。
本发明的有益效果是: 本发明以氟磷酸盐玻璃作为基质玻璃, 通过特 定的组分设计, 可以有效地降低玻璃的熔融温度, 还可以使玻璃的化学稳 定性优异, 主要表现为耐水作用稳定性 Dw达到 1级, 耐酸作用稳定性 ¾达 到 4级或优于 4级; 本发明优选适量增加氟磷酸盐基质玻璃阴离子成分 F— 的含量, 且 F—含量大于 02—含量, 可以有效地降低玻璃的熔融温度, 使玻璃 的化学稳定性优异; 本发明通过增加氟磷酸盐基质玻璃组成中的 R2+含量, 加大玻璃液的碱性含量, 抑制 CiT还原成 Cu+, 使得玻璃的近红外光吸收性 能优异。 本发明的玻璃厚度为 lmm时, 在波长 400nm透过率显示大于 80%, 在波长 500nm透过率显示大于 85%,在 500至 700nm的波长范围内的光谱透 过率中,透过率为 50%时对应的波长 (即 λ 5。对应的波长值) 范围为 615士 10nm的范围。
附图说明
图 1是本发明的实施例 1的近红外光吸收玻璃的光谱透过率曲线图。 具体实施方式
本发明的近红外光吸收玻璃是把氟磷酸玻璃作为基础, 添加有近红外 光吸收作用的 CiT而得到的。
在下文中, 阳离子组分含量以该阳离子重量占全部阳离子总重量的百 分比含量表示, 阴离子组分含量以该阴离子重量占全部阴离子总重量的百 分比含量表示。 P5+为氟磷酸盐玻璃的基本成分, 是在 ClT的红外区域中产生吸收的一 种重要组分。 当其含量不到 15%时, 色修正功能恶化并带绿色; 超过 35% 则耐侯性、 耐失透性恶化, 因此 P5+的含量限定为 15-35%, 优选为 20-30%, 更优选为 21-25%。
Al3+是提高氟磷酸盐玻璃的脱玻化抵抗性、 耐候性、 耐热冲击性、 机械 强度和耐化学性的一种组分。 当 Al3+含量低于 5%时, 达不到上述效果; 当 Al3+含量超过 20%时, 近红外线吸收特性降低。 因此, Al3+含量为 5-20%, 更 优选为 10-15%。
Li+、 Na+和 K+是提高玻璃的可熔性、成玻璃性和可见光区的透过率的组 分。 相对于 Na+、 K+而言, 少量的 Li+的引入对玻璃的化学稳定性效果更好。 但当 Li+含量超过 30%时, 玻璃的耐久性和加工性能恶化。 因此, Li+含量为 1-30%, 优选为 1-15%, 更优选为 1-10%, 最优选为 2-5%。
本发明还可以优选加入少量的 Na+与 Li+混熔, 可有效提高玻璃的耐侯 性。 Na+含量为 0-10%, 优选为 0-5%, 更优选为 0. 5_3%。 K+含量为 0_3%, 若 其含量超过 3%时, 玻璃耐久性反而降低。
R2+是有效提高玻璃的成玻璃性、 耐失透性和可加工性的组分, 这里 R2+ 代表 Mg2+、 Ca2+、 Sr2+和 Ba2+。 作为近红外光吸收滤光器, 期望是可视域的光 透过率较高。 为了提高可视域的透过率, 引入的铜离子不是 Cu+, 必须是 Cu2+。 玻璃溶液如果处于还原状态, CiT就变成 Cu+, 其结果是波长 400nm附 近的透过率将降低。 本发明通过适量加大 Mg2+、 Ca2+、 Sr2+和 Ba2+的合计量, 增加了玻璃液的碱性含量, 能够抑制 CiT还原成 Cu+, 使得玻璃的近红外光 吸收性能优异。 Mg2+、 Ca2+、 Sr2+和 Ba2+的合计含有量如果不到 30%, 耐失透 性就有恶化的倾向, 如果超过 65%, 也有恶化耐失透性的倾向。 因此, Mg2+、 Ca2+、 Sr2+和 Ba2+合计含有量为 30_65%, 优选合计含有量为 40_65%, 更优选 合计含有量为大于 50%但小于或等于 65% , 进一歩优选合计含有量为 54-65%, 最优选合计含有量为 54-60%。
其中, Mg2+和 Ca2+有提高玻璃耐失透性、 化学稳定性、 加工性的作用。 Mg2+含有量为 0. 1-10%较理想, 更优选 2-8%, 进一歩优选 3-7%。 Ca2+含量优 选为 1-20%, 更优选为 5-15%, 更进一歩优选为 7-11%。 相对 Mg2+和 Ca2+而言, 本发明主要是引入了高含量的 Sr2+和 Ba2+, 在有 效增加 R2+含量, 带来提高光透过率作用的同时, Sr2+和 Ba2+还具有提高成玻 璃性、 玻璃耐失透性、 熔融性的作用。 Sr2+含量优选为 15-35%, 更优选为 21-30%, 进一歩优选 23-28%。 同样的理由, Ba2+含量优选为 10-30%, 更优 选为 15-30%, 进一歩优选为 21-30%, 最优选为 21-25%。
玻璃中的铜是近红外线吸收特性的主要指标, 并且以 CiT存在。 当 CiT 含量低于 0. 1%时, 近红外线吸收少; 但当其含量超过 8%时, 本发明玻璃的 耐失透性能降低。 因此, Cu2+含量为 0. 1-8% , 优选为 1. 2-5% , 更优选为 1. 2-3%
本发明玻璃中含有作为阴离子成分的 02—和 F—。在近红外线吸收玻璃中, 当提高熔融温度时, CiT容易还原为 Cu+, 玻璃的颜色从蓝色变为绿色, 从 而损害了将颜色灵敏度校正应用到半导体成像元件上所必需的特性。
F—是降低玻璃的熔融温度并提高化学稳定性的重要的阴离子组分。 本 发明中, 当 F—含量等于或低于 45%时, 化学稳定性降低; 当 F—含量超过 60% 时, 因为 02—含量降低, CiT的减少得不到抑制, 玻璃中 Cu+含量升高,短波 部分吸收增大,红外吸收减小。 因此, F—含量为 45-60%, 优选为 48-57%, 更优选大于 50%但小于或等于 57%,进一歩优选为 51-55%,最优选为 51-53%。
02—是本发明玻璃中的一种重要的阴离子组分, 当 02—的含量太少时, 因 为 CiT被还原为 Cu+, 所以在短波长区域, 特别是在 400nm附近的吸收变得 更大直到显示为绿色; 但当 02—的含量过多时, 因为玻璃的粘度变得更高从 而导致更高的熔融温度, 所以透过率降低。 因此, 本发明中 02—的含量为 40-55%, 优选为 43-52%, 更优选为大于或等于 43%但小于 50%,进一歩优选 为 45-49%, 更优选为 47-49%。
本发明优选适量增加 F—的含量, 且 F—含量大于 02—含量, 可以有效地降 低玻璃的熔融温度, 而且适量增加 F—还可以使玻璃的化学稳定性优异。 因 此, F— -02—的优选范围为 0. 1-20% , 进一歩优选 0. 1-10%,最优选范围为 0. 1-3%
本发明通过特定的组分设计, 玻璃的化学稳定性方面的特性如下: 耐 水作用稳定性 0„可以达到 1级; 耐酸作用稳定性 DA达到 4级, 优选达到 3 级, 更优选达到 2级。
上述耐水作用稳定性 Dw (粉末法) 按 GB/T17129的测试方法, 根据下 式计算:
Dff= (B-C) I (B-A) *100
式中: Dw—玻璃浸出百分数 (%)
B 过滤器和试样的质量 (g)
C 过滤器和侵蚀后试样的质量 (g)
A—过滤器质量 (g)
由计算得出的浸出百分数, 将光学玻璃耐水作用稳定 Dw分为 6类见下
Figure imgf000009_0001
上述耐酸作用稳定性 DA (粉末法) 按 GB/T17129的测试方法, 根据下 式计算:
DA= (B-C) I (B-A) *100
式中: DA—玻璃浸出百分数 (%)
B 过滤器和试样的质量 (g)
C 过滤器和侵蚀后试样的质量 (g)
A—过滤器质量 (g)
由计算得出的浸出百分数, 将光学玻璃耐酸作用稳定 DA分为 6类见下
Figure imgf000009_0002
本发明的玻璃的优选透过率特性如下:
玻璃厚度为 1mm时,在 400至 1200nm的波长范围内的光谱透过率具有 更优选大于或等于 88%。
在 500nm的波长的光谱透过率大于或等于 85%、 优选大于或等于 88%、 更优选大于或等于 90%。
在 600nm的波长的光谱透过率大于或等于 58%、 优选大于或等于 61%、 更优选大于或等于 64%。
在 700nm的波长的光谱透过率小于或等于 12%、 优选小于或等于 10%、 更优选小于或等于 9%。
在 800nm的波长的光谱透过率小于或等于 5%、优选小于或等于 3%、更 优选小于或等于 2. 5%, 还更优选小于或等于 2%。
在 900nm的波长的光谱透过率小于或等于 5%、优选小于或等于 3%、更 优选小于或等于 2. 5%。
在 lOOOnm的波长的光谱透过率小于或等于 7%、 优选小于或等于 6%、 更优选小于或等于 5%。
在 l lOOnm的波长的光谱透过率小于或等于 15%、优选小于或等于 13%、 更优选小于或等于 11%。
在 1200nm的波长的光谱透过率小于或等于 24%、优选小于或等于 22%、 更优选小于或等于 21%。
即, 在 700nm至 1200nm的近红外区域波长范围内的吸收大, 在 400nm 至 600nm的可见光区域波长范围内的吸收小。
在 500至 700nm的波长范围内的光谱透过率中,透过率为 50%时对应的 波长 (即 λ 5。对应的波长值) 范围为 615 ± 10nm。
本发明玻璃的透过率是指通过分光光度计以所述方式得到的值: 假定 玻璃样品具有彼此平行并光学抛光的两个平面, 光从一个平行平面上垂直 入射, 从另外一个平行平面出射, 该出射光的强度除以入射光的强度就是 透过率, 该透过率也称为外透过率。
根据本发明的玻璃的上述特性,可以极好地实现半导体成像元件如 CCD 或 CMOS的颜色校正。
本发明所涉及到的近红外光吸收元件由所述近红外光吸收玻璃构成, 可以例举出用于近红外光吸收滤光器中的薄板状的玻璃元件或透镜等, 适 用于固体摄像元件的色修正用途, 具备良好的透射性能及化学稳定性。 本发明所涉及到的近红外滤光器是由近红外光吸收玻璃构成的近红外 光吸收元件, 因此也具备良好的光透射性能和化学稳定性。
实施例
在下文中, 参考实施例将更详细地描述本发明。 然而, 本发明不限于 所述实施例。
首先, 以氟化物、 偏磷酸盐、 氧化物、 硝酸盐和碳酸盐作为玻璃原料, 将原料称重使其为具有在表 1-3中显示的组成的玻璃, 完全混合后, 将混 合原料投入到用盖子密封的铂金坩埚中, 在 700-90CTC的温度下加热熔融, 澄清采用氧气保护同时均化后, 使熔融玻璃从控温管道中以恒定流速连续 流出, 成型后得到本发明的光学玻璃。
实施例 1-20 (近红外线吸收玻璃的制造实施例) 表 1
实施例 1 2 3 4 5 6 7 8 9 10
27. 5 24. 2 19. 6 21. 7 22. 2 23. 1 21. 0 25. 0 18. 7 25. 4
Al3+ 13. 4 10 15. 3 11. 8 8. 7 12. 7 12. 9 10. 4 15. 6 11. 3 阳 Li+ 2. 4 3. 8 4. 4 5. 9 7. 9 2. 4 2. 1 3. 8 3. 0 1. 1
Na+ 0. 6 1. 4 0 0 0 0 0 1. 0 1. 5 0 子0 /0 K+ 0 0 0 0 0. 5 0 0 0 2 0
R2+ 54. 4 56. 2 57. 4 57. 9 60. 3 59. 6 61. 1 58. 0 55. 8 61. 2
Mg2+ 2. 8 6. 8 3. 6 7. 2 4. 4 4. 6 4. 8 3. 9 7. 1 3. 1
Ca 7. 1 3. 9 11. 5 6. 9 16. 1 9. 9 10. 5 12. 5 7. 7 8. 4
Sr2+ 27. 6 29. 1 22. 7 18. 9 16. 1 24. 8 25. 1 22. 7 23. 4 27. 1
Ba2+ 16. 9 16. 4 19. 6 24. 9 23. 7 20. 3 20. 7 18. 9 17. 6 22. 6
Cu2+ 1. 7 4. 4 3. 3 2. 7 0. 4 2. 2 2. 9 1. 8 3. 4 1. 0 总计 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 100. 0 阴 离 F— 52. 8 54. 4 53. 8 55. 1 51. 7 51. 5 52. 4 51. 3 52. 8 50. 7
Figure imgf000012_0001
Al3+ 11. 9 12. 1 12. 8 12. 8 13. 7 阳 Li+ 1. 8 2. 3 3. 4 2. 9 3. 7 离 Na+ 1. 7 1. 4 0 0 1. 5 子0 /0 K+ 0 0 0 0 0
R2+ 59 59. 1 61. 2 61. 3 56. 2
Mg2+ 4. 9 4. 3 4. 6 5. 3 3. 3
Ca 9. 1 10. 2 11. 1 10. 9 8. 5
Sr2+ 26. 2 25. 1 23. 9 24. 2 23. 7
Ba2+ 18. 8 19. 5 21. 6 20. 9 20. 7
Cu2+ 2. 1 2. 2 2. 5 2. 0 1. 2 总计 100. 0 100. 0 100. 0 100. 0 100. 0 阴离 F— 47 51. 8 48. 4 51. 3 49. 1 子0 /0 O2— 53 48. 2 51. 6 48. 7 50. 9
总计 100. 0 100. 0 100. 0 100. 0 100. 0
Dw 1 1 1 1 1
DA 3 2 2 2 2 表 1-3中 R+为: Li+、 Na+禾口 K+的总含量。
将上述玻璃加工成板状, 并且将彼此相对的两面进行光学抛光以制备 用于测量透过率的样品, 使用光谱透射仪测量每个样品的光谱透过率, 得 到 1mm厚度的每个样品的典型波长的透过率。
表 4-6中显示了所述玻璃在 1mm厚度时, 本发明玻璃的透过率值, 可 以证实所述玻璃都具有作为用于半导体成像元件的颜色灵敏度校正玻璃的 优异性能。
表 4
实施例 1 2 3 4 5 6 7 8 9 10
400nm 83 85 82. 5 81 85 81. 6 83. 5 88. 1 83. 2 88. 3
500nm 88 89 87 88 88. 1 88. 3 88 90. 9 88 90. 9 厚 600nm 63 65 63 62. 4 61. 4 63. 6 64 63 61. 7 63 度 700nm 10 8 8. 4 9 8. 5 9. 4 8. 7 8. 2 8 8. 1 c C τ C C "C 腿 006
ΐ ·ζ C ·Ζ c ·ζ f ·Ζ ζ ·ζ 腿 008 (%)
Ζ ·0ΐ ΐ ΐ Οΐ π 9 ·π 腿 0(
9 · 9 Ζ · 9 9 Ζ "C9 S · 9 腿 009
88 88 88 f ·88 S ·88 腿 OOS
C8 8 "28 9 'ΐ8 C "28 28 腿 00
ΟΖ 6ΐ 8ΐ ΐ 9ΐ
Figure imgf000014_0001
Figure imgf000014_0002
CCl.0/CT0ZN3/X3d
Figure imgf000015_0001
图 1是上述实施例 1的光谱透过率曲线图, 图 1中横坐标代表波长, 纵坐标代表透过率。 从图中可以看出, 在玻璃厚度为 lmm的情况下, 优选 波长 400nm的透过率为 80%以上。 在 500至 700nm的波长范围内的光谱透 过率中,透过率为 50%时对应的波长范围为 615 ± 10nm。 在波长 400_1200nm 的光谱透过率中, 波长 800-1000nm的波长区的透过率最低。 因为此区域为 近红外光区, 半导体摄像元件在该区域的敏感度不是很低, 因此必须抑制 色修正用滤光器的透过率, 使其达到充分低的程度。 而当波长在 1000-1200nm 的区域时, 半导体成像元件的敏感度相对降低, 因此本发明 的玻璃的透过率有所增加。

Claims

权利要求书
1、 近红外光吸收玻璃, 其特征在于, 所述近红外光吸收玻璃厚度为 lmm时,在波长 400nm透过率显示大于 80%, 在波长 500nm透过率显示大于 85%, 所述近红外光吸收玻璃含有用阳离子表示的 P5+、 Al3+、 Li+、 R2+及 Cu2+, 所述 R2+代表 Mg2+、 Ca2+、 S 和 Ba2+,同时含有用阴离子表示的 02-及 F-, 所 述近红外光吸收玻璃的耐水作用稳定性 Dw达到 1级, 耐酸作用稳定性 ¾达 到 4级以上。
2、 如权利要求 1所述的近红外光吸收玻璃, 其特征在于, 所述近红外 光吸收玻璃厚度为 lmm时,在波长 400nm透过率显示大于 88%, 在波长 500nm 透过率显示大于 90%。
3、 如权利要求 1所述的近红外光吸收玻璃, 其特征在于, 所述 F—含量 大于 02—含量。
4、 如权利要求 1所述的近红外光吸收玻璃, 其特征在于, 所述 F— -02— 为 0. 1-20%
5、 如权利要求 1所述的近红外光吸收玻璃, 其特征在于, 所述 F— -02— 为 0. 1-10%。
6、 如权利要求 1所述的近红外光吸收玻璃, 其特征在于, 所述 F— -02— 为 0. 1-3%
7、如权利要求 1所述的近红外光吸收玻璃, 其特征在于,含有 15-35% 的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 -10%的 Na+; 0-3%的 K+; 0. 1-8%的 Cu2+;
R2+含量为 30-65%,所述 R2+代表 Mg2+、 Ca2+、 S 禾口 Ba2+; 45- 60%的 F—; 40-55% 的 02-。
8、如权利要求 1所述的近红外光吸收玻璃, 其特征在于,含有 20-30% 的 P5+; 10-15%的 Al3+; 1-15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; R2+含量为 40-65%; 48-57%的 F—; 43-52%的 02—。
9、如权利要求 1所述的近红外光吸收玻璃, 其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 1-10%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+ ; R2+含量为大于 50%但小于或等于 65%; 大于 50%但小于或等于 57%的 F— ; 大于或等于 43%但小于 50%的 02—。
10、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; R2+含量为 54-65%; 51- 55%的 F—; 45- 49%的 02—。
11、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的
Cu2+; R2+含量为 54-60%; 51-53%的 F—; 47-49%的 02—。
12、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 15-35% 的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 -10%的 Na+; 0-3%的 K+; 0. 1-8%的 Cu2+; 0 . 1-10%的 Mg2+ ; 1-20%的 Ca2+; 15- 35%的 Sr2+; 10- 30%的 Ba2+; 45- 60%的 F—; 40-55%的 02—。
13、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 20-30% 的 P5+; 10-15%的 Al3+; 1-15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; 2-8%的 Mg2+ ; 5-15%的 Ca2+; 21- 30%的 Sr2+; 15- 30%的 Ba2+; 48- 57%的 F—; 43-52% 的 02-。
14、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 1-10%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23-28%的 Sr2+; 21-30%的 Ba2+; 大于 50% 但小于或等于 57%的 F—; 大于或等于 43%但小于 50%的 02—。
15、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的
Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23—28%的 Sr2+; 21-25%的 Ba2+; 51—55%的 F—; 45-49%的 02—。
16、如权利要求 1所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23—28%的 Sr2+; 21-25%的 Ba2+; 51—53%的 F—; 47-49%的 02—。
17、近红外光吸收玻璃,其特征在于,含有 15-35%的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 -10%的 Na+; 0-3%的 K+; 0. 1-8%的 Cu2+; R2+含量为 30-65%, 所述 R2+代表 Mg2+、 Ca Sr2+和 Ba2+; 45-60%的 F—; 40- 55%的 02—。
18、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 20-30% 的 P5+; 10- 15%的 Al3+; 1- 15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; R2+含量为 40-65%; 48-57%的 F—; 43- 52%的 02—。
19、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10- 15%的 Al3+; 1- 10%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的
Cu2+ ; R2+含量为大于 50%但小于或等于 65%; 大于 50%但小于或等于 57%的 F— ; 大于或等于 43%但小于 50%的 02—。
20、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; R2+含量为 54-65%; 51- 55%的 F—; 45- 49%的 02—。
21、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; R2+含量为 54-60%; 51-53%的 F—; 47-49%的 02—。
22、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 15-35% 的 P5+; 5-20%的 Al3+; 1-30%的 Li+; 0 - 10%的 Na+; 0-3%的 K+; 0. 1-8%的 Cu2+;
0 . 1- 10%的 Mg2+ ; 1-20%的 Ca2+; 15- 35%的 Sr2+; 10- 30%的 Ba2+; 45- 60%的 F—; 40-55%的 02—。
23、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 20-30% 的 P5+; 10- 15%的 Al3+; 1- 15%的 Li+; 0 -5%的 Na+; 0-3%的 K+; 1. 2-5%的 Cu2+; 2-8%的 Mg2+ ; 5- 15%的 Ca2+; 21- 30%的 Sr2+; 15- 30%的 Ba2+; 48- 57%的 F—; 43-52% 的 02-。
24、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10- 15%的 Al3+; 1- 10%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7- 1 1%的 Ca2+; 23-28%的 Sr2+; 21-30%的 Ba2+; 大于 50% 但小于或等于 57%的 F—; 大于或等于 43%但小于 50%的 02—。
25、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10- 15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7- 1 1%的 Ca2+; 23—28%的 Sr2+; 21-25%的 Ba2+; 51—55%的 F—; 45-49%的 02—。
26、如权利要求 17所述的近红外光吸收玻璃,其特征在于,含有 21-25% 的 P5+; 10-15%的 Al3+; 2-5%的 Li+; 0 . 5-3%的 Na+; 0-3%的 K+; 1. 2-3%的 Cu2+; 3-7%的 Mg2+; 7-11%的 Ca2+; 23—28%的 Sr2+; 21-25%的 Ba2+; 51—53%的 F—; 47-49%的 02—。
27、 近红外光吸收元件, 其特征在于, 由权利要求 1-26中任一权利要 求所述的近红外光吸收玻璃构成。
28、 近红外光吸收滤光器, 其特征在于, 由权利要求 1-26中任一权利
PCT/CN2013/071338 2012-02-17 2013-02-04 近红外光吸收玻璃、元件及滤光器 WO2013120421A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147025860A KR20140135987A (ko) 2012-02-17 2013-02-04 근적외선 흡수유리, 근적외선 흡수 컴포넌트 및 근적외선 흡수필터
US14/379,113 US9546105B2 (en) 2012-02-17 2013-02-04 Near-infrared light absorbing glass, element and filter
JP2014556909A JP6357109B2 (ja) 2012-02-17 2013-02-04 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210036840.4 2012-02-17
CN2012100368404A CN102557434B (zh) 2012-02-17 2012-02-17 近红外光吸收玻璃、元件及滤光器
CN201210036873.9 2012-02-17
CN201210036873.9A CN102603189B (zh) 2012-02-17 2012-02-17 近红外光吸收玻璃、元件及滤光器

Publications (1)

Publication Number Publication Date
WO2013120421A1 true WO2013120421A1 (zh) 2013-08-22

Family

ID=48983553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071338 WO2013120421A1 (zh) 2012-02-17 2013-02-04 近红外光吸收玻璃、元件及滤光器

Country Status (4)

Country Link
US (1) US9546105B2 (zh)
JP (2) JP6357109B2 (zh)
KR (1) KR20140135987A (zh)
WO (1) WO2013120421A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145668B (zh) 2016-06-24 2019-01-04 成都光明光电股份有限公司 光学玻璃、光学预制件和光学元件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242868A (en) * 1988-02-29 1993-09-07 Hoya Corporation Fluorophosphate glass
JPH10101370A (ja) * 1996-10-02 1998-04-21 Toshiba Glass Co Ltd 近赤外線カットフィルタガラスの分光特性調整方法
WO2011071157A1 (ja) * 2009-12-11 2011-06-16 旭硝子株式会社 近赤外線カットフィルタガラス
CN102557434A (zh) * 2012-02-17 2012-07-11 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
CN102603188A (zh) * 2012-02-17 2012-07-25 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
CN102603189A (zh) * 2012-02-17 2012-07-25 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643254B2 (ja) * 1988-02-29 1994-06-08 ホーヤ株式会社 弗燐酸塩ガラス
JP2726078B2 (ja) * 1989-01-31 1998-03-11 ホーヤ株式会社 近赤外線吸収フィルターガラス
JPH11209144A (ja) * 1998-01-21 1999-08-03 Hoya Corp 近赤外吸収フィルター用ガラスおよびそれを用いた近赤外吸収フィルター
JP3965352B2 (ja) * 2002-10-16 2007-08-29 Hoya株式会社 銅含有ガラス、近赤外光吸収素子および近赤外光吸収フィルター
US7192897B2 (en) * 2002-07-05 2007-03-20 Hoya Corporation Near-infrared light-absorbing glass, near-infrared light-absorbing element, near-infrared light-absorbing filter, and method of manufacturing near-infrared light-absorbing formed glass article, and copper-containing glass
JP4169545B2 (ja) * 2002-07-05 2008-10-22 Hoya株式会社 近赤外光吸収ガラス、近赤外光吸収素子、近赤外光吸収フィルターおよび近赤外光吸収ガラス成形体の製造方法
JP4493417B2 (ja) * 2004-06-09 2010-06-30 Hoya株式会社 半導体パッケージの窓用ガラス、半導体パッケージ用ガラス窓および半導体パッケージ
JP5004202B2 (ja) * 2005-09-14 2012-08-22 Hoya株式会社 光学ガラス、精密プレス成形用プリフォームおよび光学素子
JP2007091537A (ja) * 2005-09-29 2007-04-12 Hoya Corp 近赤外光吸収ガラス材ロットおよびそれを用いる光学素子の製造方法
JP4229334B2 (ja) * 2006-09-29 2009-02-25 Hoya株式会社 光学ガラスの製造方法、プレス成形用ガラス素材、プレス成形用ガラス素材の製造方法および光学素子の製造方法
JP2008100872A (ja) * 2006-10-19 2008-05-01 Hoya Corp ガラス製プリフォームの製造方法および光学素子の製造方法
JP4958213B2 (ja) * 2006-10-25 2012-06-20 Hoya株式会社 光学素子の製造方法
JP5069649B2 (ja) * 2008-03-28 2012-11-07 Hoya株式会社 フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP5063537B2 (ja) * 2008-03-28 2012-10-31 Hoya株式会社 フツリン酸ガラス、精密プレス成形用プリフォーム、光学素子ブランクおよび光学素子とそれら製造方法
JP2011132077A (ja) * 2009-12-25 2011-07-07 Hoya Corp 近赤外光吸収ガラス、近赤外光吸収フィルターおよび撮像装置
WO2012018026A1 (ja) * 2010-08-03 2012-02-09 旭硝子株式会社 近赤外線カットフィルタガラスおよびその製造方法
WO2013120420A1 (zh) * 2012-02-17 2013-08-22 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242868A (en) * 1988-02-29 1993-09-07 Hoya Corporation Fluorophosphate glass
JPH10101370A (ja) * 1996-10-02 1998-04-21 Toshiba Glass Co Ltd 近赤外線カットフィルタガラスの分光特性調整方法
WO2011071157A1 (ja) * 2009-12-11 2011-06-16 旭硝子株式会社 近赤外線カットフィルタガラス
CN102557434A (zh) * 2012-02-17 2012-07-11 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
CN102603188A (zh) * 2012-02-17 2012-07-25 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器
CN102603189A (zh) * 2012-02-17 2012-07-25 成都光明光电股份有限公司 近红外光吸收玻璃、元件及滤光器

Also Published As

Publication number Publication date
US9546105B2 (en) 2017-01-17
JP6357109B2 (ja) 2018-07-11
JP6161767B2 (ja) 2017-07-12
US20150329411A1 (en) 2015-11-19
JP2016155758A (ja) 2016-09-01
KR20140135987A (ko) 2014-11-27
JP2015512847A (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
TWI573770B (zh) Near infrared light absorption glass, components and filters
JP5921877B2 (ja) フッ化リン酸ガラス
JP6047226B2 (ja) 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ
JP6047227B2 (ja) 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ
WO2015106650A1 (zh) 玻璃组合物
WO2013120420A1 (zh) 近红外光吸收玻璃、元件及滤光器
WO2013120421A1 (zh) 近红外光吸收玻璃、元件及滤光器
CN105906204A (zh) 近红外光吸收玻璃、元件及滤光器
KR101266431B1 (ko) 근적외선 필터용 유리조성물 및 이를 이용한 근적외선 필터용 유리의 제조방법
TWI522331B (zh) Near infrared light absorption glass, components and filters
CN102603188A (zh) 近红外光吸收玻璃、元件及滤光器
CN113880425A (zh) 近红外光吸收玻璃、元件及滤光器
CN103359936B (zh) 近红外光吸收玻璃、元件及滤光器
CN103359937B (zh) 近红外光吸收玻璃、元件及滤光器
CN102603189A (zh) 近红外光吸收玻璃、元件及滤光器
TW201623178A (zh) 改良式近紅外線濾光玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556909

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147025860

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13749477

Country of ref document: EP

Kind code of ref document: A1