WO2013119069A1 - 다층 필름 및 이의 제조방법 - Google Patents

다층 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2013119069A1
WO2013119069A1 PCT/KR2013/001017 KR2013001017W WO2013119069A1 WO 2013119069 A1 WO2013119069 A1 WO 2013119069A1 KR 2013001017 W KR2013001017 W KR 2013001017W WO 2013119069 A1 WO2013119069 A1 WO 2013119069A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
coupling agent
multilayer film
fluoropolymer
film
Prior art date
Application number
PCT/KR2013/001017
Other languages
English (en)
French (fr)
Inventor
김현철
고현성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2014556479A priority Critical patent/JP6050384B2/ja
Priority to EP13746422.8A priority patent/EP2813540B1/en
Priority to CN201380008791.6A priority patent/CN104105749B/zh
Publication of WO2013119069A1 publication Critical patent/WO2013119069A1/ko
Priority to US14/249,616 priority patent/US20140216532A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention relates to a multilayer film, its manufacturing method, the subsidiary material for photovoltaic module manufacture, and a photovoltaic module.
  • Photovoltaic cells to which the photovoltaic power generation principle is applied are devices that convert sunlight into electrical energy.
  • the photovoltaic cells need to be exposed to the external environment for a long time to easily absorb sunlight, and thus various packaging is performed to protect cells. It is manufactured in unit form, and these units are called photovoltaic modules.
  • the photovoltaic module should use a back sheet having excellent weather resistance and durability in order to stably protect the photovoltaic cell even when exposed to an external environment for a long time.
  • the back sheet for photovoltaic cells is bonded with ethylene vinyl acetate (EVA), which is used as an encapsulant for photovoltaic cells, to physically protect the cells of the photovoltaic cells and to prevent moisture penetration into the cells and maintain electrical insulation.
  • EVA ethylene vinyl acetate
  • the back sheet for photovoltaic cells should be excellent in UV resistance and weather resistance, and have low degradation of mechanical properties, moisture barrier properties, electrical insulation, etc., ie, long-term reliability during use.
  • PVDF polyvinylidene fluoride
  • CTFE chlorotrifluoro ethylene
  • ECTFE ethylene chlororofluorofluoro ethylene
  • the back sheet for a photovoltaic cell that has excellent moisture barrier property, maintains long-term adhesion, has excellent durability and weather resistance, and can be manufactured easily due to a simple manufacturing method and can improve productivity and quality of a photovoltaic module. The demand for it continues.
  • the present invention provides a multilayer film, a method of manufacturing the same, a back sheet for a photovoltaic cell, and a photovoltaic module.
  • the present invention provides a multilayer film including a barrier film, a primer layer on the barrier film, and a fluoropolymer coating layer on the primer layer.
  • the primer layer includes a copolymer having compatibility with the fluoropolymer, and the copolymer having compatibility with the fluoropolymer is formed by copolymerizing with a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent. Contains functional groups.
  • the present invention is a step of forming a primer layer by coating a primer coating liquid comprising a copolymer having compatibility with the fluoropolymer on the barrier film and
  • It provides a method for producing a multilayer film comprising coating a composition for fluoropolymer coating on top of the primer layer.
  • the multilayer film of the present invention can be used, for example, as an auxiliary material for manufacturing various photovoltaic modules.
  • the present invention includes a barrier film such as a metal thin film or an inorganic vapor deposition film having excellent moisture resistance, and a fluoropolymer layer having excellent weather resistance is formed on the barrier film by coating, and a coupling agent such as a silane between the barrier film and the fluoropolymer layer.
  • the adhesive layer may be secured by a primer layer including a compatible copolymer modified by to provide a multilayer film having excellent moisture resistance and weather resistance and excellent adhesion.
  • the multilayer film may be manufactured at low cost at low drying temperature using a low boiling point solvent, increase productivity, and prevent degradation of a product due to thermal deformation or thermal shock.
  • Such a multilayer film of the present invention can be usefully used for, for example, a back sheet for photovoltaic cells, and can provide a photovoltaic module having excellent durability even when exposed to an external environment for a long time.
  • FIG. 1 is a cross-sectional view showing a multilayer film according to one example of the present invention.
  • Example 2 is a view of the surface before and after the PCT of the multilayer film according to Example 1 of the present invention.
  • FIG 3 is a view of the surface before and after the PCT of the multilayer film according to Comparative Example 2 of the present invention.
  • the barrier film the barrier film; A primer layer on the barrier film; And a fluoropolymer coating layer on the primer layer.
  • the primer layer includes a copolymer having compatibility with the fluoropolymer, and the copolymer having compatibility with the fluoropolymer is formed by copolymerizing with a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent. It may include a functional group to improve the binding force of the barrier film on the bottom and the fluoropolymer coating layer on the top.
  • the barrier film is a film having moisture barrier properties, and examples thereof include a metal thin film or an inorganic deposited film.
  • a metal thin film or an inorganic deposited film may be used as the metal thin film, and the inorganic deposition film may be indium tin oxide (ITO), indium zinc oxide (IZO), silicon oxide (SiOx), or AlOx ( Aluminum oxide) can be used.
  • the inorganic deposition film in the case of the inorganic deposition film, it may be used to include an inorganic deposition layer made of the above material on the substrate, such as PET.
  • Such a barrier film contains a hydroxyl group etc. on the surface.
  • the barrier film has excellent moisture barrier properties, but has a weak surface in corrosion resistance, weather resistance, etc. due to an external climate, and in order to use it as a subsidiary material for manufacturing photovoltaic modules such as a back sheet for photovoltaic cells, the barrier film may be protected by a fluoropolymer layer, which is a weather resistant resin. There is a need. In order to protect the surface of the barrier film such as a metal with the fluoropolymer layer, there may be a method of attaching the fluoropolymer film to the barrier film or coating the fluoropolymer on the barrier film.
  • the latter (method of coating a fluoropolymer on a barrier film) used fluoropolymer paint for coating on the surface of a barrier film such as a metal thin film or an inorganic deposited film, and a conventional fluoropolymer paint coated an epoxy primer and then fluorine
  • a barrier film such as a metal thin film or an inorganic deposited film
  • the coating of the polymer wherein each process temperature is 230 °C or more, the baking process is 300 °C or more has a disadvantage in the process.
  • the epoxy primer unlike the modified acrylic primer such as silane according to the embodiments of the present invention, the compatibility with the fluoropolymer is low and the adhesion to the fluoropolymer is low.
  • the primer of the present invention is a copolymer having compatibility with the fluoropolymer, and has a barrier having a hydrophilic hydroxyl group including a functional group formed by copolymerizing with a silane coupling agent, a titanium coupling agent, a zirconium coupling agent or an aluminum coupling agent.
  • the surface of the film can be modified to be hydrophobic, whereby the interface of the barrier film is excellent in water resistance and excellent in corrosion resistance by moisture.
  • a hydrophobic primer layer having such a specific functional group serves to connect the fluoropolymer coating liquid and the hydrophilic barrier film.
  • the present inventors introduced a primer layer including a specific copolymer so that the fluoropolymer coating layer may have a high interfacial adhesion to the barrier film even at a low temperature process of 200 ° C. or less.
  • the copolymer of the primer layer which can be used in the embodiments of the present invention is compatible with the fluoropolymer on the top, and also copolymerized with the silane coupling agent, titanium coupling agent, zirconium coupling agent or aluminum coupling agent.
  • a modified copolymer may be provided so that the functional group, for example, a silanol group, may be covalently or hydrogen-bonded with a hydroxyl group or the like on the barrier film surface, thereby improving interfacial adhesion.
  • the functional group for example, a silanol group
  • the fluoropolymer is coated on the primer layer to secure the adhesive force between the barrier film and the fluoropolymer coating layer while applying the weather resistant fluoropolymer layer to the barrier film by a simple coating process.
  • covalent bonds between silane, organo titanium, organo zirconium or organoaluminum and a hydroxyl group on the surface of the barrier film may be formed at the interface between the barrier film and the primer layer to secure adhesive strength.
  • a hydroxyl group is present on the surface of the barrier film, such as a metal thin film or an inorganic deposited film, and the hydroxy group is silane compound, organotitanium, organozirconium or organoaluminum, and Si-O Ti-O, Zr-O or Al-O, respectively. It forms a covalent bond and forms a hydrogen bond with hydrogen of the silane compound, organotitanium, organozirconium or organoaluminum to improve the adhesion between the barrier film and the primer layer.
  • the primer layer made of a modified copolymer including a functional group formed by copolymerizing with the silane coupling agent, titanium-based coupling agent, zirconium-based coupling agent or aluminum-based coupling agent is a silane coupling agent, titanium-based coupling agent, zirconium-based coupler
  • a primer composed of a ring agent or an aluminum coupling agent alone it includes a copolymer having excellent compatibility with the fluoropolymer, for example, an acrylic copolymer, and thus, when the fluoropolymer is coated on the primer layer, Interdiffusion of the material between the fluoropolymer coating layers results in additional interlayer adhesion.
  • a fluoropolymer is obtained by using a copolymer having a compatibility with the fluoropolymer, which includes a functional group formed by copolymerizing with a silane coupling agent, a titanium coupling agent, a zirconium coupling agent or an aluminum coupling agent as a primer to the barrier film.
  • the coating allows the fluoropolymer to be coated on the barrier film in a simple, low temperature process without the need for forming a separate film.
  • the barrier film may have a thickness in a range of about 1 to 200 ⁇ m, and may have a range of 10 to 100 ⁇ m, or 15 to 50 ⁇ m.
  • the barrier film may have a thickness of about 1 to 1000 nm, for example, may have a thickness of 10 to 500 nm or 50 to 300 nm.
  • the thickness of the barrier film in the present invention is not limited to the above range, which may be appropriately adjusted as necessary.
  • a high frequency spark discharge treatment such as corona treatment or plasma treatment to further improve adhesion before applying the barrier film to the barrier film surface; Heat treatment; Flame treatment; Coupling agent treatment; Anchor treatment or chemical activation treatment using gaseous Lewis acid (ex. BF 3 ), sulfuric acid or high temperature sodium hydroxide or the like can be performed.
  • the barrier film may further include a substrate.
  • Specific types of substrates that can be used in the embodiments of the present invention are not particularly limited, and various materials known in the art may be used, and may be selected according to required functions, uses, and the like.
  • the substrate may be a variety of metal or polymer sheets.
  • the metal may include aluminum, iron, and the like.
  • the polymer sheet may include a polyester sheet, a polyamide sheet, a polyimide sheet, and the like.
  • the polyester sheet may include a single sheet such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) or polybutylene terephthalate (PBT), a laminated sheet or a coextruded material, but are not limited thereto. no.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • a laminated sheet or a coextruded material but are not limited thereto. no.
  • a polyester sheet with improved hydrolysis characteristics may be used, if necessary.
  • the thickness of the substrate may be in the range of about 50 ⁇ m to 500 ⁇ m, or may be in the range of 100 to 300 ⁇ m. By controlling the thickness of the substrate as described above, it is possible to maintain excellent electrical insulation, moisture barrier properties, mechanical properties and handleability of the multilayer film. However, the thickness of the substrate in the present invention is not limited to the above range, which may be appropriately adjusted as necessary.
  • spark discharge treatment to improve the adhesion to the substrate; Heat treatment; Flame treatment; Coupling agent treatment; Anchor treatment or chemical activation treatment may be performed.
  • the barrier film may be laminated on the substrate, but may be a laminate using an adhesive layer, a laminate using heat and pressure, and the like, but is not limited thereto.
  • the multilayer film of the present invention comprises a primer layer between the substrate and the fluoropolymer coating layer.
  • the copolymer included in the primer layer of the multilayer film has compatibility with the fluoropolymer and ensures adhesion between the substrate and the fluoropolymer coating layer.
  • the copolymer having compatibility with the fluoropolymer includes a main chain skeleton having compatibility with the fluoropolymer, and is formed by copolymerizing a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent in the main chain skeleton. Contains functional groups.
  • B having compatibility with A refers to physical properties in which A and B are well mixed with each other or are well diffused.
  • the main chain skeleton of the copolymer contained in the primer layer is not particularly limited as long as it exhibits the above properties, and includes, for example, a (meth) acrylic main chain skeleton; (Meth) acrylamide main chain skeleton; And a main chain skeleton of a free radical addition polymer derived from a monomer mixture including (meth) acrylic monomer, (meth) acrylamide monomer or vinyl monomer as a main component, but is not limited thereto. .
  • the primer layer is compatible with the fluoropolymer included in the fluoropolymer coating layer described below and the barrier film described above, so that the adhesive force can be sufficiently exhibited, and both layers are formed by a coating method to form a molecular chain of each layer. Inter-diffusion eliminates the interface. That is, in the process of forming the multilayer film, at the interface between the primer layer and the fluoropolymer coating layer, mutual diffusion between the fluoropolymer and the primer included in the fluoropolymer coating layer occurs. As a result, physical interaction may occur between chain entanglement and van der Waals attraction between the components of the fluoropolymer coating layer and the components of the primer layer, and thus, the adhesion may be improved. Therefore, the two layers can be bonded without a separate adhesive, and durability problems caused by conventional interface adhesives can be solved. In addition, van der Waals attraction can be further increased by dipole-dipople interaction.
  • the copolymer of the primer layer further includes a functional group formed by copolymerizing a silane coupling agent, a titanium based coupling agent, a zirconium based coupling agent or an aluminum based coupling agent, and such functional groups are introduced into the polymer main chain, the side chain, or the end thereof.
  • a copolymer including a functional group formed by copolymerizing a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent is referred to as a modified copolymer.
  • Such copolymers may include polymerizable monomers having compatibility with the fluoropolymers; And a copolymer of a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent.
  • the silane silane coupling agent, titanium-based coupling agent, zirconium-based coupling agent or aluminum-based coupling agent used at this time uses a compound having a double bond for radical copolymerization.
  • the polymerizable monomer having compatibility with the fluoropolymer may be at least one selected from the group consisting of (meth) acrylic monomers, (meth) acrylamide monomers, and vinyl monomers.
  • Examples of the (meth) acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, t -Butyl (meth) acrylate, isobutyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth ) Acrylate,
  • Examples of the (meth) acrylamide monomers include acrylamide, methacrylamide, bisacrylamide, hydroxyacrylamide, diacetone acrylamide, isobutoxymethyl acrylamide, butoxymethyl acrylamide, methoxypropyl acrylamide, One or more kinds such as ethylenebisacrylamide may be used, but the present invention is not limited thereto.
  • the silane coupling agent including the double bond may be vinyl alkoxy silane.
  • Titanium-based coupling agent including the double bond isopropyl trimethacryl titanate, isopropyl triacryloyl titanate, isopropyl trioleyl titanate , Titanium IV 2,2 (bis 2-propenolatomethyl) butanolato, tris (dioctyl) pyrophosphate-O (titanium IV 2,2 (bis 2-propenolatomethyl) butanolato, tris (dioctyl) pyrophosphate-O ), Titanium, (isooctadecanolato- ⁇ O) bis (2-methyl-2-propenolato-kO) (2-propaneolato) (titanium, (isooctadecanolato- ⁇ O) bis (2-methyl-2-propenolato - ⁇ O) (2-propanolato), titanium IV 2,2 (bis 2-propanolatomethyl) butanolato, tetra (2,2-diallyloxymethyl-1-
  • the zirconium-based coupling agent including the double bond is zirconium IV tetrakis 2,2 (bis-2 propenolatomethyl) butanolato (bis-2 propenolatomethyl) butanolato, zirconium IV 2,2 -Dimethyl 1,3-propanediolato, bis (dioctyl) pyrophosphato-O (Zirconium IV 2,2-dimethyl 1,3-propanediolato, bis (dioctyl) pyrophosphato-O), zirconium IV 1,1 ( Bis-2 propenolatomethyl) butanolato, zirconium IV 1,1 (bis-2 propenolatomethyl) butanolato, tris (2-amino) phneylato-O, and zirconium IV 2, 2 (bis-2 propenolatomethyl) butanolato, bis (3-mercapto) propionato-O (Zirconium IV 2,2 (bis-2 propenolato
  • the aluminum coupling agent including the double bond is composed of aluminum III diisopropoxide-ethylacetoacetate and aluminum 2,4-pentane dionate. It may be at least one selected from.
  • the mixing ratio of the polymerizable monomer and the coupling agent may be 1:99 to 99: 1 based on the mass ratio, for example 10: 90 to 95: 5 or 40:60 to 90:10.
  • the content of the polymerizable monomer and the coupling agent may be adjusted to control mutual diffusion with the fluoropolymer coating layer and enhancement of bonding strength with the lower barrier film surface.
  • the primer When only the silane coupling agent, titanium-based coupling agent, zirconium-based coupling agent or aluminum-based coupling agent is used as the primer, when the coupling agent is a monomer or a low molecular weight, coating property with a metal or an inorganic deposition film is inferior, After coating, monomers that do not undergo a binding reaction deteriorate the properties of the coating film. That is, when only a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, or an aluminum coupling agent is used as the primer, the molecular weight of the coupling agent is small, so that the primer film is not formed densely, and thus, moisture over time Penetration into this primer film can make it difficult to form a uniform film.
  • a modified copolymer obtained by copolymerizing a coupling agent to a compatible copolymer for example, a silane modified acrylic copolymer, or the like is used.
  • Such modified copolymers are advantageous in terms of reaction time and reaction mechanism, because the number of sites that can cause a coupling reaction at the interface between the substrate and the fluoropolymer coating layer is higher than that of the compatible copolymer containing no functional group according to the copolymer of the coupling agent. Accordingly, desired physical properties can be achieved.
  • the modified copolymer may provide a silyl group represented by Formula 1 below, and may be prepared by copolymerizing a silane coupling agent including a double bond, or by using a silane coupling agent as described above in a compatible copolymer. It may also be prepared by rafting.
  • R may be the same or different, respectively, and represent hydrogen, an alkyl group, an aryl group, an aralkyl group, an alkoxy group, and the like.
  • the alkyl group may be, for example, an alkyl group having 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms.
  • the aryl group may be an aryl group having 6 to 18 carbon atoms, preferably 6 to 12 carbon atoms, for example, a phenyl group
  • the aralkyl group may be an aralkyl having 7 to 19 carbon atoms, preferably 7 to 13 carbon atoms.
  • it may be a benzyl group
  • the alkoxy group may be an alkoxy group having 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the modified copolymer may be a silane-modified acrylic copolymer, a copolymer including an acrylic monomer and a silane coupling agent represented by Formula 2 in a copolymerized form; Or a graft polymer obtained by grafting a silane coupling agent represented by Formula 2 to an acrylic copolymer.
  • D is an ethylenically unsaturated hydrocarbon group or hydrocarbon oxy group, and R is as defined in Chemical Formula 1.
  • D in Formula 2 may be vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or ⁇ -methacryloxypropyl, and the like, preferably vinyl.
  • a radical initiator may be further added to the polymerizable monomer and the coupling agent, and the radical initiator may induce radical polymerization of the vinyl group of each monomer to enable copolymerization.
  • radical initiator that can be used in the present invention is not particularly limited as long as it can initiate radical polymerization, and examples thereof include one or two or more kinds of organic peroxides, hydroperoxides, or azo compounds. .
  • radical initiator in the above examples include t-butyl cumyl peroxide, di-t-butyl peroxide, di-cumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2, Dialkyl peroxides such as 5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, cumene hydroperoxide, diisopropyl benzene hydroperoxide, 2,5-dimethyl-2,5 Hydroperoxides such as di (hydroperoxy) hexane, t-butyl hydroperoxide, bis-3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl per Oxides, diacyl peroxides such as 2,4-dichlorobenzoyl peroxide, t-butylperoxy is
  • the radical initiator may include 0.1 parts by weight to 5 parts by weight, or 0.5 parts by weight to 2 parts by weight based on 100 parts by weight of the solid content of the polymerizable monomer and the coupling agent.
  • the functional group includes a silyl group, but the silyl group is converted into a silanol group in the process of coating and drying the primer layer to bond with the hydroxyl group on the surface of the barrier film (metal). Done.
  • the silanol group may be included from the preparation of the primer. This is because silyl groups are easily converted to silanol at constant heat or humidity.
  • the process of converting the silyl group to the silanol group may be further performed, followed by primer coating.
  • the primer layer including the modified copolymer may be formed by a coating method capable of forming a primer layer having a predetermined thickness or more, such as bar coating, spray coating, or gravure coating, on the barrier film.
  • the thickness of the primer layer may be in the range of about 0.01 ⁇ m to 5 ⁇ m, for example, in the range of 0.05 ⁇ m to 3 ⁇ m or 0.1 to 2 ⁇ m.
  • the thickness of the primer layer can be adjusted by adjusting the solids content, and by adjusting to the above range, it is possible to improve the adhesion by widening the interdiffusion region between the fluoropolymer coating layer and the primer layer.
  • the primer layer becomes thicker than a predetermined thickness, the primer layer may be easily broken, but the adhesive strength may be deteriorated, and the physical properties of the fluoropolymer coating layer may change, and thus the primer layer may be formed in the thickness range.
  • the multilayer film of the present invention includes a fluoropolymer coating layer formed on the primer layer.
  • the coating layer dissolves the fluoropolymer in a solvent, preferably a solvent having a low boiling point, in which the fluoropolymer coating layer containing the fluoropolymer is not laminated with a sheet prepared by casting or extrusion method using an adhesive or the like. It means that it is formed by coating the prepared coating solution on the substrate or primer layer.
  • a layer containing a fluoropolymer as a coating As described above, the interdiffusion with the primer layer proceeds effectively, it is possible to maximize the effect of improving the adhesive force.
  • a solvent having a low boiling point may be used in the process of forming the fluoropolymer coating layer, thereby allowing the drying process to proceed at a low temperature, thereby improving product productivity and ensuring excellent quality.
  • fluoropolymers that can be used in the embodiments of the present invention are not particularly limited, and for example, vinylidene fluoride (VDF), vinyl fluoride (VF, vinyl fluoride), tetrafluoroethylene (TFE, Tetrafluoroethylene) hexafluoropropylene (HFP, Hexafluoropropylene), chlorotrifluoroethylene (CTFE, chlorotrifluoroethylene), trifluoroethylene, hexafluoroisobutylene, perfluoro butylethylene, perfluoro methyl vinyl ether (PMVE, perfluoro (methylvinylether)), perfluoro ethyl vinyl ether (PEVE, perfluoro (ethylvinylether)), perfluoro propyl vinyl ether (PPVE), perfluoro hexyl vinyl ether (PHVE), perfluoro-2, Comprising, in polymerized form, at least one monomer selected from the group consisting
  • fluoropolymers are homopolymers or copolymers comprising vinyl fluoride in polymerized form; Or homopolymers or copolymers comprising vinylidene fluoride in polymerized form; Or it may be a mixture containing two or more of the above.
  • the type of comonomer which may be included in the copolymerized form in the copolymer is not particularly limited, and for example, hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) , Trifluoroethylene, hexafluoroisobutylene, perfluorobutylethylene, perfluoromethylvinylether (PMVE), perfluoro-2,2-dimethyl-1,3-diosol (PDD) and purple
  • HFP hexafluoropropylene
  • CTFE chlorotrifluoroethylene
  • TFE tetrafluoroethylene
  • Trifluoroethylene Trifluoroethylene
  • hexafluoroisobutylene perfluorobutylethylene
  • perfluoromethylvinylether perfluoromethylvinylether
  • PPD perfluoro-2,2-dimethyl-1,3-diosol
  • PPD
  • the content of the comonomer in the copolymer is, for example, about 0.5% to 50% by weight, 1% to 40% by weight, 7% to 40% by weight, based on the total weight of the copolymer Weight percent to 30 weight percent, or 10 weight percent to 20 weight percent. It is possible to induce effective interdiffusion and low temperature drying while ensuring durability and weather resistance of the multilayer film within the range of such comonomers.
  • the form of the fluoropolymer may be a straight chain or branched polymer.
  • the fluoropolymer may have a weight average molecular weight of 50,000 to 1,000,000.
  • the weight average molecular weight is a conversion value of standard polystyrene measured by GPC (Gel Permeation Chromatograph).
  • GPC Gel Permeation Chromatograph
  • the fluoropolymer may further have a melting point of 80 ° C to 175 ° C, preferably 120 ° C to 165 ° C.
  • a melting point of 80 ° C to 175 ° C preferably 120 ° C to 165 ° C.
  • the melting point of the resin by controlling the melting point of the resin to 80 °C or more, it is possible to prevent deformation during the use of the multilayer film, and also to adjust the melting point to 175 °C or less, to control the solubility in the solvent, the gloss of the coating surface Can improve.
  • the fluoropolymer coating layer of the present invention may further include an amorphous resin together with the fluoropolymer as described above.
  • an amorphous resin together with the fluoropolymer as described above.
  • amorphous resin that can be used in the present invention is not particularly limited, and for example, acrylic resin, polycarbonate, polyvinyl chloride, styrene- (meth) acrylonitrile copolymer, styrene-maleic anhydride copolymer, cyclo
  • acrylic resin polycarbonate, polyvinyl chloride, styrene- (meth) acrylonitrile copolymer, styrene-maleic anhydride copolymer, cyclo
  • an olefin polymer polyacrylonitrile, polystyrene, polysulfone, polyethersulfone or polyarylate
  • a non-reactive acrylic resin but is not limited thereto. no.
  • acrylic resins described above include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid and isobornyl (meth) acrylate.
  • the homopolymer or copolymer containing 1 type, or 2 or more types in polymerized form is mentioned. In some cases, for the control of the glass transition temperature, molecular weight distribution, etc., one or two or more of the above monomers; And acrylic resins containing at least one comonomer such as cyclohexyl maleimide, methyl styrene or (meth) acrylonitrile in a polymerized form.
  • the amorphous resin when the amorphous resin is in the form of a copolymer including two or more monomers in a polymerized form, the type and content of the comonomer are not particularly limited and may be adjusted in consideration of the desired amorphousness.
  • the fluoropolymer coating layer when the fluoropolymer coating layer includes an amorphous resin, the fluoropolymer coating layer may include 50 parts by weight or more of the fluorine-based resin, 50 parts by weight or less of the amorphous resin, more specifically fluorine-based It may include 70 parts by weight to 97 parts by weight of the resin and 3 to 30 parts by weight of the amorphous resin.
  • the components constituting the fluoropolymer coating layer has an appropriate degree of crystallinity, the interdiffusion with the primer layer effectively proceeds, and the multilayer film can exhibit excellent properties such as durability and weather resistance have.
  • a unit “weight part” means the weight ratio between each component.
  • the fluoropolymer coating layer of the present invention may further include a pigment or filler for controlling the color or opacity of the fluoropolymer coating layer or for other purposes.
  • a pigment or filler for controlling the color or opacity of the fluoropolymer coating layer or for other purposes.
  • pigments or fillers include metal oxides such as titanium dioxide (TiO 2 ), silica or alumina, black pigments such as calcium carbonate, barium sulfate or carbon black, or pigment components exhibiting different colors. But it is not limited thereto.
  • the pigment or filler as described above in addition to the inherent effect of controlling the color or opacity of the fluoropolymer coating layer, by the inherent functional groups included in each component, the interfacial adhesion force at the time of mutual diffusion of the fluoropolymer coating layer and the primer layer It can also work to improve.
  • the content of the pigment may be 60% by weight or less based on the solids of the fluoropolymer coating layer, but is not limited thereto.
  • the fluoropolymer coating layer of the present invention may also further comprise conventional components such as UV stabilizers, heat stabilizers, dispersants or barrier particles.
  • the fluoropolymer coating layer including the above components has a thickness of about 3 ⁇ m to 50 ⁇ m. Preferably from 10 ⁇ m to 30 ⁇ m, but this may be changed according to the purpose.
  • the multilayer film 10 of the present invention is a substrate (11); A barrier film 12 formed on one surface of the substrate; A primer layer 13 formed on the barrier film 12 and a fluoropolymer coating layer 14 formed on the primer layer 13 may be included.
  • the multilayer film may include a primer layer formed on both sides of the substrate or barrier film and a fluoropolymer coating layer formed on each of the primer layers.
  • the multilayer film of the present invention may further include various functional layers known in the art as needed.
  • the functional layer include an adhesive layer or an insulating layer.
  • the primer layer and the fluoropolymer coating layer described above may be formed on one surface of the substrate, and the adhesive layer and the insulating layer may be sequentially formed on the other surface.
  • the adhesive or insulating layer can be formed in a variety of ways known in the art.
  • the insulating layer may be a layer of ethylene vinyl acetate (EVA) or low density linear polyethylene (LDPE).
  • the layer of ethylene vinyl acetate (EVA) or low density linear polyethylene (LDPE) can function as an insulating layer as well as increase adhesion to an encapsulant, reduce manufacturing costs, and re-workability. At the same time, the function of keeping good can be performed.
  • EVA ethylene vinyl acetate
  • LDPE low density linear polyethylene
  • This invention relates to the manufacturing method of a multilayer film further.
  • the method of manufacturing the multilayer film may include forming a primer layer by coating a primer coating solution including a copolymer having a compatibility with a fluoropolymer on the barrier film;
  • the method for producing a multilayer film of the present invention is characterized by forming both a primer layer and a fluoropolymer layer on a barrier film by coating.
  • the coating method is not particularly limited, and any method may be applied as long as the coating layer may be formed, including, for example, offset, gravure, roll coat, or knife edge coat.
  • the primer layer may be formed by applying a primer coating liquid containing a copolymer having compatibility with the fluoropolymer on the barrier film and then drying the film under predetermined conditions.
  • the primer may be a silane coupling agent, a titanium coupling agent, a zirconium coupling agent or an aluminum coupling agent. It may be a modified copolymer comprising a functional group formed by copolymerization with, the coating solution may be prepared by dissolving or dispersing the modified copolymer in a suitable organic solvent.
  • organic solvent one or more mixtures of methyl ethyl ketone, ethanol, isopropanol, toluene, ethyl acetate, butyl acetate and cyclohexanol may be used.
  • the coating solution may further include various other additives, for example, antioxidants, rust inhibitors, curing agents, etc., as necessary.
  • barrier films that may be used in the present invention are as described above, and further comprising the step of performing appropriate deposition treatment, plasma treatment, corona treatment, primer, anchor agent, coupling agent treatment or heat treatment to the barrier film. Can be done with
  • the coating liquid for forming the fluoropolymer coating layer may be prepared by dissolving or dispersing each component forming the fluoropolymer coating layer in a solvent having a relatively low boiling point, specifically, a solvent having a boiling point of 200 ° C. or less.
  • the fluoropolymer has an amorphous region or is mixed with an amorphous resin, thereby effectively dissolving in a solvent having a relatively low boiling point. Accordingly, in the present invention, a high temperature drying process is not required in the manufacturing process, thereby reducing manufacturing costs and preventing thermal deformation or thermal shock of a substrate which may be caused during high temperature drying, thereby improving product quality. Can be.
  • solvents examples include one or two or more kinds of acetone, methyl ethyl ketone (MEK), dimethylformamide (DMF) or dimethylacetamide (BMAC). It is not limited to this.
  • the fluoropolymer coating composition may be an aqueous dispersion coating composition.
  • it may be coated with an aqueous dispersion including a fluoropolymer dispersed in water, in which case it is preferable to include a dispersant.
  • the coating liquid applied to the formation of the fluoropolymer coating layer may further include various additives such as pigments, fillers, UV stabilizers, dispersants or thermal stabilizers, in addition to the fluoropolymer.
  • additives such as pigments, fillers, UV stabilizers, dispersants or thermal stabilizers, in addition to the fluoropolymer.
  • Each of the additives may be dissolved in a solvent together with a fluoropolymer or the like, or prepared in a millbase form separately from the component, and then mixed with a solvent including the fluoropolymer.
  • the method for producing the coating liquid, the ratio of each component contained in the coating liquid, and the like are not particularly limited, and various methods known in the art may be appropriately employed.
  • the coating method using the coating solution in the present invention is not particularly limited, and for example, may be performed according to the coating method for forming the above-described primer layer.
  • the solvent of the coating liquid can promote the interdiffusion action of the primer layer and the fluoropolymer coating layer by swelling the surface of the primer layer.
  • the step of drying each layer may be further performed.
  • the conditions at the time of drying are not particularly limited, and for example, performed for about 30 seconds to 30 minutes, preferably about 1 to 10 minutes at a temperature of room temperature to 200 °C or less, preferably about 25 °C to 180 °C Can be.
  • the degree of cross-diffusion of the material between the primer layer and the fluoropolymer coating layer may be controlled according to the drying conditions. For example, the higher the drying temperature of the fluoropolymer or the longer the drying time, the higher the diffusion effect.
  • the primer layer may be dried at a condition of several seconds to 1 minute at a temperature of about 100 °C to 120 °C, the fluoropolymer coating layer is 1 minute at a temperature of about 160 °C to 200 °C It may be dried in a condition of about 2 minutes.
  • the present invention also relates to a photovoltaic module comprising a subsidiary material for producing a photovoltaic module including the multilayer film and a subsidiary material for producing a photovoltaic module.
  • the structure of the photovoltaic module of the present invention is not particularly limited as long as the multilayer film is included as a subsidiary material for photovoltaic module manufacturing, and may have various structures known in the art.
  • the multilayer film may be used as a back sheet for photovoltaic cells, wherein the barrier film is disposed toward the photovoltaic cell, such that the fluoropolymer coating layer becomes a surface layer.
  • the photovoltaic module may comprise a transparent front substrate, a back sheet and a photovoltaic cell enclosed by an encapsulant between the front substrate and the back sheet or a photovoltaic array arranged in series or in parallel.
  • the active layer constituting the photovoltaic cell or photovoltaic cell array include a crystalline or amorphous silicon wafer, a compound semiconductor such as CIGS or CTS, and the like.
  • the multilayer film of the present invention can be applied to various photovoltaic modules known in the art, including modules having an active layer as described above, and in this case, the manner of constituting the module or other kinds of materials It is not limited.
  • Peel strength was measured in accordance with ASTM D1897 while cutting the specimen to a width of 10 mm, then peeling at a rate of 4.2 mm / sec and a peel angle of 180 degrees.
  • ASTM D3002 / D3359 which is a cross cut test standard
  • the cross cut test was performed. Specifically, the specimens were cut in 11 rows in the horizontal and vertical directions at intervals of 1 mm, respectively, to form 100 square grids each having a width of 1 mm. Thereafter, when the CT-24 adhesive tape of Nichiban Co., Ltd. was attached to the cut surface and then peeled off, the state of the faces falling together was measured and evaluated according to the following criteria.
  • Example 1 The film changes were observed after leaving the multilayer films prepared in Example 1 and Comparative Example 2 in an oven maintained at 2 atmospheres, 121 ° C. and 100% R.H. for 25 hours. Observation results are shown in FIGS. 2 and 3.
  • Toluene 300g was put into the reactor, and the temperature was kept at 80 degreeC. At this time, the inside of the reactor was filled with nitrogen gas to suppress the oxidation reaction by general air, and the reaction was continuously stirred through the stirrer so that the reaction occurred well. After the conditions of 80 ° C. were adjusted, the prepared acrylic monomers were injected into the reactor as shown in Table 1 below. After the injection of the acrylic monomer, the silane coupling agent KBM503 was injected, and the ratio and the injection amount of the acrylic monomer and the silane coupling agent in each preparation example are shown in Table 1.
  • Corona treatment was performed on the surfaces of polyethylene terephthalate (PET, poly (ethylene terephthalate), thickness: 250 ⁇ m, Kolon, Inc.) with acrylic primer treatment on both sides.
  • PET polyethylene terephthalate
  • thickness 250 ⁇ m, Kolon, Inc.
  • An adhesive was coated on one surface of the PET film and dried at 100 ° C. for 1 minute, and then an aluminum foil having a thickness of 20 ⁇ m was bonded using a laminator.
  • laminating stacking with a laminator
  • the temperature of the laminator roll was bonded on condition of 60 degreeC.
  • the curing time of the adhesive was sufficiently through a aging process for one day at room temperature, stored for 4 days in an oven at 40 to 60 °C.
  • the thickness after drying of the adhesive was adjusted to the solids content of the adhesive at about 10-13 ⁇ m.
  • VDF vinylidene fluoride
  • CTFE chlorotrifluoroethylene
  • DMF dimethylformamide
  • the prepared mill base was added to the prepared first coating solution, and stirred again to prepare a white fluoropolymer coating solution.
  • the mill base is prepared in an amount of 1.5 times the amount that is actually added to the fluoropolymer coating layer in consideration of the amount lost in the beads removal process.
  • the silane-modified acrylic copolymer prepared above was coated on the aluminum foil surface of the PET film to which the aluminum foil prepared in advance was coated.
  • the coating was used for the Mayer bar (Meyer bar), the thickness of the primer layer was adjusted by adjusting the number of the Mayer bar and the solid content of the silane-modified acrylic copolymer to 20% by weight. After coating, it was dried at about 120 ° C. for about 30 seconds to form a primer layer having a thickness of 1 to 3 ⁇ m.
  • the white fluoropolymer coating solution prepared above was coated on the aluminum foil coated with the silane-modified acrylic copolymer using an applicator to adjust the solids content in the fluoropolymer coating solution so that the thickness after drying was about 15 to 30 ⁇ m. Next, the mixture was dried at 180 ° C. for about 2 minutes to form a fluoropolymer coating layer.
  • Examples 1 to 6 were prepared by using the white fluoropolymer coating liquid on the primer layer coated with the primers of Preparation Examples 1 to 6, respectively.
  • a multilayer film was prepared by immediately forming a fluoropolymer coating layer without forming a primer layer on the aluminum foil, and the method of coating the fluoropolymer on the aluminum foil was performed as in Example 1.
  • a multilayer film was prepared in the same manner as in Example 1, except that KBM 503, which was not copolymerized, was used as a primer instead of the silane-modified acrylic copolymer used as the primer in Example 1.
  • a multilayer film was prepared in the same manner as in Example 1, except that only the unpolymerized acrylic monomer MMA was used as the primer instead of the silane-modified acrylic copolymer used as the primer in Example 1.
  • a multilayer film was prepared in the same manner as in Example 1 except that an epoxy primer layer was formed on the aluminum foil.
  • the multilayer films of Examples 1 to 6 and Comparative Examples 1 and 4 were subjected to 180 degree peel strength and cross-hatch tests, respectively, before and after the pressure cooker test (PCT). Specifically, each multilayer film was left for 25 hours or 50 hours at 2 atmospheres, 121 ° C. and 100% RH, respectively, and then subjected to 180 degree peel strength and cross-hatch test to evaluate the change in peel force. It was. The evaluation results are described in Table 2 below.
  • Example 2 in Example 1, the film was not denatured even after 25 hours of progressing the PCT.
  • Comparative Example 2 using only the silane coupling agent as shown in FIG. It confirmed that it generate
  • a multilayer film was prepared in the same manner as in Examples 1 to 6, except that a black fluoropolymer coating solution was separately prepared as follows.
  • the first coating solution was the same as that used in the white fluoropolymer coating solution. Separately, 0.8 g of BYK 9076 (BYK) and 8 g of carbon black (MA100, Mitsubishi) were dissolved in 100 g of DMF, and again, the diameter was After adding 100 g of 0.3 mm zirconia beads, the mixture was stirred at a speed of 1,000 rpm for 1 hour, and then the beads were completely removed to prepare a mill base.
  • BYK 9076 BYK
  • MA100 carbon black
  • the mill base is prepared in an amount of 1.5 times the amount that is actually added to the fluoropolymer coating layer in consideration of the amount lost in the beads removal process.
  • Multilayer films were prepared in the same manner as Comparative Examples 1 to 3, except that the black fluoropolymer coating solution used in Examples 7 to 12 was used instead of the white fluoropolymer coating solution used in Comparative Examples 1 to 3 as the fluoropolymer coating solution.
  • the multilayer films of Examples 7 to 12 and Comparative Examples 4 and 6 were subjected to 180 degree peel strength and cross-hatch tests, respectively, before and after the pressure cooker test (PCT). Specifically, each multilayer film was left for 25 hours or 50 hours at 2 atmospheres, 121 ° C. and 100% RH, respectively, and then subjected to 180 degree peel strength and cross-hatch test to evaluate the change in peel force. It was. The evaluation results are described in Table 3 below.
  • the fluoropolymer coating layer was excellent in interfacial adhesion to the aluminum foil. It can be seen that it has a better durability. This is because the silane-modified acrylic copolymer of the primer layer forms a chemical bond with the surface of the aluminum foil and at the same time improves adhesion due to the diffusion of the material into the fluoropolymer coating layer, thereby achieving adhesion and durability at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 다층 필름, 그 제조 방법 및 광전지 모듈을 제공한다. 본 발명에서는, 실란 변성 아크릴계 공중합체를 포함하는 프라이머 층을 매개로 함으로써 수분차단특성이 우수한 배리어 필름에 대해 내후성이 우수한 불소중합체를 코팅할 수 있으며, 계면 접착력도 확보할 수 있어 우수한 내구성 및 내후성을 가지는 동시에, 배리어 필름과 높은 계면 접착력을 나타내는 다층 필름을 제공할 수 있다. 또한, 상기 다층 필름의 제조 과정에서 제조 비용을 줄이고, 생산성을 높이며, 열변형 또는 열충격 등에 의한 제품의 품질 저하를 방지할 수 있다. 이와 같은, 본 발명의 다층 필름은, 예를 들면, 다양한 광전지 모듈의 이면 시트로 효과적으로 사용될 수 있다.

Description

다층 필름 및 이의 제조방법
본 발명은 다층 필름, 그 제조 방법, 광전지 모듈 제조용 부자재, 및 광전지 모듈에 관한 것이다.
최근 지구 환경 문제와 화석 연료의 고갈 등에 따른 신 재생 에너지 및 청정 에너지에 대한 관심이 고조되고 있으며, 그 중 태양광 에너지는, 환경 오염 문제 및 화석 연료 고갈 문제를 해결할 수 있는 대표적인 무공해 에너지원으로 주목을 받고 있다.
태양광 발전원리가 적용되는 광전지는 태양광을 전기 에너지로 전환시키는 소자로서, 태양광을 용이하게 흡수할 수 있도록 외부환경에 장기간 노출되어야 하므로, 셀을 보호하기 위한 여러 가지 패키징이 수행되어 유닛(unit) 형태로 제조되며, 이러한 유닛을 광전지 모듈(Photovoltaic Modules)이라 한다.
광전지 모듈은 장기간 외부환경에 노출된 상태에서도 광전지를 안정적으로 보호할 수 있도록, 내후성 및 내구성이 우수한 이면 시트를 사용하여야 한다. 광전지용 이면 시트는 광전지 봉지재로 사용되는 에틸렌 비닐 아세테이트(EVA, ethylene vinyl acetate)와 접합되면서, 광전지의 셀을 물리적으로 보호할 뿐 아니라, 셀 내부로의 수분 침투를 방지하고 전기적으로 절연을 유지하여 광전지 모듈이 25년 이상 출력특성의 저하 없이 작동할 수 있도록 하는 역할을 한다. 따라서, 광전지용 이면 시트는 UV 저항성, 내후성이 뛰어나고, 사용기간 동안 기계적 특성, 수분차단성, 전기절연성 등의 저하가 적은, 즉, 장기신뢰성이 우수하여야 한다.
이와 같은 특성을 만족하기 위하여, 현재는 PET(Polyethylene Terephtalate) 필름의 양면에 PVF(Polyvinyl Fluoride) 필름을 적층한 3층 구조의 제품이 광범위하게 사용되고 있다. 그러나 종래 기술의 경우, 제조방법이 복잡하고, 여전히 수분에 취약할 수 있어 광전지의 장기신뢰성에서 영향을 미칠 우려가 있다.
또한, 최근 PVF 필름 대신 PVDF(Polyvinylidene Fluoride)나 CTFE(Chlorotrifluoro ethylene), ECTFE(Ethylene Chlorotrifluoro ethylene) 등의 다른 불소중합체를 필름 가공하여 제조된 광전지용 이면시트의 비율이 점차 증가하고 있으나, 불소중합체의 경우 접착력이 좋지 않은 문제가 여전히 존재한다.
따라서, 수분차단성이 우수하고, 장기간 접착력을 유지하여 우수한 내구성 및 내후성을 가지면서도, 제조방법이 간단하여 제조비용을 절감할 수 있고, 광전지 모듈의 생산성 및 품질을 향상시킬 수 있는 광전지용 이면 시트에 대한 요구는 지속되고 있다.
본 발명은 다층 필름, 그 제조 방법, 광전지용 이면 시트, 및 광전지 모듈을 제공한다.
본 발명은, 배리어 필름, 상기 배리어 필름 상부의 프라이머 층 및 상기 프라이머 층 상부의 불소중합체 코팅층을 포함하는 다층 필름을 제공한다. 상기 프라이머 층은 불소중합체와 상용성을 가지는 공중합체를 포함하며, 상기 불소중합체와 상용성을 가지는 공중합체는 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함한다.
또한, 본 발명은 배리어 필름 상부에 불소중합체와 상용성을 가지는 공중합체를 포함하는 프라이머 코팅액을 코팅하여 프라이머 층을 형성하는 단계 및
상기 프라이머 층의 상부에 불소중합체 코팅용 조성물을 코팅하는 단계를 포함하는 다층 필름의 제조 방법을 제공한다.
본 발명의 다층 필름은, 예를 들면, 다양한 광전지 모듈 제조용 부자재로 사용될 수 있다.
본 발명은, 내습성이 우수한 금속 박막이나 무기 증착 필름과 같은 배리어 필름을 포함하며, 내후성이 우수한 불소중합체 층을 코팅에 의해 배리어 필름에 형성하며, 배리어 필름과 불소중합체 층 사이의 실란 등 커플링제에 의해 변성된 상용성 공중합체를 포함하는 프라이머 층에 의해 접착력을 확보하여 내습성 및 내후성이 우수함과 동시에 접착력이 우수한 다층 필름을 제공할 수 있다. 또한, 상기 다층 필름은 저비점 용매를 사용하여 낮은 건조온도에서 저비용으로 제조할 수 있고, 생산성을 높이며, 열변형 또는 열충격 등에 의한 제품의 품질 저하를 방지할 수 있다. 이와 같은, 본 발명의 다층 필름은, 예를 들면, 광전지용 이면 시트 등에 유용하게 사용되어 장기간 외부환경에 노출되어도 우수한 내구성을 가진 광전지 모듈을 제공할 수 있다.
도 1은 본 발명의 하나의 예시에 따른 다층 필름을 나타내는 단면도이다.
도 2는 본 발명의 실시예 1에 따른 다층 필름의 PCT를 진행하기 전과 후의 표면을 관찰한 도면이다.
도 3은 본 발명의 비교예 2에 따른 다층 필름의 PCT를 진행하기 전과 후의 표면을 관찰한 도면이다.
이하에서 첨부하는 도면을 참조하여 본 발명의 구현예들을 보다 구체적으로 설명하기로 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 첨부되는 도면은 본 발명의 이해를 돕기 위한 개략적인 것으로 본 발명을 보다 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었고, 도면에 표시된 두께, 크기, 비율 등에 의해 본 발명의 범위가 제한되지 아니한다.
본 발명의 일구현예에 따른 다층 필름은, 배리어 필름; 상기 배리어 필름 상부의 프라이머 층; 및 상기 프라이머 층 상부의 불소중합체 코팅층을 포함한다.
상기 프라이머 층은 불소중합체와 상용성을 가지는 공중합체를 포함하며, 상기 불소중합체와 상용성을 가지는 공중합체는 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하여 하부의 배리어 필름과 상부의 불소중합체 코팅층과의 결합력을 증진시킬 수 있다.
상기 배리어 필름은 수분차단특성을 가지는 필름으로, 그 예로는 금속 박막 또는 무기 증착 필름을 들 수 있다. 구체적으로, 상기 금속 박막으로는 알루미늄 포일, 구리 포일 또는 스테인레스 포일 등을 사용할 수 있고, 상기 무기 증착 필름으로는 ITO(Indium tin oxide), IZO(Indium zinc oxide), SiOx(Silicon oxide) 또는 AlOx(Aluminum oxide) 등을 사용할 수 있다. 본 발명의 일구현예에서 상기 무기 증착 필름의 경우, PET 등과 같은 기재 상부에 상기 물질들로 이루어진 무기증착층을 포함하는 것을 사용할 수 있다. 이와 같은 배리어 필름은 표면에 하이드록시기 등을 포함한다.
상기 배리어 필름은 수분차단특성이 우수하나, 외부 기후에 의한 내식성, 내후성 등에 있어서는 취약한 면이 있어, 광전지용 이면 시트 등의 광전지 모듈 제조용 부자재로 사용하기 위해서는 내후성 수지인 불소중합체 층으로 표면을 보호할 필요가 있다. 불소중합체 층으로 금속과 같은 배리어 필름의 표면을 보호하기 위해서는 크게 불소중합체 필름을 배리어 필름에 부착하거나, 배리어 필름에 불소중합체를 코팅하는 방법이 있을 수 있다.
전자(불소중합체 필름을 배리어 필름에 부착하는 방법)는 우선 불소중합체를 압출(extrusion)법이나 캐스팅(casting)법에 의해 필름을 제조한 후, 접착제를 이용하여 배리어 필름에 불소중합체 필름을 부착하는 방법이나, 이는 고가의 필름 제조 설비를 필요로 하며, 접착제를 사용하므로 접착제의 코팅 및 합판 공정이 필요하고, 공정에서의 필름 취급성을 위해 실제 요구되어지는 불소중합체 층의 두께보다 더 두꺼운 필름을 사용하게 되어 불필요한 손실이 발생하게 되며, 불소중합체 층에 필러 등의 다양한 첨가제를 첨가하는 것에 제약이 따르며, 높은 공정온도를 필요로 하는 단점이 있다.
후자(배리어 필름에 불소중합체를 코팅하는 방법)는 금속 박막 또는 무기 증착 필름과 같은 배리어 필름의 표면에 코팅을 위해 불소중합체 페인트를 사용하였으며, 종래의 불소중합체 페인트는 에폭시 프라이머를 코팅한 후, 불소중합체를 코팅하게 되는데, 이 때 각각의 공정온도가 230℃ 이상이고, 베이킹 공정은 300℃ 이상이 되어 공정상 단점이 있다. 또한, 에폭시 프라이머의 경우, 본 발명의 구현예들에 의한 실란 등의 변성 아크릴계 프라이머와 달리 불소중합체와의 상용성이 낮아 불소중합체와의 접착력이 낮다. 본 발명의 프라이머는 불소중합체와 상용성을 가지는 공중합체로서, 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하여 친수성인 하이드록시기를 가지는 배리어 필름의 표면을 소수성으로 개질할 수 있으며, 그에 따라 배리어 필름의 계면이 내수성이 우수해져 수분에 의한 내부식성이 뛰어나게 된다. 또한, 이와 같은 특정 관능기를 갖는 소수성의 프라이머 층을 형성함으로써 불소중합체 코팅액과 친수성의 배리어 필름을 연결할 수 있는 역할을 하게 된다.
본 발명자는 종래 기술과 달리 200℃ 이하의 저온 공정으로도 불소중합체 코팅층이 배리어 필름에 대해 높은 계면 접착력을 가질 수 있도록 특정 공중합체를 포함하는 프라이머 층을 도입하였다. 본 발명의 구현예들에서 사용할 수 있는 프라이머 층의 공중합체는 상부의 불소중합체와 상용성을 가지며, 그와 더불어 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 관능기를 형성함으로써 변성 공중합체를 제공하여 상기 관능기, 예를 들어 실라놀기 등이 배리어 필름 표면의 하이드록시기 등과 공유결합 또는 수소결합을 이루어 계면 접착력을 향상시킬 수 있다.
즉, 상기와 같은 프라이머를 배리어 필름 표면에 코팅한 후, 프라이머 층 상에 불소중합체를 코팅하여 배리어 필름과 불소중합체 코팅층 간의 접착력을 확보하면서도 간단한 코팅 공정으로 배리어 필름에 내후성 불소중합체 층을 적용할 수 있다.
본 발명의 구현예들에서는 상기 배리어 필름과 상기 프라이머 층의 계면에서 실란, 유기티탄, 유기지르코늄 또는 유기알루미늄과 상기 배리어 필름 표면의 하이드록시기와의 공유결합이 형성되어 접착력을 확보할 수 있다. 금속 박막 또는 무기 증착 필름과 같은 배리어 필름의 표면에는 하이드록시기가 존재하며, 이러한 하이드록시기는 실란 화합물, 유기티탄, 유기지르코늄 또는 유기알루미늄과 각각 Si-O Ti-O, Zr-O 또는 Al-O 공유결합을 형성하며, 실란 화합물, 유기티탄, 유기지르코늄 또는 유기알루미늄의 수소와 수소 결합을 형성하여 배리어 필름과 프라이머 층 간의 접착력을 향상시킨다.
또한, 상기 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하는 변성 공중합체로 이루어진 프라이머 층은 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제 단독으로 이루어진 프라이머와 달리 불소중합체와 상용성이 우수한 공중합체, 예를 들어 아크릴 공중합체 등을 포함하므로, 상기 프라이머 층 상부에 불소중합체를 코팅하게 되면, 상용성 공중합체와 불소중합체 코팅층 간 물질의 상호확산(interdiffusion)이 일어나 층 간 접착력이 추가로 확보된다. 이는, 두 층 간의 물질의 확산에 따른 접착을 이용한 것으로써, 두 층 간의 물질이 접촉에 이어 분자사슬의 상호 확산으로 계면이 없어져 접착이 이루어지는 성질을 이용하여 불소중합체 단일 코팅층 및 그 하부의 프라이머 코팅층의 상용성 공중합체 간의 상호 확산에 따라 접착력이 우수한 다층 필름을 제조할 수 있다.
따라서, 배리어 필름에 대하여 프라이머로 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하며, 불소중합체와 상용성을 가지는 공중합체를 사용함으로써 불소중합체 필름을 별도로 형성할 필요없이 코팅에 의해 저온의 간단한 공정으로 배리어 필름에 불소중합체를 코팅할 수 있다.
상기 배리어 필름의 두께는 금속 박막의 경우, 약 1 내지 200㎛의 범위에 있을 수 있으며, 10 내지 100㎛, 또는 15 내지 50㎛의 범위를 가질 수 있다. 상기 배리어 필름이 무기 증착 필름인 경우, 약 1 내지 1000nm의 두께를 가질 수 있으며, 예를 들어, 10 내지 500nm 또는 50 내지 300nm의 두께를 가질 수도 있다. 다만, 본 발명에서 배리어 필름의 두께가 전술한 범위에 제한되는 것은 아니며, 이는 필요에 따라서 적절히 조절될 수 있다.
상기 배리어 필름 표면에는 프라이머 적용 전에 접착력을 보다 향상시키기 위해서 코로나 처리 또는 플라즈마 처리와 같은 고주파수의 스파크 방전 처리; 열 처리; 화염 처리; 커플링제 처리; 앵커제 처리 또는 기상 루이스산(ex. BF3), 황산 또는 고온 수산화나트륨 등을 사용한 화학적 활성화 처리 등을 수행할 수 있다.
또한, 상기 배리어 필름은 하부에 기재(substrate)를 추가로 포함할 수 있다. 본 발명의 구현예들에서 사용할 수 있는 기재의 구체적인 종류는 특별히 제한되지 않고, 이 분야에서 공지된 다양한 소재를 사용할 수 있으며, 요구되는 기능, 용도 등에 따라 선택될 수 있다.
본 발명의 하나의 예시에서, 상기 기재는 각종 금속 또는 중합체 시트일 수 있다. 상기에서 금속의 예로는 알루미늄, 철 등을 들 수 있으며, 중합체 시트의 예로는, 폴리에스테르계 시트, 폴리아미드계 시트 또는 폴리이미드계 시트 등을 들 수 있고, 이 중 폴리에스테르계 시트를 사용하는 것이 일반적이지만, 이에 제한되는 것은 아니다. 폴리에스테르계 시트의 예로는, 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN) 또는 폴리부틸렌 테레프탈레이트(PBT) 등의 단일 시트, 적층 시트 또는 공압출물 등을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 필요에 따라 내가수분해 특성이 향상된 폴리에스테르계 시트를 사용할 수도 있다.
기재의 두께는 약 50 ㎛ 내지 500 ㎛의 범위에 있을 수 있으며, 또는 100 내지 300㎛의 범위일 수 있다. 기재의 두께를 상기와 같이 조절하여, 다층 필름의 전기 절연성, 수분 차단성, 기계적 특성 및 취급성 등을 우수하게 유지할 수 있다. 다만, 본 발명에서 기재의 두께가 전술한 범위에 제한되는 것은 아니며, 이는 필요에 따라서 적절히 조절될 수 있다.
본 발명에서 상기 기재에도 접착력 향상을 위하여 전술한 스파크 방전 처리; 열 처리; 화염 처리; 커플링제 처리; 앵커제 처리 또는 화학적 활성화 처리 등이 수행되어 있을 수도 있다.
상기 배리어 필름을 상기 기재에 적층하는 방법으로는 접착제층에 의한 라미네이트, 열과 압력을 이용한 라미네이트 등을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 다층 필름은 상기 기재와 불소중합체 코팅층 사이에 프라이머 층을 포함한다. 본 발명의 일 구현예에서 상기 다층 필름의 프라이머 층에 포함되는 공중합체는 불소중합체와 상용성을 가지며, 기재와 불소중합체 코팅층 간의 접착력을 확보한다.
상기 불소중합체와 상용성을 가지는 공중합체는 불소중합체와 상용성을 가지는 주쇄 골격을 포함하며, 상기 주쇄 골격에 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제가 공중합되어 형성되는 관능기를 포함한다.
본 발명에서 용어 「A와 상용성을 가지는 B」는, A 및 B가 서로 잘 혼합되거나 상호 확산이 잘 이루어지는 물성을 의미한다.
본 발명에서 상기 프라이머 층에 포함되는 공중합체의 주쇄 골격은, 상기와 같은 성질을 나타내는 한 특별히 제한되지 않으며, 예를 들면, (메타)아크릴계 주쇄 골격; (메타)아크릴아미드계 주쇄 골격; 및 (메타)아크릴계 단량체, (메타)아크릴아미드계 단량체 또는 비닐계 단량체를 주성분으로 포함하는 단량체 혼합물로부터 유도되는 자유 라디칼 부가 중합체의 주쇄 골격으로 이루어진 군으로부터 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.
상기 프라이머 층은, 후술하는 불소중합체 코팅층에 포함되는 불소중합체 및 전술한 배리어 필름과의 접착력이 충분히 발휘될 수 있을 정도로 상용성을 가지며, 두 층 모두 코팅방법에 의해 형성됨으로써 각 층의 분자사슬의 상호 확산(inter-diffusion)으로 계면이 없어진다. 즉, 다층 필름의 형성 과정에서, 프라이머 층 및 불소중합체 코팅층의 계면에서는, 불소중합체 코팅층에 포함되는 불소중합체와 프라이머 간의 상호 확산이 일어난다. 이에 따라 불소중합체 코팅층의 성분과 프라이머 층의 성분의 분자쇄 사이에 엉킴(chain entanglement) 및 반데르 발스 인력 등에 의한 물리적 상호 작용이 발생하고, 이에 따라 접착력이 향상되는 것으로 예측될 수 있다. 따라서, 두 층 간 별도의 접착제 없이도 접착이 가능하게 되며, 종래 계면 접착제에 의해 발생하던 내구성 문제도 해결할 수 있다. 또한, 반데르 발스 인력은, 쌍극자들 간의 상호 작용(dipole-dipople interaction)에 의해 더욱 증가될 수 있다.
또한 상기 프라이머 층의 공중합체는 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제가 공중합되어 형성되는 관능기를 추가로 포함하며, 그러한 관능기는 고분자 주쇄 내부, 측쇄 또는 말단에 도입될 수 있다. 이하 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제가 공중합되어 형성되는 관능기를 포함하는 공중합체를 변성 공중합체라고 지칭한다.
상기와 같은 공중합체는 불소중합체와 상용성을 가지는 중합성 단량체; 및 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제의 공중합체일 수 있다. 이때 사용되는 실란 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제는 라디칼 공중합을 위해 이중 결합이 있는 화합물을 사용한다.
상기 불소중합체와 상용성을 가지는 중합성 단량체는 (메타)아크릴계 단량체, (메타)아크릴아미드계 단량체 및 비닐계 단량체로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 (메타)아크릴계 단량체의 예로는, 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, n-부틸(메타)아크릴레이트, s-부틸(메타)아크릴레이트, t-부틸(메타)아크릴레이트, 이소부틸(메타)아크릴레이트, 헥실(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, n-옥틸(메타)아크릴레이트, 이소옥틸(메타)아크릴레이트, n-노닐(메타)아크릴레이트, 이소노닐(메타)아크릴레이트, n-데실(메타)아크릴레이트, 이소데실(메타)아크릴레이트, n-도데실(메타)아크릴레이트, n-트리데실(메타)아크릴레이트, n-테트라데실(메타)아크릴레이트, 글리시딜 (메타)아크릴레이트, 글리시딜 알킬 (메타)아크릴레이트, 및 이소시아네이토 알킬 (메타)아크릴레이트로 이루어진 군에서 선택될 수 있으며, 단독 또는 혼합으로 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 (메타)아크릴아미드계 단량체의 예로는 아크릴아미드, 메타크릴아미드, 비스아크릴아미드, 하이드록시아크릴아미드, 디아세톤아크릴아미드, 이소부톡시메틸아크릴아미드, 부톡시메틸아크릴아미드, 메톡시프로필아크릴아미드, 에틸렌비스아크릴아미드 등의 1종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기 이중 결합을 포함하는 실란 커플링제의 구체적인 예는 비닐 알콕시 실란일 수 있다. 예를 들어, 상기 실란 커플링제는 비닐트리메톡시실란(CH2=CH2Si(OCH3)3), 비닐트리에톡시실란(CH2=CH2Si(OC2H5)3), 비닐트리프로폭시실란, 비닐트리이소프로폭시실란, 비닐트리부톡시실란, 비닐트리펜톡시실란, 비닐트리페녹시실란, 비닐트리아세톡시실란(CH2=CH2Si(OCOCH3)3), 메타크릴옥시실란, 메타크릴옥시프로필 트리메톡시실란, 메타크릴옥시프로필 트리에톡시실란, N-(3-메타크릴옥시 하이드록시프로필)-3-아미노프로필트리에톡시실란, 메타크릴로일옥시프로필 트리스트리메틸실릴옥시실란, 비닐트리스(2-메톡시에톡시)실란 및 트리(이소프로폭시)비닐실란 또는 그의 혼합물일 수 있다.
상기 이중 결합을 포함하는 티타늄계 커플링제는 이소프로필 트리메타크릴 티타네이트(isopropyl trimethacryl titanate), 이소프로필 트리아크릴로일 티타네이트(isopropyl triacryloyl titanate), 이소프로필 트리올레일 티타네이트(isopropyl trioleyl titanate), 티타늄 IV 2,2(비스 2-프로페놀라토메틸)부탄올라토, 트리스(디옥틸)피로포스페이토-O(titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(dioctyl)pyrophosphate-O), 티타늄, (이소옥타데칸올라토-κO)비스(2-메틸-2-프로페놀라토-kO)(2-프로판올라토) (titanium, (isooctadecanolato-κO)bis(2-methyl-2-propenolato-κO)(2-propanolato), 티타늄 IV 2,2(비스 2-프로페놀라토메틸)부탄올라토, 테트라(2,2-디알릴옥시메틸-1-부톡시티타늄 디(디트리데실)포스파이트(titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tetra(diallyloxymethyl)-1-butoxytitanium di(ditridecyl)phosphate), 네오펜틸 디알릴옥시 트리스-네오데카노일-티타네이트(neopentyl diallyloxy tris-neodecanoyl titanate), 네오펜틸 (디알릴)옥시, 트리(디옥틸)포스페이토 티타네이트(neopentyl (diallyl)oxy, tri(dioctyl)phosphato titanate), 네오펜틸 디알릴옥시 트리스(N-에틸렌디아미노)에틸 티타네이트(neopentyl diallyloxy tris(N-ethylenediamino) ethyl titanate), 이소프로필 트리에타놀아민 티타네이트(isopropyl triethanolamine titanate), 에톡시 이소-프로폭시 티타늄 아세틸아세토네이트(ethoxy iso-propoxy titanium acetylacetonate), 디이소프로폭시디(에톡시아세토아세틸) 티타네이트(diisopropoxydi(ethoxyacetoacetyl titanate) 및 디이소부톡시-비스 에틸아세토아세테이토 티타네이트(diisobutoxy-bis ethylacetoacetato titanate)로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 이중 결합을 포함하는 지르코늄계 커플링제는 지르코늄 IV 테트라키스 2,2(비스-2 프로페놀라토메틸) 부탄올라토(Zirconium IV tetrakis 2,2(bis-2 propenolatomethyl)butanolato), 지르코늄 IV 2,2-디메틸 1,3-프로판디올라토, 비스(디옥틸) 피로포스페이토-O(Zirconium IV 2,2-dimethyl 1,3-propanediolato, bis(dioctyl)pyrophosphato-O), 지르코늄 IV 1,1(비스-2 프로페놀라토메틸) 부탄올라토, 트리스(2-아미토)페닐라토(Zirconium IV 1,1(bis-2 propenolatomethyl)butanolato, tris(2-amino)phneylato-O), 및 지르코늄 IV 2,2(비스-2 프로페놀라토메틸) 부탄올라토, 비스(3-머캡토)프로피오나토-O(Zirconium IV 2,2(bis-2 propenolatomethyl)butanolato, bis(3-mercapto) propionato-O)로 이루어진 군에서 선택된 1종 이상일 수 있다.
상기 이중 결합을 포함하는 알루미늄계 커플링제는 알루미늄 III 디이소프로폭시드-에틸아세토아세테이트(aluminium III diisopropoxide-ethylacetoacetate) 및 알루미늄 2,4-펜탄디오네이트(aluminium 2,4-pentane dionate)로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명의 구현예들에 의한 프라이머 층에 포함되는 변성 공중합체의 제조 시 상기 중합성 단량체 및 커플링제의 혼합 비율은 질량비를 기준으로 1:99 내지 99:1일 수 있으며, 예를 들어 10:90 내지 95:5 또는 40:60 내지 90:10 일 수 있다. 상기와 같이 중합성 단량체 및 커플링제의 함량을 조절하여 불소중합체 코팅층과의 상호 확산 및 하부 배리어 필름 표면과의 결합력 증진을 조절할 수 있다.
상기 프라이머로 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제 만을 사용할 경우, 상기 커플링제가 단량체이거나 저분자일 경우 금속 또는 무기 증착 필름과의 코팅성(Wetting성)이 떨어지며, 코팅 후에도 결합 반응이 일어나지 않은 단량체들이 코팅막의 물성을 떨어뜨린다. 즉, 상기 프라이머로 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제 만을 사용할 경우, 상기 커플링제의 분자량이 작아 프라이머 막이 치밀하게 형성되지 않으며, 이에 따라 시간이 지남에 따라 수분이 프라미어 막 내로 침투하여 균일한 막의 형성이 어려울 수 있다. 또한, 이 경우, 불소중합체와 상호확산이 충분치 않아 접착력이 떨어진다. 따라서 커플링제를 상용성 공중합체에 공중합시킨 변성 공중합체, 예를 들어 실란 변성 아크릴 공중합체 등을 사용한다. 이러한 변성 공중합체는 커플링제의 공중합체 따른 관능기를 포함하지 않는 상용성 공중합체에 비하여 기재와 불소중합체 코팅층과의 계면에서 결합 반응이 일어날 수 있는 사이트가 많게 되어 반응시간, 반응 메커니즘에서 유리하며, 그에 따라 원하는 물성을 달성할 수 있게 된다.
상기와 같은 변성 공중합체는, 예를 들어 하기 화학식 1의 실릴기를 제공할 수 있으며, 이중 결합을 포함하는 실란 커플링제를 공중합시켜 제조하거나, 또는 상용성 공중합체에 상기와 같은 실란 커플링제를 그래프팅(grafting)시킴으로써 제조할 수도 있다.
[화학식 1]
-Si(OR)3
상기 화학식 1에서, R은 각각 동일하거나, 다를 수 있으며, 수소, 알킬기, 아릴기, 아랄킬기(aralkyl group), 알콕시기 등를 나타낸다.
상기에서 알킬기는, 예를 들면, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기일 수 있다. 또한, 상기 아릴기는 탄소수 6 내지 18, 바람직하게는 탄소수 6 내지 12의 아릴기, 예를 들면 페닐기일 수 있고, 아랄킬기는 탄소수 7 내지 19, 바람직하게는 탄소수 7 내지 13의 아랄킬, 예를 들면 벤질기일 수 있으며, 알콕시기는 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기일 수 있다.
즉, 본 발명의 일 구현예에서 상기 변성 공중합체는 실란 변성 아크릴 공중합체일 수 있으며, 아크릴 단량체 및 하기 화학식 2로 표시되는 실란 커플링제를 공중합된 형태로 포함하는 공중합체; 또는 아크릴 공중합체에 하기 화학식 2로 표시되는 실란 커플링제를 그래프팅시킨 그래프트 중합체일 수 있다.
[화학식 2]
DSi(OR)3
상기 화학식 2에서, D는 에틸렌성 불포화 탄화수소기 또는 탄화수소 옥시기이고, R은 상기 화학식 1에서 정의한 바와 같다.
본 발명의 구현예들에서, 상기 화학식 2의 D는 비닐, 알릴, 이소프로페닐, 부테닐, 사이클로헥세닐 또는 γ-메타크릴옥시프로필 등일 수 있고, 바람직하게는 비닐일 수 있다.
상기 변성 공중합체를 제조하기 위해서 라디칼 개시제를 추가로 상기 중합성 단량체 및 커플링제에 첨가할 수 있으며, 상기 라디칼 개시제는 각 단량체의 비닐기의 라디칼 중합을 유도하여 공중합이 가능하도록 할 수 있다.
본 발명에서 사용할 수 있는 라디칼 개시제의 구체적인 종류는 라디칼 중합을 개시할 수 있는 것이면 특별히 제한되지 않으며, 예를 들면, 유기 과산화물, 하이드로과산화물, 또는 아조 화합물 등의 1종 또는 2종 이상을 들 수 있다.
상기에서 라디칼 개시제의 예로는 t-부필큐밀퍼옥사이드, 디-t-부틸 퍼옥사이드, 디-큐밀 퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)-3-헥신 등의 디알킬 퍼옥사이드류, 큐멘 히드로퍼옥사이드, 디이소프로필 벤젠 히드로 퍼옥사이드, 2,5-디메틸-2,5-디(히드로 퍼옥시)헥산, t-부틸 히드로퍼옥사이드 등의 히드로 퍼옥사이드류, 비스-3,5,5-트리메틸헥사노일 퍼옥사이드, 옥타노일퍼옥사이드, 벤조일 퍼옥사이드, o-메틸벤조일퍼옥사이드, 2,4-디클로로벤조일 퍼옥사이드 등의 디아실퍼옥사이드류, t-부틸퍼옥시 아이소 부틸레이트, t-부틸퍼옥시 아세테이트, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시 피바레이트, t-부틸퍼옥시 옥토에이트, t-부틸퍼옥시아이소프로필 카보네이트, t-부틸퍼옥시벤조에이트, 디-t-부틸퍼옥시프탈레이트, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)-3-헥신 등의 퍼옥시 에스터류, 메티에틸케톤 퍼옥사이드, 사이클로헥사논 퍼옥사이드 등의 케톤 퍼옥사이드류, 라우릴 퍼옥사이드, 아조비스이소부티로니트릴 및 아조비스(2,4-디메틸발레로니트릴) 등의 아조 화합물로 이루어진 군에서 선택된 1종 이상을 들 수 있다.
상기 라디칼 개시제는 중합성 단량체 및 커플링제의 고형분 100 중량부에 대하여 0.1 중량부 내지 5 중량부, 또는 0.5 중량부 내지 2 중량부로 포함할 수 있다. 이와 같은 중량 비율에서 전체적인 수지 조성물의 물성을 효율적으로 조절하여, 배리어 필름과의 접착성을 높이고, 수지 조성물에 포함되는 UV 안정제 등과 같은 첨가제의 활성도 우수하게 유지할 수 있다.
상기와 같이 프라이머로서 실란 변성 아크릴 공중합체를 제조하게 되면, 관능기로 실릴기를 포함하게 되나, 프라이머층으로 코팅 및 건조 과정에서 실릴기가 실라놀기로 전환되어 배리어 필름(금속)의 표면의 하이드록시기와 결합하게 된다. 또한, 프라이머 제조 시부터 실라놀기가 포함되어 있을 수 있다. 이는 일정 열이나 습도에서 실릴기가 실라놀기로 쉽게 전환되기 때문이다. 또한, 프라이머 물질 제조 후 실릴기를 실라놀기로 전환하는 과정을 추가로 수행한 후, 프라이머 코팅을 행할 수도 있다.
상기 변성 공중합체를 포함하는 프라이머 층은 배리어 필름 상에 바코팅, 스프레이 코팅, 그라비아 코팅 등 일정 두께 이상의 프라이머 층을 형성할 수 있는 코팅방법에 의해 형성될 수 있다.
상기 프라이머 층의 두께는 약 0.01㎛ 내지 5㎛의 범위에 있을 수 있으며, 예를 들어 0.05㎛ 내지 3㎛ 또는 0.1 내지 2㎛의 범위일 수 있다. 프라이머 층의 두께는 고형분 함량을 조절함으로써 조절할 수 있으며, 상기 범위로 조절하여, 불소중합체 코팅층과 프라이머 층 간의 상호 확산 영역을 넓혀 접착력을 향상시킬 수 있다. 일정 두께 이상으로 프라이머 층이 두꺼워지게 되면 프라이머 층이 부서지기 쉬워 오히려 접착력이 떨어질 우려가 있으며, 불소중합체 코팅층의 물성이 변할 수 있어 프라이머 층은 상기 두께 범위로 형성할 수 있다.
본 발명의 다층 필름은, 프라이머 층 상에 형성되는 불소중합체 코팅층을 포함한다. 코팅층은 불소중합체를 포함하는 불소중합체 코팅층이, 캐스팅법 또는 압출 방식으로 제조된 시트를 기재에 접착제 등을 사용하여 라미네이트되는 방식이 아닌, 용매, 바람직하게는 낮은 비점을 가지는 용매에 불소중합체를 용해하여 제조된 코팅액을 기재 또는 프라이머 층에 코팅하는 방식으로 형성됨을 뜻한다.
상기와 같이 불소중합체를 포함하는 층을 코팅으로 형성함으로써, 프라이머 층과의 상호 확산 작용이 효과적으로 진행되어, 접착력의 향상 효과를 극대화할 수 있다. 또한, 불소중합체 코팅층의 형성 과정에서 비점이 낮은 용매를 사용할 수 있고, 이에 따라 건조 공정을 저온에서 진행할 수 있게 되어, 제품의 생산성을 향상시키고, 우수한 품질을 확보할 수 있다.
본 발명의 구현예들에서 사용할 수 있는 불소중합체의 구체적인 종류는 특별히 제한되지 않으며, 예를 들면, 비닐리덴 플루오라이드(VDF, Vinylidene Fluoride), 비닐 플루오라이드(VF, Vinyl Fluoride), 테트라플루오로에틸렌(TFE, Tetrafluoroethylene) 헥사플루오로프로필렌(HFP, Hexafluoropropylene), 클로로트리플루오로에틸렌(CTFE, chlorotrifluoroethylene), 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로 부틸에틸렌, 퍼플루오로 메틸 비닐 에테르(PMVE, perfluoro(methylvinylether)), 퍼플루오로 에틸 비닐 에테르(PEVE, perfluoro(ethylvinylether)), 퍼플루오로 프로필 비닐 에테르(PPVE), 퍼플루오로 헥실 비닐 에테르(PHVE), 퍼플루오로-2,2-디메틸-1,3-디옥솔(PDD) 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란(PMD)으로 이루어진 군으로부터 선택된 하나 이상의 단량체를 중합된 형태로 포함하는 단독 중합체, 공중합체 또는 이들의 혼합물일 수 있다.
본 발명에서는, 예를 들어 불소중합체는 비닐 플루오라이드를 중합된 형태로 포함하는 단독 중합체 또는 공중합체; 또는 비닐리덴 플루오라이드를 중합된 형태로 포함하는 단독 중합체 또는 공중합체; 또는 상기 중 2종 이상을 포함하는 혼합물일 수 있다.
상기에서 공중합체에 중합된 형태로 포함될 수 있는 공단량체의 종류는 특별히 제한되지 않으며, 예를 들면, 헥사플루오로프로필렌(HFP), 클로로트리플루오로에틸렌(CTFE), 테트라플루오로에틸렌(TFE), 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로부틸에틸렌, 퍼플루오로메틸비닐에테르(PMVE), 퍼플루오로-2,2-디메틸-1,3-디옥솔(PDD) 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란(PMD) 등의 1종 또는 2종 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 공중합체 내의 공단량체의 함량은, 예를 들면, 전체 공중합체의 중량을 기준으로 약 0.5 중량% 내지 50 중량%, 1 중량% 내지 40 중량%, 7 중량% 내지 40 중량%, 10 중량% 내지 30 중량%, 또는 10 중량% 내지 20 중량%일 수 있다. 이와 같은 공단량체의 범위 내에서 다층 필름의 내구성 및 내후성 등을 확보하면서, 효과적인 상호 확산 작용 및 저온 건조를 유도할 수 있다.
상기 불소중합체의 형태는 직쇄형 또는 분지형 중합체(branched polymer) 일 수 있다.
본 발명에서 상기 불소중합체는, 50,000 내지 1,000,000의 중량평균분자량을 가질 수 있다. 본 발명에서 중량평균분자량은, GPC(Gel Permeation Chromatograph)로 측정되는 표준 폴리스티렌의 환산 수치이다. 본 발명에서는 수지의 중량평균분자량을 상기와 같이 조절하여, 우수한 용해도 및 기타 물성을 확보할 수 있다.
본 발명에서 상기 불소중합체는, 또한, 융점이 80℃ 내지 175℃, 바람직하게는 120℃ 내지 165℃일 수 있다. 본 발명에서 수지의 융점을 80℃ 이상으로 조절하여, 다층 필름의 사용 과정에서의 변형을 방지할 수 있고, 또한 융점을 175℃ 이하로 조절하여, 용매에 대한 용해도를 조절하고, 코팅면의 광택을 향상시킬 수 있다.
본 발명의 불소중합체 코팅층은 필요에 따라서 상기와 같은 불소중합체와 함께 비결정성 수지를 추가로 포함할 수 있다. 이와 같이, 비결정성 수지와의 블렌드를 사용함으로 해서, 전술한 프라이머 층과의 상호 작용 및 저비점 용매에 대한 용해성을 포함한 공정성을 보다 극대화할 수 있다. 본 발명에서 용어 비결정성 수지에는, 수지의 전체 구조가 비결정성을 가지는 경우는 물론, 수지의 일부에 결정질 영역이 존재하더라도, 비결정성 영역이 보다 우세하게 존재하여, 수지가 전체적으로 비결정성을 나타내는 경우도 포함된다.
본 발명에서 사용할 수 있는 비결정성 수지의 종류는 특별히 제한되지 않으며, 예를 들면, 아크릴계 수지, 폴리카보네이트, 폴리염화비닐, 스티렌-(메타)아크릴로니트릴 공중합체, 스티렌-무수말레인산 공중합체, 시클로올레핀 중합체, 폴리아크릴로니트릴, 폴리스티렌, 폴리술폰, 폴리에테르술폰 또는 폴리아릴레이트의 1종 또는 2종 이상의 혼합을 들 수 있고, 이 중 비반응성 아크릴계 수지를 사용하는 것이 바람직하지만, 이에 제한되는 것은 아니다.
상기에서 아크릴계 수지의 예로는, 메틸 (메타)아크릴레이트, 에틸 (메타)아크릴레이트, 프로필 (메타)아크릴레이트, 부틸 (메타)아크릴레이트, (메타)아크릴산 및 이소보닐 (메타)아크릴레이트 등의 1종 또는 2종 이상을 중합된 형태로 포함하는, 단독 중합체 또는 공중합체를 들 수 있다. 또한, 경우에 따라서는, 유리전이온도 및 분자량 분포 등의 제어를 위하여, 상기 중 1종 또는 2종 이상의 단량체; 및 시클로헥실 말레이미드, 메틸 스티렌 또는 (메타)아크릴로니트릴 등의 1종 이상의 공단량체를 중합된 형태로 포함하는 아크릴계 수지를 사용할 수도 있다.
본 발명에서 상기 비결정성 수지가 2종 이상의 단량체를 중합된 형태로 포함하는 공중합체의 형태일 경우, 공단량체의 종류 및 함량은 특별히 제한되지 않고, 목적하는 비결정성을 고려하여 조절될 수 있다.
본 발명에서 불소중합체 코팅층이 비결정성 수지를 포함할 경우, 불소중합체 코팅층은, 불소계 수지를 50 중량부 이상으로 포함하고, 비결정성 수지를 50 중량부 이하로 포함할 수 있으며, 보다 구체적으로는 불소계 수지 70 중량부 내지 97 중량부 및 비결정성 수지 3 중량부 내지 30 중량부를 포함할 수 있다. 수지 간의 중량 비율을 상기와 같이 제어하여, 불소중합체 코팅층을 구성하는 성분이 적절한 결정화도를 가지고, 프라이머 층과의 상호 확산이 효과적으로 진행되며, 다층 필름이 우수한 내구성 및 내후성 등의 물성을 나타내도록 할 수 있다.
본 명세서에서는, 특별히 달리 규정하지 않는 한, 단위 「중량부」는 각 성분간의 중량 비율을 의미한다.
본 발명의 불소중합체 코팅층은, 전술한 성분에 추가로, 불소중합체 코팅층의 색상이나 불투명도의 조절 또는 기타 목적을 위하여, 안료 또는 충전제를 추가로 포함할 수 있다. 이 때 사용될 수 있는 안료 또는 충전제의 예로는, 이산화티탄(TiO2), 실리카 또는 알루미나 등과 같은 금속 산화물, 탄산 칼슘, 황산 바륨 또는 카본 블랙 등과 같은 블랙 피그먼트 또는 다른 색상을 나타내는 피그먼트 성분 등을 들 수 있으나, 이에 제한되는 것은 아니다. 상기와 같은 안료 또는 충진제는, 불소중합체 코팅층의 색상이나 불투명도를 제어하는 고유의 효과와 함께, 각 성분이 포함하는 고유의 작용기에 의하여 불소중합체 코팅층 및 프라이머 층의 상호 확산 시에 계면 접착력을 추가로 개선하는 작용을 할 수도 있다. 상기 안료의 함량은 불소중합체 코팅층의 고형물을 기준으로 60 중량% 이하일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 불소중합체 코팅층은 또한, UV 안정화제, 열안정화제, 분산제 또는 장벽 입자와 같은 통상적인 성분을 추가로 포함할 수도 있다.
본 발명에서 상기와 같은 성분을 포함하는 불소중합체 코팅층은 두께가 약 3 ㎛ 내지 50 ㎛. 바람직하게는 10 ㎛ 내지 30 ㎛일 수 있으나, 이는 목적에 따라서 변경될 수 있다.
첨부된 도 1은 본 발명의 다층 필름을 예시적으로 나타내는 도면이다. 즉 도 1에 나타난 바와 같이 본 발명의 다층 필름(10)은 기재(11); 상기 기재의 일면에 형성된 배리어 필름(12); 상기 배리어 필름(12) 상에 형성된 프라이머 층(13) 및 상기 프라이머 층(13) 상에 형성된 불소중합체 코팅층(14)을 포함할 수 있다.
또한, 도시하지 아니하였으나, 다층 필름이 기재 또는 배리어 필름의 양면에 형성된 프라이머 층 및 상기 각각의 프라이머 층 상에 형성된 불소중합체 코팅층을 포함할 수도 있다.
또한, 본 발명의 다층 필름은, 필요에 따라서 당업계에서 공지되어 있는 다양한 기능성층을 추가로 포함할 수 있다. 기능성층의 예로는, 접착층 또는 절연층 등을 들 수 있다. 예를 들면, 본 발명의 다층 필름에는, 기재의 일면에는 전술한 프라이머 층 및 불소중합체 코팅층이 형성되어 있고, 다른 면에는 접착층 및 절연층이 순차적으로 형성되어 있을 수 있다. 접착층 또는 절연층은 이 분야에서 공지되어 있는 다양한 방식으로 형성할 수 있다. 예를 들면, 절연층은, 에틸렌비닐아세테이트(EVA) 또는 저밀도 선형 폴리에틸렌(LDPE)의 층일 수 있다. 상기 에틸렌비닐아세테이트(EVA) 또는 저밀도 선형 폴리에틸렌(LDPE)의 층은 절연층으로서의 기능은 물론 봉지재(encapsulant)와의 접착력을 높이고, 제조 비용의 절감이 가능하며, 재작업성(re-workability)도 우수하게 유지하는 기능을 동시에 수행할 수 있다.
본 발명은, 또한 다층 필름의 제조 방법에 관계한다.
일례로 상기 다층 필름의 제조 방법은 배리어 필름 상부에 불소중합체와 상용성을 가지는 공중합체를 포함하는 프라이머 코팅액을 코팅하여 프라이머 층을 형성하는 단계 및
상기 프라이머 층의 상부에 불소중합체 코팅용 조성물을 코팅하는 단계를 포함한다.
본 발명의 다층 필름의 제조 방법은 배리어 필름 상에 프라이머 층 및 불소중합체 층을 모두 코팅에 의하여 형성하는 것을 특징으로 한다. 이 때, 코팅 방식은 특별히 제한되지 않으며, 예를 들면, 오프셋, 그라비어, 롤 코트 또는 나이프 엣지 코트 등을 포함하여, 코팅층을 형성할 수 있는 것이라면 어떠한 방식도 적용 가능하다.
예를 들면, 프라이머 층의 경우, 불소중합체와 상용성을 가지는 공중합체를 포함하는 프라이머 코팅액을 배리어 필름 상에 도포한 후, 소정 조건에서 건조시키는 등의 방식으로 프라이머 층의 형성이 가능하다.
별도의 접착제 또는 접착층의 사용 없이도 배리어 필름에 대하여 우수한 접착력의 불소중합체 코팅을 갖는 다층 필름을 제공하기 위하여, 상기 프라이머는 전술한 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하는 변성 공중합체일 수 있으며, 코팅액은 상기 변성 공중합체를 적절한 유기 용매에 용해 또는 분산시켜 제조할 수 있다. 상기 유기 용매로는 메틸에틸케톤, 에탄올, 이소프로판올, 톨루엔, 에틸아세테이트, 부틸아세테이트, 사이클로헥산올 등의 1종 또는 그 이상의 혼합물을 사용할 수 있다.
상기 코팅액에는 필요에 따라 기타 다양한 첨가제, 예를 들어 산화방지제, 방청제, 경화제 등을 추가로 포함시킬 수도 있다.
또한, 본 발명에서 사용될 수 있는 배리어 필름의 구체적인 종류는 전술한 바와 같으며, 상기 배리어 필름에 적절한 증착 처리, 플라즈마 처리, 코로나 처리, 프라이머, 앵커제, 커플링제 처리 또는 열 처리를 하는 단계를 추가로 수행할 수 있다.
본 발명에서는 상기와 같은 방식으로 프라이머 층을 형성한 후, 코팅 방식으로 불소중합체 코팅층을 형성한다. 본 발명에서 불소중합체 코팅층을 형성하는 코팅액은 전술한 불소중합체 코팅층을 형성하는 각 성분을 상대적으로 낮은 비점을 가지는 용매, 구체적으로는 비점이 200℃ 이하인 용매에 용해 또는 분산시켜 제조될 수 있다. 본 발명의 일구현예에서는 불소중합체가 비결정성 영역을 가지거나, 혹은 비결정성 수지와 혼합됨으로써, 비점이 상대적으로 낮은 용매에 효과적으로 용해될 수 있다. 이에 따라, 본 발명에서는 제조 과정에서 고온의 건조 공정이 요구되지 않아, 제조 비용을 절감하는 동시에, 고온 건조 시에 유발될 수 있는 기재의 열변형이나 열충격 등을 방지하여, 제품의 품질을 향상시킬 수 있다.
본 발명에서 사용할 수 있는 상기와 같은 용매의 예로는, 아세톤, 메틸에틸케톤(MEK), 디메틸포름아미드(DMF) 또는 디메틸아세트아미드(BMAC) 등의 1종 또는 2종 이상의 혼합을 들 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 불소중합체 코팅용 조성물은 수분산액 코팅 조성물일 수도 있다. 예를 들어, 물에 분산된 불소중합체를 포함하는 수분산액으로도 코팅할 수 있으며, 이 경우 분산제가 포함되는 것이 바람직하다.
본 발명에서 불소중합체 코팅층의 형성에 적용되는 코팅액에는, 상기 불소중합체 외에도, 안료, 충전제, UV 안정제, 분산제 또는 열안정제와 같은 다양한 첨가제를 추가로 포함할 수 있다. 상기 각 첨가제는, 불소중합체 등과 함께 용매에 용해되거나, 또는 상기 성분과는 별도로 밀베이스 형태로 제조된 후, 다시 상기 불소중합체를 포함하는 용매와 혼합될 수도 있다.
본 발명에서 코팅액의 제조 방법이나, 코팅액에 포함되는 각 성분의 비율 등은 특별히 제한되지 않고, 이 분야에 공지되어 있는 다양한 방식을 적절히 채용하면 된다.
본 발명에서 상기 코팅액을 사용한 코팅 방식은 특별히 제한되지 않으며, 예를 들면, 전술한 프라이머 층의 형성을 위한 코팅 방식에 준하여 수행할 수 있다. 특히, 이 코팅 과정에서, 코팅액의 용매는, 프라이머 층의 표면을 스웰링(swelling)시킴으로써, 프라이머 층 및 불소중합체 코팅층의 상호 확산 작용을 촉진할 수 있다.
본 발명에서는, 상기 각 층의 코팅 공정에 이어서, 각 층을 건조시키는 단계를 추가로 수행할 수 있다. 건조 시의 조건은 특별히 제한되지 않으며, 예를 들면, 실온 내지 200℃ 이하, 바람직하게는 약 25℃ 내지 180℃의 온도에서 약 30초 내지 30분, 바람직하게는 약 1분 내지 10분 동안 수행될 수 있다. 건조 조건을 상기와 같이 제어하여, 제조 비용의 상승을 방지하고, 열변형 또는 열충격 등에 의한 제품 품질 저하를 방지할 수 있다. 또한, 건조 조건에 따라 프라이머 층과 불소중합체 코팅층 간 물질의 상호 확산 정도를 조절할 수 있으며, 예를 들어 불소중합체의 건조 온도가 높거나, 건조 시간이 길어질수록 확산 효과를 높여줄 수 있다. 본 발명의 일구현예에서는, 상기 프라이머 층은 약 100℃ 내지 120℃의 온도에서 수초 내지 1분 정도의 조건에서 건조할 수 있으며, 상기 불소중합체 코팅층은 약 160℃ 내지 200℃의 온도에서 1분 내지 2분 정도의 조건에서 건조할 수 있다.
본 발명은 또한, 상기 다층 필름을 포함하는 광전지 모듈 제조용 부자재 및 상기 광전지 모듈 제조용 부자재를 포함하는 광전지 모듈에 관계한다.
본 발명의 광전지 모듈의 구조는, 상기 다층 필름을 광전지 모듈 제조용 부자재로서 포함하고 있는 한 특별히 제한되지 않고, 이 분야에서 공지되어 있는 다양한 구조를 가질 수 있다. 일례로 상기 다층 필름은 광전지용 이면 시트로 사용될 수 있으며, 이때 배리어 필름은 광전지쪽으로 배치되며, 그에 따라 불소중합체 코팅층이 표면층이 되게 된다.
통상적으로, 광전지 모듈은, 투명 전면 기판, 이면 시트 및 상기 전면 기판과 이면 시트의 사이에서 봉지재에 의해 봉지되어 있는 광전지 또는 직렬 또는 병렬로 배치된 광전지 어레이를 포함할 수 있다.
상기에서 광전지 또는 광전지 어레이를 구성하는 활성층의 예에는, 대표적으로 결정질 또는 비결정질 실리콘 웨이퍼나, CIGS 또는 CTS 등과 같은 화합물 반도체 등을 들 수 있다.
본 발명의 다층 필름은, 상기와 같은 활성층을 가지는 모듈을 포함하여, 이 분야에 알려져 있는 다양한 광전지 모듈에 제한 없이 적용될 수 있으며, 이 경우, 상기 모듈을 구성하는 방식이나, 기타 소재의 종류는 특별히 제한되지 않는다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 및 비교예에서 필름의 각 물성은 다음 방식으로 측정하였다.
1. 180도 박리 강도
박리 강도는, ASTM D1897에 준거하여, 시편을 10 mm의 폭으로 재단한 다음, 4.2 mm/sec의 속도 및 180도의 박리 각도로 박리하면서 측정하였다.
2. 크로스-해치 접착력
크로스 컷 시험 기준인 ASTM D3002/D3359의 규격에 준거하여, 크로스 컷 테스트를 수행하였다. 구체적으로, 시편을 1 mm의 간격으로 가로 및 세로 방향으로 각각 11줄씩 칼로 그어서 가로와 세로가 각각 1 mm인 100개의 정사각형 격자를 형성하였다. 그 후, Nichiban사의 CT-24 접착 테이프를 상기 재단면에 부착한 후 떼어낼 때에, 함께 떨어지는 면의 상태를 측정하여 하기 기준으로 평가하였다.
<크로스-해치 접착력 평가 기준>
5B: 떨어진 면이 없는 경우
4B: 떨어진 면이 총 면적 대비 5% 이내인 경우
3B: 떨어진 면이 총 면적 대비 5 내지 15%인 경우
2B: 떨어진 면이 총 면적 대비 15 내지 35%인 경우
1B: 떨어진 면이 총 면적 대비 35 내지 65%인 경우
0B: 거의 대부분이 떨어지는 경우
3. PCT(pressure cooker test)
실시예 및 비교예에서 제조된 다층 필름을 2기압, 121℃ 및 100% R.H.의 조건이 유지되는 오븐에 25 시간 또는 50 시간 동안 방치한 후에 접착력의 변화를 관찰하였다.
4. 막의 변성 측정
실시예 1 및 비교예 2에서 제조된 다층 필름을 2기압, 121℃ 및 100% R.H.의 조건이 유지되는 오븐에 25 시간 동안 방치한 후에 막의 변화를 관찰하였다. 관찰 결과는 도 2 및 도 3에 나타내었다.
제조예 1 내지 6 : 프라이머의 제조
반응기에 톨루엔 300g을 넣고, 온도를 80℃로 유지시켰다. 이때 반응기 내부는 일반공기에 의한 산화반응을 억제하기 위해 질소가스로 충진시키고, 반응이 잘 일어나도록 교반기를 통해 지속적으로 반응물을 교반시켰다. 80℃의 조건이 맞추어진 후, 반응기 안에 하기 표 1에 나타낸 바와 같이 각각 준비된 아크릴 단량체를 주입하였다. 아크릴 단량체를 다 주입한 후, 실란 커플링제 KBM503을 주입하였으며, 각 제조예에서의 아크릴 단량체와 실란 커플링제의 비율 및 주입량은 표 1에 나타내었다.
그런 뒤, 라디칼 공중합을 위하여 개시제로 2,2-아조비스(2,4-디메틸발레로니트릴))(2,2-Azobis(2,4-dimethylvaleronitrile), V-65) 1g을 톨루엔 20g에 녹여 주사기를 이용하여 상기 반응기 안에 주입하였다. 80℃의 온도 조건에서 8 시간 동안 교반시킨 후 반응을 종료시켜 실란 변성 아크릴 공중합체인 프라이머 MSC1 내지 MSC6을 제조하였다.
표 1
구분 제조예 1 제조예 2 제조예3 제조예 4 제조예 5 제조예 6
실란 변성 아크릴 공중합체 MSC1 MSC2 MSC3 MSC4 MSC5 MSC6
톨루엔 300g 300g 300g 300g 300g 300g
아크릴 단량체 (함량) MMA(90g) MMA(85g) MMA(70g) MMA(50g) MMA(40g)+EA(30g) MMA(50g)+GMA(20g)+EA(30g)
실란 커플링제(KBM503) 10g 15g 30g 50g 30g 20g
개시제(V-65)/톨루엔 1g/20g 1g/20g 1g/20g 1g/20g 1g/20g 1g/20g
반응 온도 (℃) 80 80 80 80 80 80
반응 시간(h) 8 8 8 8 8 8
S/C(%) 실측치 20wt% 20wt% 20wt% 20wt% 20wt% 20wt%
MMA: 메틸메타크릴레이트 (Methylmethacrylate)EA: 에틸아크릴레이트(Ethylacrylate)GMA: 글리시딜메타크릴레이트(Glycidylmethacrylate)S/C (%) 실측치: 중합 후 프라이머 액의 고형분을 측정한 %
실시예 1 내지 12
기재층의 준비
양면에 아크릴 프라이머 처리가 된 폴리에틸렌 테레프탈레이트(PET, poly(ethylene terephthalate), 두께: 250㎛, 코오롱社) 표면에 코로나 처리를 행하였다.
상기 PET 필름의 일면에 접착제를 코팅하고 100℃에서 1분 간 건조한 후, 두께 20㎛의 알루미늄 포일(Al foil)을 라미네이터(laminator)를 이용하여 접착시켰다. 라미네이터로 접착할 때 라미네이터 롤의 온도는 60℃의 조건으로 접착하였다. 그 후 상온에서 하루, 40 내지 60℃의 오븐에서 4일 동안 보관하는 숙성과정을 통해 충분히 접착제의 경화시간을 가졌다. 접착제의 건조 후 두께는 약 10 내지 13㎛ 정도로 접착제의 고형분 함량으로 조절하였다.
불소중합체 코팅층용 코팅액의 제조
백색 불소중합체 코팅액의 제조
디메틸포름아미드(DMF, N,N-dimethyl formamide) 800 g에 비닐리덴 플루오라이드(VDF; Vinylidene fluoride)와 클로로트리플루오로에틸렌(CTFE; Chlorotrifluoro ethylene)을 85:15(VDF:CTFE)의 중량 비율로 중합된 형태로 포함하는 공중합체 140g 및 VDF와 헥사플루오로프로필렌(HFP; Hexafluoropropylene)을 88:12(VDF:HFP)의 중량 비율로 중합된 형태로 포함하는 공중합체 60g을 용해시켜 제 1 코팅액을 제조하였다.
또한, 상기와는 별도로 DMF 100 g에 안료 분산제인 BYK W9010 (BYK社) 4.8g 및 이산화티탄(TiPure TS6200, 듀폰社) 240g을 용해시키고, 다시 직경이 0.3 mm인 지르코니아 비드(Zirconia bead) 100g을 넣은 후, 1,000 rpm의 속도로 1 시간 동안 교반시킨 다음, 비드를 완전히 제거하여 밀베이스를 제조하였다.
제조된 밀베이스를 미리 제조된 제 1 코팅액에 투입하고, 다시 교반하여 백색 불소중합체 코팅액을 준비하였다. 상기에서 밀베이스는, 비드의 제거 과정에서 손실되는 양을 감안하여, 실제 불소중합체 코팅층에 투입되는 양의 1.5배의 양으로 준비한 것이다.
프라이머 코팅
미리 준비한 알루미늄 포일이 접착되어 있는 PET 필름의 알루미늄 포일 표면에 각각 상기에서 제조한 실란 변성 아크릴 공중합체를 코팅하였다. 상기 코팅은 메이어 바(Mayer bar)를 이용하였으며, 메이어 바의 두께를 조절하는 번호와 실란 변성 아크릴 공중합체의 고형분 함량을 20중량%로 조절하여 프라이머 층의 두께를 조절하였다. 코팅 후, 약 120℃에서 약 30초간 건조시켜, 두께 1 내지 3㎛의 프라이머 층을 형성하였다.
불소중합체 코팅층 형성
상기 실란 변성 아크릴 공중합체가 프라이머로 코팅된 알루미늄 포일 상에 상기에서 준비해 둔 백색 불소중합체 코팅액을 어플리케이터를 이용하여 건조 후의 두께가 약 15 내지 30 ㎛가 되도록 불소중합체 코팅액 내의 고형분 함량을 조절하여 코팅한 다음, 180℃에서 약 2분간 건조하여 불소중합체 코팅층을 형성하였다.
실시예 1 내지 6은 각각 상기 제조예 1 내지 6의 프라이머로 코팅된 프라이머 층 상부에 상기 백색 불소중합체 코팅액을 사용하여 다층 필름을 제조한 것이다.
비교예 1
알루미늄 포일 상부에 프라이머 층을 형성하지 아니하고 바로 불소중합체 코팅층을 형성하여 다층 필름을 제조하였으며, 알루미늄 포일 상부에 불소중합체를 코팅하는 방법은 실시예 1과 같이 수행하였다.
비교예 2
실시예 1에서 프라이머로 사용한 실란 변성 아크릴 공중합체 대신에 공중합시키지 않은 실란 커플링제 KBM 503만을 프라이머로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 다층 필름을 제조하였다.
비교예 3
실시예 1에서 프라이머로 사용한 실란 변성 아크릴 공중합체 대신에 공중합시키지 않은 아크릴 단량체 MMA 만을 프라이머로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 다층 필름을 제조하였다.
비교예 4
알루미늄 포일 상부에 실란 변성 아크릴 공중합체로 이루어진 프라이머 층을 형성하는 대신 알루미늄 포일 상부에 에폭시 프라이머 층이 형성된 것을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 다층 필름을 제조하였다.
실험예 1
상기 실시예 1 내지 6 및 비교예 1 및 4의 다층 필름에 대하여, PCT(Pressure cooker test) 수행 전, 후에 180도 박리강도 및 크로스-해치 테스트를 각각 수행하였다. 구체적으로는, 각각의 다층 필름을 2 기압, 121℃ 및 100% R.H.의 조건에서 각각 25 시간 또는 50 시간 동안 방치한 후, 180도 박리강도 및 크로스-해치 테스트를 수행하여 박리력의 변화를 평가하였다. 평가 결과는 하기 표 2 에 기술하였다.
표 2
구분 프라이머 180도 박리 강도(Kg/cm) 크로스-해치 테스트 결과
초기 25 hrs 50 hrs 초기 25 hrs 50 hrs
실시예 1 MSC1 T T T 5B 5B 5B
실시예 2 MSC2 T T T 5B 5B 5B
실시예 3 MSC3 T T T 5B 5B 5B
실시예 4 MSC4 T T T 5B 5B 5B
실시예 5 MSC5 T T T 5B 5B 5B
실시예 6 MSC6 T T T 5B 5B 5B
비교예 1 - 0.011 0 0 0B 0B 0B
비교예 2 KBM503 0.048 0 0 0B 0B 0B
비교예 3 MMA 0.023 0 0 0B 0B 0B
비교예 4 에폭시 0.002 0 0 0B 0B 0B
T: 박리 시 필름이 찢어져서 정확한 박리력의 측정이 불가능한 경우
상기 표 2에 나타난 바와 같이, 실란 변성 아크릴 공중합체의 프라이머 층을 포함하는 본 발명의 실시예의 다층 필름의 경우, 양호한 접착력이 얻어지는 것을 확인할 수 있으며, PCT를 50 시간 진행한 후에도 역시 우수한 접착력을 나타내었다. 반면, 프라이머 층이 없거나, 실란 단량체, 아크릴 단량체 또는 에폭시 프라이머 층을 포함하는 비교예의 경우, 접착력이 크게 떨어지는 점을 확인하였다.
또한, 도 2와 같이, 실시예 1의 경우에는, PCT를 25 시간 동안 진행한 후에도 막의 변성이 발생하지 않았으나, 도 3과 같이, 실란 커플링제만을 사용한 비교예 2의 경우에는 PCT 진행 후에 수포가 발생하는 것을 확인하였다.
실시예 7 내지 12
불소중합체 코팅액으로 실시예 1 내지 6에서 사용한 백색 불소중합체 코팅액 대신에 하기와 같이 별도로 준비한 블랙 불소중합체 코팅액을 사용한 것을 제외하고는 각각 실시예 1 내지 6과 동일한 방법으로 다층 필름을 제조하였다.
블랙 불소중합체 코팅액의 제조
제 1 코팅액은 백색 불소중합체 코팅액에서 사용한 것과 동일하며, 그와는 별도로 DMF 100 g에 안료 분산제인 BYK 9076 (BYK社) 0.8g 및 카본블랙 (MA100, 미쓰비시社) 8g을 용해시키고, 다시 직경이 0.3 mm인 지르코니아 비드 100g을 넣은 후, 1,000 rpm의 속도로 1 시간 동안 교반시킨 다음, 비드를 완전히 제거하여 밀베이스를 제조하였다.
제조된 밀베이스와 탈크(Talc, Nippon Talc社) 60g을 미리 제조된 제 1 코팅액에 투입하고, 다시 교반하여 블랙 불소중합체 코팅액을 준비하였다. 상기에서 밀베이스는, 비드의 제거 과정에서 손실되는 양을 감안하여, 실제 불소중합체 코팅층에 투입되는 양의 1.5배의 양으로 준비한 것이다.
비교예 4 내지 6
불소중합체 코팅액으로 비교예 1 내지 3에서 사용한 백색 불소중합체 코팅액 대신에 실시예 7 내지 12에서 사용한 블랙 불소중합체 코팅액을 사용한 것을 제외하고는 각각 비교예 1 내지 3과 동일한 방법으로 다층 필름을 제조하였다.
실험예 2
상기 실시예 7 내지 12 및 비교예 4 및 6의 다층 필름에 대하여, PCT(Pressure cooker test) 수행 전, 후에 180도 박리강도 및 크로스-해치 테스트를 각각 수행하였다. 구체적으로는, 각각의 다층 필름을 2 기압, 121℃ 및 100% R.H.의 조건에서 각각 25 시간 또는 50 시간 동안 방치한 후, 180도 박리강도 및 크로스-해치 테스트를 수행하여 박리력의 변화를 평가하였다. 평가 결과는 하기 표 3 에 기술하였다.
표 3
구분 프라이머 180도 박리 강도(Kg/cm) 크로스-해치 테스트 결과
초기 25 hrs 50 hrs 초기 25 hrs 50 hrs
실시예 7 MSC1 T T T 5B 5B 5B
실시예 8 MSC2 T T T 5B 5B 5B
실시예 9 MSC3 T T T 5B 5B 5B
실시예 10 MSC4 T T T 5B 5B 5B
실시예 11 MSC5 T T T 5B 5B 5B
실시예 12 MSC6 T T T 5B 5B 5B
비교예 4 - 0.002 0 0 0B 0B 0B
비교예 5 KBM503 0.021 0 0 0B 0B 0B
비교예 6 MMA 0.008 0 0 0B 0B 0B
T: 박리 시 필름이 찢어져서 정확한 박리력의 측정이 불가능한 경우
상기 표 3에 나타난 바와 같이, 불소중합체 코팅액과 관계없이 실란 변성 아크릴 공중합체의 프라이머 층을 포함하는 본 발명의 실시예의 다층 필름의 경우, 양호한 접착력이 얻어지는 것을 확인할 수 있으며, PCT를 50 시간 진행한 후에도 역시 우수한 접착력을 나타내었다. 반면, 프라이머 층이 없거나, 실란 단량체 또는 아크릴 단량체의 프라이머 층을 포함하는 비교예의 경우, 접착력이 크게 떨어지는 점을 확인하였다.
즉, 상기 실시예 1 내지 12 및 비교예 1 내지 비교예 6과 그에 대한 실험예들을 통하여, 실란 변성 아크릴 공중합체를 프라이머로 사용하는 경우, 불소중합체 코팅층이 알루미늄 포일에 대해 계면 접착력이 우수함과 동시에 보다 나은 내구성을 가짐을 확인할 수 있다. 이는 프라이머 층의 실란 변성 아크릴 공중합체가 알루미늄 포일의 표면과 화학적 결합을 형성함과 동시에 불소중합체 코팅층으로의 물질의 확산에 따른 접착력 향상에 기인하는 것으로, 접착력 및 내구성을 동시에 달성할 수 있는 것이다.
이상에서 본 발명의 예시적인 실시예를 참고로 본 발명에 대해서 상세하게 설명하였으나, 이들은 단지 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
부호의 설명
10: 다층 필름
11: 기재
12: 금속 또는 무기증착필름
13: 프라이머 층
14: 불소중합체 코팅층

Claims (39)

  1. 배리어 필름;
    상기 배리어 필름 상부의 프라이머 층; 및
    상기 프라이머 층 상부의 불소중합체 코팅층을 포함하며,
    상기 프라이머 층은 불소중합체와 상용성을 가지는 공중합체를 포함하며, 상기 불소중합체와 상용성을 가지는 공중합체는 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하는 것인 다층 필름.
  2. 제 1 항에 있어서, 상기 배리어 필름은 금속 박막 또는 무기 증착 필름인 다층 필름.
  3. 제 1 항에 있어서, 상기 배리어 필름과 상기 프라이머 층의 계면에 Si-O, Ti-O, Zr-O 또는 Al-O 결합이 형성되는 다층 필름.
  4. 제 1 항에 있어서, 상기 배리어 필름과 상기 프라이머 층의 계면에 수소결합이 형성되는 다층 필름.
  5. 제 2 항에 있어서, 상기 금속 박막은 알루미늄 포일, 구리 포일 또는 스테인레스 포일을 포함하는 다층 필름.
  6. 제 2 항에 있어서, 상기 무기 증착 필름은 ITO, IZO, SiOx 또는 AlOx을 포함하는 다층 필름.
  7. 제 2 항에 있어서, 상기 무기 증착 필름은 기재 상부에 무기증착층을 포함하는 것인 다층 필름.
  8. 제 2 항에 있어서, 상기 금속 박막의 두께는 1 내지 200㎛인 다층 필름.
  9. 제 2 항에 있어서, 상기 무기 증착 필름의 두께는 1 내지 1000nm인 다층 필름.
  10. 제 1 항에 있어서, 상기 프라이머 층의 공중합체는 불소중합체와 상용성을 가지는 주쇄 골격을 포함하며, 상기 주쇄 골격에 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제가 공중합되어 형성되는 관능기를 포함하는 것인 다층 필름.
  11. 제 10 항에 있어서, 상기 주쇄 골격은 (메타)아크릴계; (메타)아크릴아미드계; 및 (메타)아크릴계 단량체, (메타)아크릴아미드계 단량체 또는 비닐계 단량체를 주성분으로 포함하는 단량체 혼합물로부터 유도되는 자유 라디칼 부가 중합체의 주쇄 골격으로 이루어진 군으로부터 선택된 하나 이상인 다층 필름.
  12. 제 1 항에 있어서, 상기 프라이머 층의 공중합체는 불소중합체와 상용성을 가지는 중합성 단량체; 및 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제의 공중합체인 다층 필름.
  13. 제 12 항에 있어서, 상기 중합성 단량체 및 커플링제의 혼합 비율은 질량비를 기준으로 1:99 내지 99:1인 다층 필름.
  14. 제 12 항에 있어서, 상기 중합성 단량체는 (메타)아크릴계 단량체, (메타)아크릴아미드계 단량체 및 비닐계 단량체로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  15. 제 14 항에 있어서, 상기 (메타)아크릴계 단량체는 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, n-부틸(메타)아크릴레이트, s-부틸(메타)아크릴레이트, t-부틸(메타)아크릴레이트, 이소부틸(메타)아크릴레이트, 헥실(메타)아크릴레이트, 2-에틸헥실(메타)아크릴레이트, n-옥틸(메타)아크릴레이트, 이소옥틸(메타)아크릴레이트, n-노닐(메타)아크릴레이트, 이소노닐(메타)아크릴레이트, n-데실(메타)아크릴레이트, 이소데실(메타)아크릴레이트, n-도데실(메타)아크릴레이트, n-트리데실(메타)아크릴레이트, n-테트라데실(메타)아크릴레이트, 글리시딜 (메타)아크릴레이트, 글리시딜 알킬 (메타)아크릴레이트, 및 이소시아네이토 알킬 (메타)아크릴레이트로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  16. 제 1 항에 있어서, 상기 실란 커플링제는 비닐트리메톡시실란, 비닐트리에톡시실란, 비닐트리프로폭시실란, 비닐트리이소프로폭시실란, 비닐트리부톡시실란, 비닐트리펜톡시실란, 비닐트리페녹시실란, 비닐트리아세톡시실란, 메타크릴옥시실란, 메타크릴옥시프로필 트리메톡시실란, 메타크릴옥시프로필 트리에톡시실란, N-(3-메타크릴옥시 하이드록시프로필)-3-아미노프로필트리에톡시실란, 메타크릴로일옥시프로필 트리스트리메틸실릴옥시실란, 비닐트리스(2-메톡시에톡시)실란 및 트리(이소프로폭시)비닐실란으로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  17. 제 1 항에 있어서, 상기 티타늄계 커플링제는 이소프로필 트리메타크릴 티타네이트(isopropyl trimethacryl titanate), 이소프로필 트리아크릴로일 티타네이트(isopropyl triacryloyl titanate), 이소프로필 트리올레일 티타네이트(isopropyl trioleyl titanate), 티타늄 IV 2,2(비스 2-프로페놀라토메틸)부탄올라토, 트리스(디옥틸)피로포스페이토-O(titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tris(dioctyl)pyrophosphate-O), 티타늄, (이소옥타데칸올라토-κO)비스(2-메틸-2-프로페놀라토-kO)(2-프로판올라토) (titanium, (isooctadecanolato-κO)bis(2-methyl-2-propenolato-κO)(2-propanolato), 티타늄 IV 2,2(비스 2-프로페놀라토메틸)부탄올라토, 테트라(2,2-디알릴옥시메틸-1-부톡시티타늄 디(디트리데실)포스파이트(titanium IV 2,2(bis 2-propenolatomethyl)butanolato, tetra(diallyloxymethyl)-1-butoxytitanium di(ditridecyl)phosphate), 네오펜틸 디알릴옥시 트리스-네오데카노일-티타네이트(neopentyl diallyloxy tris-neodecanoyl titanate), 네오펜틸 (디알릴)옥시, 트리(디옥틸)포스페이토 티타네이트(neopentyl (diallyl)oxy, tri(dioctyl)phosphato titanate), 네오펜틸 디알릴옥시 트리스(N-에틸렌디아미노)에틸 티타네이트(neopentyl diallyloxy tris(N-ethylenediamino) ethyl titanate), 이소프로필 트리에타놀아민 티타네이트(isopropyl triethanolamine titanate), 에톡시 이소-프로폭시 티타늄 아세틸아세토네이트(ethoxy iso-propoxy titanium acetylacetonate), 디이소프로폭시디(에톡시아세토아세틸) 티타네이트(diisopropoxydi(ethoxyacetoacetyl titanate) 및 디이소부톡시-비스 에틸아세토아세테이토 티타네이트(diisobutoxy-bis ethylacetoacetato titanate)로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  18. 제 1 항에 있어서, 상기 지르코늄계 커플링제는 지르코늄 IV 테트라키스 2,2(비스-2 프로페놀라토메틸) 부탄올라토(Zirconium IV tetrakis 2,2(bis-2 propenolatomethyl)butanolato), 지르코늄 IV 2,2-디메틸 1,3-프로판디올라토, 비스(디옥틸) 피로포스페이토-O(Zirconium IV 2,2-dimethyl 1,3-propanediolato, bis(dioctyl)pyrophosphato-O), 지르코늄 IV 1,1(비스-2 프로페놀라토메틸) 부탄올라토, 트리스(2-아미토)페닐라토(Zirconium IV 1,1(bis-2 propenolatomethyl)butanolato, tris(2-amino)phneylato-O), 및 지르코늄 IV 2,2(비스-2 프로페놀라토메틸) 부탄올라토, 비스(3-머캡토)프로피오나토-O(Zirconium IV 2,2(bis-2 propenolatomethyl)butanolato, bis(3-mercapto) propionato-O)로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  19. 제 1 항에 있어서, 상기 알루미늄계 커플링제는 알루미늄 III 디이소프로폭시드-에틸아세토아세테이트(aluminium III diisopropoxide-ethylacetoacetate) 및 알루미늄 2,4-펜탄디오네이트(aluminium 2,4-pentane dionate)로 이루어진 군에서 선택된 1종 이상인 다층 필름.
  20. 제 1 항에 있어서, 상기 프라이머 층의 공중합체는 실란 변성 아크릴 공중합체를 포함하는 다층 필름.
  21. 제 1 항에 있어서, 상기 프라이머 층은 불소중합체와 상용성을 가지는 공중합체의 코팅층인 다층 필름.
  22. 제 1 항에 있어서, 상기 프라이머 층의 두께는 0.01㎛ 내지 5㎛인 다층 필름.
  23. 제 1 항에 있어서, 상기 불소중합체는 비닐리덴 플루오라이드(VDF, Vinylidene Fluoride), 비닐 플루오라이드(VF, Vinyl Fluoride), 테트라플루오로에틸렌(TFE, Tetrafluoroethylene) 헥사플루오로프로필렌(HFP, Hexafluoropropylene), 클로로트리플루오로에틸렌(CTFE, chlorotrifluoroethylene), 트리플루오로에틸렌, 헥사플루오로이소부틸렌, 퍼플루오로 부틸에틸렌, 퍼플루오로 메틸 비닐 에테르(PMVE, perfluoro(methylvinylether)), 퍼플루오로 에틸 비닐 에테르(PEVE, perfluoro(ethylvinylether)), 퍼플루오로 프로필 비닐 에테르(PPVE), 퍼플루오로 헥실 비닐 에테르(PHVE), 퍼플루오로-2,2-디메틸-1,3-디옥솔(PDD) 및 퍼플루오로-2-메틸렌-4-메틸-1,3-디옥솔란(PMD)으로 이루어진 군으로부터 선택된 하나 이상의 단량체를 중합된 형태로 포함하는 단독 중합체, 공중합체 또는 이들의 혼합물을 포함하는 다층 필름.
  24. 제 1 항에 있어서, 상기 불소중합체의 중량평균 분자량은 50,000 내지 1,000,000인 다층 필름.
  25. 제 1 항에 있어서, 상기 불소중합체의 융점이 80℃ 내지 175℃인 다층 필름.
  26. 제 1 항에 있어서, 상기 불소중합체 코팅층은 안료, 충전제, UV 안정제, 열안정제, 분산제 또는 장벽 입자를 추가로 포함하는 다층 필름.
  27. 제 1 항에 있어서, 상기 불소중합체 코팅층의 두께는 3 내지 50 ㎛인 다층 필름.
  28. 제 1 항에 있어서, 상기 배리어 필름 하부에 기재(substrate)를 추가로 포함하는 다층 필름.
  29. 제 28 항에 있어서, 상기 기재는 알루미늄, 철; 또는 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN) 또는 폴리부틸렌 테레프탈레이트(PBT)의 단일 시트, 적층 시트 또는 공압출물인 다층 필름.
  30. 제 28 항에 있어서, 상기 기재의 적어도 일면에 플라즈마, 코로나, 프라이머, 앵커제, 커플링제 처리 및 열 처리 중에서 선택된 하나 이상의 표면처리가 형성되는 다층 필름.
  31. 제 28 항에 있어서, 상기 기재의 두께는 50 내지 500㎛인 다층 필름.
  32. 제 28 항에 있어서, 상기 배리어 필름 및 기재 사이에 접착제층을 추가로 포함하는 다층 필름.
  33. 배리어 필름 상부에 불소중합체와 상용성을 가지는 공중합체를 포함하는 프라이머 코팅액을 코팅하여 프라이머 층을 형성하는 단계 및
    상기 프라이머 층의 상부에 불소중합체 코팅용 조성물을 코팅하는 단계를 포함하며,
    상기 프라이머 코팅액의 상기 불소중합체와 상용성을 가지는 공중합체는 실란 커플링제, 티타늄계 커플링제, 지르코늄계 커플링제 또는 알루미늄계 커플링제와 공중합되어 형성되는 관능기를 포함하는 다층 필름의 제조 방법.
  34. 제 33 항에 있어서, 상기 불소중합체 코팅용 조성물은 불소중합체 및 비점이 200℃ 이하인 용매를 포함하는 다층 필름의 제조 방법.
  35. 제 34 항에 있어서, 상기 비점이 200℃ 이하인 용매는 아세톤, 메틸에틸케톤, 디메틸포름아미드 및 디메틸아세트아미드로 이루어진 군으로부터 선택된 1종 이상을 포함하는 다층 필름의 제조 방법.
  36. 제 33 항에 있어서, 상기 프라이머 층의 코팅 및 불소중합체의 코팅 단계에 이어서, 각 층을 건조하는 단계를 추가로 수행하는 다층 필름의 제조 방법.
  37. 제 36 항에 있어서, 건조는 200℃ 이하의 온도에서 30초 내지 30분 동안 수행하는 다층 필름의 제조 방법.
  38. 제 1 항에 따른 다층 필름을 포함하는 광전지 모듈 제조용 부자재.
  39. 제 38 항에 따른 광전지 모듈 제조용 부자재를 포함하는 광전지 모듈.
PCT/KR2013/001017 2012-02-08 2013-02-07 다층 필름 및 이의 제조방법 WO2013119069A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014556479A JP6050384B2 (ja) 2012-02-08 2013-02-07 多層フィルム及びその製造方法
EP13746422.8A EP2813540B1 (en) 2012-02-08 2013-02-07 Multilayered film and method for manufacturing same
CN201380008791.6A CN104105749B (zh) 2012-02-08 2013-02-07 多层膜及其制备方法
US14/249,616 US20140216532A1 (en) 2012-02-08 2014-04-10 Multilayered film and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0012932 2012-02-08
KR20120012932 2012-02-08
KR10-2013-0014007 2013-02-07
KR1020130014007A KR101569245B1 (ko) 2012-02-08 2013-02-07 다층 필름 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/249,616 Continuation US20140216532A1 (en) 2012-02-08 2014-04-10 Multilayered film and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013119069A1 true WO2013119069A1 (ko) 2013-08-15

Family

ID=49216756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001017 WO2013119069A1 (ko) 2012-02-08 2013-02-07 다층 필름 및 이의 제조방법

Country Status (7)

Country Link
US (1) US20140216532A1 (ko)
EP (1) EP2813540B1 (ko)
JP (1) JP6050384B2 (ko)
KR (1) KR101569245B1 (ko)
CN (1) CN104105749B (ko)
TW (1) TWI491508B (ko)
WO (1) WO2013119069A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101591195B1 (ko) * 2013-09-30 2016-02-18 주식회사 엘지화학 백시트
US11274226B2 (en) * 2016-02-05 2022-03-15 The Chemours Company Fc, Llc Fluoropolymer solution for forming a fluoropolymer coating
FR3055472B1 (fr) * 2016-08-29 2019-03-15 Arkema France Protection de dispositifs electroniques
CN109385174B (zh) 2017-08-10 2021-04-27 财团法人工业技术研究院 底漆组成物与使用该底漆组成物的铜箔基板
US10756156B2 (en) 2017-10-30 2020-08-25 Samsung Display Co., Ltd. Display device having enhanced UV light blocking and method for fabricating the same
KR20190093131A (ko) 2018-01-30 2019-08-08 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102159866B1 (ko) * 2018-12-12 2020-09-25 도레이첨단소재 주식회사 디스플레이용 배리어 필름 및 그의 제조 방법
KR102567596B1 (ko) * 2019-06-19 2023-08-17 주식회사 엘지에너지솔루션 이차전지용 코팅 분리막 및 이의 제조방법
CN112137421B (zh) * 2019-06-28 2024-03-15 武汉苏泊尔炊具有限公司 涂料与烹饪器具
JP7312715B2 (ja) * 2020-03-13 2023-07-21 双葉電子工業株式会社 化合物、光硬化性組成物、硬化膜、及び有機el素子
CN113943933B (zh) * 2020-07-16 2023-09-29 江苏菲沃泰纳米科技股份有限公司 多层结构的复合膜及其制备方法和产品
WO2023211468A1 (en) * 2022-04-29 2023-11-02 Amcor Flexibles North America, Inc. Multilayer packaging film
CN115534442A (zh) * 2022-09-16 2022-12-30 浙江华正能源材料有限公司 一种铝塑膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091611A (ja) * 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091610A (ja) * 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
KR101022820B1 (ko) * 2009-03-23 2011-03-17 이정민 태양전지모듈용 백시트와 제조방법 및 그 장치
KR20110068602A (ko) * 2009-12-16 2011-06-22 율촌화학 주식회사 태양전지 모듈용 백 시트 및 그 제조 방법, 상기 태양전지 모듈용 백 시트를 포함하는 태양전지 모듈
KR20110123212A (ko) * 2010-05-06 2011-11-14 주식회사 엘지화학 다층 시트 및 이의 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL130863C (ko) * 1964-04-27
US3449293A (en) * 1966-10-28 1969-06-10 Owens Illinois Inc Organosilane polymers and methods of preparation thereof
JPS617360A (ja) * 1984-06-22 1986-01-14 Nippon Shokubai Kagaku Kogyo Co Ltd アルミニウム用コ−テイング組成物
US4795775A (en) * 1988-02-25 1989-01-03 Dow Corning Corporation Primer compositions
JP3113452B2 (ja) * 1993-05-14 2000-11-27 株式会社日本触媒 コーティング用組成物およびその製造方法
JPH10102011A (ja) * 1996-09-30 1998-04-21 Elf Atochem Japan Kk ポリフッ化ビニリデン系樹脂の金属材料への接着方法
DE19859393A1 (de) * 1998-12-22 2000-06-29 Roehm Gmbh Verfahren zur Herstellung von Folien
AU2001262717A1 (en) * 2000-07-03 2002-01-14 Bridgestone Corporation Backside covering material for a solar cell module and its use
JP4177590B2 (ja) * 2002-02-27 2008-11-05 株式会社 デンギケン 電気・電子絶縁シート
US20110203643A1 (en) * 2008-12-16 2011-08-25 Techno Polymer Co., Ltd. Solar cell backsheet and solar cell module provided with same
US8211265B2 (en) * 2010-06-07 2012-07-03 E. I. Du Pont De Nemours And Company Method for preparing multilayer structures containing a perfluorinated copolymer resin layer
US20120048348A1 (en) * 2010-08-26 2012-03-01 Fujifilm Corporation Solar cell protective sheet and its production method, backsheet for solar cell, and solar cell module
CN102086245B (zh) * 2010-11-15 2012-11-28 湖南汇博化工科技有限公司 一种有机硅-丙烯酸共聚乳液的制备方法
KR101365766B1 (ko) * 2011-04-13 2014-02-20 주식회사 엘지화학 수지 조성물, 다층 필름 및 이를 포함하는 광전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091611A (ja) * 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
JP2000091610A (ja) * 1998-09-17 2000-03-31 Dainippon Printing Co Ltd 太陽電池のカバーフィルムおよびその製造方法、およびそのカバーフィルムを用いた太陽電池モジュール
KR101022820B1 (ko) * 2009-03-23 2011-03-17 이정민 태양전지모듈용 백시트와 제조방법 및 그 장치
KR20110068602A (ko) * 2009-12-16 2011-06-22 율촌화학 주식회사 태양전지 모듈용 백 시트 및 그 제조 방법, 상기 태양전지 모듈용 백 시트를 포함하는 태양전지 모듈
KR20110123212A (ko) * 2010-05-06 2011-11-14 주식회사 엘지화학 다층 시트 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813540A4 *

Also Published As

Publication number Publication date
JP6050384B2 (ja) 2016-12-21
CN104105749A (zh) 2014-10-15
US20140216532A1 (en) 2014-08-07
EP2813540B1 (en) 2020-01-15
JP2015511185A (ja) 2015-04-16
EP2813540A1 (en) 2014-12-17
EP2813540A4 (en) 2015-10-07
KR20130091686A (ko) 2013-08-19
CN104105749B (zh) 2016-04-06
TW201348000A (zh) 2013-12-01
KR101569245B1 (ko) 2015-11-13
TWI491508B (zh) 2015-07-11

Similar Documents

Publication Publication Date Title
WO2013119069A1 (ko) 다층 필름 및 이의 제조방법
WO2013058609A1 (ko) 다층 필름 및 이의 제조방법
WO2011139052A2 (ko) 다층 시트 및 이의 제조방법
WO2012102478A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2012091309A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2012141402A1 (ko) 수지 조성물, 다층 필름 및 이를 포함하는 광전지 모듈
US9837569B2 (en) Polyolefin adhesive material for use in solar modules
WO2012064082A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2014104721A1 (ko) 봉지재 필름
WO2012125000A9 (ko) 친환경 태양전지용 백시트 및 이의 제조방법
JP2011511456A (ja) 太陽電池モジュール用バックシート
KR20080081087A (ko) 광기전성 모듈에 유용한 플루오로중합체 코팅된 필름
US9379263B2 (en) Durable polyolefin adhesive material for solar modules
WO2015130103A1 (ko) 광 모듈용 봉지재, 이의 제조방법 및 광 모듈
WO2013073845A1 (ko) 수분산 조성물, 친환경 광전지 모듈용 백시트 및 이의 제조방법
WO2013180552A1 (ko) 친환경 광전지 모듈용 백시트 및 이의 제조방법
WO2021060917A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
KR20160039610A (ko) 액체 플루오로중합체 코팅 조성물, 플루오로중합체 코팅된 필름, 및 그의 형성방법
KR101409116B1 (ko) 다층 필름 및 이의 제조방법
WO2013180532A1 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
WO2015093763A1 (ko) 태양전지용 불소계 코팅 조성물, 불소계 다층필름 및 이를 포함하는 태양전지
CN114514276A (zh) 包含热解法氧化铝的光伏密封剂膜
WO2023085807A1 (ko) 올레핀계 공중합체용 가교조제 조성물, 가교제 조성물 및 광소자용 봉지재 조성물용 첨가제
WO2023096395A1 (ko) 봉지재 필름용 조성물 및 이를 포함하는 봉지재 필름
WO2024014812A1 (ko) 올레핀계 공중합체용 가교제 조성물, 이를 포함하는 광소자용 봉지재 조성물 및 광소자용 봉지재 필름

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380008791.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013746422

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014556479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE