WO2013118730A1 - レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法 - Google Patents

レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法 Download PDF

Info

Publication number
WO2013118730A1
WO2013118730A1 PCT/JP2013/052623 JP2013052623W WO2013118730A1 WO 2013118730 A1 WO2013118730 A1 WO 2013118730A1 JP 2013052623 W JP2013052623 W JP 2013052623W WO 2013118730 A1 WO2013118730 A1 WO 2013118730A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
correlation
polar coordinate
signal
radar
Prior art date
Application number
PCT/JP2013/052623
Other languages
English (en)
French (fr)
Inventor
正洋 中濱
泰夫 伊藤
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to DE112013000895.5T priority Critical patent/DE112013000895T5/de
Priority to US14/377,836 priority patent/US9568599B2/en
Priority to JP2013557527A priority patent/JP6250404B2/ja
Publication of WO2013118730A1 publication Critical patent/WO2013118730A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • G01S7/298Scan converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/937Radar or analogous systems specially adapted for specific applications for anti-collision purposes of marine craft

Definitions

  • the present invention mainly relates to a radar signal processing apparatus that suppresses clutter by subjecting a received signal to scan correlation processing.
  • the marine radar transmits radio waves from an antenna that rotates in a predetermined cycle in a horizontal plane, and receives reflected signals from surrounding targets by the antenna.
  • the received signal (received signal) is converted into received data by an A / D converter.
  • the received data is displayed on the display device as a radar image after appropriate processing. The operator of the radar apparatus can know the state of the surrounding target by checking the displayed radar image.
  • the distance r to the target can be known from the time until the antenna receives the reflected signal from the target. Further, the direction of the target can be known from the direction ⁇ of the antenna when the reflected signal from the target is received. That is, it can be said that the signal received by the marine radar indicates the position of the target in the polar coordinate system (r, ⁇ ).
  • the above received signal may contain clutter (waves reflected from the sea surface or rain) or noise. If the clutter or noise is displayed on the radar image, the target identification on the radar image is degraded. Therefore, conventionally, in a marine radar, a scan correlation process is known in which a clutter and a target are identified from the stability of a received signal between scans and reflected in a radar image. This type of scan correlation processing is disclosed in Patent Documents 1 to 4, for example.
  • Patent Document 1 the coordinates of received data shown in the polar coordinate system are converted into an orthogonal coordinate system, and the image memory is accessed by a read address and a write address corresponding to the coordinates of the orthogonal coordinate system to scan correlation A configuration for performing processing is disclosed. That is, in Patent Document 1, scan correlation processing is performed after the received data is converted from polar coordinates to orthogonal coordinates.
  • Patent Documents 2 and 3 point out the problem of performing the scan correlation processing after performing the coordinate conversion to the orthogonal coordinates.
  • reception data echo data
  • interpolation data must be created during coordinate conversion. It is pointed out that echo data cannot be used as it is for scan correlation processing.
  • Patent Document 3 since the correspondence between the received data and the sweep is lost at the time of writing to the image memory (correlation processing memory) with the address of the orthogonal coordinate system, the accuracy of the correlation processing is likely to be reduced. Point out.
  • Patent Documents 2 and 3 disclose a configuration in which scan correlation processing is performed in the polar coordinate format.
  • Patent Document 2 states that the resolution can be increased by performing the scan correlation process in the received coordinate system.
  • Japanese Patent Application Laid-Open No. 2004-228867 states that the correspondence between the true transmission direction of the signal and the relative transmission direction is not disturbed when reading / writing from / to the image memory, so that the scan correlation processing accuracy does not deteriorate.
  • Patent Document 4 discloses a process of capturing and tracking a target (target) to predict a position and correcting the target position to the predicted position.
  • target target
  • Japanese Patent Laid-Open No. 2004-133260 even if the target moves at high speed, the target to be observed can be clearly displayed.
  • the process of correcting the relative movement of the target in this way is difficult to perform with the coordinates of the polar coordinate system, and thus the above-described process is performed after the coordinate conversion to the orthogonal coordinate system. Therefore, when processing such as that of Patent Document 4 is to be performed, a decrease in scan correlation processing accuracy due to coordinate conversion from the polar coordinate system to the orthogonal coordinate system cannot be avoided.
  • this capture / tracking process has a large processing load, and there is a limit to the number of targets that can be captured / tracked at one time.
  • the present invention has been made in view of the above circumstances, and the main purpose thereof is to perform scan correlation processing in a polar coordinate system to maintain the accuracy of the scan correlation processing, and further, a target that moves at high speed is the scan correlation. It is an object of the present invention to provide a radar signal processing apparatus that prevents being suppressed by processing.
  • the radar signal processing device includes a signal acquisition unit, a past data holding unit, a polar coordinate correlation processing unit, a trend curve calculation unit, and a target detection unit.
  • the signal acquisition unit acquires reception data in a polar coordinate system based on the reception signal.
  • the past data holding unit stores past correlation processed data in a polar coordinate system.
  • the polar coordinate correlation processing unit performs correlation processing on the received data and past correlation processed data stored in the past data holding unit in a polar coordinate system to generate correlation processed data.
  • the trend curve calculation unit calculates a trend curve in the distance direction of the signal level of the received data in the polar coordinate system.
  • the target detection unit detects a target based on the signal level of the received data and the trend curve.
  • the polar coordinate correlation processing unit changes the processing content of the correlation processing on the received data based on the target detection result by the target detection unit.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the target detection unit detects the target when the signal level of the received data is higher than the trend curve by a predetermined amount or more.
  • the polar coordinate correlation processing unit outputs a value of the received data not subjected to the correlation processing when the target detection unit detects the target.
  • the target can be easily detected by comparing the trend curve with the signal level of the received data.
  • the reception data not subjected to the scan correlation process is output, thereby preventing the signal level of the reception data indicating the target from being suppressed by the scan correlation process.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the target detection unit detects the target when the signal level of the received data is higher than the trend curve by a predetermined amount or more.
  • the polar coordinate correlation processing unit changes the weighting coefficient between the received data and the past correlation processed data depending on whether the target is detected by the target detection unit or not.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the target detection unit outputs a gate signal indicating whether a target is detected.
  • the polar coordinate correlation processing unit changes the processing content of the correlation processing according to the gate signal.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the radar signal processing apparatus includes a detection result holding unit that stores a detection result of the target detection unit before at least one scan.
  • the polar coordinate correlation processing unit uses at least one of a detection result before one scan stored in the detection result holding unit and a current detection result output by the target detection unit.
  • the presence or absence of the target can be more reliably determined.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the target detection unit detects a target when the signal level of the received data is higher than a curve obtained by adding a certain offset to the trend curve.
  • the above radar signal processing apparatus is preferably configured as follows. That is, the signal acquisition unit includes a log amplifier and a linear amplifier. The signal acquisition unit outputs a log amplifier output to the trend curve calculation unit and the target detection unit. The signal acquisition unit outputs a linear amplifier output to the polar coordinate correlation processing unit.
  • the target can be accurately detected by performing the process of detecting the target using the output of the log amplifier that has a wide dynamic range and is not easily saturated.
  • scan correlation processing using the output of the linear amplifier that linearly amplifies the received signal, it becomes easier to correlate the past signal level with the current signal level, and thus an appropriate scan correlation processing result is obtained. I can do things.
  • the radar signal processing device described above a radar antenna that receives the received signal, and a display that displays a radar image based on the result of the scan correlation processing in the polar coordinate correlation processing unit.
  • a radar apparatus comprising the apparatus.
  • this radar apparatus can display a radar image in which a target moving at high speed is not suppressed, the operator of this radar apparatus can accurately grasp the surrounding target.
  • this radar signal processing method includes a signal acquisition process, a past data acquisition process, a polar coordinate correlation process, a trend curve calculation process, and a target detection process.
  • reception data is acquired in a polar coordinate system based on the reception signal.
  • past correlation processed data is acquired in a polar coordinate system.
  • polar correlation processing step correlation processing between the received data and the past correlation processed data is performed in a polar coordinate system to generate correlation processed data.
  • the trend curve calculating step a trend curve in the distance direction of the signal level of the received data in the polar coordinate system is calculated.
  • the target detection step a target is detected based on the signal level of the received data and the trend curve. Then, in the polar coordinate correlation processing step, the processing content of the correlation processing for the received data is changed based on the target detection result in the target detection step.
  • FIG. 1 is a block diagram of a radar apparatus according to an embodiment of the present invention. The figure explaining the mode of the target which moves relatively at high speed.
  • A The schematic diagram which shows the radar image
  • B The schematic diagram which illustrates the radar image
  • the radar apparatus 10 is a radar apparatus for ships, and is used for displaying the state of targets (such as other ships and land) around the ship. is there.
  • the radar apparatus 10 includes a radar antenna 11, a transmission / reception unit 12, a transmission signal output unit 13, a radar signal processing device 14, and a display unit 15.
  • the radar antenna 11 is an antenna having directivity, and is configured to rotate 360 degrees in a plane with a predetermined period.
  • the direction in which the main lobe of the radar antenna 11 faces is simply referred to as the direction of the radar antenna 11.
  • the transmission signal output unit 13 is configured to output a plurality of pulse signals at a predetermined period while the radar antenna 11 rotates once. This pulse signal is applied to the radar antenna 11 via the transmission / reception unit 12 and is radiated from the radar antenna 11.
  • the pulse signal radiated from the radar antenna 11 is reflected by surrounding targets and received again by the radar antenna 11.
  • a signal received by the radar antenna 11 at this time is referred to as a “received signal” in the following description.
  • a reception signal received by the radar antenna 11 is input to the radar signal processing device 14 via the transmission / reception unit 12.
  • the operation of rotating the radar antenna 11 once while transmitting / receiving a signal is called “scan”, and the operation of receiving a reception signal between the transmission of a pulse signal and the transmission of the next pulse signal is called “sweep”.
  • the transmission signal output part 13, and the transmission / reception part 12 is well-known, detailed description is abbreviate
  • the radar signal processing device 14 includes a signal acquisition unit 20, a polar coordinate correlation processing unit 21, a trend curve calculation unit 22, a delay processing unit 23, a target detection unit 24, and an image processing unit 25.
  • the signal acquisition unit 20 receives the reception signal from the transmission / reception unit 12.
  • the signal acquisition unit 20 includes a log amplifier 26 that amplifies the received signal, and an A / D converter (analog-digital converter) 27 that samples the received signal amplified by the log amplifier 26 and converts it into digital data. ing.
  • the digital data output from the A / D converter 27 is referred to as reception data.
  • the value of each received data represents the signal level of the received signal when the received data is sampled.
  • the signal level of the received signal received by the radar antenna 11 covers a very wide range from a high signal level (for example, a reflected signal from the vicinity of the radar antenna 11) to a low signal level (for example, a reflected signal from a distance). Yes. Therefore, by using the log amplifier 26 to amplify the received signal as described above, the output is prevented from being saturated when the signal level is high, and the A / D converter 27 performs sampling with a wide dynamic range. Can do.
  • the signal level of the received signal becomes a noise level, and the value of the received data acquired at that time is also reduced.
  • the signal level of the received signal becomes higher than the noise level, and the value of the received data acquired at that time also increases.
  • the distance r from the radar antenna 11 to the target can be known from the time taken from when the radar antenna 11 transmits the pulse signal to when the reflected signal is received.
  • the direction of the target can be known from the direction ⁇ of the radar antenna 11 when the reflected signal is received.
  • the reception data acquired by the signal acquisition unit 20 can be associated with a point on the plane by the coordinates (r, ⁇ ) of the polar coordinate system. Therefore, it can be said that the signal acquisition unit 20 of the radar signal processing device 14 acquires each received data in the polar coordinate system (r, ⁇ ).
  • the polar coordinate correlation processing unit 21 is configured to perform scan correlation processing in a polar coordinate system.
  • the polar coordinate correlation processing unit 21 includes an arithmetic processing unit 28 and a past data holding unit 29.
  • the past data holding unit 29 is configured as a memory area that can store correlation processed data for one past scan (one rotation of the radar antenna 11).
  • the arithmetic processing unit 28 weights and synthesizes the latest received data input from the signal acquisition unit 20 and the correlation processed data stored in the past data holding unit 29 before one scan, and performs a new correlation process.
  • S r, ⁇ is data corresponding to the position of the reception data Dr, ⁇ among the correlation processed data for one scan held by the past data holding unit 29 (correlation processed data before one scan).
  • the coefficient ⁇ is a weighting coefficient (filter coefficient) for the weighting synthesis, and takes a value in the range of 0 to 1.
  • the scan correlation process is a kind of IIR filter process, and acts to suppress unstable signals between scans.
  • a stable signal (such as a reflected signal from a stationary target) between scans remains without being suppressed by the IIR filter processing.
  • the past data holding unit 29 is configured to hold the correlation processed data for one scan in the polar coordinate system. That is, the read / write address of the correlation processed data S r, ⁇ on the memory of the past data holding unit 29 and the coordinates (r, ⁇ ) of the polar coordinate system associated with the correlation processed data S r, ⁇ are It corresponds to one to one. Therefore, when performing the calculation of the above equation (1), the correlation processed data S r, ⁇ can be read from the past data holding unit 29 in the polar coordinate system, and coordinate conversion or the like is unnecessary. For this reason, it is possible to obtain a processing result with higher accuracy than the configuration in which the scan correlation processing is performed after the coordinate conversion to the orthogonal coordinate system, and the clutter and the target are easily identified.
  • the polar coordinate correlation processing unit 21 outputs the result of the scan correlation processing to the image processing unit 25.
  • the image processing unit 25 generates a two-dimensional image (radar image) indicating the state of the target around the device based on the result of the scan correlation process input from the polar coordinate correlation processing unit 21. Since clutter and noise are suppressed by the scan correlation process, the image processing unit 25 can generate a radar image in which clutter and noise are suppressed.
  • the image processing unit 25 outputs the radar image to the display unit 15.
  • the display unit 15 displays the radar image. Thereby, the operator of the radar apparatus 10 can confirm the state of surrounding targets.
  • the above-described scan correlation processing has a drawback that the signal level of received data indicating a target that moves relative to the radar antenna 11 at a high speed is suppressed.
  • the target 30 is moving relative to the ship at high speed as shown in FIG.
  • the graph in FIG. 2A schematically shows the reception data in the distance direction before one scan
  • the graph in FIG. 2B schematically shows the reception data in the distance direction acquired by the latest sweep.
  • a virtual radar image based on the received data is shown in the upper right of each graph.
  • the target 30 exists at a point at a distance r1 before one scan.
  • the target 30 has moved to the point of the distance r2.
  • the scan correlation process is performed, the target 30 that moves at high speed is suppressed.
  • the image is not clearly displayed (or not displayed at all).
  • the conventional scan correlation processing has a problem that the distinguishability on the radar image of the target moving at high speed is poor.
  • the reflected signal from the target may have a sufficient level difference compared to clutter and noise.
  • the target can be easily discriminated from the clutter and noise without performing the scan correlation process.
  • the radar signal processing device 14 detects the target by comparing the signal level of the received data with the trend curve, and changes the content of the scan correlation processing in the polar coordinate correlation processing unit 21 based on the detection result of the target. Is configured to do.
  • the radar signal processing device 14 of the present embodiment includes a trend curve calculation unit 22 and a target detection unit 24.
  • the received data from the signal acquisition unit 20 is input to the trend curve calculation unit 22.
  • the trend curve calculation unit 22 is configured to calculate a trend curve in the distance direction of the value (signal level) of received data.
  • the trend curve calculation unit 22 obtains a moving average line of received data values in the distance direction as the trend curve.
  • the trend curve calculation unit 22 outputs the obtained trend curve to the target detection unit 24.
  • the target detection unit 24 is configured to detect the target based on the received data and the trend curve. Specifically, the target detection unit 24 compares the curve (offset curve) obtained by adding a certain offset to the trend curve and the signal level of the received data, and when the signal level of the received data exceeds the offset curve. Detect the target. As shown in FIG. 4, by giving an offset value to the trend curve, it becomes difficult for noise and clutter to exceed the offset curve, and erroneous detection using the noise and clutter as a target can be prevented. Since the trend curve is a moving average, it is delayed for a certain time with respect to the latest received data output from the signal acquisition unit 20. Therefore, in order to appropriately perform the comparison processing in the target detection unit 24, the delay processing unit 23 outputs the reception data from the signal acquisition unit 20 to the target detection unit 24 with a delay corresponding to the delay time of the trend curve. Is provided.
  • the reception data output from the signal acquisition unit 20 is data sampled after being amplified by the log amplifier 26, it is a large-level reception signal (for example, a reflection signal from a short distance).
  • the signal level is not easily saturated and the dynamic range is wide.
  • the target detection unit 24 can accurately compare the magnitude of the received data signal level and the trend curve, and can accurately detect the target.
  • the target detection unit 24 is configured to output a gate signal indicating whether or not a target has been detected (whether or not the signal level of received data has exceeded the offset curve). For example, the target detection unit 24 of the present embodiment outputs “0” when the target is not detected, and outputs “1” when it is detected. This gate signal is input to the polar coordinate correlation processing unit 21.
  • the polar coordinate correlation processing unit 21 is configured to change the processing content of the polar coordinate correlation processing unit 21 based on the gate signal. Specifically, when the input gate signal is “0” (when the target is not detected), the polar coordinate correlation processing unit 21 uses the correlation processed data obtained by the calculation processing unit 28 as the scan correlation processing. Output as a result. As described above, when the target is not detected, the result of performing the scan correlation processing is output as usual, so that a radar image in which unnecessary signals such as clutter and noise are suppressed can be obtained.
  • the polar coordinate correlation processing unit 21 uses the received data input from the signal acquisition unit 20 as it is (the scan correlation processing is performed). (No value) is output as the result of the scan correlation process. Therefore, even if the target is moving at a high speed, the target is not suppressed by the scan correlation process. As a result, for example, even in the case of the high-speed moving target 30 that has been suppressed in the conventional scan correlation processing as shown in FIG. 3A, according to the configuration of the present embodiment, as shown in FIG. The target 30 can be clearly displayed on the radar image. Thereby, the discriminability of the target 30 can be improved.
  • the radar signal processing apparatus 14 of the present embodiment includes the signal acquisition unit 20, the past data holding unit 29, the polar coordinate correlation processing unit 21, the trend curve calculation unit 22, the target detection unit 24, and the like. . And the radar signal processing method by the radar signal processing apparatus 14 of this embodiment is performed as follows.
  • the signal acquisition unit 20 acquires reception data in a polar coordinate system based on the reception signal (signal acquisition step).
  • the trend curve calculation unit 22 calculates a trend curve in the distance direction of the signal level of the reception data in the polar coordinate system (trend curve calculation step).
  • the target detection unit 24 detects the target based on the signal level of the received data and the trend curve (target detection process).
  • the polar coordinate correlation processing unit 21 acquires the past correlation processed data stored in the past data holding unit 29 in the polar coordinate system (past data acquisition step). Further, the polar coordinate correlation processing unit 21 performs correlation processing between the received data and past correlation processed data in a polar coordinate system to generate correlation processed data (polar coordinate correlation processing step). At this time, the polar coordinate correlation processing unit 21 changes the processing content of the correlation processing on the received data based on the target detection result by the target detection unit 24.
  • the polar coordinate correlation processing unit 21 outputs the correlation processed data based on the target detection result in the target detection unit 24, and the received data is left as it is (value not subjected to the scan correlation processing).
  • the configuration is such that the processing is switched between when outputting and when outputting.
  • the polar coordinate correlation processing unit 21 is configured to change the filter coefficient ⁇ of the scan correlation processing based on the target detection result in the target detection unit 24.
  • the filter coefficient ⁇ is a parameter for adjusting the effectiveness of the scan correlation process.
  • the polar coordinate correlation processing unit 21 sets the filter coefficient ⁇ . It is configured to be large. Conversely, when the gate signal is “1” (when the target is detected), the polar coordinate correlation processing unit 21 decreases the filter coefficient ⁇ .
  • the effectiveness of the scan correlation process can be weakened, so that the target is hardly suppressed. Therefore, even if the target moves relatively fast, it can be prevented from being suppressed by the scan correlation process.
  • the target is not detected by the target detection unit 24, it is possible to obtain a radar image in which clutter and noise are suppressed by sufficiently applying the scan correlation process.
  • an afterimage may appear at the position of the target one scan before by the scan correlation processing.
  • FIG. 2 it is assumed that the target exists at the position of the distance r1 before one scan, and the target has moved to the position of the distance r2 in the latest scan.
  • an afterimage may appear at the position of the target before one scan (point of distance r1) as shown in FIG.
  • the afterimage is suppressed by referring to the gate signal before one scan and changing the processing contents in the polar coordinate correlation processing unit 21.
  • the polar coordinate correlation processing unit 21 of this modification includes a detection result holding unit capable of holding the gate signal (target detection result) output from the target detection unit 24 for one scan.
  • the polar coordinate correlation processing unit 21 sets “1” to at least one of the latest gate signal and the gate signal before one scan held by the detection result holding unit (the target is detected). If received, the received data is output as it is (a value that has not been subjected to the scan correlation process) as a scan correlation process result.
  • the polar coordinate processing unit 21 of the present embodiment outputs the received data as it is (a value not subjected to the scan correlation process) as a result of the scan correlation process. It is configured to do.
  • the signal acquisition unit 20 further includes a linear amplifier 32 in addition to the log amplifier 26.
  • the received signal received by the radar antenna 11 is amplified by the linear amplifier 32 and sampled by the A / D converter 33.
  • the output of the log amplifier 26 (received data sampled by the A / D converter 27) is output to the target detection unit 24 and the trend curve calculation unit 22 as in the first embodiment.
  • the target can be detected using the output of the log amplifier that has a wide dynamic range and is difficult to saturate, so that the target can be detected accurately.
  • the output of the linear amplifier 32 (received data sampled by the A / D converter 33) is output to the polar coordinate correlation processing unit 21.
  • the polar coordinate correlation processing unit 21 performs scan correlation processing based on the output of the linear amplifier 32. As described above, by performing the scan correlation process using the output of the linear amplifier 32 obtained by linearly amplifying the received signal, it becomes easy to obtain the correlation between the past signal level and the current signal level. As a result, an appropriate scan correlation processing result can be obtained.
  • the radar apparatus of the present invention is not limited to a marine radar apparatus, but can be widely applied to radar apparatuses for other purposes.
  • a process such as a known ARPA automatic collision prevention assist device
  • ARPA automatic collision prevention assist device
  • this is a process of automatically determining the risk of collision with the target. According to the configuration of the present invention, even if the target moves at high speed, it is not suppressed by the scan correlation process, so that the risk of collision with the high-speed moving target can be accurately determined.
  • the target detection unit 24 outputs a gate signal according to the target detection result
  • the form in which the target detection unit 24 outputs the target detection result is not limited to the gate signal. It is only necessary that the processing contents of the polar coordinate correlation processing unit 21 can be switched according to the target detection result in the target detection unit 24.
  • the magnitude of the offset added to the trend curve when detecting the target can be changed by an appropriate operation by the operator. According to this, it is possible to adjust the offset in accordance with the noise level and the clutter level and perform appropriate processing. Further, the offset value may be automatically adjusted according to the noise level or the clutter level.
  • the calculation method of the trend curve is not limited to a simple moving average, and it is only necessary to be able to determine the change tendency of the signal level in the distance direction of received data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】極座標系でスキャン相関処理を行うことで当該スキャン相関処理の精度を保ち、しかも高速移動する物標が前記スキャン相関処理で抑圧されてしまうことを防止したレーダ信号処理装置を提供する。 【解決手段】極座標相関処理部21は、受信データと、過去データ保持部29に記憶されている過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する。トレンドカーブ算出部22は、極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出する。ターゲット検出部24は、受信データの信号レベルとトレンドカーブに基づいてターゲットを検出する。そして、極座標相関処理部21は、ターゲット検出部24によるターゲットの検出結果に基づいて、受信データに対する相関処理の処理内容を変更している。

Description

レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法
 本発明は、主として、受信信号にスキャン相関処理を施してクラッタを抑制するレーダ信号処理装置に関する。
 船舶用レーダは、水平面内を所定周期で回転するアンテナから電波を送信するとともに、周囲のターゲットからの反射信号を前記アンテナで受信する。当該受信された信号(受信信号)は、A/D変換器によって受信データに変換される。受信データは適宜の処理を施された後、レーダ映像として表示装置に表示される。レーダ装置のオペレータは、表示されたレーダ映像を確認することにより、周囲のターゲットの様子を知ることができる。
 ターゲットまでの距離rは、当該ターゲットからの反射信号をアンテナが受信するまでの時間により知る事ができる。また、ターゲットの方向は、当該ターゲットからの反射信号を受信したときのアンテナの向きθによって知る事ができる。即ち、船舶用レーダで受信された信号は、ターゲットの位置を極座標系(r,θ)で示していると言える。
 上記受信信号には、クラッタ(海面や雨からの反射波)やノイズなどが含まれている場合がある。このクラッタやノイズがレーダ映像に表示されてしまうと、当該レーダ映像上のターゲットの識別性が低下してしまう。そこで従来から、船舶用レーダにおいて、スキャン間の受信信号の安定度からクラッタとターゲットを識別し、レーダ映像に反映するスキャン相関処理が知られている。この種のスキャン相関処理は、例えば特許文献1から4に開示されている。
 特許文献1は、前記極座標系で示されている受信データの座標を、直交座標系に座標変換し、当該直交座標系の座標に対応した読み込みアドレス及び書き込みアドレスによって画像メモリにアクセスしてスキャン相関処理を行う構成を開示している。即ち、特許文献1においては、受信データを極座標から直交座標に変換してからスキャン相関処理を行っている。
 この点、特許文献2及び3は、直交座標への座標変換を行ってからスキャン相関処理を行うことの問題点を指摘している。例えば特許文献2は、極座標系から直交座標系への座標変換を行うスキャン相関処理において、座標変換の際に受信データ(エコーデータ)の選択や補間データの作成を行わなければならず、生のエコーデータをスキャン相関処理にそのまま利用することができない旨を指摘している。また特許文献3は、画像メモリ(相関処理用メモリ)に直交座標系のアドレスで書き込んだ時点で、受信データとスイープのとの対応関係が失われてしまうため、相関処理の精度が落ち易い旨を指摘している。
 そこで特許文献2及び3は、極座標形式のままでスキャン相関処理を行う構成を開示している。特許文献2は、受信の座標系のままでスキャン相関処理を行うことにより、分解能を高くすることができるとしている。また、特許文献3は、画像メモリへの読み書きの際に、信号の真送信方向と相対送信方向との対応関係が崩れないようにすることで、スキャン相関処理精度の低下が生じないとしている。
特開平8-43519号公報 特開2011-95029号公報 特開2003-75528号公報 特開平11-94931号公報
 ところで、上記のスキャン相関処理を行うと、高速で相対移動しているターゲットの信号が抑圧されてしまうという問題がある。即ち、高速で相対移動するターゲットは、レーダ画面上で一ヶ所に安定して存在していないので、この限りにおいてクラッタ及びノイズと区別することができない。このため、スキャン相関処理を行うと、高速で移動するターゲットの信号が抑圧されてしまう結果、レーダ映像上の前記ターゲットの映像が薄くなる(また当該ターゲットが全く表示されない)という現象が発生する。
 この点、例えば特許文献4は、ターゲット(物標)を捕捉・追尾して位置を予測し、当該予測した位置にターゲットの位置を補正する処理を開示している。特許文献4は、これにより、高速移動するターゲットであっても、観測したいターゲットは明瞭に表示できるとしている。しかし、このようにターゲットの相対移動を補正する処理は、極座標系の座標では行いにくいため、直交座標系に座標変換したうえで上記処理を行うことになる。従って、特許文献4のような処理を行おうとした場合、極座標系から直交座標系へ座標変換することによるスキャン相関処理精度の低下を避けることができない。また、この捕捉・追尾処理は処理負荷が大きく、一度に捕捉・追尾できるターゲットの数に限界がある。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、極座標系でスキャン相関処理を行うことで当該スキャン相関処理の精度を保ち、しかも高速移動する物標が前記スキャン相関処理で抑圧されてしまうことを防止したレーダ信号処理装置を提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の第1の観点によれば、以下の構成のレーダ信号処理装置が提供される。即ち、このレーダ信号処理装置は、信号取得部と、過去データ保持部と、極座標相関処理部と、トレンドカーブ算出部と、ターゲット検出部と、を備える。前記信号取得部は、受信信号に基づいて、受信データを極座標系で取得する。前記過去データ保持部は、過去の相関処理済データを極座標系で記憶する。前記極座標相関処理部は、前記受信データと、前記過去データ保持部に記憶されている過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する。前記トレンドカーブ算出部は、前記極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出する。前記ターゲット検出部は、前記受信データの信号レベルと前記トレンドカーブに基づいてターゲットを検出する。そして、前記極座標相関処理部は、前記ターゲット検出部によるターゲットの検出結果に基づいて、前記受信データに対する前記相関処理の処理内容を変更する。
 このように、ターゲット検出部がターゲットを検出したか否かに応じてスキャン相関処理の内容を変更することにより、ターゲットがスキャン相関処理によって抑圧されてしまうことを防止できる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、前記ターゲット検出部は、前記受信データの信号レベルが前記トレンドカーブよりも所定以上大きい場合にターゲットを検出する。前記極座標相関処理部は、前記ターゲット検出部が前記ターゲットを検出した場合には、前記相関処理を行っていない前記受信データの値を出力する。
 このように、トレンドカーブと受信データの信号レベルとの大小比較により、ターゲットを簡単に検出することができる。そして、ターゲットが検出された場合にはスキャン相関処理を行っていない受信データを出力するとにより、当該ターゲットを示す受信データの信号レベルがスキャン相関処理によって抑圧されてしまうことを防止できる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、前記ターゲット検出部は、前記受信データの信号レベルが前記トレンドカーブよりも所定以上大きい場合にターゲットを検出する。前記極座標相関処理部は、前記ターゲット検出部によってターゲットが検出された場合と、検出されなかった場合とで、前記受信データと前記過去の相関処理済データとの重み付け係数を変更する。
 このように重み付け係数を変更することにより、スキャン相関処理の効き具合を変更することができるので、ターゲットがスキャン相関処理によって抑圧されてしまうことを防止できる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、前記ターゲット検出部は、ターゲットが検出されたか否かを示すゲート信号を出力する。前記極座標相関処理部は、前記ゲート信号に応じて前記相関処理の処理内容を変更する。
 これにより、簡単な構成で、ターゲットの有無に応じて処理を切り替えることができる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、このレーダ信号処理装置は、少なくとも1スキャン前の前記ターゲット検出部の検出結果を記憶する検出結果保持部を備える。前記極座標相関処理部は、前記検出結果保持部が記憶している1スキャン前の検出結果と、前記ターゲット検出部が出力する現在の検出結果と、の少なくとも何れかを用いる。
 このように、過去のターゲット検出結果を参照することで、ターゲットの有無を一層確実に判断することができる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、前記ターゲット検出部は、前記受信データの信号レベルが、前記トレンドカーブに一定のオフセットを付加したカーブよりも大きい場合にターゲットを検出する。
 このようにトレンドカーブにオフセットを付加することで、不要信号がターゲットとして誤検出されてしまうことを防止できる。
 上記のレーダ信号処理装置は、以下のように構成されることが好ましい。即ち、前記信号取得部は、ログアンプとリニアアンプを有する。前記信号取得部は、前記トレンドカーブ算出部及び前記ターゲット検出部には、ログアンプ出力を出力する。また前記信号取得部は、前記極座標相関処理部には、リニアアンプ出力を出力する。
 即ち、ダイナミックレンジが広くて飽和しにくいログアンプの出力を用いてターゲットを検出する処理を行うことにより、ターゲットを正確に検出できる。一方、受信信号をリニアに増幅したリニアアンプの出力を用いてスキャン相関処理を行うことにより、過去の信号レベルと現在の信号レベルとの相関を取り易くなる結果、適切なスキャン相関処理結果を得る事ができる。
 本発明の第2の観点によれば、上記のレーダ信号処理装置と、前記受信信号を受信するレーダアンテナと、前記極座標相関処理部における前記スキャン相関処理の結果に基づいたレーダ映像を表示する表示装置と、を備えたレーダ装置が提供される。
 このレーダ装置は、高速移動するターゲットが抑圧されていないレーダ映像を表示することができるので、このレーダ装置のオペレータは、周囲のターゲットの様子を正確に把握することができる。
 本発明の第3の観点によれば、以下のようにして行うレーダ信号処理方法が提供される。即ち、このレーダ信号処理方法は、信号取得工程と、過去データ取得工程と、極座標相関処理工程と、トレンドカーブ算出工程と、ターゲット検出工程と、を含む。前記信号取得工程では、受信信号に基づいて、受信データを極座標系で取得する。前記過去データ取得工程では、過去の相関処理済データを極座標系で取得する。前記極座標相関処理工程では、前記受信データと、前記過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する。前記トレンドカーブ算出工程では、前記極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出する。前記ターゲット検出工程では、前記受信データの信号レベルと前記トレンドカーブに基づいてターゲットを検出する。そして、前記極座標相関処理工程においては、前記ターゲット検出工程によるターゲットの検出結果に基づいて、前記受信データに対する前記相関処理の処理内容を変更する。
本発明の一実施形態に係るレーダ装置のブロック図。 高速で相対移動するターゲットの様子を説明する図。 (a)従来のスキャン相関処理により高速移動ターゲットが抑圧されたレーダ映像を示す模式図。(b)本発明のレーダ信号処理装置の出力に基づくレーダ映像を例示する模式図。 ターゲット検出部におけるターゲットの検出を説明する図。 従来のスキャン相関処理により残像が現れたレーダ映像を示す模式図。 第2実施形態に係るレーダ装置のブロック図。
 次に、図面を参照して本発明の実施の形態を説明する。図1に示すように、本発明の第1実施形態に係るレーダ装置10は、船舶用のレーダ装置であり、自船周囲のターゲット(他船や陸地など)の様子を表示するためのものである。このレーダ装置10は、レーダアンテナ11と、送受信部12と、送信信号出力部13と、レーダ信号処理装置14と、表示部15と、を備えている。
 レーダアンテナ11は指向性を有するアンテナであり、所定の周期で平面内を360度回転するように構成されている。以下の説明では、レーダアンテナ11のメインローブが向く方向を、単にレーダアンテナ11の向きと称する。送信信号出力部13は、レーダアンテナ11が1回転する間に、複数回のパルス信号を所定周期で出力するように構成されている。このパルス信号は、送受信部12を介してレーダアンテナ11に印加され、当該レーダアンテナ11から放射される。
 レーダアンテナ11から放射されたパルス信号は、周囲のターゲットに反射して、再びレーダアンテナ11に受信される。このときレーダアンテナ11が受信した信号を、以下の説明では「受信信号」と呼ぶ。レーダアンテナ11に受信された受信信号は、送受信部12を介してレーダ信号処理装置14に入力される。信号を送受信しながらレーダアンテナ11を1回転させる動作を「スキャン」と呼び、パルス信号を送信してから次のパルス信号を送信するまでの間に受信信号を受信する動作を「スイープ」と呼ぶ。なお、レーダアンテナ11、送信信号出力部13、及び送受信部12の構成は公知であるから、詳細な説明は省略する。
 レーダ信号処理装置14は、信号取得部20と、極座標相関処理部21と、トレンドカーブ算出部22と、遅延処理部23と、ターゲット検出部24と、画像処理部25と、を備える。
 信号取得部20には、送受信部12から前記受信信号が入力される。信号取得部20は、受信信号を増幅するログアンプ26と、ログアンプ26で増幅された受信信号をサンプリングしてデジタルデータに変換するA/D変換器(アナログ-デジタル変換器)27とを備えている。A/D変換器27が出力するデジタルデータを、受信データと呼ぶ。各受信データの値は、当該受信データがサンプリングされたときの受信信号の信号レベルを表している。なお、レーダアンテナ11が受信する受信信号の信号レベルは、高い信号レベル(例えばレーダアンテナ11の近傍からの反射信号)から、低い信号レベル(例えば遠方からの反射信号)まで、非常に広い範囲にわたっている。そこで上記のように受信信号の増幅にログアンプ26を用いることにより、信号レベルが高いときに出力が飽和してしまうことを防止し、幅広いダイナミックレンジでA/D変換器27によるサンプリングを行う事ができる。
 ターゲットからの反射信号がレーダアンテナ11に受信されないときには、受信信号の信号レベルはノイズレベルとなるので、そのとき取得される受信データの値も小さくなる。ターゲットからの反射信号が受信されたときは、受信信号の信号レベルがノイズレベルよりも大きくなり、そのとき取得される受信データの値も大きくなる。レーダアンテナ11からターゲットまでの距離rは、レーダアンテナ11がパルス信号を送信してから反射信号が受信されるまでにかかった時間によって知ることができる。また、ターゲットの方向は、反射信号を受信したときのレーダアンテナ11の向きθによって知ることができる。このように、信号取得部20が取得した受信データは、極座標系の座標(r,θ)により、平面上の点に対応付けることができる。従って、レーダ信号処理装置14の信号取得部20は、各受信データを極座標系(r,θ)で取得しているという事ができる。
 極座標相関処理部21は、極座標系でスキャン相関処理を行うように構成されている。具体的には、極座標相関処理部21は、演算処理部28と、過去データ保持部29を備えている。過去データ保持部29は、過去1スキャン分(レーダアンテナ11の1回転分)の相関処理済データを保存できるメモリ領域として構成されている。
 演算処理部28は、信号取得部20から入力される最新の受信データと、過去データ保持部29に記憶されている1スキャン前の相関処理済データと、を重み付けして合成し、新しい相関処理済データを生成して出力する、というスキャン相関処理を行うように構成されている。即ち、演算処理部28で行われる演算は、以下の式:
  S’r,θ=(1-α)Dr,θ+αSr,θ ・・・(1)
で表すことができる。なお、Dr,θは信号取得部20から入力される最新の受信データの値(信号レベル)であり、添字のr,θは、当該受信データが極座標上の(r,θ)地点に対応していることを示す。Sr,θは、過去データ保持部29が保持している1スキャン分の相関処理済データのうち、前記受信データDr,θの位置に対応したデータ(1スキャン前の相関処理済データ)を示す。係数αは、上記重み付け合成の重み付け係数(フィルタ係数)であり、0以上1以下の範囲の値をとる。
 式(1)からもわかるように、上記スキャン相関処理は一種のIIRフィルタ処理であり、スキャン間で不安定な信号を抑圧するように作用する。一方、スキャン間で安定な信号(静止したターゲットからの反射信号など)は、上記IIRフィルタ処理で抑圧されることなく残る。
 過去データ保持部29は、1スキャン分の相関処理済データを、極座標系で保持するように構成されている。即ち、過去データ保持部29のメモリ上の相関処理済データSr,θの読み書きアドレスと、当該相関処理済データSr,θが対応付けられた極座標系の座標(r,θ)と、が一対一で対応するようになっている。従って、上記式(1)の演算を行う際には、相関処理済データSr,θを極座標系のままで過去データ保持部29から読み出すことが可能であり、座標変換等は不要である。このため、直交座標系に座標変換してからスキャン相関処理を行う構成に比べて精度の良い処理結果を得ることができ、クラッタとターゲットを識別し易くなっている。
 極座標相関処理部21は、スキャン相関処理の結果を、画像処理部25に出力する。画像処理部25においては、極座標相関処理部21から入力されたスキャン相関処理の結果に基づいて、自装置周囲のターゲットの様子を示す二次元画像(レーダ映像)を生成する。前記スキャン相関処理によってクラッタやノイズが抑制されているので、画像処理部25は、クラッタやノイズを抑圧したレーダ映像を生成することができる。画像処理部25は、前記レーダ映像を、表示部15に出力する。表示部15は、前記レーダ映像を表示する。これにより、レーダ装置10のオペレータは、周囲の物標の様子を確認できる。
 次に、上記スキャン相関処理の問題点について簡単に説明する。
 上記のスキャン相関処理は、レーダアンテナ11に対して高速で相対移動するターゲットを示す受信データの信号レベルを抑圧してしまうという欠点がある。例えば、図2のようにターゲット30が自船に対して高速で相対移動していた場合を考える。図2(a)のグラフは1スキャン前における距離方向の受信データを、図2(b)グラフは最新のスイープで取得された距離方向の受信データを、それぞれ模式的に示している。また、各グラフの右上には、前記受信データに基づく仮想的なレーダ映像を示している。
 この図2の例では、ターゲット30は、1スキャン前は距離r1の地点に存在している。一方、最新の受信データでは、ターゲット30は距離r2の地点まで移動している。このように、高速で相対移動するターゲット30はスキャン間で位置が変化するため、1スキャン前のターゲット30と、最新のターゲット30との相関を取ることができない。従って、上記スキャン相関処理を行うと、高速移動するターゲット30が抑圧されてしまう結果、例えば図3(a)に示すように、本来ならば距離r2の位置に表示されるべきターゲット30が、レーダ映像にハッキリと表示されない(または全く表示されない)ということになる。このように、従来のスキャン相関処理では、高速移動するターゲットのレーダ映像上での識別性が悪いという問題があった。
 ところで、ターゲットからの反射信号は、クラッタやノイズに比べて十分なレベル差を持つ場合がある。このような場合は、スキャン相関処理を行うまでも無く、当該ターゲットをクラッタやノイズから容易に判別することができる。
 そこで本実施形態のレーダ信号処理装置14は、受信データの信号レベルとトレンドカーブとの比較によりターゲットを検出するとともに、ターゲットの検出結果に基づいて極座標相関処理部21におけるスキャン相関処理の内容を変更するように構成されている。
 以下、本実施形態のレーダ信号処理装置14の特徴的な構成について詳しく説明する。即ち、本実施形態のレーダ信号処理装置14は、トレンドカーブ算出部22と、ターゲット検出部24とを備えている。
 トレンドカーブ算出部22には、信号取得部20から受信データが入力されている。トレンドカーブ算出部22は、受信データの値(信号レベル)の距離方向でのトレンドカーブを算出するように構成されている。本実施形態において、トレンドカーブ算出部22は、前記トレンドカーブとして、距離方向での受信データの値の移動平均線を求めている。トレンドカーブ算出部22は、求めたトレンドカーブを、ターゲット検出部24に出力する。
 ターゲット検出部24は、受信データとトレンドカーブとに基づいて、ターゲットを検出するように構成されている。具体的には、ターゲット検出部24は、トレンドカーブに一定のオフセットを付加したカーブ(オフセットカーブ)と、受信データの信号レベルとを比較し、受信データの信号レベルが前記オフセットカーブを上回ったときに、ターゲットを検出する。図4に示すように、トレンドカーブにオフセット値を与えることにより、ノイズやクラッタが前記オフセットカーブ上回りにくくなっており、当該ノイズやクラッタをターゲットとして誤検出することを防止できる。なお、トレンドカーブは移動平均であるため、信号取得部20から出力される最新の受信データに対して一定時間遅延している。そこで、ターゲット検出部24における上記比較処理を適切に行うため、信号取得部20からの受信データを、トレンドカーブの遅延時間に対応した時間だけ遅延させてターゲット検出部24に出力する遅延処理部23を設けている。
 なお前述のように、信号取得部20から出力される受信データは、ログアンプ26により増幅してサンプリングされたデータであるから、大レベルの受信信号(例えば近距離からの反射信号)であっても信号レベルが飽和しにくく、ダイナミックレンジが広い。このため、ターゲット検出部24においては、受信データの信号レベルとトレンドカーブとの大小比較を精度よく行うことができ、ターゲットを正確に検出することができる。
 また、ターゲット検出部24は、ターゲットが検出されたか否か(受信データの信号レベルが前記オフセットカーブを上回ったか否か)を示すゲート信号を出力するように構成されている。例えば、本実施形態のターゲット検出部24は、ターゲットが検出されなかったときには「0」を出力し、検出されたときには「1」を出力する。このゲート信号は、極座標相関処理部21に入力される。
 極座標相関処理部21は、前記ゲート信号に基づいて、当該極座標相関処理部21での処理内容を変更するように構成されている。具体的には、入力されたゲート信号が「0」のとき(ターゲットが検出されなかったとき)、極座標相関処理部21は、演算処理部28によって求めた相関処理済データを、スキャン相関処理の結果として出力する。このように、ターゲットが検出されなかったときには、従来どおりスキャン相関処理を行った結果を出力するので、クラッタやノイズなどの不要信号が抑圧されたレーダ映像を得る事ができる。
 一方、入力されたゲート信号が「1」のとき(ターゲットが検出されたとき)には、極座標相関処理部21は、信号取得部20から入力された受信データをそのまま(スキャン相関処理を行っていない値を)スキャン相関処理の結果として出力する。従って、当該ターゲットが高速移動している場合であっても、当該ターゲットがスキャン相関処理によって抑圧されてしまうことはない。この結果、例えば図3(a)のように従来のスキャン相関処理では抑圧されてしまっていた高速移動ターゲット30であっても、本実施形態の構成によれば、図3(b)のように、前記ターゲット30をレーダ映像上でハッキリと表示することができる。これにより、ターゲット30の識別性を向上させることができる。
 以上で説明したように、本実施形態のレーダ信号処理装置14は、信号取得部20と、過去データ保持部29と、極座標相関処理部21と、トレンドカーブ算出部22と、ターゲット検出部24と、を備える。そして、本実施形態のレーダ信号処理装置14によるレーダ信号処理方法は、以下のように行うことになる。
 即ち、まず、信号取得部20が、受信信号に基づいて、受信データを極座標系で取得する(信号取得工程)。次に、トレンドカーブ算出部22が、極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出する(トレンドカーブ算出工程)。続いて、ターゲット検出部24が、受信データの信号レベルとトレンドカーブに基づいて、ターゲットを検出する(ターゲット検出工程)。
 これと前後して、極座標相関処理部21が、過去データ保持部29に記憶されている過去の相関処理済データを、極座標系で取得する(過去データ取得工程)。更に、極座標相関処理部21は、前記受信データと、過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する(極座標相関処理工程)。このとき、極座標相関処理部21は、ターゲット検出部24によるターゲットの検出結果に基づいて、受信データに対する相関処理の処理内容を変更する。
 このように、ターゲット検出部24がターゲットを検出したか否かに応じてスキャン相関処理の内容を変更することにより、ターゲットがスキャン相関処理によって抑圧されてしまうことを防止できる。
 続いて、上記実施形態の変形例について説明する。
 上記実施形態では、極座標相関処理部21が、ターゲット検出部24におけるターゲットの検出結果に基づいて、相関処理済データを出力する場合と、受信データをそのまま(スキャン相関処理がされていない値を)出力する場合と、で処理を切り換える構成とした。本変形例はこれに代えて、極座標相関処理部21が、ターゲット検出部24におけるターゲットの検出結果に基づいて、スキャン相関処理のフィルタ係数αを変更するように構成したものである。
 このフィルタ係数αは、スキャン相関処理の効き具合を調整するパラメータであり、αの値が大きいほどスキャン相関処理の効きが大きくなる。従って、αの値が大きいほど、高速移動するターゲットが抑圧され易くなる。
 そこで本実施形態のレーダ信号処理装置14において、ターゲット検出部24が出力したゲート信号が「0」のとき(ターゲットが検出されなかったとき)には、極座標相関処理部21は、フィルタ係数αを大きくするように構成されている。逆に、ゲート信号が「1」のとき(ターゲットが検出されたとき)には、極座標相関処理部21は、フィルタ係数αを小さくする。
 これによれば、ターゲット検出部24でターゲットが検出された場合には、スキャン相関処理の効きを弱くすることができるので、当該ターゲットが抑圧されにくくなる。従って、高速で相対移動するターゲットであっても、スキャン相関処理で抑圧されてしまうことを防止できる。一方、ターゲット検出部24でターゲットが検出されていない場合には、スキャン相関処理を十分に効かせることにより、クラッタやノイズが抑圧されたレーダ映像を得る事ができる。
 次に、上記実施形態の別の変形例について説明する。
 前述のように、高速で相対移動するターゲットは、1スキャン前とは異なる位置で検出される。このため、スキャン相関処理によって1スキャン前のターゲットの位置に残像が出現する場合がある。例えば図2に示すように、1スキャン前に距離r1の位置にターゲットが存在し、最新のスキャンでは距離r2の位置までターゲットが移動していたとする。この場合、1スキャン前のデータと最新の受信データとの相関を取ることにより、図5に示すように、1スキャン前のターゲットの位置(距離r1の地点)に残像が出現することがある。
 そこで、以下に説明する変形例では、1スキャン前のゲート信号を参照して、極座標相関処理部21における処理の内容を変更するとにより、前記残像を抑圧するように構成したものである。
 以下、具体的に説明する。この変形例の極座標相関処理部21は、ターゲット検出部24が出力したゲート信号(ターゲットの検出結果)を1スキャン分保持可能な検出結果保持部を備えている。そして、極座標相関処理部21は、最新のゲート信号と、検出結果保持部が保持している1スキャン前のゲート信号と、の少なくとも何れか一方が「1」になっていた場合(ターゲットが検出されていた場合)には、受信データをそのまま(スキャン相関処理を行っていない値を)スキャン相関処理結果として出力するように構成されている。
 即ち、1スキャン前のゲート信号が「1」の場合、少なくとも1スキャン前にはターゲットが存在していたことを示している。従って、このような場合にスキャン相関処理を行うと、1スキャン前のターゲット位置に残像が現れる可能性がある。そこで、本実施形態の極座標相関処理部21は、1スキャン前のゲート信号が「1」のときにも、受信データをそのまま(スキャン相関処理を行っていない値を)スキャン相関処理の結果として出力するように構成されているのである。
 これによれば、スキャン相関処理によって1スキャン前のターゲットの位置に残像が現れることを防止できる。従って、より適切なスキャン相関処理結果を得る事ができる。
 次に、本発明の第2実施形態について説明する。なお、この第2実施形態において、上記第1実施形態と同一又は類似する構成については、第1実施形態と同一の符号を付して説明を省略する。
 図6に示すように、この第2実施形態のレーダ信号処理装置101においては、信号取得部20が、ログアンプ26に加えて更にリニアアンプ32を備えている。レーダアンテナ11が受信した受信信号は、リニアアンプ32で増幅されてA/D変換器33によってサンプリングされる。
 ログアンプ26の出力(A/D変換器27がサンプリングした受信データ)は、第1実施形態と同様に、ターゲット検出部24及びトレンドカーブ算出部22に出力される。これにより、ダイナミックレンジが広くて飽和しにくいログアンプの出力を用いてターゲットを検出する処理を行うことができるので、正確にターゲットを検出することができる。
 一方、リニアアンプ32の出力(A/D変換器33がサンプリングした受信データ)は、極座標相関処理部21に出力されている。極座標相関処理部21は、このリニアアンプ32の出力に基づいて、スキャン相関処理を行う。このように、受信信号をリニアに増幅したリニアアンプ32の出力を用いてスキャン相関処理を行うことにより、過去の信号レベルと現在の信号レベルとの相関を取り易くなる。この結果、適切なスキャン相関処理結果を得る事ができる。
 以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。
 本発明のレーダ装置は、船舶用のレーダ装置に限らず、他の用途のレーダ装置にも広く適用することができる。
 極座標相関処理部21のあとに、極座標系で実行可能な他の処理を行っても良い。例えば、極座標相関処理部21が出力した極座標系の相関処理済データに対して、公知のARPA(自動衝突予防援助装置)などの処理を組み込むことができる。これは、簡単に言うと、ターゲットとの衝突の危険性を自動的に判断する処理である。本発明の構成によれば、高速移動するターゲットであってもスキャン相関処理で抑圧されることがないので、当該高速移動ターゲットとの衝突の危険性を正確に判断することができる。
 ターゲット検出部24は、ターゲットの検出結果に応じたゲート信号を出するとしたが、ターゲット検出部24がターゲットの検出結果を出力する形式がゲート信号に限定されるわけではない。極座標相関処理部21の処理内容を、ターゲット検出部24におけるターゲットの検出結果に応じて切り換えることができれば良い。
 ターゲットを検出する際にトレンドカーブに付加するオフセットの大きさは、オペレータによる適宜の操作により変更することができれば好適である。これによれば、ノイズレベルやクラッタレベルに応じてオフセットを調整し、適切な処理を行うことができる。また、ノイズレベル又はクラッタレベルに応じてオフセットの値を自動的に調整するように構成しても良い。
 トレンドカーブの算出方法は単純な移動平均に限らず、受信データの距離方向での信号レベルの変化傾向を求めることができれば良い。

Claims (9)

  1.  受信信号に基づいて、受信データを極座標系で取得する信号取得部と、
     過去の相関処理済データを極座標系で記憶する過去データ保持部と、
     前記受信データと、前記過去データ保持部に記憶されている過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する極座標相関処理部と、
     前記極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出するトレンドカーブ算出部と、
     前記受信データの信号レベルと前記トレンドカーブに基づいてターゲットを検出するターゲット検出部と、
    を備え、
     前記極座標相関処理部は、前記ターゲット検出部によるターゲットの検出結果に基づいて、前記受信データに対する前記相関処理の処理内容を変更することを特徴とするレーダ信号処理装置。
  2.  請求項1に記載のレーダ信号処理装置であって、
     前記ターゲット検出部は、前記受信データの信号レベルが前記トレンドカーブよりも所定以上大きい場合にターゲットを検出し、
     前記極座標相関処理部は、前記ターゲット検出部が前記ターゲットを検出した場合には、前記相関処理を行っていない前記受信データの値を出力することを特徴とするレーダ信号処理装置。
  3.  請求項1に記載のレーダ信号処理装置であって、
     前記ターゲット検出部は、前記受信データの信号レベルが前記トレンドカーブよりも所定以上大きい場合にターゲットを検出し、
     前記極座標相関処理部は、前記ターゲット検出部によってターゲットが検出された場合と、検出されなかった場合とで、前記受信データと、前記過去の相関処理済データと、の重み付け係数を変更することを特徴とするレーダ信号処理装置。
  4.  請求項1から3までの何れか一項に記載のレーダ信号処理装置であって、
     前記ターゲット検出部は、ターゲットが検出されたか否かを示すゲート信号を出力し、
     前記極座標相関処理部は、前記ゲート信号に応じて前記相関処理の処理内容を変更することを特徴とするレーダ信号処理装置。
  5.  請求項1から4までの何れか一項に記載のレーダ信号処理装置であって、
     少なくとも1スキャン前の前記ターゲット検出部の検出結果を記憶する検出結果保持部を備え、
     前記極座標相関処理部は、前記検出結果保持部が記憶している1スキャン前の検出結果と、前記ターゲット検出部が出力する現在の検出結果と、の少なくとも何れかを用いることを特徴とするレーダ信号処理装置。
  6.  請求項1から5までの何れか一項に記載のレーダ信号処理装置であって、
     前記ターゲット検出部は、前記受信データの信号レベルが、前記トレンドカーブにオフセットを付加したカーブよりも大きい場合にターゲットを検出することを特徴とするレーダ信号処理装置。
  7.  請求項1から6までの何れか一項に記載のレーダ信号処理装置であって、
     前記信号取得部は、ログアンプとリニアアンプを有し、
     前記トレンドカーブ算出部及び前記ターゲット検出部には、ログアンプ出力を、
     前記極座標相関処理部には、リニアアンプ出力を、
    それぞれ出力することを特徴とするレーダ信号処理装置。
  8.  請求項1から7までの何れか一項に記載のレーダ信号処理装置と、
     前記受信信号を受信するレーダアンテナと、
     前記極座標相関処理部における前記スキャン相関処理の結果に基づいたレーダ映像を表示する表示装置と、
    を備えることを特徴とするレーダ装置。
  9.  受信信号に基づいて、受信データを極座標系で取得する信号取得工程と、
     過去の相関処理済データを極座標系で取得する過去データ取得工程と、
     前記受信データと、前記過去の相関処理済データと、の相関処理を極座標系で行って相関処理済データを生成する極座標相関処理工程と、
     前記極座標系の受信データの信号レベルの距離方向でのトレンドカーブを算出するトレンドカーブ算出工程と、
     前記受信データの信号レベルと前記トレンドカーブに基づいてターゲットを検出するターゲット検出工程と、
    を含み、
     前記極座標相関処理工程においては、前記ターゲット検出工程によるターゲットの検出結果に基づいて、前記受信データに対する前記相関処理の処理内容を変更することを特徴とするレーダ信号処理方法。
PCT/JP2013/052623 2012-02-08 2013-02-05 レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法 WO2013118730A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000895.5T DE112013000895T5 (de) 2012-02-08 2013-02-05 Radarsignalverarbeitungsvorrichtung, Radarvorrichtung, Verfahren zur Verarbeitung von Radarsignalen
US14/377,836 US9568599B2 (en) 2012-02-08 2013-02-05 Radar signal processing device, radar apparatus, and method of processing radar signal
JP2013557527A JP6250404B2 (ja) 2012-02-08 2013-02-05 レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-025462 2012-02-08
JP2012025462 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118730A1 true WO2013118730A1 (ja) 2013-08-15

Family

ID=48947492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052623 WO2013118730A1 (ja) 2012-02-08 2013-02-05 レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法

Country Status (4)

Country Link
US (1) US9568599B2 (ja)
JP (1) JP6250404B2 (ja)
DE (1) DE112013000895T5 (ja)
WO (1) WO2013118730A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121970A (ja) * 2014-12-25 2016-07-07 古野電気株式会社 エコー信号処理装置、レーダ装置、エコー信号処理方法、及びプログラム
RU191067U1 (ru) * 2019-01-10 2019-07-23 Федеральное государственное казенное военное образовательное учреждение высшего образования "Ярославское высшее военное училище противовоздушной обороны" Министерства обороны Российской Федерации Корреляционно-фильтровой обнаружитель с весовой обработкой

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223946B (zh) * 2015-09-28 2018-07-06 上海海洋大学 极端环境下科考船实时监测数据处理和监控的系统及方法
JP2017150991A (ja) * 2016-02-25 2017-08-31 古野電気株式会社 エコー映像表示装置
US10962641B2 (en) * 2017-09-07 2021-03-30 Magna Electronics Inc. Vehicle radar sensing system with enhanced accuracy using interferometry techniques
JP7112895B2 (ja) * 2018-06-20 2022-08-04 古野電気株式会社 エコー映像生成装置
CN113484838B (zh) * 2021-06-30 2023-05-09 南京邮电大学 一种多基地雷达有源假目标鉴别方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262128A (ja) * 1995-03-27 1996-10-11 Nec Corp 追尾処理方法および装置
JP2002139562A (ja) * 2000-11-02 2002-05-17 Japan Radio Co Ltd レーダ表示装置
JP2011002426A (ja) * 2009-06-22 2011-01-06 Furuno Electric Co Ltd レーダ装置
JP2011242253A (ja) * 2010-05-18 2011-12-01 Furuno Electric Co Ltd エコー信号処理装置、レーダ装置、エコー信号処理プログラム及びエコー信号処理方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816833A (en) * 1987-06-16 1989-03-28 Westinghouse Electric Corp. Pulse doppler surveillance post signal processing and scan to scan correlation
JPH06347542A (ja) * 1993-06-08 1994-12-22 Nec Corp 目標追尾装置
JP2828908B2 (ja) 1994-07-29 1998-11-25 日本無線株式会社 レーダ装置
JPH1194931A (ja) 1997-09-19 1999-04-09 Japan Radio Co Ltd レーダ装置
DE10101992C2 (de) * 2001-01-18 2002-12-05 Eads Deutschland Gmbh Radarverfahren zur Erkennung und Endeckung verdeckter Ziele
JP2003075528A (ja) 2001-08-31 2003-03-12 Japan Radio Co Ltd 無線探知装置
JP4164406B2 (ja) * 2003-06-02 2008-10-15 古野電気株式会社 レーダ装置および類似装置
JP4787482B2 (ja) * 2004-10-15 2011-10-05 古野電気株式会社 レーダ装置および画像データ生成装置
JP4917270B2 (ja) * 2005-04-20 2012-04-18 古野電気株式会社 レーダ装置および類似装置
EP2100163B1 (en) * 2006-12-11 2012-05-16 Telefonaktiebolaget LM Ericsson (publ) A sar radar system and a method relating thereto
JP5180543B2 (ja) 2007-08-31 2013-04-10 古野電気株式会社 レーダ装置または該レーダ装置に類似する装置
JP2010197263A (ja) * 2009-02-26 2010-09-09 Furuno Electric Co Ltd レーダ装置
US9024811B2 (en) * 2009-05-12 2015-05-05 Raytheon Anschutz Gmbh Full fidelity radar receiver digital video distribution and processing
JP5662671B2 (ja) 2009-10-28 2015-02-04 古野電気株式会社 物標探知装置、物標探知方法、および物標探知プログラム
JP5658871B2 (ja) * 2009-11-02 2015-01-28 古野電気株式会社 信号処理装置、レーダ装置、信号処理プログラム及び信号処理方法
JP5580621B2 (ja) * 2010-02-23 2014-08-27 古野電気株式会社 エコー信号処理装置、レーダ装置、エコー信号処理方法、およびエコー信号処理プログラム
US8362943B2 (en) * 2010-07-02 2013-01-29 Northrop Grumman Guidance And Electronics Company, Inc. Radar registration using targets of opportunity
CN103026395A (zh) * 2010-11-15 2013-04-03 图像传感系统有限公司 混合交通传感器系统和相关的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262128A (ja) * 1995-03-27 1996-10-11 Nec Corp 追尾処理方法および装置
JP2002139562A (ja) * 2000-11-02 2002-05-17 Japan Radio Co Ltd レーダ表示装置
JP2011002426A (ja) * 2009-06-22 2011-01-06 Furuno Electric Co Ltd レーダ装置
JP2011242253A (ja) * 2010-05-18 2011-12-01 Furuno Electric Co Ltd エコー信号処理装置、レーダ装置、エコー信号処理プログラム及びエコー信号処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121970A (ja) * 2014-12-25 2016-07-07 古野電気株式会社 エコー信号処理装置、レーダ装置、エコー信号処理方法、及びプログラム
RU191067U1 (ru) * 2019-01-10 2019-07-23 Федеральное государственное казенное военное образовательное учреждение высшего образования "Ярославское высшее военное училище противовоздушной обороны" Министерства обороны Российской Федерации Корреляционно-фильтровой обнаружитель с весовой обработкой

Also Published As

Publication number Publication date
DE112013000895T5 (de) 2014-10-16
JPWO2013118730A1 (ja) 2015-05-11
US20150054672A1 (en) 2015-02-26
JP6250404B2 (ja) 2017-12-20
US9568599B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
JP6250404B2 (ja) レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法
JP5658871B2 (ja) 信号処理装置、レーダ装置、信号処理プログラム及び信号処理方法
JP5580621B2 (ja) エコー信号処理装置、レーダ装置、エコー信号処理方法、およびエコー信号処理プログラム
GB2467641A (en) Rain or snow detection using radar
US7489267B2 (en) Radar apparatus
US9041591B2 (en) Method, device and program for processing signals, and radar apparatus
JP2012017995A (ja) 閾値設定方法、物標探知方法、閾値設定装置、物標探知装置、閾値設定プログラム、および物標探知プログラム
JP6554205B2 (ja) 追尾処理装置及び追尾処理方法
JP5520035B2 (ja) 信号処理装置、レーダ装置及び信号処理プログラム
JP2008164545A (ja) 移動目標検出装置、移動目標検出方法および移動目標検出プログラム
JP6090966B2 (ja) 情報表示装置、レーダ装置、ソナー装置、及び情報表示方法
JP5697911B2 (ja) 閾値設定方法、物標探知方法、閾値設定プログラム、物標探知プログラム、および物標探知装置
EP2479585A1 (en) Target object movement estimating device
US10120070B2 (en) Detection device, radar device, detection method, and detection program
JP5074718B2 (ja) 船舶用レーダ
JP4838660B2 (ja) 航跡表示機能付レーダ装置
JP2013246022A (ja) 物標探知装置、レーダ装置、物標探知方法、および物標探知プログラム
JP6043083B2 (ja) 物標運動推定装置、物標運動推定方法、およびレーダ装置
JP6059665B2 (ja) レーダ信号処理装置、レーダ装置、及びレーダ信号処理方法
JP2017058305A (ja) レーダ装置
JP2010249648A (ja) 探知装置
JP2016121970A (ja) エコー信号処理装置、レーダ装置、エコー信号処理方法、及びプログラム
JP2576622B2 (ja) 妨害信号検出装置
JP6456090B2 (ja) 目標探知支援装置
JP2001051054A (ja) シーカ角度分解能補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377836

Country of ref document: US

Ref document number: 1120130008955

Country of ref document: DE

Ref document number: 112013000895

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746773

Country of ref document: EP

Kind code of ref document: A1