WO2013115145A1 - 飛行時間型二次イオン質量分析装置用試料固定部材 - Google Patents

飛行時間型二次イオン質量分析装置用試料固定部材 Download PDF

Info

Publication number
WO2013115145A1
WO2013115145A1 PCT/JP2013/051805 JP2013051805W WO2013115145A1 WO 2013115145 A1 WO2013115145 A1 WO 2013115145A1 JP 2013051805 W JP2013051805 W JP 2013051805W WO 2013115145 A1 WO2013115145 A1 WO 2013115145A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass spectrometer
ion mass
time
secondary ion
carbon nanotube
Prior art date
Application number
PCT/JP2013/051805
Other languages
English (en)
French (fr)
Inventor
前野 洋平
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to EP13743829.7A priority Critical patent/EP2811293A4/en
Priority to US14/374,469 priority patent/US20140373646A1/en
Priority to KR20147021448A priority patent/KR20140131324A/ko
Priority to CN201380007772.1A priority patent/CN104081195A/zh
Publication of WO2013115145A1 publication Critical patent/WO2013115145A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/64Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using wave or particle radiation to ionise a gas, e.g. in an ionisation chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/142Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using a solid target which is not previously vapourised

Definitions

  • the present invention relates to a sample fixing member for a time-of-flight secondary ion mass spectrometer. Specifically, the present invention relates to a member for fixing a sample to be measured in a time-of-flight secondary ion mass spectrometer (TOF-SIMS) (Time-of-Flight Secondary Ion Mass Spectrometry).
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • the time-of-flight secondary ion mass spectrometer is a device for examining what components (atoms and molecules) exist on the surface of a solid sample, and detects trace components in the order of ppm. It can be applied to organic and inorganic substances.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the distribution of components existing on the outermost surface of the solid sample can be examined (for example, see Patent Document 1).
  • a time-of-flight secondary ion mass spectrometer surface components are repelled by a sputtering phenomenon by hitting a high-speed ion beam (primary ion) against the surface of a solid sample in a high vacuum.
  • the positively or negatively charged ions (secondary ions) generated at this time are scattered in one direction by an electric field and detected at a position separated by a certain distance.
  • secondary ions with various masses are generated depending on the composition of the surface of the solid sample, and light ions fly faster and heavier ions fly faster. If the time (flight time) from generation to detection is measured, the mass of the generated secondary ions can be calculated. This is the principle of the time-of-flight secondary ion mass spectrometer.
  • a time-of-flight secondary ion mass spectrometer measurement is performed by fixing a solid sample to be measured to a fixing member such as an adhesive or an adhesive.
  • a fixing member such as an adhesive or an adhesive
  • organic components derived therefrom adhere to the solid sample, and the solid sample is contaminated. Such contamination is particularly noticeable when the solid sample is a powder or the like.
  • the time-of-flight secondary ion mass spectrometer since a trace amount component in the order of ppm on the surface of the solid sample is detected, the slight contamination of the surface of the solid sample prevents the generation of secondary ions, There is a problem that accurate detection is not possible.
  • the object is to provide a sample fixing member for an ion mass spectrometer.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar objects having a length of 200 ⁇ m or more.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention has a shear adhesive strength to the glass surface at room temperature of 10 N / cm 2 or more.
  • the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the carbon nanotube has a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the relative frequency of the mode value of the number distribution of the carbon nanotubes is 25% or less. .
  • the carbon nanotube has a plurality of layers, the mode value of the number distribution of the carbon nanotubes is present in 10 or less layers, and the relative frequency of the mode value is 30% or more. .
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a base material.
  • the contamination of the solid sample can be prevented, the solid sample can be stably fixed, and the secondary ion can be accurately detected in the time-of-flight secondary ion mass spectrometer.
  • a sample fixing member for an ion mass spectrometer can be provided.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more, thereby preventing contamination of the solid sample. Can be stably fixed, and the secondary ion can be accurately detected in the time-of-flight secondary ion mass spectrometer.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention may be a member composed only of the fibrous columnar structure, or the fibrous columnar structure and the time-of-flight secondary ion mass spectrometry. It may be a member made of any appropriate material that can be preferably used for fixing the device sample.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention is a member for adhering and fixing a measurement sample in a time-of-flight secondary ion mass spectrometer, and the size and shape of the sample fixing member is the time of flight used. Can be appropriately selected according to the type of the secondary ion mass spectrometer.
  • the fibrous columnar structure is an aggregate including a plurality of fibrous columnar objects.
  • the fibrous columnar structure is preferably an assembly including a plurality of fibrous columnar objects having a length L.
  • FIG. 1 shows a schematic cross-sectional view of an example of a sample fixing member for a time-of-flight secondary ion mass spectrometer according to a preferred embodiment of the present invention.
  • a fibrous columnar structure 10 includes a base material 1 and a plurality of fibrous columnar objects 2. One end 2 a of the fibrous columnar object 2 is fixed to the substrate 1.
  • the fibrous columnar body 2 is oriented in the direction of the length L.
  • the fibrous columnar body 2 is preferably oriented in a substantially vertical direction with respect to the substrate 1.
  • the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 1 is preferably 90 ° ⁇ 20 °, more preferably 90 ° ⁇ 15 °, and further preferably 90 ° ⁇ 10 °. And particularly preferably 90 ° ⁇ 5 °.
  • the fibrous columnar structure 10 may be an aggregate including only the plurality of fibrous columns 2. That is, the fibrous columnar structure 10 may not include the base material 1.
  • the plurality of fibrous columnar objects 2 can exist as an aggregate with each other, for example, by van der Waals force.
  • the length L is 200 ⁇ m or more, preferably 200 ⁇ m to 2000 ⁇ m, more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, particularly preferably 500 ⁇ m to 1000 ⁇ m, and most preferably 600 ⁇ m. ⁇ 1000 ⁇ m.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention can prevent contamination of the solid sample, can stably fix the solid sample, and the time of flight.
  • Type secondary ion mass spectrometer enables accurate detection of secondary ions.
  • the length L is measured by the method described later.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer has a shear adhesive force to the glass surface at room temperature of preferably 10 N / cm 2 or more, more preferably 10 N / cm 2 to 200 N / cm 2. , more preferably 15N / cm 2 ⁇ 200N / cm 2, particularly preferably 20N / cm 2 ⁇ 200N / cm 2, and most preferably 25N / cm 2 ⁇ 200N / cm 2.
  • the shear adhesive force is within the above range, the sample fixing member for the time-of-flight secondary ion mass spectrometer of the present invention can fix the solid sample more stably, and the time-of-flight type secondary ion mass spectrometer. Enables more accurate detection of secondary ions.
  • the shear adhesive force is measured by the method described later.
  • any appropriate material can be adopted as the material for the fibrous columnar material.
  • examples thereof include metals such as aluminum and iron; inorganic materials such as silicon; carbon materials such as carbon nanofibers and carbon nanotubes; and high modulus resins such as engineering plastics and super engineering plastics.
  • Specific examples of the resin include polystyrene, polyethylene, polypropylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polyimide, polyamide, and the like.
  • Any appropriate physical properties can be adopted as the physical properties such as the molecular weight of the resin as long as the object of the present invention can be achieved.
  • any appropriate base material can be adopted depending on the purpose.
  • examples thereof include quartz glass, silicon (silicon wafer, etc.), engineering plastic, super engineering plastic, and the like.
  • engineering plastics and super engineering plastics include polyimide, polyethylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polypropylene, and polyamide. Any appropriate physical properties can be adopted as the physical properties such as molecular weight of these base materials within a range in which the object of the present invention can be achieved.
  • the diameter of the fibrous columnar material is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer according to the present invention can prevent contamination of the solid sample and make the solid sample more stable. It can be fixed and enables more accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the thickness of the base material can be set to any appropriate value depending on the purpose.
  • the surface of the base material is subjected to conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, and ionizing radiation treatment. Or a physical treatment or a coating treatment with a primer (for example, the above-mentioned adhesive substance) may be applied.
  • the base material may be a single layer or a multilayer body.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the fibrous columnar product is preferably a carbon nanotube.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention may be composed of only the carbon nanotube aggregate, or may be composed of the carbon nanotube aggregate and any appropriate member.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes and also includes the above-described base material, one end of the carbon nanotube is attached to the base material. It may be fixed.
  • a method for fixing a carbon nanotube to a substrate when the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the substrate used for manufacturing the carbon nanotube aggregate may be used as it is as a base material.
  • an adhesive layer may be provided on the base material and fixed to the carbon nanotube.
  • the substrate is a thermosetting resin
  • a thin film is prepared in a state before the reaction, and one end of the carbon nanotube is bonded to the thin film layer, and then cured and fixed.
  • the base material is a thermoplastic resin or a metal, after crimping one end of the fibrous columnar structure in a molten state, the substrate may be cooled and fixed to room temperature.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes an aggregate of carbon nanotubes, the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention effectively contaminates a solid sample. Therefore, the solid sample can be more stably fixed, and the secondary ion can be detected more accurately in the time-of-flight secondary ion mass spectrometer.
  • One of the preferred embodiments of the carbon nanotube aggregate that may be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention (hereinafter sometimes referred to as the first preferred embodiment) is a plurality of carbons.
  • the carbon nanotube has a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 layers or more, and the relative frequency of the mode value of the number distribution of the carbon nanotubes is 25% or less.
  • the distribution width of the number distribution of carbon nanotubes is 10 or more, preferably 10 to 30 layers, more preferably 10 to 25 layers, and further preferably 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 5 to 30 layers, more preferably 10 to 30 layers, still more preferably 15 to 30 layers, and particularly preferably 15 layers to 30 layers. There are 25 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the relative frequency of the mode value of the layer number distribution is 25% or less, preferably 1% to 25%, more preferably 5% to 25%, and further preferably 10% to 25%. Particularly preferably, it is 15% to 25%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the mode value of the layer number distribution is preferably from 2 to 10 layers, and more preferably from 3 to 10 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a nanotube aggregate. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably 500 ⁇ m to 1000 ⁇ m. Most preferably, it is 600 ⁇ m to 1000 ⁇ m.
  • the length of the carbon nanotube falls within the above range, contamination of the solid sample can be more effectively prevented, the solid sample can be fixed very stably, and the secondary time in the time-of-flight secondary ion mass spectrometer Enables very accurate detection of ions.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the sample fixing member for the time-of-flight secondary ion mass spectrometer of the present invention can more effectively prevent the contamination of the solid sample, and the solid sample is very stable. It is possible to fix the secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Another preferred embodiment of the aggregate of carbon nanotubes that may be included in the fixing member for a time-of-flight secondary ion mass spectrometer of the present invention includes a plurality of carbon nanotube aggregates.
  • a carbon nanotube is provided, the carbon nanotube has a plurality of layers, the mode value of the number distribution of the carbon nanotubes is present in 10 layers or less, and the relative frequency of the mode value is 30% or more.
  • the distribution width of the number distribution of the carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably 3 to 8 layers. It is.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the relative frequency of the mode value of the layer number distribution is 30% or more, preferably 30% to 100%, more preferably 30% to 90%, and further preferably 30% to 80%. Particularly preferably, it is 30% to 70%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the mode value of the layer number distribution is present in 10 layers or less, preferably in 1 layer to 10 layers, more preferably in 2 layers to 8 layers, More preferably, it exists in 2 to 6 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting characteristics. Therefore, the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably 500 ⁇ m to 1000 ⁇ m. Most preferably, it is 600 ⁇ m to 1000 ⁇ m.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention can more effectively prevent the contamination of the solid sample, and the solid sample It can be stably fixed, and enables highly accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the sample fixing member for the time-of-flight secondary ion mass spectrometer of the present invention can more effectively prevent the contamination of the solid sample, and the solid sample is very stable. It is possible to fix the secondary ions in a time-of-flight secondary ion mass spectrometer.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Method for producing aggregate of carbon nanotubes Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention.
  • a catalyst layer is formed on a smooth substrate, and the catalyst is heated by heat, plasma
  • Examples include a method of producing a carbon nanotube aggregate that is oriented substantially vertically from a substrate by chemical vapor deposition (CVD method), in which a carbon source is filled in an activated state to grow carbon nanotubes. It is done. In this case, for example, if the substrate is removed, an aggregate of carbon nanotubes oriented in the length direction can be obtained.
  • CVD method chemical vapor deposition
  • any appropriate substrate can be adopted as the substrate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • substrate can be used as a base material which the carbon nanotube aggregate
  • any suitable device can be adopted as a device for producing a carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention.
  • a thermal CVD apparatus as shown in FIG. 2, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace can be cited.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used for producing a carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention.
  • a catalyst catalyst layer material
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the substrate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a substrate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is deposited and heated to 450 ° C. and oxidized without forming a hydrophilic film on the substrate, Al 2 O 3 surfaces having different particle diameters may not be formed easily.
  • a hydrophilic film is prepared on a substrate and Al 2 O 3 is directly deposited, it is difficult to form Al 2 O 3 surfaces having different particle diameters.
  • the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention is preferably 0.01 nm to 20 nm in order to form fine particles. More preferably, the thickness is 0.1 nm to 10 nm.
  • the carbon nanotube aggregate is an excellent machine. In addition, the carbon nanotube aggregate can exhibit excellent adhesive properties.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer using such a carbon nanotube aggregate can more effectively prevent contamination of the solid sample, and can fix the solid sample very stably. It enables very accurate detection of secondary ions in a time-of-flight secondary ion mass spectrometer.
  • Any appropriate method can be adopted as a method for forming the catalyst layer.
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a substrate, and the like can be mentioned.
  • Any appropriate carbon source can be used as a carbon source that can be used for producing a carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • any appropriate temperature can be adopted as the production temperature in the production of the carbon nanotube aggregate that can be included in the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention.
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • sample fixing member for time-of-flight secondary ion mass spectrometer Tip of sample fixing member for time-of-flight secondary ion mass spectrometer cut into 1 cm 2 unit area on glass (MATUNAMI slide glass 27 mm ⁇ 56 mm)
  • sample fixing member for time-of-flight type secondary ion mass spectrometer is carbon nanotube
  • the carbon nanotubes were placed so that the tips of the carbon nanotubes were in contact with each other, and a 5 kg roller was reciprocated once to press the tip of the sample fixing member for a time-of-flight secondary ion mass spectrometer to the glass. Then, it was left for 30 minutes.
  • a shear test was performed at room temperature (25 ° C.) at a tensile speed of 50 mm / min with a tensile tester (Instro Tensil Tester), and the resulting peak was defined as shear adhesive strength.
  • ⁇ Evaluation of the number and distribution of carbon nanotubes in a carbon nanotube aggregate The number of carbon nanotube layers and the number distribution of carbon nanotubes in the aggregate of carbon nanotubes were measured by a scanning electron microscope (SEM) and / or a transmission electron microscope (TEM). From the obtained carbon nanotube aggregate, at least 10 or more, preferably 20 or more carbon nanotubes were observed by SEM and / or TEM, the number of layers of each carbon nanotube was examined, and a layer number distribution was created.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Measurement with a time-of-flight secondary ion mass spectrometer was performed as follows. Place the particulate FeOx (diameter: 10 ⁇ m to 140 ⁇ m) on the sample fixing member for the time-of-flight secondary ion mass spectrometer, remove excess particles with a blower, and fix the sample on a dedicated sample stage. Measurement was performed with a time-type secondary ion mass spectrometer (“TOF-SIMS5” manufactured by ION-TOF). The measurement conditions were as follows.
  • Irradiated primary ions Bi 3 + Primary ion acceleration voltage: 25 kV Measurement area: 150 ⁇ m square Evaluation of the degree of contamination of the sample in measurement using a time-of-flight secondary ion mass spectrometer was performed according to the following criteria.
  • peeling when performing measurement with a time-of-flight secondary ion mass spectrometer, the case where the sample could not be fixed due to insufficient adhesion was evaluated as “peeling”.
  • Example 1 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) is filled in the tube, and left for 10 minutes to grow carbon nanotubes on the substrate.
  • Example 2 An Al thin film (thickness 10 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this Al thin film, an Fe thin film (thickness 1 nm) was further vapor-deposited by a sputtering apparatus (ULVAC, RFS-200). Thereafter, this substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (90/50 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 90/50 sccm
  • Example 3 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) and left for 15 minutes to grow carbon nanotubes on the substrate.
  • an aggregate (3) of carbon nanotubes in which are aligned in the length direction was obtained.
  • the length of the carbon nanotube with which the carbon nanotube aggregate (3) is provided was 300 ⁇ m.
  • the distribution width of the number distribution is 17 layers (4 to 20 layers), and the mode value is present in 4 layers and 8 layers, The frequencies were 20% and 20%, respectively.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (3) as a sample fixing member (3) for a time-of-flight secondary ion mass spectrometer, and the results are summarized in Table 1.
  • Example 4 An Al thin film (thickness 10 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this Al thin film, an Fe thin film (thickness 1 nm) was further vapor-deposited by a sputtering apparatus (ULVAC, RFS-200). Thereafter, this substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (90/50 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 90/50 sccm
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) and left standing for 30 minutes to grow carbon nanotubes on the substrate.
  • a mixed gas of helium / hydrogen / ethylene 85/50/5 sccm, moisture content 600 ppm
  • Example 5 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) was filled into the tube, and left for 30 minutes to grow carbon nanotubes on the substrate.
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) is filled in the tube, and left for 5 minutes to grow carbon nanotubes on the substrate.
  • the carbon nanotubes included in the carbon nanotube aggregate (C1) had a length of 90 ⁇ m.
  • the distribution width of the number distribution is 17 layers (4 to 20 layers), and the mode values are present in 4 layers and 8 layers.
  • the frequencies were 20% and 20%, respectively.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (C1) as a sample fixing member (C1) for a time-of-flight secondary ion mass spectrometer, and the results are summarized in Table 1.
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) and left for 6 minutes to grow carbon nanotubes on the substrate.
  • a carbon nanotube aggregate (C2) in which is oriented in the length direction was obtained.
  • the carbon nanotubes included in the carbon nanotube aggregate (C2) had a length of 120 ⁇ m.
  • the mode value was present in two layers, and the relative frequency was 75%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (C2) as a sample fixing member (C2) for a time-of-flight secondary ion mass spectrometer, and the results are summarized in Table 1.
  • a polyester adhesive tape (No. 31: manufactured by Nitto Denko Corporation) was used as a sample fixing member for a time-of-flight secondary ion mass spectrometer, and various evaluations were performed.
  • the sample fixing member for a time-of-flight secondary ion mass spectrometer of the present invention can be suitably used as a member for fixing a sample to be measured in a time-of-flight secondary ion mass spectrometer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

 固体試料の汚染を防止でき、固体試料を安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの正確な検出を可能とする、飛行時間型二次イオン質量分析装置用の試料固定部材を提供する。 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。

Description

飛行時間型二次イオン質量分析装置用試料固定部材
 本発明は、飛行時間型二次イオン質量分析装置用試料固定部材に関する。詳細には、飛行時間型二次イオン質量分析装置(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)において測定対象試料を固定するための部材に関する。
 飛行時間型二次イオン質量分析装置(TOF-SIMS)は、固体試料の表面にどのような成分(原子、分子)が存在するかを調べるための装置であり、ppmオーダーの極微量成分を検出することができ、有機物、無機物に適用できる。また、飛行時間型二次イオン質量分析装置(TOF-SIMS)によれば、固体試料の最表面に存在する成分の分布を調べることもできる(例えば、特許文献1参照)。
 飛行時間型二次イオン質量分析装置においては、高真空中で、高速のイオンビーム(一次イオン)を固体試料の表面にぶつけることで、スパッタリング現象によって表面の構成成分がはじき飛ばされる。このとき発生する正または負の電荷を帯びたイオン(二次イオン)を電場によって一方向に飛ばして、一定距離離れた位置で検出する。スパッタの際には、固体試料の表面の組成に応じて様々な質量をもった二次イオンが発生し、軽いイオンほど速い速度で、重いイオンほど遅い速度で飛んでいくので、二次イオンが発生してから検出されるまでの時間(飛行時間)を測定すれば、発生した二次イオンの質量を計算することができる。これが、飛行時間型二次イオン質量分析装置の原理である。
 飛行時間型二次イオン質量分析装置においては、測定対象となる固体試料を粘着剤や接着剤などの固定部材に固定させて測定を行う。しかし、従来の粘着剤や接着剤などの固定部材を用いた場合、それに由来する有機成分が固体試料に付着してしまい、固体試料の汚染が生じる。このような汚染は、固体試料が粉体などの場合に特に顕著である。飛行時間型二次イオン質量分析装置においては、固体試料の表面におけるppmオーダーの極微量成分を検出するので、該固体試料の表面のわずかな汚染が二次イオンの発生を妨げたりしてしまい、正確な検出ができないという問題がある。
特開2008-175654号公報
 本発明の課題は、固体試料の汚染を防止でき、固体試料を安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの正確な検出を可能とする、飛行時間型二次イオン質量分析装置用の試料固定部材を提供することにある。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。
 好ましい実施形態においては、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、室温におけるガラス面に対するせん断接着力が10N/cm以上である。
 好ましい実施形態においては、上記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。
 好ましい実施形態においては、上記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。
 好ましい実施形態においては、上記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。
 好ましい実施形態においては、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、基材を含む。
 本発明によれば、固体試料の汚染を防止でき、固体試料を安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの正確な検出を可能とする、飛行時間型二次イオン質量分析装置用の試料固定部材を提供することができる。
本発明の好ましい実施形態における飛行時間型二次イオン質量分析装置用試料固定部材の一例の概略断面図である。 本発明の好ましい実施形態における飛行時間型二次イオン質量分析装置用試料固定部材がカーボンナノチューブ集合体を含む場合の該カーボンナノチューブ集合体の製造装置の概略断面図である。
≪飛行時間型二次イオン質量分析装置用試料固定部材≫
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。本発明の飛行時間型二次イオン質量分析装置用試料固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含むことにより、固体試料の汚染を防止でき、固体試料を安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの正確な検出を可能とする。本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、上記繊維状柱状構造体のみからなる部材であっても良いし、上記繊維状柱状構造体と飛行時間型二次イオン質量分析装置用試料の固定に好ましく用い得る任意の適切な材料とからなる部材であっても良い。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、飛行時間型二次イオン質量分析装置において測定試料を接着固定させるための部材であり、その大きさや形状は、使用する飛行時間型二次イオン質量分析装置の種類に応じて、適宜選択し得る。
 上記繊維状柱状構造体は、複数の繊維状柱状物を備える集合体である。上記繊維状柱状構造体は、好ましくは、長さLの複数の繊維状柱状物を備える集合体である。図1に、本発明の好ましい実施形態における飛行時間型二次イオン質量分析装置用試料固定部材の一例の概略断面図を示す。
 図1において、繊維状柱状構造体10は、基材1と、複数の繊維状柱状物2を備える。繊維状柱状物2の片端2aは、基材1に固定されている。繊維状柱状物2は、長さLの方向に配向している。繊維状柱状物2は、好ましくは、基材1に対して略垂直方向に配向している。ここで、「略垂直方向」とは、基材1の面に対する角度が、好ましくは90°±20°であり、より好ましくは90°±15°であり、さらに好ましくは90°±10°であり、特に好ましくは90°±5°である。なお、本図示例とは異なり、繊維状柱状構造体10は複数の繊維状柱状物2のみからなる集合体であっても良い。すなわち、繊維状柱状構造体10は基材1を備えていなくても良い。この場合、複数の繊維状柱状物2は、互いに、例えば、ファンデルワールス力によって集合体として存在し得る。
 上記長さLは、200μm以上であり、好ましくは200μm~2000μmであり、より好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記長さLが上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染を防止でき、固体試料を安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの正確な検出を可能とする。なお、上記長さLは、後述の方法によって測定される。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、室温におけるガラス面に対するせん断接着力が、好ましくは10N/cm以上であり、より好ましくは10N/cm~200N/cm、さらに好ましくは15N/cm~200N/cm、特に好ましくは20N/cm~200N/cm、最も好ましくは25N/cm~200N/cmである。上記せん断接着力が上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料をより安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンのより正確な検出を可能とする。なお、上記せん断接着力は、後述の方法によって測定される。
 上記繊維状柱状物の材料としては、任意の適切な材料を採用し得る。例えば、アルミ、鉄などの金属;シリコンなどの無機材料;カーボンナノファイバー、カーボンナノチューブなどのカーボン材料;エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどの高モジュラスの樹脂;などが挙げられる。樹脂の具体例としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリイミド、ポリアミドなどが挙げられる。樹脂の分子量などの諸物性は、本発明の目的を達成しうる範囲において、任意の適切な物性を採用し得る。
 上記基材としては、目的に応じて、任意の適切な基材を採用し得る。例えば、石英ガラス、シリコン(シリコンウェハなど)、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどが挙げられる。エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックの具体例としては、ポリイミド、ポリエチレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリプロピレン、ポリアミドなどが挙げられる。これらの基材の分子量などの諸物性は、本発明の目的を達成し得る範囲において、任意の適切な物性を採用し得る。
 上記繊維状柱状物の直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記繊維状柱状物の直径が上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより防止でき、固体試料をより安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンのより正確な検出を可能とする。
 上記基材の厚みは、目的に応じて、任意の適切な値に設定され得る。
 上記基材の表面は、隣接する層との密着性、保持性などを高めるために、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的または物理的処理、下塗剤(例えば、上記粘着性物質)によるコーティング処理が施されていてもよい。
 上記基材は単層であっても良いし、多層体であっても良い。
 本発明においては、上記繊維状柱状構造体は、好ましくは、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。この場合、上記繊維状柱状物は、好ましくは、カーボンナノチューブである。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、上記カーボンナノチューブ集合体のみからなっていても良いし、上記カーボンナノチューブ集合体と任意の適切な部材からなっていても良い。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含み、上記基材をも含む場合は、該カーボンナノチューブの片端が該基材に固定されていても良い。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含む場合であって、基材を含む場合、該カーボンナノチューブを基材に固定する方法としては、任意の適切な方法を採用し得る。例えば、カーボンナノチューブ集合体の製造に使用した基板を基材としてそのまま用いてもよい。また、基材に接着層を設けてカーボンナノチューブに固定してもよい。さらに、基材が熱硬化性樹脂の場合は、反応前の状態で薄膜を作製し、カーボンナノチューブの一端を薄膜層に圧着させた後、硬化処理を行って固定すれば良い。また、基材が熱可塑性樹脂や金属などの場合は、溶融した状態で繊維状柱状構造体の一端を圧着させた後、室温まで冷却して固定すれば良い。
≪カーボンナノチューブ集合体≫
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が繊維状柱状構造体を含む場合、該繊維状柱状構造体は好ましくはカーボンナノチューブ集合体である。本発明の飛行時間型二次イオン質量分析装置用試料固定部材がカーボンナノチューブ集合体を含む場合、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染を効果的に防止でき、固体試料をより一層安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンのより一層正確な検出を可能とする。
<第1の好ましい実施形態>
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の好ましい実施形態の1つ(以下、第1の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。
 上記カーボンナノチューブの層数分布の分布幅は10層以上であり、好ましくは10層~30層であり、より好ましくは10層~25層であり、さらに好ましくは10層~20層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記層数分布の最頻値の相対頻度は、25%以下であり、好ましくは1%~25%であり、より好ましくは5%~25%であり、さらに好ましくは10%~25%であり、特に好ましくは15%~25%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記カーボンナノチューブの長さが上記範囲内に収まることにより、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記カーボンナノチューブの直径が上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
<第2の好ましい実施形態>
 本発明の飛行時間型二次イオン質量分析装置用固定部材が含み得るカーボンナノチューブ集合体の好ましい実施形態の別の1つ(以下、第2の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。
 上記カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記層数分布の最頻値の相対頻度は、30%以上であり、好ましくは30%~100%であり、より好ましくは30%~90%であり、さらに好ましくは30%~80%であり、特に好ましくは30%~70%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記層数分布の最頻値は、層数10層以下に存在し、好ましくは層数1層から層数10層に存在し、より好ましくは層数2層から層数8層に存在し、さらに好ましくは層数2層から層数6層に存在する。本発明において、上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記カーボンナノチューブの長さが上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記カーボンナノチューブの直径が上記範囲内に収まることにより、本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
≪カーボンナノチューブ集合体の製造方法≫
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造方法としては、例えば、平滑な基板の上に触媒層を構成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、基板からほぼ垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。この場合、例えば、基板を取り除けば、長さ方向に配向しているカーボンナノチューブ集合体が得られる。
 上記基板としては、任意の適切な基板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。上記基板は、そのまま、本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体が備え得る基材として用いることができる。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図2に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体を製造する際、必要に応じて、基板と触媒層の中間にアルミナ/親水性膜を設けても良い。
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、基板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。基板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、基板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みが上記範囲内にあることによって、該カーボンナノチューブ集合体は優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブ集合体は優れた粘着特性を示し得る。したがって、このようなカーボンナノチューブ集合体を用いた飛行時間型二次イオン質量分析装置用試料固定部材は、固体試料の汚染をより効果的に防止でき、固体試料を非常に安定的に固定でき、飛行時間型二次イオン質量分析装置において二次イオンの非常に正確な検出を可能とする。
 触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を基板上に塗布する方法などが挙げられる。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材が含み得るカーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、各種評価や測定は、以下の方法により行った。
<繊維状柱状物の長さLの測定>
 繊維状柱状物の長さLは、走査型電子顕微鏡(SEM)によって測定した。
<飛行時間型二次イオン質量分析装置用試料固定部材のせん断接着力の測定>
 ガラス(MATSUNAMI スライドガラス27mm×56mm)に、1cm単位面積に切り出した飛行時間型二次イオン質量分析装置用試料固定部材の先端(飛行時間型二次イオン質量分析装置用試料固定部材がカーボンナノチューブ集合体を含む場合は、カーボンナノチューブの先端)が接触するように載置し、5kgのローラーを一往復させて飛行時間型二次イオン質量分析装置用試料固定部材の先端をガラスに圧着した。その後、30分間放置した。引張り試験機(Instro Tensil Tester)で引張速度50mm/minにて、室温(25℃)にてせん断試験を行い、得られたピークをせん断接着力とした。
<カーボンナノチューブ集合体におけるカーボンナノチューブの層数・層数分布の評価>
 カーボンナノチューブ集合体におけるカーボンナノチューブの層数および層数分布は、走査型電子顕微鏡(SEM)および/または透過電子顕微鏡(TEM)によって測定した。得られたカーボンナノチューブ集合体の中から少なくとも10本以上、好ましくは20本以上のカーボンナノチューブをSEMおよび/またはTEMにより観察し、各カーボンナノチューブの層数を調べ、層数分布を作成した。
<飛行時間型二次イオン質量分析装置による測定および評価>
 飛行時間型二次イオン質量分析装置による測定は下記のように行った。
 飛行時間型二次イオン質量分析装置用試料固定部材の上に、粒子状FeOx(直径:10μm~140μm)を載せ、過剰な粒子をブロアーで除去したのち、専用の試料台に固定して、飛行時間型二次イオン質量分析装置(ION-TOF製、「TOF-SIMS5」)にて測定した。
 測定条件は下記の通りとした。
   照射した一次イオン:Bi
   一次イオン加速電圧:25kV
   測定面積:150μm角
 飛行時間型二次イオン質量分析装置による測定における、試料の汚染の度合いの評価は下記の基準で行った。
 ○:正イオン/HFeOが50未満、且つ、負イオン/FeO が30未満。
 ×:正イオン/HFeOが50以上、または、負イオン/FeO が30以上。
 なお、飛行時間型二次イオン質量分析装置による測定を行う際に、接着力不足によって試料固定が不可能であった場合を、「はがれ」と評価した。
[実施例1]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、10分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(1)を得た。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの長さは200μmであった。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(1)を飛行時間型二次イオン質量分析装置用試料固定部材(1)として、各種評価を行い、結果を表1にまとめた。
[実施例2]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、10分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(2)を得た。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの長さは200μmであった。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(2)を飛行時間型二次イオン質量分析装置用試料固定部材(2)として、各種評価を行い、結果を表1にまとめた。
[実施例3]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、15分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(3)を得た。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの長さは300μmであった。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(3)を飛行時間型二次イオン質量分析装置用試料固定部材(3)として、各種評価を行い、結果を表1にまとめた。
[実施例4]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、30分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(4)を得た。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの長さは600μmであった。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(4)を飛行時間型二次イオン質量分析装置用試料固定部材(4)として、各種評価を行い、結果を表1にまとめた。
[実施例5]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、30分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(5)を得た。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの長さは600μmであった。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(5)を飛行時間型二次イオン質量分析装置用試料固定部材(5)として、各種評価を行い、結果を表1にまとめた。
[比較例1]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、5分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(C1)を得た。
 カーボンナノチューブ集合体(C1)が備えるカーボンナノチューブの長さは90μmであった。
 カーボンナノチューブ集合体(C1)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(C1)を飛行時間型二次イオン質量分析装置用試料固定部材(C1)として、各種評価を行い、結果を表1にまとめた。
[比較例2]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、6分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(C2)を得た。
 カーボンナノチューブ集合体(C2)が備えるカーボンナノチューブの長さは120μmであった。
 カーボンナノチューブ集合体(C2)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(C2)を飛行時間型二次イオン質量分析装置用試料固定部材(C2)として、各種評価を行い、結果を表1にまとめた。
[比較例3]
 飛行時間型二次イオン質量分析装置用試料固定部材として導電性カーボン両面テープ(731:日新EM(株)製)を用い、各種評価を行い、結果を表1にまとめた。
[比較例4]
 飛行時間型二次イオン質量分析装置用試料固定部材としてポリエステル粘着テープ(No.31:日東電工(株)製)を用い、各種評価を行い、結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 本発明の飛行時間型二次イオン質量分析装置用試料固定部材は、飛行時間型二次イオン質量分析装置において測定対象試料を固定するための部材に好適に用いることができる。
10    繊維状柱状構造体
1     基材
2     繊維状柱状物
2a    繊維状柱状物の片端

Claims (6)

  1.  長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む、飛行時間型二次イオン質量分析装置用試料固定部材。
  2.  室温におけるガラス面に対するせん断接着力が10N/cm以上である、請求項1に記載の飛行時間型二次イオン質量分析装置用試料固定部材。
  3.  前記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である、請求項1または2に記載の飛行時間型二次イオン質量分析装置用試料固定部材。
  4.  前記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である、請求項3に記載の飛行時間型二次イオン質量分析装置用試料固定部材。
  5.  前記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である、請求項3に記載の飛行時間型二次イオン質量分析装置用試料固定部材。
  6.  基材を含む、請求項1から5までのいずれかに記載の飛行時間型二次イオン質量分析装置用試料固定部材。
     
PCT/JP2013/051805 2012-02-03 2013-01-29 飛行時間型二次イオン質量分析装置用試料固定部材 WO2013115145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13743829.7A EP2811293A4 (en) 2012-02-03 2013-01-29 SAMPLE FIXING ELEMENT FOR FLYING TIME SECONDARY MASS SPECTROMETERS
US14/374,469 US20140373646A1 (en) 2012-02-03 2013-01-29 Sample fixing member for time-of-flight secondary ion mass spectrometer
KR20147021448A KR20140131324A (ko) 2012-02-03 2013-01-29 비행 시간형 2차 이온 질량 분석 장치용 시료 고정 부재
CN201380007772.1A CN104081195A (zh) 2012-02-03 2013-01-29 飞行时间二次离子质谱分析装置用试样固定部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012021712A JP2013160588A (ja) 2012-02-03 2012-02-03 飛行時間型二次イオン質量分析装置用試料固定部材
JP2012-021712 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013115145A1 true WO2013115145A1 (ja) 2013-08-08

Family

ID=48905184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051805 WO2013115145A1 (ja) 2012-02-03 2013-01-29 飛行時間型二次イオン質量分析装置用試料固定部材

Country Status (6)

Country Link
US (1) US20140373646A1 (ja)
EP (1) EP2811293A4 (ja)
JP (1) JP2013160588A (ja)
KR (1) KR20140131324A (ja)
CN (1) CN104081195A (ja)
WO (1) WO2013115145A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606041B2 (en) 2012-04-19 2017-03-28 Nitto Denko Corporation Particle adsorption probe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153183A (ja) * 2013-02-08 2014-08-25 Nitto Denko Corp 表面支援レーザー脱離イオン化飛行時間型質量分析装置用イオン化支援部材
JP2015184084A (ja) * 2014-03-24 2015-10-22 日東電工株式会社 Sims分析方法およびsims分析装置
EP3082148A1 (en) * 2015-04-15 2016-10-19 FEI Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091020A (ja) * 2004-09-24 2006-04-06 Agilent Technol Inc ターゲット支持体
JP2007535106A (ja) * 2004-04-27 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 試料分析へのカーボンナノチューブの利用
JP2008175654A (ja) 2007-01-17 2008-07-31 Asahi Kasei Corp Tof−simsを用いた混合有機化合物の組成割合の特定方法
WO2009128342A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2011077784A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005399B1 (ko) * 2008-04-16 2010-12-30 닛토덴코 가부시키가이샤 섬유상 기둥형상 구조체 집합체 및 그것을 이용한 점착 부재
CN102159499B (zh) * 2008-09-18 2013-07-24 日东电工株式会社 碳纳米管集合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007535106A (ja) * 2004-04-27 2007-11-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 試料分析へのカーボンナノチューブの利用
JP2006091020A (ja) * 2004-09-24 2006-04-06 Agilent Technol Inc ターゲット支持体
JP2008175654A (ja) 2007-01-17 2008-07-31 Asahi Kasei Corp Tof−simsを用いた混合有機化合物の組成割合の特定方法
WO2009128342A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2011077784A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811293A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606041B2 (en) 2012-04-19 2017-03-28 Nitto Denko Corporation Particle adsorption probe

Also Published As

Publication number Publication date
JP2013160588A (ja) 2013-08-19
EP2811293A4 (en) 2015-10-21
KR20140131324A (ko) 2014-11-12
US20140373646A1 (en) 2014-12-25
EP2811293A1 (en) 2014-12-10
CN104081195A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
US8900701B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
US8025971B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
WO2013115145A1 (ja) 飛行時間型二次イオン質量分析装置用試料固定部材
JP2014098107A (ja) 宇宙空間で用いる把持材料
JP5199753B2 (ja) カーボンナノチューブ集合体の製造方法
JP2012162437A (ja) 繊維状柱状構造体集合体および放熱部材
JP2014153183A (ja) 表面支援レーザー脱離イオン化飛行時間型質量分析装置用イオン化支援部材
WO2014034489A1 (ja) 分析用除電部材
JP5893374B2 (ja) カーボンナノチューブ集合体およびそれを用いた粘弾性体
WO2013115144A1 (ja) 原子間力顕微鏡用試料固定部材
WO2013115146A1 (ja) ナノインデンター用試料固定部材
JP2014126470A (ja) オージェ電子分光分析装置用試料固定部材
WO2015146614A1 (ja) Sims分析方法およびsims分析装置
WO2013084581A1 (ja) 粘弾性体
JP2014200769A (ja) 吸着材
WO2016031616A1 (ja) 高速液体クロマトグラフィー用試料サンプリング材
JP2014215272A (ja) 微粒子分離部材
JP5892778B2 (ja) 広温度領域用粘弾性体
JP5892777B2 (ja) 低アウトガス粘弾性体
WO2016031618A1 (ja) クリーニング部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743829

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013743829

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013743829

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374469

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147021448

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE