WO2013084581A1 - 粘弾性体 - Google Patents

粘弾性体 Download PDF

Info

Publication number
WO2013084581A1
WO2013084581A1 PCT/JP2012/075981 JP2012075981W WO2013084581A1 WO 2013084581 A1 WO2013084581 A1 WO 2013084581A1 JP 2012075981 W JP2012075981 W JP 2012075981W WO 2013084581 A1 WO2013084581 A1 WO 2013084581A1
Authority
WO
WIPO (PCT)
Prior art keywords
viscoelastic body
carbon nanotube
carbon nanotubes
present
nanotube aggregate
Prior art date
Application number
PCT/JP2012/075981
Other languages
English (en)
French (fr)
Inventor
前野 洋平
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011268980A external-priority patent/JP5892777B2/ja
Priority claimed from JP2011268981A external-priority patent/JP5892778B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201280060218.5A priority Critical patent/CN103974901A/zh
Priority to US14/359,447 priority patent/US20140335353A1/en
Priority to KR1020147014891A priority patent/KR20140112477A/ko
Publication of WO2013084581A1 publication Critical patent/WO2013084581A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the present invention relates to a viscoelastic body. Specifically, the present invention relates to a viscoelastic body having a small outgas amount and a viscoelastic body exhibiting excellent viscoelasticity in a wide temperature range.
  • viscoelastic bodies have an excellent balance between elasticity and viscosity, they are useful as adhesive materials, and are actively researched and developed in various industrial fields.
  • a pressure-sensitive adhesive made of a viscoelastic body wets and adheres to the adherend due to its low modulus and develops adhesive strength.
  • acrylic resin, rubber resin, silicone resin, and the like are generally used as the material for the adhesive.
  • a high molecular weight material of an organic material as described above is conventionally used, but a low molecular weight material remains in the pressure-sensitive adhesive as a solvent or by-product for increasing the molecular weight. .
  • a pressure-sensitive adhesive material is used under high temperature conditions, reduced pressure or vacuum conditions, or when used in a sealed space, the above-mentioned solvent or low molecular weight substance is generated as outgas, resulting in odor. Problems such as generation, contamination to other materials, and deterioration of adhesive properties occur. Further, under the high temperature conditions, the organic material itself as described above is decomposed, and this decomposition causes a problem that outgas is generated.
  • a specific cross-linked acrylic resin has been reported as a material for the pressure-sensitive adhesive with reduced outgas generation (see Patent Document 1).
  • this material is also a high molecular weight organic material as described above, it can only reduce the amount of outgas generated when heated at 120 ° C. for 1 hour, and can also reduce the amount of outgas generated under higher temperature conditions. It is not a thing.
  • the viscoelastic behavior varies depending on the melting point, glass transition temperature (Tg), and the like (Patent Document 2). reference).
  • Tg glass transition temperature
  • Patent Document 2 the viscoelastic behavior is prepared such that G ′ in the elastic spectrum evaluation is constant at 1.0 ⁇ 10 6 Pa or less.
  • the conventional viscoelastic body has a strong tack, it adheres easily to a smooth surface and is difficult to handle.
  • the viscoelastic body of the present invention has an outgas amount of 20 mg / cm 3 or less when stored at 400 ° C. for 1 hour.
  • the viscoelastic body of the present invention has a G ′ of 1.0 ⁇ 10 6 Pa or less in the pressure-sensitive viscoelastic spectrum evaluation in a temperature range of ⁇ 150 ° C. to 500 ° C.
  • the viscoelastic body of the present invention has a G ′ in the compression-type viscoelastic spectrum evaluation at ⁇ 150 ° C. and 500 ° C., and the G ′ in the compression-type viscoelastic spectrum evaluation at 25 ° C. It is within the range of 0.01 to 100 times of '.
  • the viscoelastic body of the present invention has a probe tack in a probe tack test of 200 gf or less at 25 ° C.
  • the viscoelastic body of the present invention includes a fibrous columnar structure.
  • the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the carbon nanotube has a length of 50 ⁇ m or more.
  • the viscoelastic body of the present invention includes a substrate. In a preferred embodiment, the viscoelastic body of the present invention is used for an analytical instrument.
  • the present invention it is possible to provide a viscoelastic body having a small tack, excellent handleability, and a low outgas generation amount even under high temperature conditions. Further, according to the present invention, it is possible to provide a viscoelastic body having a small tack, excellent handleability, and excellent viscoelasticity in a wide temperature range from a low temperature to a high temperature.
  • One of the preferable embodiments of the viscoelastic body of the present invention has an outgas amount of 20 mg / cm 3 or less when stored at 400 ° C. for 1 hour.
  • the amount of outgas is preferably 10 mg / cm 3 or less, more preferably 5 mg / cm 3 or less, and even more preferably 1 mg / cm 3 or less.
  • G ′ in the pressure-sensitive viscoelastic spectrum evaluation is 1.0 ⁇ 10 6 Pa or less in a temperature range of ⁇ 150 ° C. to 500 ° C.
  • G ′ is preferably 1.0 ⁇ 10 2 Pa to 5.0 ⁇ 10 5 Pa, more preferably 1.0 ⁇ 10 3 Pa to 5.0 ⁇ 10 5 Pa, and still more preferably 1 0.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 5 Pa.
  • G ′ in the compression-type viscoelastic spectrum evaluation is within the above range, so that the viscoelastic body of the present invention has excellent viscoelasticity in a wide temperature range from low temperature to high temperature. Can be shown.
  • G ′ in the compression-type viscoelastic spectrum evaluation at ⁇ 150 ° C. and 500 ° C. is 0.01 times that of G ′ in the compression-type viscoelastic spectrum evaluation at 25 ° C. It is preferably in the range of 100 times. This range is more preferably in the range of 0.1 to 50 times, and still more preferably in the range of 1 to 10 times. Since G ′ in the pressure-sensitive viscoelastic spectrum evaluation at ⁇ 150 ° C. and 500 ° C. falls within the above range with respect to G ′ in the pressure-sensitive viscoelastic spectrum evaluation at 25 ° C., the present invention The viscoelastic body can exhibit excellent viscoelasticity in a wide temperature range from low temperature to high temperature.
  • the viscoelastic body of the present invention has a probe tack in a probe tack test at 25 ° C. of preferably 200 gf or less, more preferably 10 gf to 200 gf, still more preferably 20 gf to 195 gf, particularly preferably 30 gf to 190 gf.
  • the viscoelastic body of this invention has a moderate tack, and a handleability becomes favorable.
  • the viscoelastic body of the present invention can preferably selectively collect particles having a specific particle size.
  • the “particle diameter” refers to a portion having the smallest particle diameter.
  • the viscoelastic body of the present invention is preferably capable of selectively collecting particles having a particle diameter of less than 500 ⁇ m.
  • adhered collection in the present invention means that the viscoelastic body of the present invention is pressure-bonded to particles that are adherends so that the particles are adhered to the viscoelastic body and collected.
  • the degree of pressure-bonding can be appropriately set according to the purpose, and for example, pressure-bonding by reciprocating once with a 5 kg roller can be mentioned.
  • the viscoelastic body of the present invention is preferably capable of selectively adsorbing and collecting particles having a particle size of 200 ⁇ m or less.
  • “adsorption sampling” in the present invention means that the particles are adsorbed to the viscoelastic body and collected without adhering the viscoelastic body of the present invention to the adherend particles. .
  • the particles as the adherend are brought into contact with the viscoelastic body at a low collision speed (for example, 1 m / s) to adsorb the particles to the viscoelastic body.
  • the contained gas component may be removed in advance under a high temperature environment, a reduced pressure environment or a vacuum environment before use.
  • the viscoelastic body of the present invention is previously exposed to a high temperature environment, a reduced pressure environment or a vacuum environment before use, its properties as a viscoelastic body are unlikely to be impaired.
  • the viscoelastic body of the present invention preferably includes a fibrous columnar structure.
  • any appropriate material can be adopted as the material of the fibrous columnar structure.
  • examples thereof include metals such as aluminum and iron; inorganic materials such as silicon; carbon materials such as carbon nanofibers and carbon nanotubes; and high modulus resins such as engineering plastics and super engineering plastics.
  • Specific examples of the resin include polystyrene, polyethylene, polypropylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polyimide, polyamide, and the like.
  • Any appropriate physical properties can be adopted as the physical properties such as the molecular weight of the resin as long as the object of the present invention can be achieved.
  • the length of the fibrous columnar structure is preferably 1 ⁇ m to 10,000 ⁇ m, more preferably 10 ⁇ m to 5000 ⁇ m, still more preferably 30 ⁇ m to 3000 ⁇ m, particularly preferably 50 ⁇ m to 2000 ⁇ m, and most preferably 100 ⁇ m. ⁇ 2000 ⁇ m.
  • the length of the fibrous columnar structure falls within the above range, it is possible to provide a viscoelastic body having a small tack and excellent handleability, and having a low outgas generation amount even under high temperature conditions. It is possible to provide a viscoelastic body having a small tack, excellent handleability, and excellent viscoelasticity in a wide temperature range from low temperature to high temperature.
  • the diameter of the fibrous columnar structure is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the diameter of the fibrous columnar structure falls within the above range, it is possible to provide a viscoelastic body having a small tack and excellent handleability, and generating a small amount of outgas even under high temperature conditions. Therefore, it is possible to provide a viscoelastic body that is small and excellent in handleability and exhibits excellent viscoelasticity in a wide temperature range from low temperature to high temperature.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the viscoelastic body of the present invention may be composed only of a carbon nanotube aggregate, or may be composed of a carbon nanotube aggregate and any appropriate member.
  • the viscoelastic body of the present invention may contain a base material. At this time, when the viscoelastic body of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes, one end of the carbon nanotube may be fixed to the base material.
  • any appropriate base material can be adopted depending on the purpose.
  • examples thereof include quartz glass, silicon (silicon wafer, etc.), engineering plastic, super engineering plastic, and the like.
  • engineering plastics and super engineering plastics include polyimide, polyethylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polypropylene, and polyamide. Any appropriate physical properties can be adopted as the physical properties such as molecular weight of these base materials within a range in which the object of the present invention can be achieved.
  • the thickness of the base material can be set to any appropriate value depending on the purpose.
  • the thickness in the case of a silicon substrate, the thickness is preferably 100 ⁇ m to 10,000 ⁇ m, more preferably 100 ⁇ m to 5000 ⁇ m, and still more preferably 100 ⁇ m to 2000 ⁇ m.
  • the thickness in the case of a polypropylene substrate, the thickness is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 1 ⁇ m to 500 ⁇ m, and further preferably 5 ⁇ m to 100 ⁇ m.
  • the surface of the base material is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Or a physical treatment or a coating treatment with a primer (for example, the above-mentioned adhesive substance) may be applied.
  • conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, ionizing radiation treatment, etc.
  • a physical treatment or a coating treatment with a primer for example, the above-mentioned adhesive substance
  • the base material may be a single layer or a multilayer body.
  • the viscoelastic body of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes and includes a base material
  • any appropriate method is adopted as a method of fixing the carbon nanotube to the base material.
  • the substrate used for manufacturing the carbon nanotube aggregate may be used as it is as a base material.
  • an adhesive layer may be provided on the base material and fixed to the carbon nanotube.
  • the substrate is a thermosetting resin
  • a thin film is prepared in a state before the reaction, and one end of the carbon nanotube is bonded to the thin film layer, and then cured and fixed.
  • the base material is a thermoplastic resin or a metal
  • the substrate after crimping one end of the fibrous columnar structure in a molten state, the substrate may be cooled and fixed to room temperature.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate.
  • the viscoelastic body of the present invention includes an aggregate of carbon nanotubes
  • the viscoelastic body of the present invention has a small tack and a better handling property, and generates a smaller amount of outgas even under high temperature conditions.
  • the viscoelastic body of the present invention includes an aggregate of carbon nanotubes
  • the viscoelastic body of the present invention has a small tack and excellent handling properties, and further exhibits excellent viscoelasticity in a wide temperature range from low temperature to high temperature. Show.
  • FIG. 1 is a schematic cross-sectional view of an example when the viscoelastic body according to a preferred embodiment of the present invention is a carbon nanotube aggregate (the scale is not accurately described in order to clarify each component).
  • the carbon nanotube aggregate 10 includes a base material 1 and carbon nanotubes 2. One end 2 a of the carbon nanotube 2 is fixed to the substrate 1.
  • the carbon nanotubes 2 are oriented in the length direction L.
  • the carbon nanotubes 2 are preferably oriented in a direction substantially perpendicular to the substrate 1.
  • the carbon nanotubes can exist as aggregates by van der Waals forces with each other. It may be an aggregate not equipped.
  • any appropriate base material can be adopted as the base material depending on the purpose.
  • a base material what was demonstrated above is mentioned as a base material which the viscoelastic body of this invention can contain, for example.
  • One preferred embodiment of the aggregate of carbon nanotubes that can be included in the viscoelastic body of the present invention includes a plurality of carbon nanotubes, and the carbon nanotubes are in multiple layers.
  • the distribution width of the wall number distribution of the carbon nanotubes is 10 or more, the relative frequency of the mode of the wall number distribution is 25% or less, and the length of the carbon nanotubes is greater than 10 ⁇ m.
  • the distribution width of the number distribution of carbon nanotubes is 10 or more, preferably 10 to 30 layers, more preferably 10 to 25 layers, and further preferably 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 5 to 30 layers, more preferably 10 to 30 layers, still more preferably 15 to 30 layers, and particularly preferably 15 layers to 30 layers. There are 25 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the relative frequency of the mode value of the layer number distribution is 25% or less, preferably 1% to 25%, more preferably 5% to 25%, and further preferably 10% to 25%. Particularly preferably, it is 15% to 25%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the mode value of the layer number distribution is preferably from 2 to 10 layers, and more preferably from 3 to 10 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a nanotube aggregate. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Another preferred embodiment of the aggregate of carbon nanotubes that can be included in the viscoelastic body of the present invention includes a plurality of carbon nanotubes,
  • the mode of the number distribution of the carbon nanotubes is present in the number of layers of 10 or less, the relative frequency of the mode is 30% or more, and the length of the carbon nanotube is 10 ⁇ m. It is less than 500 ⁇ m.
  • the distribution width of the number distribution of the carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably 3 to 8 layers. It is.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the relative frequency of the mode value of the layer number distribution is 30% or more, preferably 30% to 100%, more preferably 30% to 90%, and further preferably 30% to 80%. Particularly preferably, it is 30% to 70%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the mode value of the layer number distribution is present in 10 layers or less, preferably in 1 layer to 10 layers, more preferably in 2 layers to 8 layers, More preferably, it exists in 2 to 6 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting characteristics. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Method for producing aggregate of carbon nanotubes Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate that can be included in the viscoelastic body of the present invention.
  • a catalyst layer is formed on a smooth substrate, and a carbon source is filled in a state where the catalyst is activated by heat, plasma, or the like.
  • CVD chemical vapor deposition
  • any appropriate substrate can be adopted as the substrate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • substrate can be used as a base material which the carbon nanotube aggregate
  • any suitable device can be adopted as a device for producing a carbon nanotube aggregate that can be included in the viscoelastic body of the present invention.
  • a thermal CVD apparatus as shown in FIG. 2, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace can be cited.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • any suitable catalyst can be used as the catalyst (catalyst layer material) that can be used in the production of the carbon nanotube aggregate that the viscoelastic body of the present invention can contain.
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the substrate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a substrate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is heated up to 450 ° C. and oxidized without forming a hydrophilic film on the substrate, it may be difficult to form Al 2 O 3 surfaces having different particle diameters.
  • a hydrophilic film is produced on a substrate and Al 2 O 3 is directly deposited, it is difficult to form Al 2 O 3 surfaces having different particle diameters.
  • the thickness of the catalyst layer that can be used in the production of the carbon nanotube aggregate that can be included in the viscoelastic body of the present invention is preferably 0.01 nm to 20 nm, and more preferably 0.1 nm to 10 nm in order to form fine particles. .
  • the carbon nanotube aggregate may have excellent mechanical properties and a high specific surface area.
  • the aggregate of carbon nanotubes can exhibit excellent adhesive properties. Therefore, a viscoelastic body that can exhibit excellent viscoelasticity can be provided by using such a carbon nanotube aggregate.
  • Arbitrary appropriate methods can be employ
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a substrate, and the like can be mentioned.
  • Any appropriate carbon source can be used as a carbon source that can be used for producing a carbon nanotube aggregate that can be included in the viscoelastic body of the present invention.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • any appropriate temperature can be adopted as the production temperature in the production of the carbon nanotube aggregate that can be included in the viscoelastic body of the present invention.
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • the viscoelastic body of the present invention can be used for various applications.
  • the viscoelastic body of the present invention has a small tack and excellent handleability, and generates a small amount of outgas under high temperature conditions, reduced pressure conditions or vacuum conditions.
  • the viscoelastic body of the present invention has particularly small tack and excellent handleability, and exhibits excellent viscoelasticity in a wide temperature range from low temperature to high temperature. For this reason, the viscoelastic body of the present invention can be preferably used in the analytical field, the superconducting field, and the like.
  • the number and the distribution of the number of carbon nanotubes in the aggregate of carbon nanotubes of the present invention were measured by a scanning electron microscope (SEM) and / or a transmission electron microscope (TEM). From the obtained carbon nanotube aggregate, at least 10 or more, preferably 20 or more carbon nanotubes were observed by SEM and / or TEM, the number of layers of each carbon nanotube was examined, and a layer number distribution was created.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Probe tack test> A probe tack test was performed under the following conditions, and the maximum value of the adhesive strength was measured.
  • Example 1 An Al thin film (thickness 10 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this Al thin film, an Fe thin film (thickness 0.35 nm) was further vapor-deposited by a sputtering apparatus (ULVAC, RFS-200). Thereafter, this substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (90/50 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 90/50 sccm
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) and left standing for 1 minute to grow carbon nanotubes on the substrate.
  • a mixed gas of helium / hydrogen / ethylene 85/50/5 sccm, moisture content 600 ppm
  • the length of the carbon nanotube provided in the carbon nanotube aggregate (1) was 30 ⁇ m.
  • the mode value was present in one layer, and the relative frequency was 61%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (1) as a viscoelastic body (1), and the results are summarized in Tables 1 and 2.
  • Example 2 Except that the thickness of the Fe thin film was 1 nm, the same procedure as in Example 1 was performed to obtain a carbon nanotube aggregate (2) in which the carbon nanotubes were aligned in the length direction.
  • the carbon nanotubes included in the carbon nanotube aggregate (2) had a length of 30 ⁇ m.
  • the mode value was present in two layers, and the relative frequency was 75%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (2) as a viscoelastic body (2), and the results are summarized in Tables 1 and 2.
  • Example 3 The carbon nanotubes are aligned in the length direction in the same manner as in Example 2 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) is 3 minutes. As a result, an aggregate (3) of carbon nanotubes oriented in the direction was obtained. The length of the carbon nanotubes included in the carbon nanotube aggregate (3) was 50 ⁇ m. In the distribution of the number of carbon nanotubes provided in the carbon nanotube aggregate (3), the mode value was present in two layers, and the relative frequency was 75%. Various evaluations were performed using the obtained carbon nanotube aggregate (3) as a viscoelastic body (3), and the results are summarized in Tables 1 and 2.
  • Example 4 Similar to Example 1, except that the thickness of the Fe thin film was set to 2 nm and the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) was 5 minutes.
  • the carbon nanotube aggregate (4) in which the carbon nanotubes were aligned in the length direction was obtained.
  • the carbon nanotubes included in the carbon nanotube aggregate (4) had a length of 70 ⁇ m.
  • the mode value was present in 7-8 layers, and the relative frequency was 66%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (4) as a viscoelastic body (4), and the results are summarized in Tables 1 and 2.
  • Example 5 Example 1 except that acetylene was used instead of ethylene and the standing time after filling the tube with a mixed gas of helium / hydrogen / acetylene (85/50/5 sccm, moisture content 600 ppm) was 7 minutes.
  • the carbon nanotube aggregate (5) in which the carbon nanotubes were aligned in the length direction was obtained.
  • the length of the carbon nanotube with which the carbon nanotube aggregate (5) is provided was 100 ⁇ m.
  • the mode value was present in 7-8 layers, and the relative frequency was 66%.
  • Example 6 The carbon nanotubes are aligned in the length direction in the same manner as in Example 2 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) is 10 minutes. As a result, an aggregate (6) of carbon nanotubes oriented in the direction was obtained. The length of the carbon nanotubes included in the carbon nanotube aggregate (6) was 200 ⁇ m. In the distribution of the number of carbon nanotubes provided in the carbon nanotube aggregate (6), the mode value was present in two layers, and the relative frequency was 75%.
  • Example 7 The carbon nanotubes were measured in the length direction in the same manner as in Example 1 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) was 20 minutes. Thus, an aggregate (7) of carbon nanotubes oriented in the direction of was obtained. The length of the carbon nanotube with which the carbon nanotube aggregate (7) is provided was 400 ⁇ m. In the distribution of the number of carbon nanotubes provided in the carbon nanotube aggregate (7), the mode value was present in one layer, and the relative frequency was 61%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (7) as a viscoelastic body (7), and the results are summarized in Tables 1 and 2.
  • Example 8 The carbon nanotubes are aligned in the length direction in the same manner as in Example 2 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) is 20 minutes.
  • a mixed gas of helium / hydrogen / ethylene 85/50/5 sccm, moisture content 600 ppm
  • an aggregate (8) of carbon nanotubes oriented in the direction of was obtained.
  • the length of the carbon nanotube with which the carbon nanotube aggregate (8) is provided was 500 ⁇ m.
  • the mode value was present in two layers, and the relative frequency was 75%.
  • Example 9 The carbon nanotubes are aligned in the length direction in the same manner as in Example 4 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) is 40 minutes. As a result, an aggregate (9) of carbon nanotubes oriented in the direction was obtained. The length of the carbon nanotube with which the carbon nanotube aggregate (9) is provided was 800 ⁇ m. In the distribution of the number of carbon nanotubes provided in the carbon nanotube aggregate (9), the mode value was present in three layers, and the relative frequency was 72%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (9) as a viscoelastic body (9), and the results are summarized in Tables 1 and 2.
  • Example 10 The carbon nanotubes are aligned in the length direction in the same manner as in Example 2 except that the standing time after filling the tube with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) is 60 minutes.
  • an aggregate (10) of carbon nanotubes oriented in the direction of was obtained.
  • the length of the carbon nanotube with which the carbon nanotube aggregate (10) is provided was 1200 ⁇ m.
  • the mode value was present in two layers, and the relative frequency was 75%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (10) as a viscoelastic body (10), and the results are summarized in Tables 1 and 2.
  • the viscoelastic body of the present invention has particularly small tack and excellent handleability, and generates a small amount of outgas under high temperature conditions, reduced pressure conditions or vacuum conditions.
  • the viscoelastic body of the present invention has particularly small tack and excellent handleability, and exhibits excellent viscoelasticity in a wide temperature range from low temperature to high temperature. For this reason, the viscoelastic body of the present invention can be preferably used in the analytical field, the superconducting field, and the like.
  • Carbon nanotube aggregate 1 Base material 2 Carbon nanotube 2a One end of carbon nanotube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 タックが小さくて取り扱い性に優れ、高温条件下においてもアウトガス発生量が少ない、粘弾性体を提供する。また、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す、粘弾性体を提供する。 本発明の粘弾性体は、400℃で1時間保管した際のアウトガス量が20mg/cm以下である。また、本発明の粘弾性体は、-150℃から500℃の温度領域において、圧着式の粘弾性スペクトル評価におけるG'が1.0×10Pa以下である。

Description

粘弾性体
 本発明は、粘弾性体に関する。詳細には、アウトガス量の少ない粘弾性体や広温度領域において優れた粘弾性を示す粘弾性体に関する。
 粘弾性体は弾性と粘性との優れたバランスを有するため、粘着剤の材料として有用であり、各種の産業分野において盛んに研究開発が行われている。粘弾性体からなる粘着剤は、そのモジュラスの低さから、被着体にぬれて馴染み、粘着力を発現する。
 従来、粘着剤の材料としては、アクリル系樹脂、ゴム系樹脂、シリコーン系樹脂などが一般に用いられている。
 粘着剤の材料としては、従来、上記に示したような有機材料の高分子量体を用いているが、高分子量化のための溶剤や副生成物として低分子量体が粘着剤に残存している。このため、このような粘着剤の材料を、高温条件下や減圧または真空条件下で用いる場合や、密閉空間で用いる場合には、上記溶剤や低分子量体がアウトガスとして発生してしまい、臭気の発生、他材料への汚染、粘着特性の劣化などの問題が生じてしまう。また、高温条件下においては、上記に示したような有機材料自身が分解されてしまい、この分解によってもアウトガスが発生してしまうという問題が生じてしまう。
 アウトガス発生量を低減させた粘着剤の材料としては、例えば、特定の架橋アクリル系樹脂が報告されている(特許文献1参照)。しかし、この材料はやはり上記のような有機材料の高分子量体であるため、120℃で1時間加熱した際のアウトガス発生量を低減できるにすぎず、より高温条件下におけるアウトガス発生量を低減できるものではない。
 また、粘着剤の材料としては、従来、上記に示したような有機材料の高分子量体を用いているため、その融点やガラス転移温度(Tg)などによって、粘弾性挙動が異なる(特許文献2参照)。このため、例えば、汎用粘着剤として設計する場合には、一般に、材料の選択等によってTgを-30℃程度にコントロールするとともに、-30℃程度から200℃程度までの温度領域において圧着式の粘弾性スペクトル評価におけるG’で1.0×10Pa以下において一定となるように粘弾性挙動が調製される。
 しかしながら、近年においては、より低温の条件下やより高温の条件下において粘着剤を使用する場面が増加している。そして、従来の粘着剤の材料においては、このような、より低温からより高温に至る広い温度領域においては、良好な粘弾性挙動を発現できないという問題がある。また、より高温の条件下においては、上記に示したような有機材料自身が分解されてしまうという問題がある。
 また、従来の粘弾性体は強いタックを有するので、平滑表面に対して容易に接着してしまい、取り扱いが困難である。
特開2011-202126号公報 特開2010-168437号公報
 本発明の課題は、タックが小さくて取り扱い性に優れ、高温条件下においてもアウトガス発生量が少ない、粘弾性体を提供することにある。また、本発明の課題は、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す、粘弾性体を提供することにある。
 本発明の粘弾性体は、400℃で1時間保管した際のアウトガス量が20mg/cm以下である。
 本発明の粘弾性体は、-150℃から500℃の温度領域において、圧着式の粘弾性スペクトル評価におけるG’が1.0×10Pa以下である。
 好ましい実施形態においては、本発明の粘弾性体は、-150℃および500℃での圧着式の粘弾性スペクトル評価におけるG’が、いずれも、25℃での圧着式の粘弾性スペクトル評価におけるG’の0.01倍~100倍の範囲内にある。
 好ましい実施形態においては、本発明の粘弾性体は、プローブタック試験におけるプローブタックが、25℃において200gf以下である。
 好ましい実施形態においては、本発明の粘弾性体は、繊維状柱状構造体を含む。
 好ましい実施形態においては、上記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。
 好ましい実施形態においては、上記カーボンナノチューブの長さが50μm以上である。
 好ましい実施形態においては、本発明の粘弾性体は、基材を含む。
 好ましい実施形態においては、本発明の粘弾性体は、分析機器に用いる。
 本発明によれば、タックが小さくて取り扱い性に優れ、高温条件下においてもアウトガス発生量が少ない、粘弾性体を提供することができる。また、本発明によれば、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す、粘弾性体を提供することができる。
本発明の好ましい実施形態における粘弾性体がカーボンナノチューブ集合体を含む場合の一例の概略断面図である。 本発明の好ましい実施形態における粘弾性体がカーボンナノチューブ集合体を含む場合の該カーボンナノチューブ集合体製造装置の概略断面図である。
≪粘弾性体≫
 本発明の粘弾性体の好ましい実施形態の一つは、400℃で1時間保管した際のアウトガス量が20mg/cm以下である。上記アウトガス量は、好ましくは10mg/cm以下であり、より好ましくは5mg/cm以下であり、さらに好ましくは1mg/cm以下である。
 400℃で1時間保管した際のアウトガス量が上記のレベルに低減できることにより、本発明の粘弾性体を高温条件下や減圧または真空条件下で用いた場合であっても、アウトガスの発生を十分に抑制でき、臭気の発生、他材料への汚染、粘着特性の劣化などの問題を回避できる。
 本発明の粘弾性体の好ましい実施形態の別の一つは、-150℃から500℃の温度領域において、圧着式の粘弾性スペクトル評価におけるG’が1.0×10Pa以下である。上記G’は、好ましくは1.0×10Pa~5.0×10Paであり、より好ましくは1.0×10Pa~5.0×10Paであり、さらに好ましくは1.0×10Pa~1.0×10Paである。
 -150℃から500℃の温度領域において、圧着式の粘弾性スペクトル評価におけるG’が上記範囲に収まることにより、本発明の粘弾性体は、低温から高温に至る広温度領域において優れた粘弾性を示すことができる。
 本発明の粘弾性体は、-150℃および500℃での圧着式の粘弾性スペクトル評価におけるG’が、いずれも、25℃での圧着式の粘弾性スペクトル評価におけるG’の0.01倍~100倍の範囲内にあることが好ましい。この範囲は、より好ましくは0.1倍~50倍の範囲であり、さらに好ましくは1倍~10倍の範囲である。-150℃および500℃での圧着式の粘弾性スペクトル評価におけるG’が、いずれも、25℃での圧着式の粘弾性スペクトル評価におけるG’に対して上記範囲内に収まることにより、本発明の粘弾性体は、低温から高温に至る広温度領域において優れた粘弾性を示すことができる。
 本発明の粘弾性体は、プローブタック試験におけるプローブタックが、25℃において、好ましくは200gf以下であり、より好ましくは10gf~200gfであり、さらに好ましくは20gf~195gfであり、特に好ましくは30gf~190gfである。本発明において、上記プローブタックが上記範囲内にあることにより、本発明の粘弾性体は、適度なタックを有し、取り扱い性が良好となる。
 本発明の粘弾性体は、好ましくは、特定の粒径の粒子を選択的に採取できる。ここで、本発明において「粒径」とは、粒子の直径の最も小さい部分をいう。
 本発明の粘弾性体は、好ましくは、粒径500μm未満の粒子を選択的に粘着採取することができる。ここで、本発明において「粘着採取」とは、被着体である粒子に対して本発明の粘弾性体を圧着することによって、該粒子を該粘弾性体に粘着させて採取することをいう。圧着の程度は、目的に応じて適宜設定し得るが、例えば、5kgローラーで一往復させることによる圧着が挙げられる。
 本発明の粘弾性体は、好ましくは、粒径200μm以下の粒子を選択的に吸着採取することができる。ここで、本発明において「吸着採取」とは、被着体である粒子に対して本発明の粘弾性体を圧着させることなく、該粒子を該粘弾性体に吸着させて採取することをいう。具体的には、例えば、被着体である粒子を、小さい衝突速度(例えば、1m/s)にて粘弾性体に接触させることにより、該粒子を該粘弾性体に吸着させる。
 本発明の粘弾性体は、必要により、使用前に予め高温環境下または減圧環境下または真空環境下において含有ガス成分を除去していても良い。本発明の粘弾性体は、このように使用前に予め高温環境下または減圧環境下または真空環境下に曝しても、その粘弾性体としての性質を損ない難い。
 本発明の粘弾性体は、好ましくは、繊維状柱状構造体を含む。
 上記繊維状柱状構造体の材料としては、任意の適切な材料を採用し得る。例えば、アルミ、鉄などの金属;シリコンなどの無機材料;カーボンナノファイバー、カーボンナノチューブなどのカーボン材料;エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどの高モジュラスの樹脂;などが挙げられる。樹脂の具体例としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリイミド、ポリアミドなどが挙げられる。樹脂の分子量などの諸物性は、本発明の目的を達成しうる範囲において、任意の適切な物性を採用し得る。
 上記繊維状柱状構造体の長さは、好ましくは1μm~10000μmであり、より好ましくは10μm~5000μmであり、さらに好ましくは30μm~3000μmであり、特に好ましくは50μm~2000μmであり、最も好ましくは100μm~2000μmである。上記繊維状柱状構造体の長さが上記範囲内に収まることにより、タックが小さくて取り扱い性に優れ、高温条件下においてもアウトガス発生量が少ない、粘弾性体を提供することができ、また、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す、粘弾性体を提供することができる。
 上記繊維状柱状構造体の直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記繊維状柱状構造体の直径が上記範囲内に収まることにより、タックが小さくて取り扱い性に優れ、高温条件下においてもアウトガス発生量が少ない、粘弾性体を提供することができ、また、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す、粘弾性体を提供することができる。
 本発明においては、上記繊維状柱状構造体は、好ましくは、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。
 本発明の粘弾性体は、カーボンナノチューブ集合体のみからなっていても良いし、カーボンナノチューブ集合体と任意の適切な部材からなっていても良い。
 本発明の粘弾性体は、基材を含んでいても良い。このとき、本発明の粘弾性体が複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含む場合は、該カーボンナノチューブの片端が該基材に固定されていても良い。
 上記基材としては、目的に応じて、任意の適切な基材を採用し得る。例えば、石英ガラス、シリコン(シリコンウェハなど)、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどが挙げられる。エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックの具体例としては、ポリイミド、ポリエチレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリプロピレン、ポリアミドなどが挙げられる。これらの基材の分子量などの諸物性は、本発明の目的を達成し得る範囲において、任意の適切な物性を採用し得る。
 上記基材の厚みは、目的に応じて、任意の適切な値に設定され得る。例えば、シリコン基板の場合は、好ましくは100μm~10000μmであり、より好ましくは100μm~5000μmであり、さらに好ましくは100μm~2000μmである。例えば、ポリプロピレン基板の場合は、好ましくは1μm~1000μmであり、より好ましくは1μm~500μmであり、さらに好ましくは5μm~100μmである。
 上記基材の表面は、隣接する層との密着性,保持性などを高めるために、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的または物理的処理,下塗剤(例えば、上記粘着性物質)によるコーティング処理が施されていてもよい。
 上記基材は単層であっても良いし、多層体であっても良い。
 本発明の粘弾性体が複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含む場合であって、基材を含む場合、該カーボンナノチューブを基材に固定する方法としては、任意の適切な方法を採用し得る。例えば、カーボンナノチューブ集合体の製造に使用した基板を基材としてそのまま用いてもよい。また、基材に接着層を設けてカーボンナノチューブに固定してもよい。さらに、基材が熱硬化性樹脂の場合は、反応前の状態で薄膜を作製し、カーボンナノチューブの一端を薄膜層に圧着させた後、硬化処理を行って固定すれば良い。また、基材が熱可塑性樹脂や金属などの場合は、溶融した状態で繊維状柱状構造体の一端を圧着させた後、室温まで冷却して固定すれば良い。
≪カーボンナノチューブ集合体≫
 本発明の粘弾性体が繊維状柱状構造体を含む場合、該繊維状柱状構造体は好ましくはカーボンナノチューブ集合体である。本発明の粘弾性体がカーボンナノチューブ集合体を含む場合、本発明の粘弾性体は、タックが小さくて取り扱い性に一層優れ、高温条件下においてもアウトガス発生量が一層少ない。また、本発明の粘弾性体がカーボンナノチューブ集合体を含む場合、本発明の粘弾性体は、タックが小さくて取り扱い性に一層優れ、低温から高温に至る広温度領域において一層優れた粘弾性を示す。
 図1は、本発明の好ましい実施形態における粘弾性体がカーボンナノチューブ集合体である場合の一例の概略断面図(各構成部分を明示するために縮尺は正確に記載されていない)である。カーボンナノチューブ集合体10は、基材1と、カーボンナノチューブ2を備える。カーボンナノチューブ2の片端2aは、基材1に固定されている。カーボンナノチューブ2は、長さ方向Lに配向している。カーボンナノチューブ2は、好ましくは、基材1に対して略垂直方向に配向している。本図示例とは異なり、カーボンナノチューブが基材を備えない場合であっても、カーボンナノチューブは互いにファンデルワールス力によって集合体として存在し得るので、本発明のカーボンナノチューブ集合体は、基材を備えない集合体であっても良い。
 カーボンナノチューブ集合体においてカーボンナノチューブが基材を備える場合、該基材としては、目的に応じて、任意の適切な基材を採用し得る。このような基材としては、例えば、本発明の粘弾性体が含み得る基材として上記で説明したものが挙げられる。
<第1の好ましい実施形態>
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の好ましい実施形態の1つ(以下、第1の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下であり、該カーボンナノチューブの長さが10μmより大きい。
 上記カーボンナノチューブの層数分布の分布幅は10層以上であり、好ましくは10層~30層であり、より好ましくは10層~25層であり、さらに好ましくは10層~20層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記層数分布の最頻値の相対頻度は、25%以下であり、好ましくは1%~25%であり、より好ましくは5%~25%であり、さらに好ましくは10%~25%であり、特に好ましくは15%~25%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
<第2の好ましい実施形態>
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の好ましい実施形態の別の1つ(以下、第2の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上であり、該カーボンナノチューブの長さが10μmを超えて500μm未満である。
 上記カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記層数分布の最頻値の相対頻度は、30%以上であり、好ましくは30%~100%であり、より好ましくは30%~90%であり、さらに好ましくは30%~80%であり、特に好ましくは30%~70%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記層数分布の最頻値は、層数10層以下に存在し、好ましくは層数1層から層数10層に存在し、より好ましくは層数2層から層数8層に存在し、さらに好ましくは層数2層から層数6層に存在する。本発明において、上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
≪カーボンナノチューブ集合体の製造方法≫
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造方法としては、例えば、平滑な基板の上に触媒層を構成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、基板からほぼ垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。この場合、基板を取り除けば、長さ方向に配向しているカーボンナノチューブ集合体が得られる。
 上記基板としては、任意の適切な基板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。上記基板は、そのまま、本発明の粘弾性体が含み得るカーボンナノチューブ集合体が備え得る基材として用いることができる。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図2に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体を製造する際、必要に応じて、基板と触媒層の中間にアルミナ/親水性膜を設けても良い。
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、基板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。基板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、基板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みが上記範囲内にあることによって、該カーボンナノチューブ集合体は優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブ集合体は優れた粘着特性を示し得る。したがって、このようなカーボンナノチューブ集合体を用いて、優れた粘弾性を発現できる粘弾性体を提供できる。触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を基板上に塗布する方法などが挙げられる。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。
 本発明の粘弾性体が含み得るカーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。
≪粘弾性体の用途≫
 本発明の粘弾性体は、各種用途に用い得る。本発明の粘弾性体は、特に、タックが小さくて取り扱い性に優れ、高温条件下や減圧条件下または真空条件下においてアウトガス発生量が少ない。また、本発明の粘弾性体は、特に、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す。このため、本発明の粘弾性体は、分析分野、超電導分野などで、好ましく用いることができる。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、各種評価や測定は、以下の方法により行った。
<カーボンナノチューブ集合体におけるカーボンナノチューブの層数・層数分布の評価>
 本発明のカーボンナノチューブ集合体におけるカーボンナノチューブの層数および層数分布は、走査型電子顕微鏡(SEM)および/または透過電子顕微鏡(TEM)によって測定した。得られたカーボンナノチューブ集合体の中から少なくとも10本以上、好ましくは20本以上のカーボンナノチューブをSEMおよび/またはTEMにより観察し、各カーボンナノチューブの層数を調べ、層数分布を作成した。
<プローブタック試験>
 下記の条件によってプローブタック試験を行い、粘着力の最大値を測定した。
  装置:タッキング試験機(RESCA製)
  プローブ:SUS5mmφ
  Preload:500gf
  Press Speed:1mm/min
  Press Time:5s
  Test Speed:2.5mm/min
<アウトガス量測定>
 粘弾性体を試料カップに入れ、加熱炉型のパイロライザー(DSP)にて疑似空気雰囲気下、400℃×1時間の加熱抽出を行った。その際に発生したガスを、マイクロジェット・クライオトラップを用いて液体窒素でGCカラムの一部に濃縮捕集した後、GC/MS測定を行い、1cm当たりのアウトガス量を算出した。
(分析装置:GC/MS)
 DSP:フロンティアラボ製、PY-2020iD
 GC:Agilent Technologies製、Agilent 6890
 MSD:Agilent Technologies製、Agilent 5973N
(測定条件)
・DSP(ダブルショットパイロライザー)
  試料カップ:エコカップLF
  加熱温度:400℃×1時間
・GC(ガスクロマトグラフ)
  カラム:フロンティアラボ製、Ultla ALLOY+5(0.25μm、0.25mmφ×30m)
  カラム温度:40℃(3分間ホールド)→15℃/分にて昇温→300℃(10分間ホールド)
  キャリア―ガス:He(1ml/min)(コンスタントフローモード)
  注入口:スプリットモード(スプリット比=10:1、トータル流量=13ml/分、温度300℃)
・MS(質量分析計)
  イオン化法:EI
  イオン化電圧:70eV
  インターフェイス温度:300℃
  イオン源温度:230℃
  検出器温度:150℃
  測定質量範囲:m/z=10-800
  TIC質量範囲:29-800
<圧着式の粘弾性スペクトル評価におけるG’の測定>
 下記の条件によって圧着式の粘弾性スペクトル評価を行い、G’を測定した。
(測定条件)
 装置:TAインスツルメント歪制御型レオメータ「ARES-G2」
 治具:8mmφの圧縮治具
 測定モード:温度分散、引張粘弾性
 温度:-150℃~500℃
 周波数:1Hz
 ひずみ:1%
[実施例1]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み0.35nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、1分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(1)を得た。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの長さは30μmであった。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの層数分布において、最頻値は1層に存在し、相対頻度は61%であった。
 得られたカーボンナノチューブ集合体(1)を粘弾性体(1)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例2]
 Fe薄膜の厚みを1nmとした以外は、実施例1と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(2)を得た。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの長さは30μmであった。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(2)を粘弾性体(2)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例3]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を3分間とした以外は、実施例2と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(3)を得た。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの長さは50μmであった。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(3)を粘弾性体(3)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例4]
 Fe薄膜の厚みを2nmとし、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を5分間とした以外は、実施例1と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(4)を得た。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの長さは70μmであった。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの層数分布において、最頻値は7-8層に存在し、相対頻度は66%であった。
 得られたカーボンナノチューブ集合体(4)を粘弾性体(4)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例5]
 エチレンの代わりにアセチレンを用い、ヘリウム/水素/アセチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を7分間とした以外は、実施例1と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(5)を得た。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの長さは100μmであった。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの層数分布において、最頻値は7-8層に存在し、相対頻度は66%であった。
 得られたカーボンナノチューブ集合体(5)を粘弾性体(5)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例6]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を10分間とした以外は、実施例2と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(6)を得た。
 カーボンナノチューブ集合体(6)が備えるカーボンナノチューブの長さは200μmであった。
 カーボンナノチューブ集合体(6)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(6)を粘弾性体(6)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例7]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を20分間とした以外は、実施例1と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(7)を得た。
 カーボンナノチューブ集合体(7)が備えるカーボンナノチューブの長さは400μmであった。
 カーボンナノチューブ集合体(7)が備えるカーボンナノチューブの層数分布において、最頻値は1層に存在し、相対頻度は61%であった。
 得られたカーボンナノチューブ集合体(7)を粘弾性体(7)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例8]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を20分間とした以外は、実施例2と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(8)を得た。
 カーボンナノチューブ集合体(8)が備えるカーボンナノチューブの長さは500μmであった。
 カーボンナノチューブ集合体(8)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(8)を粘弾性体(8)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例9]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を40分間とした以外は、実施例4と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(9)を得た。
 カーボンナノチューブ集合体(9)が備えるカーボンナノチューブの長さは800μmであった。
 カーボンナノチューブ集合体(9)が備えるカーボンナノチューブの層数分布において、最頻値は3層に存在し、相対頻度は72%であった。
 得られたカーボンナノチューブ集合体(9)を粘弾性体(9)として、各種評価を行い、結果を表1、表2にまとめた。
[実施例10]
 ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させた後の放置時間を60分間とした以外は、実施例2と同様に行い、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(10)を得た。
 カーボンナノチューブ集合体(10)が備えるカーボンナノチューブの長さは1200μmであった。
 カーボンナノチューブ集合体(10)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(10)を粘弾性体(10)として、各種評価を行い、結果を表1、表2にまとめた。
[比較例1]
 両面粘着テープ(日東電工株式会社製、No.5000N)を粘弾性体(C1)として、各種評価を行い、結果を表1、表2にまとめた。
[比較例2]
 3Mポリイミド両面テープ(住友3M製、4390)を粘弾性体(C2)として、各種評価を行い、結果を表1、表2にまとめた。
[比較例3]
 3Mポリイミド両面テープ(住友3M製、4390)を予め200℃×10時間でエージングしたものを粘弾性体(C3)として、各種評価を行い、結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の粘弾性体は、特に、タックが小さくて取り扱い性に優れ、高温条件下や減圧条件下または真空条件下においてアウトガス発生量が少ない。また、本発明の粘弾性体は、特に、タックが小さくて取り扱い性に優れ、低温から高温に至る広温度領域において優れた粘弾性を示す。このため、本発明の粘弾性体は、分析分野、超電導分野などで、好ましく用いることができる。
10    カーボンナノチューブ集合体
1     基材
2     カーボンナノチューブ
2a    カーボンナノチューブの片端

Claims (9)

  1.  400℃で1時間保管した際のアウトガス量が20mg/cm以下である粘弾性体。
  2.  -150℃から500℃の温度領域において、圧着式の粘弾性スペクトル評価におけるG’が1.0×10Pa以下である、粘弾性体。
  3.  -150℃および500℃での圧着式の粘弾性スペクトル評価におけるG’が、いずれも、25℃での圧着式の粘弾性スペクトル評価におけるG’の0.01倍~100倍の範囲内にある、請求項2に記載の粘弾性体。
  4.  プローブタック試験におけるプローブタックが、25℃において200gf以下である、請求項1から3までのいずれかに記載の粘弾性体。
  5.  繊維状柱状構造体を含む、請求項1から4までのいずれかに記載の粘弾性体。
  6.  前記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である、請求項5に記載の粘弾性体。
  7.  前記カーボンナノチューブの長さが50μm以上である、請求項6に記載の粘弾性体。
  8.  基材を含む、請求項1から7までのいずれかに記載の粘弾性体。
  9.  分析機器に用いる、請求項1から8までのいずれかに記載の粘弾性体。
     
PCT/JP2012/075981 2011-12-08 2012-10-05 粘弾性体 WO2013084581A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280060218.5A CN103974901A (zh) 2011-12-08 2012-10-05 粘弹性体
US14/359,447 US20140335353A1 (en) 2011-12-08 2012-10-05 Viscoelastic body
KR1020147014891A KR20140112477A (ko) 2011-12-08 2012-10-05 점탄성체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011268980A JP5892777B2 (ja) 2011-12-08 2011-12-08 低アウトガス粘弾性体
JP2011-268981 2011-12-08
JP2011268981A JP5892778B2 (ja) 2011-12-08 2011-12-08 広温度領域用粘弾性体
JP2011-268980 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013084581A1 true WO2013084581A1 (ja) 2013-06-13

Family

ID=48573964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075981 WO2013084581A1 (ja) 2011-12-08 2012-10-05 粘弾性体

Country Status (4)

Country Link
US (1) US20140335353A1 (ja)
KR (1) KR20140112477A (ja)
CN (1) CN103974901A (ja)
WO (1) WO2013084581A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170656A (zh) 2014-11-27 2020-05-19 松下知识产权经营株式会社 玻璃面板单元
JP7144149B2 (ja) * 2018-02-06 2022-09-29 日東電工株式会社 カーボンナノチューブ集合体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128343A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2009128342A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2010032525A1 (ja) * 2008-09-18 2010-03-25 日東電工株式会社 カーボンナノチューブ集合体
WO2011077784A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材
WO2011077785A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128343A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2009128342A1 (ja) * 2008-04-16 2009-10-22 日東電工株式会社 繊維状柱状構造体集合体およびそれを用いた粘着部材
WO2010032525A1 (ja) * 2008-09-18 2010-03-25 日東電工株式会社 カーボンナノチューブ集合体
WO2011077784A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材
WO2011077785A1 (ja) * 2009-12-25 2011-06-30 日東電工株式会社 カーボンナノチューブ複合構造体および粘着部材

Also Published As

Publication number Publication date
CN103974901A (zh) 2014-08-06
KR20140112477A (ko) 2014-09-23
US20140335353A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US8025971B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
US8900701B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
WO2011077784A1 (ja) カーボンナノチューブ複合構造体および粘着部材
JP2014098107A (ja) 宇宙空間で用いる把持材料
JP5714928B2 (ja) 繊維状柱状構造体集合体および放熱部材
JP5199753B2 (ja) カーボンナノチューブ集合体の製造方法
JP5893374B2 (ja) カーボンナノチューブ集合体およびそれを用いた粘弾性体
WO2013084581A1 (ja) 粘弾性体
WO2010125708A1 (ja) カーボンナノチューブ集合体
WO2014034489A1 (ja) 分析用除電部材
WO2013115145A1 (ja) 飛行時間型二次イオン質量分析装置用試料固定部材
JP5892777B2 (ja) 低アウトガス粘弾性体
WO2013115146A1 (ja) ナノインデンター用試料固定部材
WO2013115144A1 (ja) 原子間力顕微鏡用試料固定部材
JP2014126470A (ja) オージェ電子分光分析装置用試料固定部材
JP5892778B2 (ja) 広温度領域用粘弾性体
JP2014200769A (ja) 吸着材
WO2015146614A1 (ja) Sims分析方法およびsims分析装置
WO2016031617A1 (ja) ガスクロマトグラフィー質量分析用試料サンプリング材
WO2016031616A1 (ja) 高速液体クロマトグラフィー用試料サンプリング材
JP2014215272A (ja) 微粒子分離部材
WO2016031618A1 (ja) クリーニング部材
JP2014141411A (ja) カーボンナノチューブ集合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359447

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147014891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856491

Country of ref document: EP

Kind code of ref document: A1