WO2013115144A1 - 原子間力顕微鏡用試料固定部材 - Google Patents

原子間力顕微鏡用試料固定部材 Download PDF

Info

Publication number
WO2013115144A1
WO2013115144A1 PCT/JP2013/051804 JP2013051804W WO2013115144A1 WO 2013115144 A1 WO2013115144 A1 WO 2013115144A1 JP 2013051804 W JP2013051804 W JP 2013051804W WO 2013115144 A1 WO2013115144 A1 WO 2013115144A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic force
force microscope
fixing member
carbon nanotube
sample fixing
Prior art date
Application number
PCT/JP2013/051804
Other languages
English (en)
French (fr)
Inventor
前野 洋平
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020147021447A priority Critical patent/KR20140133508A/ko
Priority to US14/374,733 priority patent/US9279828B2/en
Priority to CN201380007659.3A priority patent/CN104105972A/zh
Priority to EP13742917.1A priority patent/EP2811302A4/en
Publication of WO2013115144A1 publication Critical patent/WO2013115144A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/20Sample handling devices or methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled

Definitions

  • the present invention relates to a sample fixing member for an atomic force microscope. Specifically, the present invention relates to a member for fixing a measurement target sample in an atomic force microscope (AFM).
  • FAM atomic force microscope
  • An atomic force microscope is a microscope having atomic resolution under atmospheric pressure, and can easily observe the fine shape of a sample surface (for example, refer to Patent Document 1).
  • the atomic force microscope can observe not only conductive materials but also insulating materials such as polymer compounds. From these points, the atomic force microscope is very effective as a surface observation means for various samples.
  • a probe with a sharp tip is scanned over the surface of the sample, and the surface force is observed by changing the atomic force felt by the probe into an electrical signal.
  • the probe is attached to the tip of the cantilever, and the probe and the surface of the sample are brought into contact with each other with a minute force. For this reason, there is a problem that an accurate measurement result cannot be obtained if the sample drift amount during measurement is large.
  • An object of the present invention is to provide a sample fixing member for an atomic force microscope that can effectively reduce a drift amount of a sample during measurement.
  • the sample fixing member for an atomic force microscope of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar objects having a length of 200 ⁇ m or more.
  • the sample fixing member for an atomic force microscope of the present invention has a shear adhesive force on the glass surface at room temperature of 10 N / cm 2 or more.
  • the fibrous columnar structure is a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the carbon nanotube has a plurality of layers, the distribution width of the number distribution of the carbon nanotubes is 10 or more, and the relative frequency of the mode value of the number distribution of the carbon nanotubes is 25% or less. .
  • the carbon nanotube has a plurality of layers, the mode value of the number distribution of the carbon nanotubes is present in 10 or less layers, and the relative frequency of the mode value is 30% or more. .
  • the atomic force microscope sample fixing member of the present invention includes a base material.
  • the sample fixing member for an atomic force microscope of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more.
  • the sample fixing member for an atomic force microscope of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar members having a length of 200 ⁇ m or more, the drift amount of the sample during measurement can be effectively reduced.
  • the atomic force microscope sample fixing member of the present invention may be a member composed only of the fibrous columnar structure, or an arbitrary element that can be preferably used for fixing the fibrous columnar structure and the atomic force microscope sample. It may be a member made of any suitable material.
  • the atomic force microscope sample fixing member of the present invention is a member for adhering and fixing a measurement sample in an atomic force microscope, and its size and shape are appropriately selected according to the type of atomic force microscope to be used. Can do.
  • the fibrous columnar structure is an aggregate including a plurality of fibrous columnar objects.
  • the fibrous columnar structure is preferably an assembly including a plurality of fibrous columnar objects having a length L.
  • FIG. 1 shows a schematic cross-sectional view of an example of a sample fixing member for an atomic force microscope according to a preferred embodiment of the present invention.
  • a fibrous columnar structure 10 includes a base material 1 and a plurality of fibrous columnar objects 2. One end 2 a of the fibrous columnar object 2 is fixed to the substrate 1.
  • the fibrous columnar body 2 is oriented in the direction of the length L.
  • the fibrous columnar body 2 is preferably oriented in a substantially vertical direction with respect to the substrate 1.
  • the “substantially perpendicular direction” means that the angle with respect to the surface of the substrate 1 is preferably 90 ° ⁇ 20 °, more preferably 90 ° ⁇ 15 °, and further preferably 90 ° ⁇ 10 °. And particularly preferably 90 ° ⁇ 5 °.
  • the fibrous columnar structure 10 may be an aggregate including only the plurality of fibrous columns 2. That is, the fibrous columnar structure 10 may not include the base material 1.
  • the plurality of fibrous columnar objects 2 can exist as an aggregate with each other, for example, by van der Waals force.
  • the length L is 200 ⁇ m or more, preferably 200 ⁇ m to 2000 ⁇ m, more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, particularly preferably 500 ⁇ m to 1000 ⁇ m, and most preferably 600 ⁇ m. ⁇ 1000 ⁇ m.
  • the sample fixing member for an atomic force microscope of the present invention can effectively reduce the drift amount of the sample during measurement.
  • the length L is measured by the method described later.
  • the sample fixing member for an atomic force microscope of the present invention has a shear adhesive strength to the glass surface at room temperature of preferably 10 N / cm 2 or more, more preferably 10 N / cm 2 to 200 N / cm 2 , and even more preferably 15 N. / cm 2 ⁇ 200N / cm 2 , particularly preferably 20N / cm 2 ⁇ 200N / cm 2, and most preferably 25N / cm 2 ⁇ 200N / cm 2.
  • the shear adhesive force falls within the above range, the sample fixing member for an atomic force microscope of the present invention can more effectively reduce the drift amount of the sample during measurement.
  • the shear adhesive force is measured by the method described later.
  • any appropriate material can be adopted as the material for the fibrous columnar material.
  • examples thereof include metals such as aluminum and iron; inorganic materials such as silicon; carbon materials such as carbon nanofibers and carbon nanotubes; and high modulus resins such as engineering plastics and super engineering plastics.
  • Specific examples of the resin include polystyrene, polyethylene, polypropylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polyimide, polyamide, and the like.
  • Any appropriate physical properties can be adopted as the physical properties such as the molecular weight of the resin as long as the object of the present invention can be achieved.
  • any appropriate base material can be adopted depending on the purpose.
  • examples thereof include quartz glass, silicon (silicon wafer, etc.), engineering plastic, super engineering plastic, and the like.
  • engineering plastics and super engineering plastics include polyimide, polyethylene, polyethylene terephthalate, acetyl cellulose, polycarbonate, polypropylene, and polyamide. Any appropriate physical properties can be adopted as the physical properties such as molecular weight of these base materials within a range in which the object of the present invention can be achieved.
  • the diameter of the fibrous columnar material is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the sample fixing member for an atomic force microscope of the present invention can further effectively reduce the drift amount of the sample during measurement.
  • the thickness of the base material can be set to any appropriate value depending on the purpose.
  • the surface of the base material is subjected to conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, and ionizing radiation treatment. Or a physical treatment or a coating treatment with a primer (for example, the above-mentioned adhesive substance) may be applied.
  • the base material may be a single layer or a multilayer body.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate including a plurality of carbon nanotubes.
  • the fibrous columnar product is preferably a carbon nanotube.
  • the sample fixing member for an atomic force microscope of the present invention may be composed only of the carbon nanotube aggregate, or may be composed of the carbon nanotube aggregate and any appropriate member.
  • the sample fixing member for an atomic force microscope of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes and also includes the above-described base material, even if one end of the carbon nanotube is fixed to the base material good.
  • the atomic force microscope sample fixing member of the present invention includes a carbon nanotube aggregate including a plurality of carbon nanotubes, and includes a base material
  • a method of fixing the carbon nanotube to the base material any method may be used.
  • the substrate used for manufacturing the carbon nanotube aggregate may be used as it is as a base material.
  • an adhesive layer may be provided on the base material and fixed to the carbon nanotube.
  • the substrate is a thermosetting resin
  • a thin film is prepared in a state before the reaction, and one end of the carbon nanotube is bonded to the thin film layer, and then cured and fixed.
  • the base material is a thermoplastic resin or a metal, after crimping one end of the fibrous columnar structure in a molten state, the substrate may be cooled and fixed to room temperature.
  • the fibrous columnar structure is preferably a carbon nanotube aggregate.
  • the sample fixing member for an atomic force microscope of the present invention includes an aggregate of carbon nanotubes, the sample fixing member for an atomic force microscope of the present invention can further effectively reduce the drift amount of the sample during measurement.
  • One preferred embodiment of a carbon nanotube aggregate that may be included in the sample fixing member for an atomic force microscope of the present invention includes a plurality of carbon nanotubes,
  • the carbon nanotube has a plurality of layers, the distribution width of the number distribution of the carbon nanotube is 10 or more, and the relative frequency of the mode value of the number distribution of the carbon nanotube is 25% or less.
  • the distribution width of the number distribution of carbon nanotubes is 10 or more, preferably 10 to 30 layers, more preferably 10 to 25 layers, and further preferably 10 to 20 layers.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 5 to 30 layers, more preferably 10 to 30 layers, still more preferably 15 to 30 layers, and particularly preferably 15 layers to 30 layers. There are 25 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the relative frequency of the mode value of the layer number distribution is 25% or less, preferably 1% to 25%, more preferably 5% to 25%, and further preferably 10% to 25%. Particularly preferably, it is 15% to 25%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the mode value of the layer number distribution is preferably from 2 to 10 layers, and more preferably from 3 to 10 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes can exhibit excellent adhesion properties. It can be a nanotube aggregate. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably 500 ⁇ m to 1000 ⁇ m. Most preferably, it is 600 ⁇ m to 1000 ⁇ m.
  • the sample fixing member for an atomic force microscope of the present invention can very effectively reduce the drift amount of the sample during measurement.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the atomic force microscope sample fixing member of the present invention can very effectively reduce the drift amount of the sample during measurement.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Another preferred embodiment of the carbon nanotube aggregate that may be included in the atomic force microscope fixing member of the present invention includes a plurality of carbon nanotubes,
  • the carbon nanotube has a plurality of layers, the mode value of the number distribution of the carbon nanotubes exists in the number of layers of 10 or less, and the relative frequency of the mode value is 30% or more.
  • the distribution width of the number distribution of the carbon nanotubes is preferably 9 or less, more preferably 1 to 9 layers, still more preferably 2 to 8 layers, and particularly preferably 3 to 8 layers. It is.
  • the “distribution width” of the number distribution of carbon nanotubes refers to the difference between the maximum number and the minimum number of carbon nanotube layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area, and the carbon nanotubes exhibit excellent adhesive properties. It can be a carbon nanotube aggregate. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the number of layers and the number distribution of the carbon nanotubes may be measured by any appropriate apparatus. Preferably, it is measured by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). For example, at least 10, preferably 20 or more carbon nanotubes may be taken out from the aggregate of carbon nanotubes and measured by SEM or TEM to evaluate the number of layers and the number distribution of the layers.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the maximum number of the carbon nanotubes is preferably 1 to 20 layers, more preferably 2 to 15 layers, and further preferably 3 to 10 layers.
  • the minimum number of the carbon nanotube layers is preferably 1 to 10 layers, more preferably 1 to 5 layers.
  • the carbon nanotubes can have more excellent mechanical properties and a high specific surface area. It can be an aggregate of carbon nanotubes that exhibits more excellent adhesive properties. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the relative frequency of the mode value of the layer number distribution is 30% or more, preferably 30% to 100%, more preferably 30% to 90%, and further preferably 30% to 80%. Particularly preferably, it is 30% to 70%.
  • the carbon nanotube can have excellent mechanical properties and a high specific surface area, and further, the carbon nanotube has excellent adhesive properties. It can become the carbon nanotube aggregate which shows. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the mode value of the layer number distribution is present in 10 layers or less, preferably in 1 layer to 10 layers, more preferably in 2 layers to 8 layers, More preferably, it exists in 2 to 6 layers.
  • the carbon nanotubes can have excellent mechanical properties and a high specific surface area. It can be a carbon nanotube aggregate exhibiting characteristics. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • the cross section thereof has any appropriate shape.
  • the cross section may be substantially circular, elliptical, n-gonal (n is an integer of 3 or more), and the like.
  • the length of the carbon nanotube is preferably 200 ⁇ m or more, more preferably 200 ⁇ m to 2000 ⁇ m, still more preferably 300 ⁇ m to 1500 ⁇ m, still more preferably 400 ⁇ m to 1000 ⁇ m, and particularly preferably 500 ⁇ m to 1000 ⁇ m. Most preferably, it is 600 ⁇ m to 1000 ⁇ m.
  • the sample fixing member for an atomic force microscope of the present invention can very effectively reduce the drift amount of the sample during measurement.
  • the diameter of the carbon nanotube is preferably 0.3 nm to 2000 nm, more preferably 1 nm to 1000 nm, and further preferably 2 nm to 500 nm.
  • the atomic force microscope sample fixing member of the present invention can very effectively reduce the drift amount of the sample during measurement.
  • the specific surface area and density of the carbon nanotube can be set to any appropriate value.
  • Method for producing aggregate of carbon nanotubes Any appropriate method can be adopted as a method for producing a carbon nanotube aggregate that can be included in the sample fixing member for an atomic force microscope of the present invention.
  • Examples of the method for producing an aggregate of carbon nanotubes that can be included in the atomic force microscope sample fixing member of the present invention include a state in which a catalyst layer is formed on a smooth substrate and the catalyst is activated by heat, plasma, or the like. And a method of manufacturing a carbon nanotube aggregate oriented substantially perpendicularly from the substrate by chemical vapor deposition (CVD method), in which a carbon source is filled and carbon nanotubes are grown. In this case, for example, if the substrate is removed, an aggregate of carbon nanotubes oriented in the length direction can be obtained.
  • CVD method chemical vapor deposition
  • any appropriate substrate can be adopted as the substrate.
  • the material which has smoothness and the high temperature heat resistance which can endure manufacture of a carbon nanotube is mentioned.
  • examples of such materials include quartz glass, silicon (such as a silicon wafer), and a metal plate such as aluminum.
  • substrate can be used as it is as a base material with which the carbon nanotube aggregate which the sample fixing member for atomic force microscopes of this invention can contain is provided.
  • any appropriate apparatus can be adopted as an apparatus for producing a carbon nanotube aggregate that can be included in the sample fixing member for an atomic force microscope of the present invention.
  • a thermal CVD apparatus as shown in FIG. 2, a hot wall type configured by surrounding a cylindrical reaction vessel with a resistance heating type electric tubular furnace can be cited.
  • a heat-resistant quartz tube is preferably used as the reaction vessel.
  • Any suitable catalyst can be used as a catalyst (catalyst layer material) that can be used in the production of a carbon nanotube aggregate that can be included in the atomic force microscope sample fixing member of the present invention.
  • metal catalysts such as iron, cobalt, nickel, gold, platinum, silver, copper, are mentioned.
  • an alumina / hydrophilic film may be provided between the substrate and the catalyst layer as necessary.
  • any appropriate method can be adopted as a method for producing the alumina / hydrophilic film.
  • it can be obtained by forming a SiO 2 film on a substrate, depositing Al, and then oxidizing it by raising the temperature to 450 ° C.
  • Al 2 O 3 interacts with the SiO 2 film hydrophilic, different Al 2 O 3 surface particle diameters than those deposited Al 2 O 3 directly formed.
  • Al is deposited and heated to 450 ° C. and oxidized without forming a hydrophilic film on the substrate, Al 2 O 3 surfaces having different particle diameters may not be formed easily.
  • a hydrophilic film is prepared on a substrate and Al 2 O 3 is directly deposited, it is difficult to form Al 2 O 3 surfaces having different particle diameters.
  • the thickness of the catalyst layer that can be used for the production of the carbon nanotube aggregate that can be included in the sample fixing member for an atomic force microscope of the present invention is preferably 0.01 nm to 20 nm, more preferably 0.8 nm, in order to form fine particles. 1 nm to 10 nm.
  • the thickness of the catalyst layer that can be used for producing the carbon nanotube aggregate that can be included in the atomic force microscope sample fixing member of the present invention is within the above range, the carbon nanotube aggregate has excellent mechanical properties and a high ratio. It can also have a surface area, and furthermore, the aggregate of carbon nanotubes can exhibit excellent adhesive properties. Therefore, an atomic force microscope sample fixing member using such an aggregate of carbon nanotubes can very effectively reduce the drift amount of the sample during measurement.
  • Any appropriate method can be adopted as a method for forming the catalyst layer.
  • a method of depositing a metal catalyst by EB (electron beam), sputtering, or the like, a method of applying a suspension of metal catalyst fine particles on a substrate, and the like can be mentioned.
  • Any appropriate carbon source can be used as a carbon source that can be used for producing a carbon nanotube aggregate that can be included in the sample fixing member for an atomic force microscope of the present invention.
  • hydrocarbons such as methane, ethylene, acetylene, and benzene
  • alcohols such as methanol and ethanol
  • any appropriate temperature can be adopted as the production temperature in the production of the carbon nanotube aggregate that can be included in the atomic force microscope sample fixing member of the present invention.
  • the temperature is preferably 400 ° C to 1000 ° C, more preferably 500 ° C to 900 ° C, and further preferably 600 ° C to 800 ° C. .
  • ⁇ Evaluation of the number and distribution of carbon nanotubes in a carbon nanotube aggregate The number of carbon nanotube layers and the number distribution of carbon nanotubes in the aggregate of carbon nanotubes were measured by a scanning electron microscope (SEM) and / or a transmission electron microscope (TEM). From the obtained carbon nanotube aggregate, at least 10 or more, preferably 20 or more carbon nanotubes were observed by SEM and / or TEM, the number of layers of each carbon nanotube was examined, and a layer number distribution was created.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • Atomic force microscope measurement was performed in a tapping mode immediately after a standard sample was fixed to the stage via a fixing member. The measurement was performed twice without taking time, and the displaced distance between the result measured at the first time and the result measured at the second time was defined as the drift amount during the atomic force microscope measurement.
  • the drift amount was evaluated according to the following criteria.
  • Drift amount is larger than 0.5 ⁇ m and 1.0 ⁇ m or less.
  • X Drift amount is larger than 1.0 ⁇ m.
  • peeling the case where the sample peeled off due to insufficient adhesion was evaluated as “peeling”.
  • Example 1 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) is filled in the tube, and left for 10 minutes to grow carbon nanotubes on the substrate.
  • Example 2 An Al thin film (thickness 10 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this Al thin film, an Fe thin film (thickness 1 nm) was further vapor-deposited by a sputtering apparatus (ULVAC, RFS-200). Thereafter, this substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (90/50 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 90/50 sccm
  • Example 3 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) and left for 15 minutes to grow carbon nanotubes on the substrate.
  • an aggregate (3) of carbon nanotubes in which are aligned in the length direction was obtained.
  • the length of the carbon nanotube with which the carbon nanotube aggregate (3) is provided was 300 ⁇ m.
  • the distribution width of the number distribution is 17 layers (4 to 20 layers), and the mode value is present in 4 layers and 8 layers, The frequencies were 20% and 20%, respectively.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (3) as a sample fixing member (3) for an atomic force microscope, and the results are summarized in Table 1.
  • Example 4 An Al thin film (thickness 10 nm) was formed on a silicon wafer (manufactured by Silicon Technology) as a substrate by a sputtering apparatus (manufactured by ULVAC, RFS-200). On this Al thin film, an Fe thin film (thickness 1 nm) was further vapor-deposited by a sputtering apparatus (ULVAC, RFS-200). Thereafter, this substrate was placed in a 30 mm ⁇ quartz tube, and a mixed gas of helium / hydrogen (90/50 sccm) maintained at 600 ppm in water was allowed to flow through the quartz tube for 30 minutes to replace the inside of the tube.
  • a mixed gas of helium / hydrogen 90/50 sccm
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) and left standing for 30 minutes to grow carbon nanotubes on the substrate.
  • a mixed gas of helium / hydrogen / ethylene 85/50/5 sccm, moisture content 600 ppm
  • Example 5 An Al thin film (thickness 10 nm) was formed on a silicon substrate (made by KST, wafer with thermal oxide film, thickness 1000 ⁇ m) using a vacuum deposition apparatus (made by JEOL, JEE-4X Vacuum Evaporator), and then oxidized at 450 ° C. for 1 hour. Treated. In this way, an Al 2 O 3 film was formed on the silicon substrate. On this Al 2 O 3 film, an Fe thin film (thickness 2 nm) was further deposited by a sputtering apparatus (manufactured by ULVAC, RFS-200) to form a catalyst layer.
  • a sputtering apparatus manufactured by ULVAC, RFS-200
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) was filled into the tube, and left for 30 minutes to grow carbon nanotubes on the substrate.
  • the obtained silicon substrate with a catalyst layer was cut and placed in a 30 mm ⁇ quartz tube, and a helium / hydrogen (120/80 sccm) mixed gas maintained at a moisture content of 350 ppm was allowed to flow into the quartz tube for 30 minutes. Was replaced. Thereafter, the inside of the tube was gradually raised to 765 ° C. in 35 minutes using an electric tubular furnace, and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., a mixed gas of helium / hydrogen / ethylene (105/80/15 sccm, moisture content 350 ppm) is filled in the tube, and left for 5 minutes to grow carbon nanotubes on the substrate.
  • the carbon nanotubes included in the carbon nanotube aggregate (C1) had a length of 90 ⁇ m.
  • the distribution width of the number distribution is 17 layers (4 to 20 layers), and the mode values are present in 4 layers and 8 layers.
  • the frequencies were 20% and 20%, respectively.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (C1) as a sample fixing member (C1) for an atomic force microscope, and the results are summarized in Table 1.
  • the inside of the tube was heated to 765 ° C. using an electric tubular furnace and stabilized at 765 ° C. While maintaining the temperature at 765 ° C., the tube was filled with a mixed gas of helium / hydrogen / ethylene (85/50/5 sccm, moisture content 600 ppm) and left for 6 minutes to grow carbon nanotubes on the substrate.
  • a carbon nanotube aggregate (C2) in which is oriented in the length direction was obtained.
  • the carbon nanotubes included in the carbon nanotube aggregate (C2) had a length of 120 ⁇ m.
  • the mode value was present in two layers, and the relative frequency was 75%.
  • Various evaluations were performed using the obtained carbon nanotube aggregate (C2) as an atomic force microscope sample fixing member (C2), and the results are summarized in Table 1.
  • the sample fixing member for an atomic force microscope of the present invention can be suitably used as a member for fixing a measurement target sample in an atomic force microscope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 測定中における試料のドリフト量を軽減できる原子間力顕微鏡用試料固定部材を提供する。 本発明の原子間力顕微鏡用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。

Description

原子間力顕微鏡用試料固定部材
 本発明は、原子間力顕微鏡用試料固定部材に関する。詳細には、原子間力顕微鏡(AFM:Atomic Force Microscope)において測定対象試料を固定するための部材に関する。
 原子間力顕微鏡(AFM)は、大気圧下で原子レベルの分解能を有する顕微鏡であり、試料表面の微細形状などの観察を容易に行うことができる(例えば、特許文献1参照)。また、原子間力顕微鏡は、導電性材料だけでなく、高分子化合物のような絶縁性材料についても観察が可能である。このような点から、原子間力顕微鏡は、様々な試料の表面観察手段として非常に有効である。
 原子間力顕微鏡においては、先端を尖らせた探針を試料の表面上に走査させ、探針が感じる原子間力を電気信号に変えることにより表面の形状を観察する。探針は、カンチレバーの先端に取り付けられており、この探針と試料の表面を微小な力で接触させる。このため、測定中における試料のドリフト量が大きいと、正確な測定結果が得られないという問題がある。
特開2011-252849号公報
 本発明の課題は、測定中における試料のドリフト量を効果的に軽減できる原子間力顕微鏡用試料固定部材を提供することにある。
 本発明の原子間力顕微鏡用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。
 好ましい実施形態においては、本発明の原子間力顕微鏡用試料固定部材は、室温におけるガラス面に対するせん断接着力が10N/cm以上である。
 好ましい実施形態においては、上記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。
 好ましい実施形態においては、上記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。
 好ましい実施形態においては、上記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。
 好ましい実施形態においては、本発明の原子間力顕微鏡用試料固定部材は、基材を含む。
 本発明によれば、測定中における試料のドリフト量を効果的に軽減できる原子間力顕微鏡用試料固定部材を提供することができる。
本発明の好ましい実施形態における原子間力顕微鏡用試料固定部材の一例の概略断面図である。 本発明の好ましい実施形態における原子間力顕微鏡用試料固定部材がカーボンナノチューブ集合体を含む場合の該カーボンナノチューブ集合体の製造装置の概略断面図である。
≪原子間力顕微鏡用試料固定部材≫
 本発明の原子間力顕微鏡用試料固定部材は、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む。本発明の原子間力顕微鏡用試料固定部材が、長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含むことにより、測定中における試料のドリフト量を効果的に軽減できる。本発明の原子間力顕微鏡用試料固定部材は、上記繊維状柱状構造体のみからなる部材であっても良いし、上記繊維状柱状構造体と原子間力顕微鏡用試料の固定に好ましく用い得る任意の適切な材料とからなる部材であっても良い。
 本発明の原子間力顕微鏡用試料固定部材は、原子間力顕微鏡において測定試料を接着固定させるための部材であり、その大きさや形状は、使用する原子間力顕微鏡の種類に応じて、適宜選択し得る。
 上記繊維状柱状構造体は、複数の繊維状柱状物を備える集合体である。上記繊維状柱状構造体は、好ましくは、長さLの複数の繊維状柱状物を備える集合体である。図1に、本発明の好ましい実施形態における原子間力顕微鏡用試料固定部材の一例の概略断面図を示す。
 図1において、繊維状柱状構造体10は、基材1と、複数の繊維状柱状物2を備える。繊維状柱状物2の片端2aは、基材1に固定されている。繊維状柱状物2は、長さLの方向に配向している。繊維状柱状物2は、好ましくは、基材1に対して略垂直方向に配向している。ここで、「略垂直方向」とは、基材1の面に対する角度が、好ましくは90°±20°であり、より好ましくは90°±15°であり、さらに好ましくは90°±10°であり、特に好ましくは90°±5°である。なお、本図示例とは異なり、繊維状柱状構造体10は複数の繊維状柱状物2のみからなる集合体であっても良い。すなわち、繊維状柱状構造体10は基材1を備えていなくても良い。この場合、複数の繊維状柱状物2は、互いに、例えば、ファンデルワールス力によって集合体として存在し得る。
 上記長さLは、200μm以上であり、好ましくは200μm~2000μmであり、より好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記長さLが上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を効果的に軽減できる。なお、上記長さLは、後述の方法によって測定される。
 本発明の原子間力顕微鏡用試料固定部材は、室温におけるガラス面に対するせん断接着力が、好ましくは10N/cm以上であり、より好ましくは10N/cm~200N/cm、さらに好ましくは15N/cm~200N/cm、特に好ましくは20N/cm~200N/cm、最も好ましくは25N/cm~200N/cmである。上記せん断接着力が上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を一層効果的に軽減できる。なお、上記せん断接着力は、後述の方法によって測定される。
 上記繊維状柱状物の材料としては、任意の適切な材料を採用し得る。例えば、アルミ、鉄などの金属;シリコンなどの無機材料;カーボンナノファイバー、カーボンナノチューブなどのカーボン材料;エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどの高モジュラスの樹脂;などが挙げられる。樹脂の具体例としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリイミド、ポリアミドなどが挙げられる。樹脂の分子量などの諸物性は、本発明の目的を達成しうる範囲において、任意の適切な物性を採用し得る。
 上記基材としては、目的に応じて、任意の適切な基材を採用し得る。例えば、石英ガラス、シリコン(シリコンウェハなど)、エンジニアリングプラスチック、スーパーエンジニアリングプラスチックなどが挙げられる。エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックの具体例としては、ポリイミド、ポリエチレン、ポリエチレンテレフタレート、アセチルセルロース、ポリカーボネート、ポリプロピレン、ポリアミドなどが挙げられる。これらの基材の分子量などの諸物性は、本発明の目的を達成し得る範囲において、任意の適切な物性を採用し得る。
 上記繊維状柱状物の直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記繊維状柱状物の直径が上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を一層効果的に軽減できる。
 上記基材の厚みは、目的に応じて、任意の適切な値に設定され得る。
 上記基材の表面は、隣接する層との密着性、保持性などを高めるために、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的または物理的処理、下塗剤(例えば、上記粘着性物質)によるコーティング処理が施されていてもよい。
 上記基材は単層であっても良いし、多層体であっても良い。
 本発明においては、上記繊維状柱状構造体は、好ましくは、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である。この場合、上記繊維状柱状物は、好ましくは、カーボンナノチューブである。
 本発明の原子間力顕微鏡用試料固定部材は、上記カーボンナノチューブ集合体のみからなっていても良いし、上記カーボンナノチューブ集合体と任意の適切な部材からなっていても良い。
 本発明の原子間力顕微鏡用試料固定部材が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含み、上記基材をも含む場合は、該カーボンナノチューブの片端が該基材に固定されていても良い。
 本発明の原子間力顕微鏡用試料固定部材が複数のカーボンナノチューブを備えるカーボンナノチューブ集合体を含む場合であって、基材を含む場合、該カーボンナノチューブを基材に固定する方法としては、任意の適切な方法を採用し得る。例えば、カーボンナノチューブ集合体の製造に使用した基板を基材としてそのまま用いてもよい。また、基材に接着層を設けてカーボンナノチューブに固定してもよい。さらに、基材が熱硬化性樹脂の場合は、反応前の状態で薄膜を作製し、カーボンナノチューブの一端を薄膜層に圧着させた後、硬化処理を行って固定すれば良い。また、基材が熱可塑性樹脂や金属などの場合は、溶融した状態で繊維状柱状構造体の一端を圧着させた後、室温まで冷却して固定すれば良い。
≪カーボンナノチューブ集合体≫
 本発明の原子間力顕微鏡用試料固定部材が繊維状柱状構造体を含む場合、該繊維状柱状構造体は好ましくはカーボンナノチューブ集合体である。本発明の原子間力顕微鏡用試料固定部材がカーボンナノチューブ集合体を含む場合、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量をより一層効果的に軽減できる。
<第1の好ましい実施形態>
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の好ましい実施形態の1つ(以下、第1の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である。
 上記カーボンナノチューブの層数分布の分布幅は10層以上であり、好ましくは10層~30層であり、より好ましくは10層~25層であり、さらに好ましくは10層~20層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは5層~30層であり、より好ましくは10層~30層であり、さらに好ましくは15層~30層であり、特に好ましくは15層~25層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記層数分布の最頻値の相対頻度は、25%以下であり、好ましくは1%~25%であり、より好ましくは5%~25%であり、さらに好ましくは10%~25%であり、特に好ましくは15%~25%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記層数分布の最頻値は、好ましくは層数2層から層数10層に存在し、さらに好ましくは層数3層から層数10層に存在する。上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記カーボンナノチューブの長さが上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記カーボンナノチューブの直径が上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
<第2の好ましい実施形態>
 本発明の原子間力顕微鏡用固定部材が含み得るカーボンナノチューブ集合体の好ましい実施形態の別の1つ(以下、第2の好ましい実施形態と称することがある)は、複数のカーボンナノチューブを備え、該カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である。
 上記カーボンナノチューブの層数分布の分布幅は、好ましくは9層以下であり、より好ましくは1層~9層であり、さらに好ましくは2層~8層であり、特に好ましくは3層~8層である。
 上記カーボンナノチューブの層数分布の「分布幅」とは、カーボンナノチューブの層数の最大層数と最小層数との差をいう。カーボンナノチューブの層数分布の分布幅が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの層数、層数分布は、任意の適切な装置によって測定すれば良い。好ましくは、走査型電子顕微鏡(SEM)や透過電子顕微鏡(TEM)によって測定される。例えば、カーボンナノチューブ集合体から少なくとも10本、好ましくは20本以上のカーボンナノチューブを取り出してSEMあるいはTEMによって測定し、層数および層数分布を評価すれば良い。
 上記カーボンナノチューブの層数の最大層数は、好ましくは1層~20層であり、より好ましくは2層~15層であり、さらに好ましくは3層~10層である。
 上記カーボンナノチューブの層数の最小層数は、好ましくは1層~10層であり、より好ましくは1層~5層である。
 上記カーボンナノチューブの層数の最大層数と最小層数が上記範囲内にあることにより、該カーボンナノチューブは一層優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは一層優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記層数分布の最頻値の相対頻度は、30%以上であり、好ましくは30%~100%であり、より好ましくは30%~90%であり、さらに好ましくは30%~80%であり、特に好ましくは30%~70%である。上記層数分布の最頻値の相対頻度が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記層数分布の最頻値は、層数10層以下に存在し、好ましくは層数1層から層数10層に存在し、より好ましくは層数2層から層数8層に存在し、さらに好ましくは層数2層から層数6層に存在する。本発明において、上記層数分布の最頻値が上記範囲内にあることにより、該カーボンナノチューブは優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブは優れた粘着特性を示すカーボンナノチューブ集合体となり得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの形状としては、その横断面が任意の適切な形状を有していれば良い。例えば、その横断面が、略円形、楕円形、n角形(nは3以上の整数)等が挙げられる。
 上記カーボンナノチューブの長さは、好ましくは200μm以上であり、より好ましくは200μm~2000μmであり、さらに好ましくは300μm~1500μmであり、さらに好ましくは400μm~1000μmであり、特に好ましくは500μm~1000μmであり、最も好ましくは600μm~1000μmである。上記カーボンナノチューブの長さが上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの直径は、好ましくは0.3nm~2000nmであり、より好ましくは1nm~1000nmであり、さらに好ましくは2nm~500nmである。上記カーボンナノチューブの直径が上記範囲内に収まることにより、本発明の原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 上記カーボンナノチューブの比表面積、密度は、任意の適切な値に設定され得る。
≪カーボンナノチューブ集合体の製造方法≫
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造方法としては、任意の適切な方法を採用し得る。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造方法としては、例えば、平滑な基板の上に触媒層を構成し、熱、プラズマなどにより触媒を活性化させた状態で炭素源を充填し、カーボンナノチューブを成長させる、化学気相成長法(Chemical Vapor Deposition:CVD法)によって、基板からほぼ垂直に配向したカーボンナノチューブ集合体を製造する方法が挙げられる。この場合、例えば、基板を取り除けば、長さ方向に配向しているカーボンナノチューブ集合体が得られる。
 上記基板としては、任意の適切な基板を採用し得る。例えば、平滑性を有し、カーボンナノチューブの製造に耐え得る高温耐熱性を有する材料が挙げられる。このような材料としては、例えば、石英ガラス、シリコン(シリコンウェハなど)、アルミニウムなどの金属板などが挙げられる。上記基板は、そのまま、本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体が備え得る基材として用いることができる。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体を製造するための装置としては、任意の適切な装置を採用し得る。例えば、熱CVD装置としては、図2に示すような、筒型の反応容器を抵抗加熱式の電気管状炉で囲んで構成されたホットウォール型などが挙げられる。その場合、反応容器としては、例えば、耐熱性の石英管などが好ましく用いられる。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒(触媒層の材料)としては、任意の適切な触媒を用い得る。例えば、鉄、コバルト、ニッケル、金、白金、銀、銅などの金属触媒が挙げられる。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体を製造する際、必要に応じて、基板と触媒層の中間にアルミナ/親水性膜を設けても良い。
 アルミナ/親水性膜の作製方法としては、任意の適切な方法を採用し得る。例えば、基板の上にSiO膜を作製し、Alを蒸着後、450℃まで昇温して酸化させることにより得られる。このような作製方法によれば、Alが親水性のSiO膜と相互作用し、Alを直接蒸着したものよりも粒子径の異なるAl面が形成される。基板の上に、親水性膜を作製することを行わずに、Alを蒸着後に450℃まで昇温して酸化させても、粒子径の異なるAl面が形成され難いおそれがある。また、基板の上に、親水性膜を作製し、Alを直接蒸着しても、粒子径の異なるAl面が形成され難いおそれがある。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みは、微粒子を形成させるため、好ましくは0.01nm~20nmであり、より好ましくは0.1nm~10nmである。本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る触媒層の厚みが上記範囲内にあることによって、該カーボンナノチューブ集合体は優れた機械的特性および高い比表面積を兼ね備えることができ、さらには、該カーボンナノチューブ集合体は優れた粘着特性を示し得る。したがって、このようなカーボンナノチューブ集合体を用いた原子間力顕微鏡用試料固定部材は、測定中における試料のドリフト量を非常に効果的に軽減できる。
 触媒層の形成方法は、任意の適切な方法を採用し得る。例えば、金属触媒をEB(電子ビーム)、スパッタなどにより蒸着する方法、金属触媒微粒子の懸濁液を基板上に塗布する方法などが挙げられる。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造に用い得る炭素源としては、任意の適切な炭素源を用い得る。例えば、メタン、エチレン、アセチレン、ベンゼンなどの炭化水素;メタノール、エタノールなどのアルコール;などが挙げられる。
 本発明の原子間力顕微鏡用試料固定部材が含み得るカーボンナノチューブ集合体の製造における製造温度としては、任意の適切な温度を採用し得る。たとえば、本発明の効果を十分に発現し得る触媒粒子を形成させるため、好ましくは400℃~1000℃であり、より好ましくは500℃~900℃であり、さらに好ましくは600℃~800℃である。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらに限定されるものではない。なお、各種評価や測定は、以下の方法により行った。
<繊維状柱状物の長さLの測定>
 繊維状柱状物の長さLは、走査型電子顕微鏡(SEM)によって測定した。
<原子間力顕微鏡用試料固定部材のせん断接着力の測定>
 ガラス(MATSUNAMI スライドガラス27mm×56mm)に、1cm単位面積に切り出した原子間力顕微鏡用試料固定部材の先端(原子間力顕微鏡用試料固定部材がカーボンナノチューブ集合体を含む場合は、カーボンナノチューブの先端)が接触するように載置し、5kgのローラーを一往復させて原子間力顕微鏡用試料固定部材の先端をガラスに圧着した。その後、30分間放置した。引張り試験機(Instro Tensil Tester)で引張速度50mm/minにて、室温(25℃)にてせん断試験を行い、得られたピークをせん断接着力とした。
<カーボンナノチューブ集合体におけるカーボンナノチューブの層数・層数分布の評価>
 カーボンナノチューブ集合体におけるカーボンナノチューブの層数および層数分布は、走査型電子顕微鏡(SEM)および/または透過電子顕微鏡(TEM)によって測定した。得られたカーボンナノチューブ集合体の中から少なくとも10本以上、好ましくは20本以上のカーボンナノチューブをSEMおよび/またはTEMにより観察し、各カーボンナノチューブの層数を調べ、層数分布を作成した。
<原子間力顕微鏡測定および原子間力顕微鏡測定時のドリフト量の測定および評価>
 原子間力顕微鏡測定は、標準試料を、固定部材を介してステージに固定後、直ちに、タッピングモードにて測定した。時間をおかずに、2回の測定を行い、1回目に測定された結果と2回目に測定された結果の変位した距離を、原子間力顕微鏡測定時のドリフト量とした。
 また、ドリフト量の評価は下記の基準で行った。
  ◎:ドリフト量が0.1μm以下。
  ○:ドリフト量が0.1μmより大きく0.5μm以下。
  △:ドリフト量が0.5μmより大きく1.0μm以下。
  ×:ドリフト量が1.0μmより大きい。
 なお、原子間力顕微鏡測定を行う際に、接着不足により試料がはがれてしまった場合を、「はがれ」と評価した。
[実施例1]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、10分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(1)を得た。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの長さは200μmであった。
 カーボンナノチューブ集合体(1)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(1)を原子間力顕微鏡用試料固定部材(1)として、各種評価を行い、結果を表1にまとめた。
[実施例2]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、10分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(2)を得た。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの長さは200μmであった。
 カーボンナノチューブ集合体(2)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(2)を原子間力顕微鏡用試料固定部材(2)として、各種評価を行い、結果を表1にまとめた。
[実施例3]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、15分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(3)を得た。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの長さは300μmであった。
 カーボンナノチューブ集合体(3)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(3)を原子間力顕微鏡用試料固定部材(3)として、各種評価を行い、結果を表1にまとめた。
[実施例4]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、30分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(4)を得た。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの長さは600μmであった。
 カーボンナノチューブ集合体(4)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(4)を原子間力顕微鏡用試料固定部材(4)として、各種評価を行い、結果を表1にまとめた。
[実施例5]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、30分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(5)を得た。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの長さは600μmであった。
 カーボンナノチューブ集合体(5)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(5)を原子間力顕微鏡用試料固定部材(5)として、各種評価を行い、結果を表1にまとめた。
[比較例1]
 シリコン基板(KST製、熱酸化膜付ウェハ、厚み1000μm)上に、真空蒸着装置(JEOL製、JEE-4X Vacuum Evaporator)により、Al薄膜(厚み10nm)を形成した後、450℃で1時間酸化処理を施した。このようにして、シリコン基板上にAl膜を形成した。このAl膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み2nm)を蒸着させて触媒層を形成した。
 次に、得られた触媒層付シリコン基板をカットして、30mmφの石英管内に載置し、水分350ppmに保ったヘリウム/水素(120/80sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで35分間で段階的に昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(105/80/15sccm、水分率350ppm)混合ガスを管内に充填させ、5分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(C1)を得た。
 カーボンナノチューブ集合体(C1)が備えるカーボンナノチューブの長さは90μmであった。
 カーボンナノチューブ集合体(C1)が備えるカーボンナノチューブの層数分布において、層数分布の分布幅は17層(4層~20層)であり、最頻値は4層と8層に存在し、相対頻度はそれぞれ20%と20%であった。
 得られたカーボンナノチューブ集合体(C1)を原子間力顕微鏡用試料固定部材(C1)として、各種評価を行い、結果を表1にまとめた。
[比較例2]
 基板としてのシリコンウェハ(シリコンテクノロジー製)上に、スパッタ装置(ULVAC製、RFS-200)により、Al薄膜(厚み10nm)を形成した。このAl薄膜上に、さらにスパッタ装置(ULVAC製、RFS-200)にてFe薄膜(厚み1nm)を蒸着した。
 その後、この基板を30mmφの石英管内に載置し、水分600ppmに保ったヘリウム/水素(90/50sccm)混合ガスを石英管内に30分間流して、管内を置換した。その後、電気管状炉を用いて管内を765℃まで昇温させ、765℃にて安定させた。765℃にて温度を保持したまま、ヘリウム/水素/エチレン(85/50/5sccm、水分率600ppm)混合ガスを管内に充填させ、6分間放置してカーボンナノチューブを基板上に成長させ、カーボンナノチューブが長さ方向に配向しているカーボンナノチューブ集合体(C2)を得た。
 カーボンナノチューブ集合体(C2)が備えるカーボンナノチューブの長さは120μmであった。
 カーボンナノチューブ集合体(C2)が備えるカーボンナノチューブの層数分布において、最頻値は2層に存在し、相対頻度は75%であった。
 得られたカーボンナノチューブ集合体(C2)を原子間力顕微鏡用試料固定部材(C2)として、各種評価を行い、結果を表1にまとめた。
[比較例3]
 原子間力顕微鏡用試料固定部材として導電性カーボン両面テープ(731:日新EM(株)製)を用い、各種評価を行い、結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 本発明の原子間力顕微鏡用試料固定部材は、原子間力顕微鏡において測定対象試料を固定するための部材に好適に用いることができる。
10    繊維状柱状構造体
1     基材
2     繊維状柱状物
2a    繊維状柱状物の片端

Claims (6)

  1.  長さ200μm以上の繊維状柱状物を複数備える繊維状柱状構造体を含む、原子間力顕微鏡用試料固定部材。
  2.  室温におけるガラス面に対するせん断接着力が10N/cm以上である、請求項1に記載の原子間力顕微鏡用試料固定部材。
  3.  前記繊維状柱状構造体が、複数のカーボンナノチューブを備えるカーボンナノチューブ集合体である、請求項1または2に記載の原子間力顕微鏡用試料固定部材。
  4.  前記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の分布幅が10層以上であり、該層数分布の最頻値の相対頻度が25%以下である、請求項3に記載の原子間力顕微鏡用試料固定部材。
  5.  前記カーボンナノチューブが複数層を有し、該カーボンナノチューブの層数分布の最頻値が層数10層以下に存在し、該最頻値の相対頻度が30%以上である、請求項3に記載の原子間力顕微鏡用試料固定部材。
  6.  基材を含む、請求項1から5までのいずれかに記載の原子間力顕微鏡用試料固定部材。
     
PCT/JP2013/051804 2012-02-03 2013-01-29 原子間力顕微鏡用試料固定部材 WO2013115144A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021447A KR20140133508A (ko) 2012-02-03 2013-01-29 원자간력 현미경용 시료 고정 부재
US14/374,733 US9279828B2 (en) 2012-02-03 2013-01-29 Sample fixing member for atomic force microscope
CN201380007659.3A CN104105972A (zh) 2012-02-03 2013-01-29 原子力显微镜用试样固定部件
EP13742917.1A EP2811302A4 (en) 2012-02-03 2013-01-29 SAMPLE FASTENING ELEMENT FOR ATOMIC FORCE MICROSCOPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-021711 2012-02-03
JP2012021711A JP2013160587A (ja) 2012-02-03 2012-02-03 原子間力顕微鏡用試料固定部材

Publications (1)

Publication Number Publication Date
WO2013115144A1 true WO2013115144A1 (ja) 2013-08-08

Family

ID=48905183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051804 WO2013115144A1 (ja) 2012-02-03 2013-01-29 原子間力顕微鏡用試料固定部材

Country Status (6)

Country Link
US (1) US9279828B2 (ja)
EP (1) EP2811302A4 (ja)
JP (1) JP2013160587A (ja)
KR (1) KR20140133508A (ja)
CN (1) CN104105972A (ja)
WO (1) WO2013115144A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3082148A1 (en) * 2015-04-15 2016-10-19 FEI Company Method of manipulating a sample in an evacuated chamber of a charged particle apparatus
JP6742098B2 (ja) 2016-01-15 2020-08-19 日東電工株式会社 載置部材
JP6616194B2 (ja) * 2016-01-15 2019-12-04 日東電工株式会社 載置部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133721A (ja) * 2007-11-30 2009-06-18 Jeol Ltd 走査プローブ顕微鏡
JP2011132387A (ja) * 2009-12-25 2011-07-07 Nitto Denko Corp カーボンナノチューブ複合構造体および粘着部材
JP2011132074A (ja) * 2009-12-25 2011-07-07 Nitto Denko Corp カーボンナノチューブ複合構造体および粘着部材
JP2011252849A (ja) 2010-06-03 2011-12-15 Shimadzu Corp 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207398B2 (ja) * 2001-05-21 2009-01-14 富士ゼロックス株式会社 カーボンナノチューブ構造体の配線の製造方法、並びに、カーボンナノチューブ構造体の配線およびそれを用いたカーボンナノチューブデバイス
US9127174B2 (en) * 2006-01-20 2015-09-08 Ezaki Glico Co., Ltd. Aqueous composition for conductive coating
CN101323759B (zh) 2007-06-15 2014-10-08 清华大学 导电胶带及其制造方法
US8900701B2 (en) * 2008-04-16 2014-12-02 Nitto Denko Corporation Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
US8025971B2 (en) * 2008-04-16 2011-09-27 Nitto Denko Corporation Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
JP5415929B2 (ja) * 2009-12-25 2014-02-12 日東電工株式会社 カーボンナノチューブ複合構造体からのカーボンナノチューブ柱状構造体の単離方法
JP2012040664A (ja) * 2010-08-23 2012-03-01 Nitto Denko Corp 繊維状柱状構造体集合体および粘着部材
JP2013014449A (ja) * 2011-07-01 2013-01-24 Nitto Denko Corp 繊維状柱状構造体集合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133721A (ja) * 2007-11-30 2009-06-18 Jeol Ltd 走査プローブ顕微鏡
JP2011132387A (ja) * 2009-12-25 2011-07-07 Nitto Denko Corp カーボンナノチューブ複合構造体および粘着部材
JP2011132074A (ja) * 2009-12-25 2011-07-07 Nitto Denko Corp カーボンナノチューブ複合構造体および粘着部材
JP2011252849A (ja) 2010-06-03 2011-12-15 Shimadzu Corp 原子間力顕微鏡におけるカンチレバー励振方法及び原子間力顕微鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811302A4

Also Published As

Publication number Publication date
JP2013160587A (ja) 2013-08-19
KR20140133508A (ko) 2014-11-19
US20150013036A1 (en) 2015-01-08
CN104105972A (zh) 2014-10-15
EP2811302A4 (en) 2015-12-30
EP2811302A1 (en) 2014-12-10
US9279828B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
US8900701B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
US8025971B2 (en) Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
JP5577089B2 (ja) カーボンナノチューブ複合構造体および粘着部材
JP2011132074A (ja) カーボンナノチューブ複合構造体および粘着部材
JP2014098107A (ja) 宇宙空間で用いる把持材料
JP5714928B2 (ja) 繊維状柱状構造体集合体および放熱部材
JP5199753B2 (ja) カーボンナノチューブ集合体の製造方法
WO2012026203A1 (ja) 繊維状柱状構造体集合体および粘着部材
WO2013115144A1 (ja) 原子間力顕微鏡用試料固定部材
WO2013115145A1 (ja) 飛行時間型二次イオン質量分析装置用試料固定部材
WO2013115146A1 (ja) ナノインデンター用試料固定部材
JP5893374B2 (ja) カーボンナノチューブ集合体およびそれを用いた粘弾性体
WO2014034489A1 (ja) 分析用除電部材
JP2014126470A (ja) オージェ電子分光分析装置用試料固定部材
JP2014145698A (ja) ラマン分光分析装置用試料固定部材
WO2016031616A1 (ja) 高速液体クロマトグラフィー用試料サンプリング材
WO2015146614A1 (ja) Sims分析方法およびsims分析装置
WO2016031617A1 (ja) ガスクロマトグラフィー質量分析用試料サンプリング材
JP5892778B2 (ja) 広温度領域用粘弾性体
WO2016031618A1 (ja) クリーニング部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13742917

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013742917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013742917

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374733

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147021447

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE