WO2013114562A1 - 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置 - Google Patents

半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2013114562A1
WO2013114562A1 PCT/JP2012/052108 JP2012052108W WO2013114562A1 WO 2013114562 A1 WO2013114562 A1 WO 2013114562A1 JP 2012052108 W JP2012052108 W JP 2012052108W WO 2013114562 A1 WO2013114562 A1 WO 2013114562A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction
semiconductor
glass composition
semiconductor device
protecting
Prior art date
Application number
PCT/JP2012/052108
Other languages
English (en)
French (fr)
Inventor
広野 六鎗
浩二 伊東
小笠原 淳
伊藤 一彦
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to US13/883,916 priority Critical patent/US9099483B2/en
Priority to PCT/JP2012/052108 priority patent/WO2013114562A1/ja
Priority to JP2012525767A priority patent/JP5184717B1/ja
Priority to EP12837604.3A priority patent/EP2811511B1/en
Priority to CN201280002233.4A priority patent/CN103403846B/zh
Priority to PCT/JP2012/061779 priority patent/WO2012160961A1/ja
Priority to JP2013516274A priority patent/JP5655140B2/ja
Priority to JP2013516273A priority patent/JP5655139B2/ja
Priority to PCT/JP2012/061780 priority patent/WO2012160962A1/ja
Priority to TW102103596A priority patent/TWI468360B/zh
Publication of WO2013114562A1 publication Critical patent/WO2013114562A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02161Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3178Coating or filling in grooves made in the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body

Definitions

  • the present invention relates to a glass composition for protecting a semiconductor junction, a method for manufacturing a semiconductor device, and a semiconductor device.
  • a semiconductor device manufacturing method is known in which a passivation glass layer is formed so as to cover a pn junction exposed portion in the process of manufacturing a mesa type semiconductor device (see, for example, Patent Document 1).
  • FIGS. 8 and 9 are views for explaining such a conventional method of manufacturing a semiconductor device.
  • FIG. 8A to FIG. 8D and FIG. 9A to FIG. 9D are process diagrams.
  • conventional semiconductor device manufacturing methods include a “semiconductor substrate forming step”, a “groove forming step”, a “glass layer forming step”, a “photoresist forming step”, and an “oxide removal”. Step, “roughened region forming step”, “electrode forming step” and “semiconductor substrate cutting step” are included in this order.
  • a conventional method for manufacturing a semiconductor device will be described in the order of steps.
  • n + -type diffusion layer 912 is diffused from one surface of n ⁇ -type semiconductor substrate (n ⁇ -type silicon substrate) 910, and n-type impurities from the other surface are diffused.
  • An n + -type diffusion layer 914 is formed by diffusion to form a semiconductor substrate in which a pn junction parallel to the main surface is formed.
  • oxide films 916 and 918 are formed on the surfaces of the p + type diffusion layer 912 and the n + type diffusion layer 914 by thermal oxidation (see FIG. 8A).
  • the step of forming the groove 920 exceeding the pn junction from one surface of the semiconductor substrate on which the pn junction parallel to the main surface is formed (FIG. 8A and FIG.
  • a step of forming a passivation glass layer 924 so as to cover the exposed portion of the pn junction inside the groove 920 (see FIG. 8C). Therefore, according to the conventional method for manufacturing a semiconductor device, a high-breakdown-voltage mesa semiconductor device can be manufactured by forming a passivation glass layer 924 in the groove 920 and then cutting the semiconductor substrate. .
  • a glass material used for the glass layer for passivation (a) it can be baked at an appropriate temperature (for example, 900 ° C. or less), (b) can withstand chemicals used in the process, (c) (wafer in process) Have a linear expansion coefficient close to that of silicon (especially, the average linear expansion coefficient at 50 ° C. to 550 ° C. is close to that of silicon) and (d) excellent insulation Since it is necessary to satisfy the condition of having a glass, a “glass material mainly composed of lead silicate” has been widely used.
  • glass material based on lead silicate contains lead with a large environmental load, and in the near future, the use of such “glass material based on lead silicate” is prohibited. It is thought that it will go.
  • An object of the present invention is to provide a glass composition for protecting a semiconductor junction, a method for manufacturing a semiconductor device, and a semiconductor device, which make it possible to manufacture the semiconductor device.
  • [1] glass composition for protecting a semiconductor junction of the present invention at least SiO 2, and B 2 O 3, and Al 2 O 3, ZnO and, CaO, of MgO and at least two alkaline earth metals out of BaO It contains an oxide and is substantially free of Pb, P, As, Sb, Li, Na, and K.
  • the average linear expansion coefficient is in the range of 3 ⁇ 10 ⁇ 6 to 4.5 ⁇ 10 ⁇ 6 in the temperature range of 50 ° C. to 550 ° C. Is preferred.
  • the glass composition for protecting a semiconductor junction of the present invention preferably contains all of CaO, MgO and BaO as the oxide of the alkaline earth metal.
  • the glass composition for protecting a semiconductor junction according to the present invention preferably contains 55 mol% or more of SiO 2 and B 2 O 3 in total.
  • the glass composition for protecting a semiconductor junction according to the present invention preferably further contains “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide and manganese oxide”.
  • the glass composition for protecting a semiconductor junction of the present invention contains nickel oxide as the “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide and manganese oxide”. It is preferable to do.
  • a method of manufacturing a semiconductor device includes a first step of preparing a semiconductor element having a pn junction exposed portion where a pn junction is exposed, and a second step of forming a glass layer so as to cover the pn junction exposed portion.
  • the second step at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, CaO, MgO, and BaO are included in this order.
  • a glass composition for protecting a semiconductor junction containing at least two oxides of an alkaline earth metal and substantially free of Pb, P, As, Sb, Li, Na and K And forming the glass layer.
  • the first step includes a step of preparing a semiconductor substrate having a pn junction parallel to the main surface, and the pn junction is exceeded from one surface of the semiconductor substrate. Forming the pn junction exposed portion in the groove by forming a groove having a depth, and the second step covers the pn junction exposed portion in the groove. It is preferable to include a step of forming a layer.
  • the second step includes a step of forming the glass layer so as to directly cover the exposed portion of the pn junction inside the groove.
  • the second step includes a step of forming an insulating film on the exposed portion of the pn junction in the trench, and the exposure of the pn junction through the insulating film. And forming the glass layer so as to cover the portion.
  • the first step includes a step of forming the pn junction exposed portion on the surface of the semiconductor substrate
  • the second step includes the step of forming the pn junction on the surface of the semiconductor substrate. It is preferable to include a step of forming the glass layer so as to cover the pn junction exposed portion.
  • the second step includes a step of forming the glass layer so as to directly cover the exposed pn junction on the surface of the semiconductor substrate.
  • the second step includes a step of forming an insulating film on the pn junction exposed portion on the surface of the semiconductor substrate, and the pn junction via the insulating film. And a step of forming the glass layer so as to cover the exposed portion.
  • the glass composition for protecting a semiconductor junction has an average linear expansion coefficient of 3 ⁇ 10 ⁇ 6 to 4.5 ⁇ 10 in a temperature range of 50 ° C. to 550 ° C. It is preferably in the range of ⁇ 6 .
  • the glass composition for protecting a semiconductor junction preferably contains all of CaO, MgO, and BaO as the oxide of the alkaline earth metal.
  • the glass composition for protecting a semiconductor junction preferably contains 55 mol% or more of SiO 2 and B 2 O 3 in total.
  • the glass composition for protecting a semiconductor junction is “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide, and manganese oxide”. It is preferable to further contain.
  • the glass composition for protecting a semiconductor junction includes at least one metal oxide selected from the group consisting of the above-mentioned “nickel oxide, copper oxide, and manganese oxide”. ", It is preferable to contain nickel oxide.
  • a semiconductor device is a semiconductor device including a semiconductor element having a pn junction exposed portion from which a pn junction is exposed, and a glass layer formed so as to cover the pn junction exposed portion, wherein the glass layers, at least SiO 2, and B 2 O 3, contains a Al 2 O 3, and ZnO, CaO, and at least two oxides of alkaline earth metals of MgO and BaO, and a Pb, It is formed using the glass composition for semiconductor junction protection which does not contain P, As, Sb, Li, Na, and K substantially.
  • the glass composition for protecting a semiconductor junction has an average linear expansion coefficient of 3 ⁇ 10 ⁇ 6 to 4.5 ⁇ 10 ⁇ 6 in a temperature range of 50 ° C. to 550 ° C. It is preferable to be within the range.
  • the glass composition for protecting a semiconductor junction preferably contains all of CaO, MgO, and BaO as the alkaline earth metal oxide.
  • the glass composition for protecting a semiconductor junction contains 55 mol% or more of SiO 2 and B 2 O 3 in total.
  • the glass composition for protecting a semiconductor junction further contains “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide, and manganese oxide”. It is preferable to do.
  • the glass composition for protecting a semiconductor junction includes the “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide and manganese oxide”. It is preferable to contain nickel oxide. Show.
  • a glass material containing no lead is used, A high breakdown voltage semiconductor device can be manufactured in the same manner as in the case of using “a glass material having a main component”.
  • the glass composition for protecting a semiconductor junction since it contains an oxide of at least two alkaline earth metals among CaO, MgO, and BaO, it will be described later.
  • the average linear expansion coefficient at 50 ° C. to 550 ° C. has a value close to that of silicon, and a highly reliable semiconductor device can be manufactured.
  • Pb, P, As, Sb, Li, Na, and K are substantially free of Pb, P, and As.
  • Sb, Li, Na, and K are not included as components, and the glass composition in which the above is mixed as an impurity in the raw material of each component constituting the glass is not excluded. The same applies to the semiconductor device manufacturing method and the semiconductor device of the present invention.
  • Pb is not substantially contained because the purpose of the present invention is to use a conventional “glass material containing lead silicate as a main component using a glass material not containing lead”. Similarly, it is possible to manufacture a semiconductor device having a high breakdown voltage.
  • P, As, and Sb are substantially not contained is advantageous in terms of the firing temperature when these components are contained, but these components are contained in the semiconductor during firing. This is because the insulating properties may deteriorate due to diffusion to the substrate.
  • Li, Na, and K are not substantially contained is advantageous in terms of average linear expansion coefficient and firing temperature when these components are contained, This is because it may decrease.
  • At least A glass composition containing SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, and an oxide of at least two alkaline earth metals among CaO, MgO, and BaO is a glass for protecting a semiconductor junction. It has been found that it can be used as a composition. That is, according to the glass composition for protecting a semiconductor junction of the present invention, as will be apparent from Examples described later, a conventional “glass material mainly composed of lead silicate” using a glass material not containing lead. A high breakdown voltage semiconductor device can be manufactured as in the case of using it.
  • FIG. 10 is a view for explaining the method for manufacturing the semiconductor device according to the sixth embodiment.
  • FIG. 10 is a view for explaining the method for manufacturing the semiconductor device according to the sixth embodiment. It is a figure shown in order to demonstrate the manufacturing method of the semiconductor device concerning Embodiment 7. It is a figure shown in order to demonstrate the manufacturing method of the semiconductor device concerning Embodiment 7. It is a graph which shows the result of an Example. It is a figure shown in order to demonstrate the bubble b which generate
  • Embodiment 1 is an embodiment according to a glass composition for protecting a semiconductor junction.
  • the glass composition for protecting a semiconductor junction according to Embodiment 1 includes at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, and oxides of all alkaline earth metals among CaO, MgO, and BaO. And nickel oxide, and substantially does not contain Pb, P, As, Sb, Li, Na, and K.
  • the content of SiO 2 is in the range of 41.1 mol% to 61.1 mol%
  • the content of B 2 O 3 is in the range of 5.8 mol% to 15.8 mol%
  • Al The content of 2 O 3 is in the range of 7.4 mol% to 17.4 mol%
  • the content of ZnO is in the range of 3.0 mol% to 24.8 mol%
  • the alkaline earth metal oxide The content is in the range of 5.5 mol% to 15.5 mol%
  • the nickel oxide content is in the range of 0.01 mol% to 3.0 mol%.
  • the CaO content is in the range of 2.8 mol% to 7.8 mol%
  • the MgO content is in the range of 1.1 mol% to 3.1 mol%
  • the BaO content is in the range of 1.7 mol% to 4.7 mol%.
  • a conventional “glass material mainly composed of lead silicate” using a glass material not containing lead can be manufactured in the same manner as in the case of using.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 1, since it contains all the alkaline-earth metal oxides among CaO, MgO, and BaO, it is clear also from the Example mentioned later.
  • the average linear expansion coefficient at 50 ° C. to 550 ° C. has a value close to that of silicon, and a highly reliable semiconductor device can be manufactured.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 1, since it contains all the alkaline-earth metal oxides among CaO, MgO, and BaO, it is clear also from the Example mentioned later. It is possible to suppress the occurrence of devitrification in the process of manufacturing the glass composition for protecting a semiconductor junction.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 1
  • the glass composition for semiconductor junction protection contains nickel oxide, it is formed by the electrophoresis method so that it may become clear also from the Example mentioned later. Suppresses the generation of bubbles that may be generated from the interface with the semiconductor substrate (silicon) during the firing process of the “layer composed of a glass composition for protecting a semiconductor junction” and deteriorates the reverse breakdown voltage characteristics of the semiconductor device. It is possible to suppress the occurrence of the situation of doing.
  • the glass composition for protecting a semiconductor junction according to Embodiment 1, and SiO 2 in the case of containing B 2 O 3 and more than 55 mol% in total is improved chemical resistance.
  • the content of SiO 2 is set within the range of 41.1 mol% to 61.1 mol%.
  • the content of SiO 2 is less than 41.1 mol%, the chemical resistance may decrease. This is because the insulating property may decrease, and when the SiO 2 content exceeds 61.1 mol%, the firing temperature tends to increase.
  • the content of B 2 O 3 is in the range of 5.8 mol% to 15.8 mol% because the firing temperature is high when the content of B 2 O 3 is less than 5.8 mol%. This is because when the content of B 2 O 3 exceeds 15.8 mol%, boron may diffuse into the semiconductor substrate in the step of firing the glass layer, resulting in a decrease in insulation. It is.
  • the content of Al 2 O 3 is in the range of 7.4 mol% to 17.4 mol% because the chemical resistance is low when the content of Al 2 O 3 is less than 7.4 mol%. This is because there is a case where the temperature is lowered or the insulating property is lowered. When the content of Al 2 O 3 exceeds ⁇ 17.4 mol%, the firing temperature tends to increase.
  • the reason why the ZnO content is in the range of 3.0 mol% to 24.8 mol% is that the firing temperature tends to increase when the ZnO content is less than 3.0 mol%. In other words, when the ZnO content exceeds 24.8 mol%, the chemical resistance may be lowered or the insulation may be lowered.
  • the reason why the content of the alkaline earth metal oxide is in the range of 5.5 mol% to 15.5 mol% is that the content of the alkaline earth metal oxide is less than 5.5 mol%. This is because the firing temperature tends to be high, and when the content of the alkaline earth metal oxide exceeds 15.5 mol%, the chemical resistance is lowered or the insulation is lowered. Because there are cases.
  • the CaO content is within the range of 2.8 mol% to 7.8 mol% when the CaO content is less than 2.8 mol%. This is because the firing temperature tends to be high, and when the CaO content exceeds 7.8 mol%, chemical resistance may be lowered or insulation may be lowered.
  • the MgO content is set within the range of 1.1 mol% to 3.1 mol% when the MgO content is less than 1.1 mol%. This is because the firing temperature tends to increase when the MgO content exceeds 3.1 mol%.
  • the reason why the BaO content is in the range of 1.7 mol% to 4.7 mol% is that the firing temperature tends to increase when the BaO content is less than 1.7 mol%. In other words, when the BaO content exceeds 4.7 mol%, the chemical resistance may be lowered or the insulation may be lowered.
  • the nickel oxide content was in the range of 0.01 mol% to 3.0 mol% when the nickel oxide content was less than 0.01 mol%. This is because it may be difficult to suppress the generation of bubbles that may be generated from the interface with the semiconductor substrate (silicon) in the process of firing the “layer comprising the glass composition for protecting a semiconductor junction”, This is because when the content of nickel oxide exceeds 3.0 mol%, it may be difficult to produce a homogeneous glass.
  • the glass composition for protecting a semiconductor junction according to Embodiment 1 can be manufactured as follows. That is, the raw materials (SiO 2 , H 3 BO 3 , Al (OH) 3 , ZnO, CaCO 3 , Mg (OH) 2 , BaO and NiO are prepared so as to have the above-described composition ratio (molar ratio). Then, the mixed raw material is put into a platinum crucible raised to a predetermined temperature (for example, 1550 ° C.) in an electric furnace and melted for a predetermined time, and then the melt is poured into a water-cooled roll to form a flaky shape. Glass flakes are obtained, and then the glass flakes are pulverized with a ball mill or the like to a predetermined average particle size to obtain a powdery glass composition.
  • a predetermined temperature for example, 1550 ° C.
  • Embodiment 2 is an embodiment according to a glass composition for protecting a semiconductor junction.
  • the glass composition for protecting a semiconductor junction according to Embodiment 2 includes at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, and at least two alkaline earth metal oxides (CaO and MgO). And nickel oxide, and substantially free of Pb, P, As, Sb, Li, Na, and K.
  • the content of SiO 2, the content of B 2 O 3 , the content of Al 2 O 3 , the content of ZnO, the content of oxides of alkaline earth metals and the content of nickel oxide are the same as those in Embodiment 1. It is the same as the glass composition for semiconductor junction protection.
  • the CaO content is in the range of 3.8 mol% to 10.9 mol%
  • the MgO content is in the range of 1.7 mol% to 4.7 mol%.
  • a glass material that does not contain lead is used.
  • a high breakdown voltage semiconductor device can be manufactured in the same manner as in the case of using “a glass material having a main component”.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 2 since it contains the oxide (CaO and MgO) of at least 2 alkaline-earth metal, the glass composition for semiconductor junction protection which concerns on Embodiment 1 As in the case of products, the average linear expansion coefficient at 50 ° C. to 550 ° C. has a value close to that of silicon, and a highly reliable semiconductor device can be manufactured.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 2 since it contains the oxide (CaO and MgO) of at least 2 alkaline-earth metal, the glass composition for semiconductor junction protection which concerns on Embodiment 1 As in the case of a product, it is possible to suppress the occurrence of devitrification in the process of manufacturing a glass composition for protecting a semiconductor junction.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 2
  • a semiconductor device It is possible to suppress the occurrence of a situation in which the reverse breakdown voltage characteristics of the above deteriorate.
  • the CaO content is in the range of 3.8 mol% to 10.9 mol% when the CaO content is less than 3.8 mol%. This is because the firing temperature tends to increase, and when the CaO content exceeds 10.9 mol%, chemical resistance may deteriorate or insulation may decrease.
  • the MgO content is within the range of 1.7 mol% to 4.7 mol% because when the MgO content is less than 1.7 mol%, the chemical resistance is reduced or the insulation is reduced. This is because, when the MgO content exceeds 4.7 mol%, the firing temperature tends to increase.
  • the glass composition for protecting a semiconductor junction according to Embodiment 2 can be manufactured as follows. That is, raw materials (SiO 2 , H 3 BO 3 , Al (OH) 3 , ZnO, CaCO 3 , Mg (OH) 2 and NiO) are prepared so as to have the above-described composition ratio (molar ratio), and a mixer is used. After stirring well, the mixed raw material is put in a platinum crucible raised to a predetermined temperature (for example, 1550 ° C.) in an electric furnace and melted for a predetermined time. Thereafter, the melt is poured into a water-cooled roll to obtain flaky glass flakes. Thereafter, the glass flakes are pulverized with a ball mill or the like until a predetermined average particle diameter is obtained to obtain a powdery glass composition.
  • a predetermined temperature for example, 1550 ° C.
  • Embodiment 3 is an embodiment according to a glass composition for protecting a semiconductor junction.
  • the glass composition for protecting a semiconductor junction according to Embodiment 3 includes at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, and at least two alkaline earth metal oxides (CaO and BaO). And nickel oxide, and substantially free of Pb, P, As, Sb, Li, Na, and K.
  • the content of SiO 2, the content of B 2 O 3 , the content of Al 2 O 3 , the content of ZnO, the content of oxides of alkaline earth metals and the content of nickel oxide are the same as those in Embodiment 1. It is the same as the glass composition for semiconductor junction protection.
  • the alkaline earth metal oxides the CaO content is in the range of 3.3 mol% to 9.3 mol%, and the BaO content is in the range of 2.2 mol% to 6.2 mol%.
  • a high breakdown voltage semiconductor device can be manufactured in the same manner as in the case of using.
  • the glass composition for protecting a semiconductor junction according to the third embodiment since it contains at least two oxides of alkaline earth metal (CaO and BaO), as is clear from the examples described later,
  • the average linear expansion coefficient at 50 ° C. to 550 ° C. has a value close to that of silicon, and a highly reliable semiconductor device can be manufactured.
  • the glass composition for protecting a semiconductor junction according to the third embodiment since it contains at least two oxides of alkaline earth metal (CaO and BaO), as is clear from the examples described later, It becomes possible to suppress the occurrence of devitrification in the process of manufacturing the glass composition for protecting a semiconductor junction.
  • CaO and BaO alkaline earth metal
  • the glass composition for semiconductor junction protection which concerns on Embodiment 3 since the glass composition for semiconductor junction protection contains nickel oxide, it is formed by the electrophoresis method so that it may become clear also from the Example mentioned later. Suppresses the generation of bubbles that may be generated from the interface with the semiconductor substrate (silicon) during the firing process of the “layer composed of a glass composition for protecting a semiconductor junction” and deteriorates the reverse breakdown voltage characteristics of the semiconductor device. It is possible to suppress the occurrence of the situation of doing.
  • the CaO content is within the range of 3.3 mol% to 9.3 mol% when the CaO content is less than 3.3 mol%. This is because the firing temperature tends to be high, and when the CaO content exceeds 9.3 mol%, chemical resistance may be lowered or insulation may be lowered.
  • the BaO content is set in the range of 2.2 mol% to 6.2 mol% when the BaO content is less than 2.2 mol%. This is because the firing temperature tends to increase when the BaO content exceeds 6.2 mol%.
  • the glass composition for protecting a semiconductor junction according to Embodiment 3 can be manufactured as follows. That is, after preparing the raw materials (SiO 2 , H 3 BO 3 , Al (OH) 3 , ZnO, CaCO 3 , BaO and NiO) so as to have the above-described composition ratio (molar ratio), and thoroughly stirring with a mixer
  • the mixed raw material is put in a platinum crucible raised to a predetermined temperature (for example, 1550 ° C.) in an electric furnace and melted for a predetermined time. Thereafter, the melt is poured into a water-cooled roll to obtain flaky glass flakes. Thereafter, the glass flakes are pulverized with a ball mill or the like until a predetermined average particle diameter is obtained to obtain a powdery glass composition.
  • Embodiment 4 is an embodiment according to a glass composition for protecting a semiconductor junction.
  • the glass composition for protecting a semiconductor junction according to Embodiment 4 includes at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, and at least two alkaline earth metal oxides (MgO and BaO). And nickel oxide, and substantially free of Pb, P, As, Sb, Li, Na, and K.
  • the content of SiO 2, the content of B 2 O 3 , the content of Al 2 O 3 , the content of ZnO, the content of oxides of alkaline earth metals and the content of nickel oxide are the same as those in Embodiment 1. It is the same as the glass composition for semiconductor junction protection.
  • the alkaline earth metal oxides the MgO content is in the range of 2.2 mol% to 6.2 mol%, and the BaO content is in the range of 3.3 mol% to 9.3 mol%.
  • a conventional “lead silicate is used by using a glass material not containing lead.
  • a high breakdown voltage semiconductor device can be manufactured in the same manner as in the case of using “a glass material having a main component”.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 4 since it contains the oxide (MgO and BaO) of at least 2 alkaline-earth metal, the glass composition for semiconductor junction protection which concerns on Embodiment 1 As in the case of products, the average linear expansion coefficient at 50 ° C. to 550 ° C. has a value close to that of silicon, and a highly reliable semiconductor device can be manufactured.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 4 since it contains the oxide (MgO and BaO) of at least 2 alkaline-earth metal, the glass composition for semiconductor junction protection which concerns on Embodiment 1 As in the case of a product, it is possible to suppress the occurrence of devitrification in the process of manufacturing a glass composition for protecting a semiconductor junction.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 4 since the glass composition for semiconductor junction protection contains nickel oxide, it is the same as that of the case of the glass composition for semiconductor junction protection which concerns on Embodiment 1.
  • a semiconductor device It is possible to suppress the occurrence of a situation in which the reverse breakdown voltage characteristics of the above deteriorate.
  • the MgO content is in the range of 2.2 mol% to 6.2 mol% when the MgO content is less than 2.2 mol%. This is because chemical resistance may be lowered or insulation may be lowered. When the content of MgO exceeds 6.2 mol%, the firing temperature tends to increase.
  • the reason why the BaO content is in the range of 3.3 mol% to 9.3 mol% is that the firing temperature tends to increase when the BaO content is less than 3.3 mol%. In other words, when the content of BaO exceeds 9.3 mol%, chemical resistance may be lowered or insulation may be lowered.
  • the glass composition for protecting a semiconductor junction according to Embodiment 4 can be manufactured as follows. That is, raw materials (SiO 2 , H 3 BO 3 , Al (OH) 3 , ZnO, Mg (OH) 2 , BaO and NiO) are prepared so as to have the composition ratio (molar ratio) described above, and a mixer may be used. After stirring, the mixed raw material is put in a platinum crucible raised to a predetermined temperature (for example, 1550 ° C.) in an electric furnace and melted for a predetermined time. Thereafter, the melt is poured into a water-cooled roll to obtain flaky glass flakes. Thereafter, the glass flakes are pulverized with a ball mill or the like until a predetermined average particle diameter is obtained to obtain a powdery glass composition.
  • a predetermined temperature for example, 1550 ° C.
  • Embodiment 5 is an embodiment according to a glass composition for protecting a semiconductor junction.
  • the glass composition for protecting a semiconductor junction according to Embodiment 5 basically contains the same components as the glass composition for protecting a semiconductor junction according to Embodiment 1, but is free from nickel oxide. This is different from the glass composition for protecting a semiconductor junction according to the present invention. That is, the glass composition for protecting a semiconductor junction according to Embodiment 5 includes at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, CaO, MgO, and BaO. It contains an oxide and does not substantially contain Pb, P, As, Sb, Li, Na, and K.
  • the content of SiO 2, the content of B 2 O 3 , the content of Al 2 O 3 , the content of ZnO and the content of an oxide of alkaline earth metal are the glass composition for semiconductor junction protection according to the first embodiment. It is the same as a thing.
  • a conventional “lead silicate is used by using a glass material not containing lead.
  • a high breakdown voltage semiconductor device can be manufactured in the same manner as in the case of using “a glass material having a main component”.
  • the glass composition for semiconductor junction protection which concerns on Embodiment 5 since it contains the oxide of all the alkaline-earth metals among CaO, MgO, and BaO, the glass for semiconductor junction protection which concerns on Embodiment 1 As in the case of the composition, the average coefficient of thermal expansion at 50 ° C. to 550 ° C. has a value close to the coefficient of thermal expansion of silicon, and a highly reliable semiconductor device can be manufactured.
  • the glass for semiconductor junction protection which concerns on Embodiment 5 since it contains the oxide of all the alkaline-earth metals among CaO, MgO, and BaO, the glass for semiconductor junction protection which concerns on Embodiment 1 As in the case of the composition, it is possible to suppress the occurrence of devitrification in the process of manufacturing the glass composition for protecting a semiconductor junction.
  • the content of SiO 2 content, B 2 O 3 content, Al 2 O 3 content, ZnO content and alkaline earth metal oxide content were within the above-mentioned ranges. This is because of the same reason as in the case of the glass composition for protecting a semiconductor junction according to Embodiment 1.
  • the semiconductor is formed in the process of firing the “layer composed of a glass composition for protecting a semiconductor junction” formed by electrophoresis even when nickel oxide is not contained. This is because it may be possible to eliminate the generation of bubbles that may occur from the interface with the substrate (silicon).
  • the glass composition for protecting a semiconductor junction according to Embodiment 5 can be manufactured as follows. That is, raw materials (SiO 2 , H 3 BO 3 , Al (OH) 3 , ZnO, CaCO 3 , Mg (OH) 2 and BaO are prepared so as to have the above composition ratio (molar ratio), and a mixer may be used. After stirring, the mixed raw material is put in a platinum crucible raised to a predetermined temperature (for example, 1550 ° C.) in an electric furnace and melted for a predetermined time, and then the melt is poured into a water-cooled roll to flake glass flakes. Thereafter, the glass flakes are pulverized with a ball mill or the like to a predetermined average particle diameter to obtain a powdery glass composition.
  • a predetermined temperature for example, 1550 ° C.
  • Embodiment 6 is an embodiment relating to a method of manufacturing a semiconductor device.
  • the method for manufacturing a semiconductor device includes a first step of preparing a semiconductor element having a pn junction exposed portion where a pn junction is exposed, and a second step of forming a glass layer so as to cover the pn junction exposed portion. In this order.
  • the second step at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, CaO, MgO and BaO oxides of all alkaline earth metals and nickel oxides
  • a glass composition for protecting a semiconductor junction that does not substantially contain Pb, P, As, Sb, Li, Na, and K (for protecting a semiconductor junction according to Embodiment 1)
  • a glass layer is formed using a glass composition.
  • the first step a semiconductor substrate having a pn junction parallel to the main surface is prepared, and a groove having a depth exceeding the pn junction is formed from one surface of the semiconductor substrate to expose the pn junction inside the groove.
  • the second step includes a step of forming a glass layer so as to directly cover the pn junction exposed portion inside the groove.
  • FIGS. 1 and 2 are views for explaining a method of manufacturing a semiconductor device according to the sixth embodiment.
  • FIGS. 2A to 2D are process diagrams.
  • the semiconductor device manufacturing method according to the sixth embodiment includes a “semiconductor substrate forming step”, a “groove forming step”, a “glass layer forming step”, a “photoresist forming step”, “ The “oxide film removing step”, “roughened region forming step”, “electrode forming step”, and “semiconductor substrate cutting step” are performed in this order.
  • the semiconductor device manufacturing method according to the sixth embodiment will be described below in the order of steps.
  • p + -type diffusion layer 112 is diffused by diffusion of p-type impurities from one surface of n ⁇ -type semiconductor substrate (n ⁇ -type silicon substrate) 110, and n-type impurities from the other surface.
  • An n + -type diffusion layer 114 is formed by diffusion to form a semiconductor substrate in which a pn junction parallel to the main surface is formed.
  • oxide films 116 and 118 are formed on the surfaces of the p + type diffusion layer 112 and the n + type diffusion layer 114 by thermal oxidation (see FIG. 1A).
  • (F) Roughened region forming step Next, a roughened surface for increasing the adhesion between the Ni-plated electrode and the semiconductor substrate by performing a roughening treatment on the surface of the semiconductor substrate in the portion 130 where the Ni-plated electrode film is formed.
  • the formation region 132 is formed (see FIG. 2B).
  • Electrode forming step Ni plating is performed on the semiconductor substrate to form the anode electrode 134 on the roughened region 132 and the cathode electrode 136 is formed on the other surface of the semiconductor substrate (FIG. 2C). )reference.).
  • a high-voltage mesa semiconductor device semiconductor device according to Embodiment 6
  • semiconductor device semiconductor device according to Embodiment 6
  • Embodiment 7 is an embodiment according to a method for manufacturing a semiconductor device.
  • the semiconductor device manufacturing method according to the seventh embodiment is similar to the semiconductor device manufacturing method according to the sixth embodiment, in which a first step of preparing a semiconductor element having a pn junction exposed portion where a pn junction is exposed, and a pn junction exposure. And a second step of forming a glass layer so as to cover the part in this order.
  • the second step at least SiO 2 , B 2 O 3 , Al 2 O 3 , ZnO, CaO, MgO and BaO oxides of all alkaline earth metals and nickel oxides And a glass composition for protecting a semiconductor junction that does not substantially contain Pb, P, As, Sb, Li, Na, and K (for protecting a semiconductor junction according to Embodiment 1)
  • a glass layer is formed using a glass composition.
  • the first step includes a step of forming a pn junction exposed portion on the surface of the semiconductor substrate, and the second step includes a pn on the surface of the semiconductor substrate. Forming a glass layer so as to directly cover the joint exposed portion.
  • FIGS. 3 and 4 are views for explaining the semiconductor device manufacturing method according to the seventh embodiment.
  • 3A to FIG. 3C and FIG. 4A to FIG. 4C are process diagrams.
  • the semiconductor device manufacturing method according to the seventh embodiment includes a “semiconductor substrate preparation step”, a “p + -type diffusion layer formation step”, an “n + -type diffusion layer formation step”, “ The “glass layer forming step”, “glass layer etching step” and “electrode forming step” are performed in this order.
  • the semiconductor device manufacturing method according to the seventh embodiment will be described below in the order of steps.
  • a p-type impurity for example, boron ions
  • a p + type diffusion layer 214 is formed by thermal diffusion (see FIG. 3B).
  • n + -type diffusion layer forming step Next, after removing the mask M1 and forming the mask M2, an n - type is formed on the surface of the n ⁇ -type epitaxial layer 212 via the mask M2 by ion implantation. Impurities (for example, arsenic ions) are introduced. Thereafter, an n + -type diffusion layer 216 is formed by thermal diffusion (see FIG. 3C).
  • a high breakdown voltage planar semiconductor device semiconductor device according to Embodiment 7
  • semiconductor device semiconductor device according to Embodiment 7
  • FIG. 5 is a chart showing the results of Examples.
  • the raw materials were prepared so that the composition ratios shown in Examples 1 to 3 and Comparative Examples 1 to 6 (see FIG. 5) were obtained, and after thoroughly stirring with a mixer, the mixed raw materials were heated at a predetermined temperature ( It was placed in a platinum crucible raised to 1350 ° C. to 1550 ° C. and melted for 2 hours. Thereafter, the melt was poured into a water-cooled roll to obtain flaky glass flakes. The glass flakes were pulverized with a ball mill until the average particle size became 5 ⁇ m to obtain a powdery glass composition.
  • raw materials used in the examples SiO 2, H 3 BO 3 , Al (OH) 3, ZnO, CaCO 3, Mg (OH) 2, BaO, a NiO and PbO.
  • Evaluation item 1 (environmental impact)
  • the object of the present invention is “to make it possible to manufacture a semiconductor device having a high withstand voltage using a glass material containing no lead as in the case of using a conventional“ glass material mainly composed of lead silicate ”. Therefore, when the lead component is not included, an evaluation of “ ⁇ ” is given, and when the lead component is included, an evaluation of “x” is given.
  • Evaluation item 2 (firing temperature) If the firing temperature is too high, the influence on the semiconductor device being manufactured increases. Therefore, when the firing temperature is 900 ° C. or lower, an evaluation of “O” is given, and when the firing temperature exceeds 900 ° C., Evaluation was given.
  • Evaluation item 4 (average linear expansion coefficient) A flaky glass plate is prepared from the melt obtained in the above-mentioned section “1. Preparation of sample”, and the average linear expansion of the glass composition at 50 ° C. to 550 ° C. using the flaky glass plate. The rate was measured. As a result, when the difference between the average linear expansion coefficient of the glass composition at 50 ° C. to 550 ° C. and the linear expansion coefficient of silicon (3.73 ⁇ 10 ⁇ 6 ) is “0.7 ⁇ 10 ⁇ 6 ” or less, “ An evaluation of “O” was given, and an evaluation of “X” was given when the difference exceeded “0.7 ⁇ 10 ⁇ 6 ”. In the column for evaluation item 4 in FIG. 5, the numbers in parentheses indicate the average linear expansion coefficient of glass composition at 50 ° C. to 550 ° C. ⁇ 10 + 6 .
  • Evaluation item 5 (insulation) A semiconductor device (pn diode) was manufactured by the same method as the method for manufacturing a semiconductor device according to Embodiment 6, and the reverse characteristics of the manufactured semiconductor device were measured. As a result, an evaluation of “ ⁇ ” was given when the reverse direction characteristic of the semiconductor device was in the normal range, and an evaluation of “X” was given when the reverse direction characteristic of the semiconductor device was not in the normal range.
  • Evaluation item 7 Presence of bubbles
  • a semiconductor device (pn diode) is manufactured by a method similar to the method for manufacturing a semiconductor device according to the sixth embodiment, and whether or not bubbles are generated inside the glass layer 124 (particularly, near the boundary surface with the silicon substrate). Observed (preliminary evaluation).
  • a glass layer for semiconductor junction protection according to Examples 1 to 3 and Comparative Examples 1 to 6 is applied on a 10 mm square silicon substrate to form a layer made of the glass composition for semiconductor junction protection, and the semiconductor junction A layer made of the protective glass composition was fired to form a glass layer, and whether or not bubbles were generated inside the glass layer (particularly in the vicinity of the boundary surface with the silicon substrate) was observed (this evaluation).
  • FIG. 6 is a diagram for explaining the bubbles b generated in the glass layer 124 in the preliminary evaluation.
  • FIG. 6A is a cross-sectional view of the semiconductor device when the bubble b is not generated
  • FIG. 6B is a cross-sectional view of the semiconductor device when the bubble b is generated.
  • FIG. 7 is a photograph shown to explain the bubbles b generated in the glass layer in this evaluation.
  • FIG. 7A is an enlarged view showing a boundary surface between the silicon substrate and the glass layer when the bubble b is not generated
  • FIG. 7B is a diagram illustrating the silicon substrate and the glass when the bubble b is generated. It is a figure which expands and shows the interface with a layer.
  • the glass compositions according to Examples 1 to 3 were evaluated as “ ⁇ ” for all evaluation items (evaluation items 1 to 7).
  • the glass compositions according to Examples 1 to 3 are all glass materials that do not contain lead, but can be (a) fired at an appropriate temperature (eg, 900 ° C. or lower), and used in step (b).
  • Resists chemicals (c) has a linear expansion coefficient close to that of silicon (especially the average linear expansion coefficient at 50 ° C to 550 ° C is close to that of silicon), and (d) excellent insulation Satisfying all the conditions of having a property, and further, (e) making it possible to suppress the occurrence of devitrification in the process of heating the glass composition for protecting a semiconductor junction to the softening point and then cooling, and (F) suppressing the generation of bubbles that may be generated from the interface with the semiconductor substrate (silicon) in the process of firing the “layer comprising the glass composition for protecting a semiconductor junction” formed by electrophoresis, semiconductor Makes it possible to prevent occurrence of a situation that reverse breakdown voltage characteristics of the location is deteriorated, it was found that a glass composition.
  • the glass layer is formed so as to directly cover the exposed portion of the pn junction inside the groove, but the present invention is not limited to this.
  • an insulating film may be formed on the pn junction exposed portion inside the trench, and then a glass layer may be formed so as to cover the pn junction exposed portion via the insulating film.
  • the glass layer is formed so as to directly cover the exposed pn junction on the surface of the semiconductor substrate, but the present invention is not limited to this.
  • an insulating film may be formed on the exposed pn junction on the surface of the semiconductor substrate, and then a glass layer may be formed so as to cover the exposed pn junction via the insulating film.
  • the glass layer is formed using the glass composition for protecting a semiconductor junction according to Embodiment 1, but the present invention is not limited to this.
  • the glass layer may be formed using the glass composition for protecting a semiconductor junction according to Embodiments 2 to 5.
  • you may form a glass layer using the glass composition for another semiconductor junction protection which falls in the range of Claim 1.
  • nickel oxide is used as “at least one metal oxide selected from the group consisting of nickel oxide, copper oxide and manganese oxide”.
  • the invention is not limited to this.
  • copper oxide or manganese oxide may be used.

Abstract

 少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないことを特徴とする半導体接合保護用ガラス組成物。 本発明の半導体接合保護用ガラス組成物によれば、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に、高耐圧の半導体装置を製造することが可能となる。また、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物を含有することから、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。

Description

半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
 本発明は、半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置に関する。
 メサ型の半導体装置を製造する過程でpn接合露出部を覆うようにパッシベーション用のガラス層を形成する半導体装置の製造方法が知られている(例えば、特許文献1参照。)。
 図8及び図9は、そのような従来の半導体装置の製造方法を説明するために示す図である。図8(a)~図8(d)及び図9(a)~図9(d)は各工程図である。
 従来の半導体装置の製造方法は、図8及び図9に示すように、「半導体基体形成工程」、「溝形成工程」、「ガラス層形成工程」、「フォトレジスト形成工程」、「酸化膜除去工程」、「粗面化領域形成工程」、「電極形成工程」及び「半導体基体切断工程」をこの順序で含む。以下、従来の半導体装置の製造方法を工程順に説明する。
(a)半導体基体形成工程
 まず、n型半導体基板(n型シリコン基板)910の一方の表面からのp型不純物の拡散によりp型拡散層912、他方の表面からのn型不純物の拡散によりn型拡散層914を形成して、主面に平行なpn接合が形成された半導体基体を形成する。その後、熱酸化によりp型拡散層912及びn型拡散層914の表面に酸化膜916,918を形成する(図8(a)参照。)。
(b)溝形成工程
 次に、フォトエッチング法によって、酸化膜916の所定部位に所定の開口部を形成する。酸化膜のエッチング後、引き続いて半導体基体のエッチングを行い、半導体基体の一方の表面からpn接合を超える深さの溝920を形成する(図8(b)参照。)。
(c)ガラス層形成工程
 次に、溝920の表面に、電気泳動法により溝920の内面及びその近傍の半導体基体表面に半導体接合保護用ガラス組成物からなる層を形成するとともに、当該半導体接合保護用ガラス組成物からなる層を焼成することにより、パッシベーション用のガラス層924を形成する(図8(c)参照。)。
(d)フォトレジスト形成工程
 次に、ガラス層912の表面を覆うようにフォトレジスト926を形成する(図8(d)参照。)。
(e)酸化膜除去工程
 次に、フォトレジスト926をマスクとして酸化膜916のエッチングを行い、Niめっき電極膜を形成する部位930における酸化膜916を除去する(図9(a)参照。)。
(f)粗面化領域形成工程
 次に、Niめっき電極膜を形成する部位930における半導体基体表面の粗面化処理を行い、Niめっき電極と半導体基体との密着性を高くするための粗面化領域932を形成する(図9(b)参照。)。
(g)電極形成工程
 次に、半導体基体にNiめっきを行い、粗面化領域932上にアノード電極934を形成するとともに、半導体基体の他方の表面にカソード電極936を形成する(図9(c)参照。)。
(h)半導体基体切断工程
 次に、ダイシング等により、ガラス層924の中央部において半導体基体を切断して半導体基体をチップ化して、メサ型半導体装置(pnダイオード)を作成する(図9(d)参照。)。
 以上説明したように、従来の半導体装置の製造方法は、主面に平行なpn接合が形成された半導体基体の一方の表面からpn接合を超える溝920を形成する工程(図8(a)及び図8(b)参照。)と、当該溝920の内部にpn接合露出部を覆うようにパッシベーション用のガラス層924を形成する工程(図8(c)参照。)とを含む。このため、従来の半導体装置の製造方法によれば、溝920の内部にパッシベーション用のガラス層924を形成した後半導体基体を切断することにより、高耐圧のメサ型半導体装置を製造することができる。
特開2004-87955号公報
 ところで、パッシベーション用のガラス層に用いるガラス材料としては、(a)適正な温度(例えば900℃以下)で焼成できること、(b)工程で使用する薬品に耐えること、(c)(工程中におけるウェーハの反りを防止するため)シリコンの線膨張率に近い線膨張率を有すること(特に50℃~550℃における平均線膨張率がシリコンの線膨張率に近いこと)及び(d)優れた絶縁性を有することという条件を満たす必要があることから、従来より「珪酸鉛を主成分としたガラス材料」が広く用いられている。
 しかしながら、「珪酸鉛を主成分としたガラス材料」には環境負荷の大きい鉛が含まれており、近未来にはそのような「珪酸鉛を主成分としたガラス材料」の使用が禁止されていくことになると考えられる。
 そこで、本発明は、上記した事情に鑑みてなされたもので、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に、高耐圧の半導体装置を製造することを可能とする、半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置を提供することを目的とする。
[1]本発明の半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないことを特徴とする。
[2]本発明の半導体接合保護用ガラス組成物においては、50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることが好ましい。
[3]本発明の半導体接合保護用ガラス組成物においては、前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することが好ましい。
[4]本発明の半導体接合保護用ガラス組成物においては、SiOと、Bとを合計で55mol%以上含有することが好ましい。
[5]本発明の半導体接合保護用ガラス組成物においては、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することが好ましい。
[6]本発明の半導体接合保護用ガラス組成物においては、前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することが好ましい。
[7]本発明の半導体装置の製造方法は、pn接合が露出するpn接合露出部を有する半導体素子を準備する第1工程と、前記pn接合露出部を覆うようにガラス層を形成する第2工程とをこの順序で含む半導体装置の製造方法であって、前記第2工程においては、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物を用いて前記ガラス層を形成することを特徴とする。
[8]本発明の半導体装置の製造方法においては、前記第1工程は、主面に平行なpn接合を備える半導体基体を準備する工程と、前記半導体基体の一方の表面から前記pn接合を超える深さの溝を形成することにより、前記溝の内部に前記pn接合露出部を形成する工程とを含み、前記第2工程は、前記溝の内部における前記pn接合露出部を覆うように前記ガラス層を形成する工程を含むことが好ましい。
[9]本発明の半導体装置の製造方法においては、前記第2工程は、前記溝の内部における前記pn接合露出部を直接覆うように前記ガラス層を形成する工程を含むことが好ましい。
[10]本発明の半導体装置の製造方法においては、前記第2工程は、前記溝の内部における前記pn接合露出部上に絶縁膜を形成する工程と、前記絶縁膜を介して前記pn接合露出部を覆うように前記ガラス層を形成する工程とを含むことが好ましい。
[11]本発明の半導体装置の製造方法においては、前記第1工程は、半導体基体の表面に前記pn接合露出部を形成する工程を含み、前記第2工程は、前記半導体基体の表面における前記pn接合露出部を覆うように前記ガラス層を形成する工程を含むことが好ましい。
[12]本発明の半導体装置の製造方法においては、前記第2工程は、前記半導体基体の表面における前記pn接合露出部を直接覆うように前記ガラス層を形成する工程を含むことが好ましい。
[13]本発明の半導体装置の製造方法においては、前記第2工程は、前記半導体基体の表面における前記pn接合露出部上に絶縁膜を形成する工程と、前記絶縁膜を介して前記pn接合露出部を覆うように前記ガラス層を形成する工程とを含むことが好ましい。
[14]本発明の半導体装置の製造方法においては、前記半導体接合保護用ガラス組成物は、50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることが好ましい。
[15]本発明の半導体装置の製造方法においては、前記半導体接合保護用ガラス組成物は、前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することが好ましい。
[16]本発明の半導体装置の製造方法においては、前記半導体接合保護用ガラス組成物は、SiOと、Bとを合計で55mol%以上含有することが好ましい。
[17]本発明の半導体装置の製造方法においては、前記半導体接合保護用ガラス組成物は、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することが好ましい。
[18]本発明の半導体装置の製造方法においては、前記半導体接合保護用ガラス組成物は、前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することが好ましい。
[19]本発明の半導体装置は、pn接合が露出するpn接合露出部を有する半導体素子と、前記pn接合露出部を覆うように形成されたガラス層とを備える半導体装置であって、前記ガラス層は、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物を用いて形成されたものであることを特徴とする。
[20]本発明の半導体装置においては、前記半導体接合保護用ガラス組成物は、50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることが好ましい。
[21]本発明の半導体装置においては、前記半導体接合保護用ガラス組成物は、前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することが好ましい。
[22]本発明の半導体装置においては、前記半導体接合保護用ガラス組成物は、SiOと、Bとを合計で55mol%以上含有することが好ましい。
[23]本発明の半導体装置においては、前記半導体接合保護用ガラス組成物は、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することが好ましい。
[24]本発明の半導体装置においては、前記半導体接合保護用ガラス組成物は、前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することが好ましい。
示す。
 本発明の半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置によれば、後述する実施例からも明らかなように、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、本発明の半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置によれば、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物を含有することから、後述する実施例からも明らかなように、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 なお、本発明の半導体接合保護用ガラス組成物において、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないとは、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを成分として含有しないという意味であり、ガラスを構成する各成分の原料中に不純物として上記が混入したガラス組成物を排除するものではない。本発明の半導体装置の製造方法及び半導体装置においても同様である。
 ここで、Pbを実質的に含有しないこととしたのは、本発明の目的が「鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することを可能とする」ことにあるからである。
 また、Pと、Asと、Sbとを実質的に含有しないこととしたのは、これらの成分を含有する場合には焼成温度の点では有利なのではあるが、焼成中にこれらの成分が半導体基体に拡散することに起因して絶縁性が低下する場合があるからである。
 また、Liと、Naと、Kとを実質的に含有しないこととしたのは、これらの成分を含有する場合には平均線膨張率や焼成温度の点では有利なのではあるが、絶縁性が低下する場合があるからである。
 本発明の発明者らの研究により、これらの成分(すなわち、Pbと、Pと、Asと、Sbと、Liと、Naと、K。)を実質的に含有しない場合であっても、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有するガラス組成物は、半導体接合保護用ガラス組成物として使用可能であることが分かった。すなわち、本発明の半導体接合保護用ガラス組成物によれば、後述する実施例からも明らかなように、鉛を含まないガラス材料を用いて従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
実施形態6に係る半導体装置の製造方法を説明するために示す図である。 実施形態6に係る半導体装置の製造方法を説明するために示す図である。 実施形態7に係る半導体装置の製造方法を説明するために示す図である。 実施形態7に係る半導体装置の製造方法を説明するために示す図である。 実施例の結果を示す図表である。 予備評価においてガラス層124の内部に発生する泡bを説明するために示す図である。 本評価においてガラス層の内部に発生する泡bを説明するために示す写真である。 従来の半導体装置の製造方法を説明するために示す図である。 従来の半導体装置の製造方法を説明するために示す図である。
 以下、本発明の半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置について、図に示す実施の形態に基づいて説明する。
[実施形態1]
 実施形態1は、半導体接合保護用ガラス組成物に係る実施形態である。
 実施形態1に係る半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないものである。
 具体的には、SiOの含有量が41.1mol%~61.1mol%の範囲内にあり、Bの含有量が5.8mol%~15.8mol%の範囲内にあり、Alの含有量が7.4mol%~17.4mol%の範囲内にあり、ZnOの含有量が3.0mol%~24.8mol%の範囲内にあり、アルカリ土類金属の酸化物の含有量が5.5mol%~15.5mol%の範囲内にあり、ニッケル酸化物の含有量が0.01mol%~3.0mol%の範囲内にある。そして、アルカリ土類金属の酸化物のうち、CaO含有量が2.8mol%~7.8mol%の範囲内にあり、MgO含有量が1.1mol%~3.1mol%の範囲内にあり、BaO含有量が1.7mol%~4.7mol%の範囲内にある。
 実施形態1に係る半導体接合保護用ガラス組成物によれば、後述する実施例からも明らかなように、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、実施形態1に係る半導体接合保護用ガラス組成物によれば、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物を含有することから、後述する実施例からも明らかなように、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 また、実施形態1に係る半導体接合保護用ガラス組成物によれば、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物を含有することから、後述する実施例からも明らかなように、半導体接合保護用ガラス組成物を製造する過程で失透現象が発生するのを抑制することが可能となる。
 また、実施形態1に係る半導体接合保護用ガラス組成物によれば、半導体接合保護用ガラス組成物がニッケル酸化物を含有するため、後述する実施例からも明らかなように、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を抑制して、半導体装置の逆方向耐圧特性が劣化するという事態の発生を抑制することが可能となる。
 また、実施形態1に係る半導体接合保護用ガラス組成物によれば、SiOと、Bとを合計で55mol%以上含有する場合には、耐薬品性が向上する。
 ここで、SiOの含有量を41.1mol%~61.1mol%の範囲内としたのは、SiOの含有量が41.1mol%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、SiOの含有量が61.1mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 また、Bの含有量を5.8mol%~15.8mol%の範囲内としたのは、Bの含有量が5.8mol%未満である場合には、焼成温度が高くなる傾向があるからであり、Bの含有量が15.8mol%を超える場合には、ガラス層を焼成する工程でボロンが半導体基体に拡散して絶縁性が低下する場合があるからである。
 また、Alの含有量を7.4mol%~17.4mol%の範囲内としたのは、Alの含有量が7.4mol%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、Alの含有量が~17.4mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 また、ZnOの含有量を3.0mol%~24.8mol%の範囲内としたのは、ZnOの含有量が3.0mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、ZnOの含有量が24.8mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、アルカリ土類金属の酸化物の含有量を5.5mol%~15.5mol%の範囲内としたのは、アルカリ土類金属の酸化物の含有量が5.5mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、アルカリ土類金属の酸化物の含有量が15.5mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、アルカリ土類金属の酸化物のうち、CaOの含有量を2.8mol%~7.8mol%の範囲内としたのは、CaOの含有量が2.8mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、CaOの含有量が7.8mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、MgOの含有量を1.1mol%~3.1mol%の範囲内としたのは、MgOの含有量が1.1mol%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、MgOの含有量が3.1mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 また、BaOの含有量を1.7mol%~4.7mol%の範囲内としたのは、BaOの含有量が1.7mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、BaOの含有量が4.7mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、ニッケル酸化物の含有量を0.01mol%~3.0mol%の範囲内としたのは、ニッケル酸化物の含有量が0.01mol%未満である場合には、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することのある泡の発生を抑制することが困難となる場合があるからであり、ニッケル酸化物の含有量が3.0mol%を超える場合には、均質なガラスを製造することが困難となる場合があるからである。
 実施形態1に係る半導体接合保護用ガラス組成物は、以下のようにして製造することができる。すなわち、上記した組成比(モル比)になるように原料(SiO、HBO、Al(OH)、ZnO、CaCO、Mg(OH)、BaO及びNiOを調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(例えば1550℃)に上昇させた白金ルツボに入れ、所定時間溶融させる。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得る。その後、このガラスフレークをボールミルなどで所定の平均粒径となるまで粉砕して、粉末状のガラス組成物を得る。
[実施形態2]
 実施形態2は、半導体接合保護用ガラス組成物に係る実施形態である。
 実施形態2に係る半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、少なくとも2つのアルカリ土類金属の酸化物(CaO及びMgO)と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないものである。
 SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量は、実施形態1に係る半導体接合保護用ガラス組成物と同じである。そして、アルカリ土類金属の酸化物のうち、CaO含有量が3.8mol%~10.9mol%の範囲内にあり、MgO含有量が1.7mol%~4.7mol%の範囲内にある。
 実施形態2に係る半導体接合保護用ガラス組成物によれば、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、実施形態2に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(CaO及びMgO)を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 また、実施形態2に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(CaO及びMgO)を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、半導体接合保護用ガラス組成物を製造する過程で失透現象が発生するのを抑制することが可能となる。
 また、実施形態2に係る半導体接合保護用ガラス組成物によれば、半導体接合保護用ガラス組成物がニッケル酸化物を含有するため、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を抑制して、半導体装置の逆方向耐圧特性が劣化するという事態の発生を抑制することが可能となる。
 なお、SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量を上記した範囲内にしたのは、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様の理由による。
 また、アルカリ土類金属の酸化物のうち、CaOの含有量を3.8mol%~10.9mol%の範囲内としたのは、CaOの含有量が3.8mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、CaOの含有量が10.9mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、MgOの含有量を1.7mol%~4.7mol%の範囲内としたのは、MgOの含有量が1.7mol%%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、MgOの含有量が4.7mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 実施形態2に係る半導体接合保護用ガラス組成物は、以下のようにして製造することができる。すなわち、上記した組成比(モル比)になるように原料(SiO、HBO、Al(OH)、ZnO、CaCO、Mg(OH)及びNiO)を調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(例えば1550℃)に上昇させた白金ルツボに入れ、所定時間溶融させる。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得る。その後、このガラスフレークをボールミルなどで所定の平均粒径となるまで粉砕して、粉末状のガラス組成物を得る。
[実施形態3]
 実施形態3は、半導体接合保護用ガラス組成物に係る実施形態である。
 実施形態3に係る半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、少なくとも2つのアルカリ土類金属の酸化物(CaO及びBaO)と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないものである。
 SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量は、実施形態1に係る半導体接合保護用ガラス組成物と同じである。そして、アルカリ土類金属の酸化物のうち、CaO含有量が3.3mol%~9.3mol%の範囲内にあり、BaO含有量が2.2mol%~6.2mol%の範囲内にある。
 実施形態3に係る半導体接合保護用ガラス組成物によれば、後述する実施例からも明らかなように、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、実施形態3に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(CaO及びBaO)を含有することから、後述する実施例からも明らかなように、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 また、実施形態3に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(CaO及びBaO)を含有することから、後述する実施例からも明らかなように、半導体接合保護用ガラス組成物を製造する過程で失透現象が発生するのを抑制することが可能となる。
 また、実施形態3に係る半導体接合保護用ガラス組成物によれば、半導体接合保護用ガラス組成物がニッケル酸化物を含有するため、後述する実施例からも明らかなように、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を抑制して、半導体装置の逆方向耐圧特性が劣化するという事態の発生を抑制することが可能となる。
 なお、SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量を上記した範囲内にしたのは、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様の理由による。
 また、アルカリ土類金属の酸化物のうち、CaOの含有量を3.3mol%~9.3mol%の範囲内としたのは、CaOの含有量が3.3mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、CaOの含有量が9.3mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 また、BaOの含有量を2.2mol%~6.2mol%の範囲内としたのは、BaOの含有量が2.2mol%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、BaOの含有量が6.2mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 実施形態3に係る半導体接合保護用ガラス組成物は、以下のようにして製造することができる。すなわち、上記した組成比(モル比)になるように原料(SiO、HBO、Al(OH)、ZnO、CaCO、BaO及びNiO)を調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(例えば1550℃)に上昇させた白金ルツボに入れ、所定時間溶融させる。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得る。その後、このガラスフレークをボールミルなどで所定の平均粒径となるまで粉砕して、粉末状のガラス組成物を得る。
[実施形態4]
 実施形態4は、半導体接合保護用ガラス組成物に係る実施形態である。
 実施形態4に係る半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、少なくとも2つのアルカリ土類金属の酸化物(MgO及びBaO)と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないものである。
 SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量は、実施形態1に係る半導体接合保護用ガラス組成物と同じである。そして、アルカリ土類金属の酸化物のうち、MgO含有量が2.2mol%~6.2mol%の範囲内にあり、BaO含有量が3.3mol%~9.3mol%の範囲内にある。
 実施形態4に係る半導体接合保護用ガラス組成物によれば、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、実施形態4に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(MgO及びBaO)を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、50℃~550℃における平均線膨張率がシリコンの線膨張率に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 また、実施形態4に係る半導体接合保護用ガラス組成物によれば、少なくとも2つのアルカリ土類金属の酸化物(MgO及びBaO)を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、半導体接合保護用ガラス組成物を製造する過程で失透現象が発生するのを抑制することが可能となる。
 また、実施形態4に係る半導体接合保護用ガラス組成物によれば、半導体接合保護用ガラス組成物がニッケル酸化物を含有するため、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を抑制して、半導体装置の逆方向耐圧特性が劣化するという事態の発生を抑制することが可能となる。
 なお、SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量、アルカリ土類金属の酸化物の含有量及びニッケル酸化物の含有量を上記した範囲内にしたのは、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様の理由による。
 また、アルカリ土類金属の酸化物のうち、MgOの含有量を2.2mol%~6.2mol%の範囲内としたのは、MgOの含有量が2.2mol%未満である場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからであり、MgOの含有量が6.2mol%を超える場合には、焼成温度が高くなる傾向にあるからである。
 また、BaOの含有量を3.3mol%~9.3mol%の範囲内としたのは、BaOの含有量が3.3mol%未満である場合には、焼成温度が高くなる傾向にあるからであり、BaOの含有量が9.3mol%を超える場合には、耐薬品性が低下したり、絶縁性が低下したりする場合があるからである。
 実施形態4に係る半導体接合保護用ガラス組成物は、以下のようにして製造することができる。すなわち、上記した組成比(モル比)になるように原料(SiO、HBO、Al(OH)、ZnO、Mg(OH)、BaO及びNiO)を調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(例えば1550℃)に上昇させた白金ルツボに入れ、所定時間溶融させる。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得る。その後、このガラスフレークをボールミルなどで所定の平均粒径となるまで粉砕して、粉末状のガラス組成物を得る。
[実施形態5]
 実施形態5は、半導体接合保護用ガラス組成物に係る実施形態である。
 実施形態5に係る半導体接合保護用ガラス組成物は、基本的には実施形態1に係る半導体接合保護用ガラス組成物と同様の成分を含有するが、ニッケル酸化物を含有しない点で実施形態1に係る半導体接合保護用ガラス組成物とは異なる。すなわち、実施形態5に係る半導体接合保護用ガラス組成物は、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないものである。
 SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量及びアルカリ土類金属の酸化物の含有量は、実施形態1に係る半導体接合保護用ガラス組成物と同じである。
 実施形態5に係る半導体接合保護用ガラス組成物によれば、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、鉛を含まないガラス材料を用いて、従来の「珪酸鉛を主成分としたガラス材料」を用いた場合と同様に高耐圧の半導体装置を製造することが可能となる。
 また、実施形態5に係る半導体接合保護用ガラス組成物によれば、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、50℃~550℃における平均熱膨張率がシリコンの熱膨張係数に近い値を有するようになり、高信頼性の半導体装置を製造することが可能となる。
 また、実施形態5に係る半導体接合保護用ガラス組成物によれば、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物を含有することから、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様に、半導体接合保護用ガラス組成物を製造する過程で失透現象が発生するのを抑制することが可能となる。
 なお、SiOの含有量、Bの含有量、Alの含有量、ZnOの含有量及びアルカリ土類金属の酸化物の含有量の含有量を上記した範囲内にしたのは、実施形態1に係る半導体接合保護用ガラス組成物の場合と同様の理由による。
 また、ニッケル酸化物を含有しないこととしたのは、ニッケル酸化物を含有しない場合であっても、電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を無くすことができる場合があるからである。
 実施形態5に係る半導体接合保護用ガラス組成物は、以下のようにして製造することができる。すなわち、上記した組成比(モル比)になるように原料(SiO、HBO、Al(OH)、ZnO、CaCO、Mg(OH)及びBaOを調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(例えば1550℃)に上昇させた白金ルツボに入れ、所定時間溶融させる。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得る。その後、このガラスフレークをボールミルなどで所定の平均粒径となるまで粉砕して、粉末状のガラス組成物を得る。
[実施形態6]
 実施形態6は、半導体装置の製造方法に係る実施形態である。
 実施形態6に係る半導体装置の製造方法は、pn接合が露出するpn接合露出部を有する半導体素子を準備する第1工程と、pn接合露出部を覆うようにガラス層を形成する第2工程とをこの順序で含む半導体装置の製造方法である。そして、当該第2工程においては、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物(実施形態1に係る半導体接合保護用ガラス組成物)を用いてガラス層を形成する。第1工程は、主面に平行なpn接合を備える半導体基体を準備する工程と、半導体基体の一方の表面からpn接合を超える深さの溝を形成することにより、溝の内部にpn接合露出部を形成する工程とを含み、第2工程は、溝の内部におけるpn接合露出部を直接覆うようにガラス層を形成する工程を含む。
 図1及び図2は、実施形態6に係る半導体装置の製造方法を説明するために示す図である。図1(a)~図1(d)及び図2(a)~図2(d)は各工程図である。
 実施形態6に係る半導体装置の製造方法は、図1及び図2に示すように、「半導体基体形成工程」、「溝形成工程」、「ガラス層形成工程」、「フォトレジスト形成工程」、「酸化膜除去工程」、「粗面化領域形成工程」、「電極形成工程」及び「半導体基体切断工程」をこの順序で実施する。以下、実施形態6に係る半導体装置の製造方法を工程順に説明する。
(a)半導体基体形成工程
 まず、n型半導体基板(n型シリコン基板)110の一方の表面からのp型不純物の拡散によりp型拡散層112、他方の表面からのn型不純物の拡散によりn型拡散層114を形成して、主面に平行なpn接合が形成された半導体基体を形成する。その後、熱酸化によりp型拡散層112及びn型拡散層114の表面に酸化膜116,118を形成する(図1(a)参照。)。
(b)溝形成工程
 次に、フォトエッチング法によって、酸化膜116の所定部位に所定の開口部を形成する。酸化膜のエッチング後、引き続いて半導体基体のエッチングを行い、半導体基体の一方の表面からpn接合を超える深さの溝120を形成する(図1(b)参照。)。
(c)ガラス層形成工程
 次に、溝120の表面に、電気泳動法により溝120の内面及びその近傍の半導体基体表面に実施形態1に係る半導体接合保護用ガラス組成物からなる層を形成するとともに、当該半導体接合保護用ガラス組成物からなる層を焼成することにより、パッシベーション用のガラス層124を形成する(図1(c)参照。)。従って、溝120の内部におけるpn接合露出部はガラス層124に直接覆われた状態となる。
(d)フォトレジスト形成工程
 次に、ガラス層112の表面を覆うようにフォトレジスト126を形成する(図1(d)参照。)。
(e)酸化膜除去工程
 次に、フォトレジスト126をマスクとして酸化膜116のエッチングを行い、Niめっき電極膜を形成する部位130における酸化膜116を除去する(図2(a)参照。)。
(f)粗面化領域形成工程
 次に、Niめっき電極膜を形成する部位130における半導体基体表面の粗面化処理を行い、Niめっき電極と半導体基体との密着性を高くするための粗面化領域132を形成する(図2(b)参照。)。
(g)電極形成工程
 次に、半導体基体にNiめっきを行い、粗面化領域132上にアノード電極134を形成するとともに、半導体基体の他方の表面にカソード電極136を形成する(図2(c)参照。)。
(h)半導体基体切断工程
 次に、ダイシング等により、ガラス層124の中央部において半導体基体を切断して半導体基体をチップ化して、メサ型半導体装置(pnダイオード)を作成する(図2(d)参照。)。
 以上のようにして、高耐圧のメサ型半導体装置(実施形態6に係る半導体装置)を製造することができる。
[実施形態7]
 実施形態7は、半導体装置の製造方法に係る実施形態である。
 実施形態7に係る半導体装置の製造方法は、実施形態6に係る半導体装置の製造方法と同様に、pn接合が露出するpn接合露出部を有する半導体素子を準備する第1工程と、pn接合露出部を覆うようにガラス層を形成する第2工程とをこの順序で含む半導体装置の製造方法である。そして、当該第2工程においては、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうちすべてのアルカリ土類金属の酸化物と、ニッケル酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物(実施形態1に係る半導体接合保護用ガラス組成物)を用いてガラス層を形成する。但し、実施形態6に係る半導体装置の製造方法の場合とは異なり、第1工程は、半導体基体の表面にpn接合露出部を形成する工程を含み、第2工程は、半導体基体の表面におけるpn接合露出部を直接覆うようにガラス層を形成する工程とを含む。
 図3及び図4は、実施形態7に係る半導体装置の製造方法を説明するために示す図である。図3(a)~図3(c)及び図4(a)~図4(c)は各工程図である。
 実施形態7に係る半導体装置の製造方法は、図3及び図4に示すように、「半導体基体準備工程」、「p型拡散層形成工程」、「n型拡散層形成工程」、「ガラス層形成工程」、「ガラス層エッチング工程」及び「電極形成工程」をこの順序で実施する。以下、実施形態7に係る半導体装置の製造方法を工程順に説明する。
(a)半導体基体準備工程
 まず、n型シリコン基板210上にn型エピタキシャル層212が積層された半導体基体を準備する(図3(a)参照。)。
(b)p型拡散層形成工程
 次に、マスクM1を形成した後、当該マスクM1を介してn型エピタキシャル層212の表面における所定領域にイオン注入法によりp型不純物(例えばボロンイオン)を導入する。その後、熱拡散することにより、p型拡散層214を形成する(図3(b参照。)。
(c)n型拡散層形成工程
 次に、マスクM1を除去するとともにマスクM2を形成した後、当該マスクM2を介してn型エピタキシャル層212の表面における所定領域にイオン注入法によりn型不純物(例えばヒ素イオン)を導入する。その後、熱拡散することにより、n型拡散層216を形成する(図3(c)参照。)。
(d)ガラス層形成工程
 次に、マスクM2を除去した後、n型エピタキシャル層212の表面に、スピンコート法により、実施形態1に係る半導体接合保護用ガラス組成物からなる層を形成し、その後、当該半導体接合保護用ガラス組成物からなる層を焼成することにより、パッシベーション用のガラス層215を形成する(図4(a)参照。)。
(e)ガラス層エッチング工程
 次に、ガラス層215の表面にマスクM3を形成した後、ガラス層のエッチングを行う(図4(b)参照。)。これにより、n型エピタキシャル層212の表面における所定領域にガラス層217が形成されることとなる。
(f)電極形成工程
 次に、マスクM3を除去した後、半導体基体の表面におけるガラス層217で囲まれた領域にアノード電極218を形成するとともに、半導体基体の裏面にカソード電極220を形成する(図4(c)参照。)。
 以上のようにして、高耐圧のプレーナ型半導体装置(実施形態7に係る半導体装置)を製造することができる。
[実施例]
1.試料の調整
 図5は、実施例の結果を示す図表である。実施例1~3及び比較例1~6に示す組成比(図5参照。)になるように原料を調合し、混合機でよく攪拌した後、その混合した原料を電気炉中で所定温度(1350℃~1550℃)まで上昇させた白金ルツボに入れ、2時間溶融させた。その後、融液を水冷ロールに流し出して薄片状のガラスフレークを得た。このガラスフレークをボールミルで平均粒径が5μmとなるまで粉砕して、粉末状のガラス組成物を得た。
 なお、実施例において使用した原料は、SiO、HBO、Al(OH)、ZnO、CaCO、Mg(OH)、BaO、NiO及びPbOである。
2.上記方法により得た各ガラス組成物を以下の評価項目により評価した。
(1)評価項目1(環境負荷)
 本発明の目的が「鉛を含まないガラス材料を用いて、従来の『珪酸鉛を主成分としたガラス材料』を用いた場合と同様に高耐圧の半導体装置を製造することを可能とする」ことにあるため、鉛成分を含まない場合に「○」の評価を与え、鉛成分を含む場合に「×」の評価を与えた。
(2)評価項目2(焼成温度)
 焼成温度が高すぎると製造中の半導体装置に与える影響が大きくなるため、焼成温度が900℃以下である場合に「○」の評価を与え、焼成温度が900℃を超える場合に「×」の評価を与えた。
(3)評価項目3(耐薬品性)
 ガラス組成物が王水及びめっき液の両方に対して難溶性を示す場合に「○」の評価を与え、王水及びめっき液の少なくとも一方に対して溶解性を示す場合に「×」の評価を与えた。
(4)評価項目4(平均線膨張率)
 上記した「1.試料の調整」の欄で得られた融液から薄片状のガラス板を作製し、当該薄片状のガラス板を用いて、50℃~550℃におけるガラス組成物の平均線膨張率を測定した。その結果、50℃~550℃におけるガラス組成物の平均線膨張率とシリコンの線膨張率(3.73×10-6)との差が「0.7×10-6」以下の場合に「○」の評価を与え、当該差が「0.7×10-6」を超える場合に「×」の評価を与えた。なお、図5の評価項目4の欄中、括弧内の数字は、50℃~550℃におけるガラス組成物の平均線膨張率×10+6の値を示す。
(5)評価項目5(絶縁性)
 実施形態6に係る半導体装置の製造方法と同様の方法によって半導体装置(pnダイオード)を作製し、作製した半導体装置の逆方向特性を測定した。その結果、半導体装置の逆方向特性が正常範囲にある場合に「○」の評価を与え、半導体装置の逆方向特性が正常範囲にない場合に「×」の評価を与えた。
(6)評価項目6(失透の有無)
 上記した「1.試料の調整」の欄で得られた融液から薄片状のガラス板を作製し、当該薄片状のガラス板を軟化点まで加熱した後に室温まで冷却したときに、結晶化による失透現象が発生しなかった場合に「○」の評価を与え、結晶化による失透現象が発生した場合に「×」の評価を与えた。
(7)評価項目7(泡の有無)
 実施形態6に係る半導体装置の製造方法と同様の方法によって半導体装置(pnダイオード)を作製し、ガラス層124の内部(特に、シリコン基板との境界面近傍)に泡が発生しているかどうかを観察した(予備評価)。また、10mm角のシリコン基板上に実施例1~3及び比較例1~6に係る半導体接合保護用ガラス組成物を塗布して半導体接合保護用ガラス組成物からなる層を形成するとともに当該半導体接合保護用ガラス組成物からなる層を焼成することによりガラス層を形成し、ガラス層の内部(特に、シリコン基板との境界面近傍)に泡が発生しているかどうかを観察した(本評価)。
 図6は、予備評価においてガラス層124の内部に発生する泡bを説明するために示す図である。図6(a)は泡bが発生しなかった場合の半導体装置の断面図であり、図6(b)は泡bが発生した場合の半導体装置の断面図である。図7は、本評価においてガラス層の内部に発生する泡bを説明するために示す写真である。図7(a)は泡bが発生しなかった場合におけるシリコン基板とガラス層との境界面を拡大して示す図であり、図7(b)は泡bが発生した場合におけるシリコン基板とガラス層との境界面を拡大して示す図である。実験の結果、予備評価の結果と本発明の評価結果には良好な対応関係があることがわかった。また、本評価において、ガラス層の内部に直径50μm以上の泡が1個も発生しなかった場合に「○」の評価を与え、ガラス層の内部に直径50μm以上の泡が1個~20個発生した場合に「△」の評価を与え、ガラス層の内部に直径50μm以上の泡が20個以上発生した場合に「×」の評価を与えた。
(8)総合評価
 上記した評価項目1~7についての各評価がすべて「○」の場合に「○」の評価を与え、各評価のうち1つでも「△」又は「×」がある場合に「×」の評価を与えた。
3.評価結果
 図5からも分かるように、比較例1~6に係るガラス組成物はいずれも、いずれかの評価項目で「△」又は「×」の評価があり、「×」の総合評価が得られた。すなわち、比較例1に係るガラス組成物は、評価項目7で「△」の評価が得られた。また、比較例2に係るガラス組成物は、評価項目4で「×」の評価が得られ、評価項目7で「△」の評価が得られた。また、比較例3及び4に係るガラス組成物は、評価項目2及び6で「×」の評価が得られ、評価項目7で「△」の評価が得られた。また、比較例5に係るガラス組成物は、評価項目1で「×」の評価が得られた。さらにまた、比較例6に係るガラス組成物は、評価項目3及び4で「×」の評価が得られた。
 これに対して、実施例1~3に係るガラス組成物はいずれも、すべての評価項目(評価項目1~7)について「○」の評価が得られた。その結果、実施例1~3に係るガラス組成物はいずれも、鉛を含まないガラス材料でありながら、(a)適正な温度(例えば900℃以下)で焼成できること、(b)工程で使用する薬品に耐えること、(c)シリコンの線膨張率に近い線膨張率を有すること(特に50℃~550℃における平均線膨張率がシリコンの線膨張率に近いこと)及び(d)優れた絶縁性を有することという条件をすべて満たし、さらには、(e)半導体接合保護用ガラス組成物を軟化点まで加熱した後冷却する過程で失透現象の発生を抑制することを可能とすること、及び、(f)電気泳動法により形成した「半導体接合保護用ガラス組成物からなる層」を焼成する過程で半導体基体(シリコン)との境界面から発生することがある泡の発生を抑制して、半導体装置の逆方向耐圧特性が劣化するという事態の発生を抑制することを可能とする、ガラス組成物であることが分かった。
 以上、本発明の半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置を上記の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲において実施することが可能であり、例えば次のような変形も可能である。
(1)上記の実施形態6においては、第2工程において、溝の内部におけるpn接合露出部を直接覆うようにガラス層を形成したが、本発明はこれに限定されるものではない。例えば、溝の内部におけるpn接合露出部上に絶縁膜を形成し、その後、当該絶縁膜を介してpn接合露出部を覆うようにガラス層を形成してもよい。
(2)上記の実施形態7においては、第2工程において、半導体基体の表面におけるpn接合露出部を直接覆うようにガラス層を形成したが、本発明はこれに限定されるものではない。例えば、半導体基体の表面におけるpn接合露出部上に絶縁膜を形成し、その後、当該絶縁膜を介してpn接合露出部を覆うようにガラス層を形成してもよい。
(3)上記の実施形態6及び7においては、実施形態1に係る半導体接合保護用ガラス組成物を用いてガラス層を形成したが、本発明はこれに限定されるものではない。例えば、実施形態2~5に係る半導体接合保護用ガラス組成物を用いてガラス層を形成してもよい。さらにまた、請求項1の範囲に入る別の半導体接合保護用ガラス組成物を用いてガラス層を形成してもよい。
(4)上記の実施形態1~4においては、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を用いたが、本発明はこれに限定されるものではない。例えば、銅酸化物又はマンガン酸化物を用いてもよい。
100,200,900…半導体装置、110,910…n型半導体基板、112,912…p型拡散層、114,914…n型拡散層、116,118,916,918…酸化膜、120,920…溝、124,924…ガラス層、126,926…フォトレジスト、130,930…Niめっき電極膜を形成する部位、132,932…粗面化領域、134,934…アノード電極、136,936…カソード電極、210…n型半導体基板、212…n型エピタキシャル層、214…p型拡散層、216…n型拡散層、215,217…ガラス層、218…アノード電極層、220…カソード電極層、b…泡

Claims (24)

  1.  少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しないことを特徴とする半導体接合保護用ガラス組成物。
  2.  50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることを特徴とする請求項1に記載の半導体接合保護用ガラス組成物。
  3.  前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することを特徴とする請求項2に記載の半導体接合保護用ガラス組成物。
  4.  SiOと、Bとを合計で55mol%以上含有することを特徴とする請求項1~3のいずれかに記載の半導体接合保護用ガラス組成物。
  5.  「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することを特徴とする請求項1~4のいずれかに記載の半導体接合保護用ガラス組成物。
  6.  前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することを特徴とする請求項4に記載の半導体接合保護用ガラス組成物。
  7.  pn接合が露出するpn接合露出部を有する半導体素子を準備する第1工程と、
     前記pn接合露出部を覆うようにガラス層を形成する第2工程とをこの順序で含む半導体装置の製造方法であって、
     前記第2工程においては、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物を用いて前記ガラス層を形成することを特徴とする半導体装置の製造方法。
  8.  前記第1工程は、主面に平行なpn接合を備える半導体基体を準備する工程と、前記半導体基体の一方の表面から前記pn接合を超える深さの溝を形成することにより、前記溝の内部に前記pn接合露出部を形成する工程とを含み、
     前記第2工程は、前記溝の内部における前記pn接合露出部を覆うように前記ガラス層を形成する工程を含むことを特徴とする請求項7に記載の半導体装置の製造方法。
  9.  前記第2工程は、前記溝の内部における前記pn接合露出部を直接覆うように前記ガラス層を形成する工程を含むことを特徴とする請求項8に記載の半導体装置の製造方法。
  10.  前記第2工程は、前記溝の内部における前記pn接合露出部上に絶縁膜を形成する工程と、前記絶縁膜を介して前記pn接合露出部を覆うように前記ガラス層を形成する工程とを含むことを特徴とする請求項8に記載の半導体装置の製造方法。
  11.  前記第1工程は、半導体基体の表面に前記pn接合露出部を形成する工程を含み、
     前記第2工程は、前記半導体基体の表面における前記pn接合露出部を覆うように前記ガラス層を形成する工程を含むことを特徴とする請求項7に記載の半導体装置の製造方法。
  12.  前記第2工程は、前記半導体基体の表面における前記pn接合露出部を直接覆うように前記ガラス層を形成する工程を含むことを特徴とする請求項11に記載の半導体装置の製造方法。
  13.  前記第2工程は、前記半導体基体の表面における前記pn接合露出部上に絶縁膜を形成する工程と、前記絶縁膜を介して前記pn接合露出部を覆うように前記ガラス層を形成する工程とを含むことを特徴とする請求項11に記載の半導体装置の製造方法。
  14.  前記半導体接合保護用ガラス組成物は、50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることを特徴とする請求項7~13のいずれかに記載の半導体装置の製造方法。
  15.  前記半導体接合保護用ガラス組成物は、前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することを特徴とする請求項14に記載の半導体装置の製造方法。
  16.  前記半導体接合保護用ガラス組成物は、SiOと、Bとを合計で55mol%以上含有することを特徴とする請求項7~15のいずれかに記載の半導体装置の製造方法。
  17.  前記半導体接合保護用ガラス組成物は、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することを特徴とする請求項7~16のいずれかに記載の半導体装置の製造方法。
  18.  前記半導体接合保護用ガラス組成物は、前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することを特徴とする請求項17に記載の半導体装置の製造方法。
  19.  pn接合が露出するpn接合露出部を有する半導体素子と、
     前記pn接合露出部を覆うように形成されたガラス層とを備える半導体装置であって、
     前記ガラス層は、少なくともSiOと、Bと、Alと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Pと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない半導体接合保護用ガラス組成物を用いて形成されたものであることを特徴とする半導体装置。
  20.  前記半導体接合保護用ガラス組成物は、50℃~550℃の温度範囲において、平均線膨張率が3×10-6~4.5×10-6の範囲内にあることを特徴とする請求項19に記載の半導体装置。
  21.  前記半導体接合保護用ガラス組成物は、前記アルカリ土類金属の酸化物として、CaO、MgO及びBaOのすべてを含有することを特徴とする請求項21に記載の半導体装置。
  22.  前記半導体接合保護用ガラス組成物は、SiOと、Bとを合計で55mol%以上含有することを特徴とする請求項19~21のいずれかに記載の半導体装置。
  23.  前記半導体接合保護用ガラス組成物は、「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」をさらに含有することを特徴とする請求項19~22のいずれかに記載の半導体装置。
  24.  前記半導体接合保護用ガラス組成物は、前記「ニッケル酸化物、銅酸化物及びマンガン酸化物よりなる群から選択された少なくとも1つの金属酸化物」として、ニッケル酸化物を含有することを特徴とする請求項23に記載の半導体装置。
PCT/JP2012/052108 2011-05-23 2012-01-31 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置 WO2013114562A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/883,916 US9099483B2 (en) 2012-01-31 2012-01-31 Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
PCT/JP2012/052108 WO2013114562A1 (ja) 2012-01-31 2012-01-31 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP2012525767A JP5184717B1 (ja) 2012-01-31 2012-01-31 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
EP12837604.3A EP2811511B1 (en) 2012-01-31 2012-01-31 Glass composition for semiconductor junction protection, production method for semiconductor device, and semiconductor device
CN201280002233.4A CN103403846B (zh) 2012-01-31 2012-01-31 半导体接合保护用玻璃复合物、半导体装置的制造方法及半导体装置
PCT/JP2012/061779 WO2012160961A1 (ja) 2011-05-23 2012-05-08 半導体装置の製造方法及び半導体装置
JP2013516274A JP5655140B2 (ja) 2011-05-23 2012-05-08 半導体装置の製造方法及び半導体装置
JP2013516273A JP5655139B2 (ja) 2011-05-23 2012-05-08 半導体装置の製造方法及び半導体装置
PCT/JP2012/061780 WO2012160962A1 (ja) 2011-05-23 2012-05-08 半導体装置の製造方法及び半導体装置
TW102103596A TWI468360B (zh) 2012-01-31 2013-01-30 Semiconductor composite material for semiconductor bonding, semiconductor device manufacturing method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052108 WO2013114562A1 (ja) 2012-01-31 2012-01-31 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置

Publications (1)

Publication Number Publication Date
WO2013114562A1 true WO2013114562A1 (ja) 2013-08-08

Family

ID=48481394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052108 WO2013114562A1 (ja) 2011-05-23 2012-01-31 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置

Country Status (6)

Country Link
US (1) US9099483B2 (ja)
EP (1) EP2811511B1 (ja)
JP (1) JP5184717B1 (ja)
CN (1) CN103403846B (ja)
TW (1) TWI468360B (ja)
WO (1) WO2013114562A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781861B (zh) 2011-05-26 2016-07-06 新电元工业株式会社 半导体接合保护用玻璃合成物、半导体装置及其制造方法
EP2849213B1 (en) * 2012-05-08 2017-04-19 Shindengen Electric Manufacturing Co. Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
WO2016067477A1 (ja) * 2014-10-31 2016-05-06 新電元工業株式会社 半導体装置の製造方法及びレジストガラス
JP6830524B2 (ja) 2016-08-03 2021-02-17 フエロ コーポレーション 半導体装置用パッシベーションガラス
JP7185181B2 (ja) * 2018-10-04 2022-12-07 日本電気硝子株式会社 半導体素子被覆用ガラス及びこれを用いた半導体被覆用材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645055A (en) * 1979-09-21 1981-04-24 Toshiba Corp Semiconductor device
JPS57202742A (en) * 1981-06-09 1982-12-11 Toshiba Corp Glass for semiconductor coating
JP2002012445A (ja) * 2000-01-18 2002-01-15 Central Glass Co Ltd 低融点ガラス
JP2004087955A (ja) 2002-08-28 2004-03-18 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法及び半導体装置
JP2006221942A (ja) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd プラズマディスプレイパネル基板作製用ガラスセット
JP2009046371A (ja) * 2007-08-22 2009-03-05 Nihon Yamamura Glass Co Ltd 封着用ガラス組成物
JP2009203154A (ja) * 2008-01-31 2009-09-10 Ohara Inc ガラス
JP2009215089A (ja) * 2008-03-07 2009-09-24 Mitsubishi Electric Corp グリーンシート用セラミック粉末及び低温焼成多層セラミック基板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104443A (en) * 1980-01-23 1981-08-20 Hitachi Ltd Manufacture of semiconductor device
JPS58125638A (ja) * 1982-01-21 1983-07-26 Toshiba Corp 半導体被覆用ガラス組成物
JPS59194441A (ja) * 1983-04-20 1984-11-05 Toshiba Corp プレ−ナ型半導体装置
US4714687A (en) * 1986-10-27 1987-12-22 Corning Glass Works Glass-ceramics suitable for dielectric substrates
JPH02163938A (ja) 1988-12-16 1990-06-25 Fuji Electric Co Ltd 半導体素子の製造方法
DE4124515A1 (de) 1991-07-24 1993-01-28 Vdo Schindling Verfahren zum ueberwachen und verstellanordnung fuer die betaetigung eines verstellorgans einer steuerung einer verbrennungskraftmaschine
JPH1186629A (ja) 1997-09-12 1999-03-30 Mitsubishi Electric Corp イオン伝導性材料、その製造方法およびそれを用いた電池
US6171987B1 (en) * 1997-12-29 2001-01-09 Ben-Gurion University Of The Negev Cadmium-free and lead-free glass compositions, thick film formulations containing them and uses thereof
JP3943341B2 (ja) * 2001-02-23 2007-07-11 日本電気硝子株式会社 ガラスセラミックス組成物
US7740899B2 (en) 2002-05-15 2010-06-22 Ferro Corporation Electronic device having lead and cadmium free electronic overglaze applied thereto
CN100368340C (zh) * 2003-04-21 2008-02-13 旭硝子株式会社 制电介质用无铅玻璃、制电介质用玻璃陶瓷组合物、电介质及层积电介质的制造方法
DE102006062428B4 (de) * 2006-12-27 2012-10-18 Schott Ag Verfahren zur Herstellung eines mit einem bleifreien Glas passiviertenelektronischen Bauelements sowie elektronisches Bauelement mit aufgebrachtem bleifreien Glas und dessen Verwendung
WO2009017173A1 (ja) * 2007-08-01 2009-02-05 Asahi Glass Company, Limited 無鉛ガラス
US20120081857A1 (en) 2009-06-25 2012-04-05 Mitsubishi Electric Corporation Terminal box for solar cell module
JP5526656B2 (ja) 2009-08-25 2014-06-18 株式会社Ihi 防護装置及び燃焼試験設備
JP2011060857A (ja) * 2009-09-07 2011-03-24 Hitachi Maxell Ltd 集光型光発電モジュール及び集光型光発電モジュールの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645055A (en) * 1979-09-21 1981-04-24 Toshiba Corp Semiconductor device
JPS57202742A (en) * 1981-06-09 1982-12-11 Toshiba Corp Glass for semiconductor coating
JP2002012445A (ja) * 2000-01-18 2002-01-15 Central Glass Co Ltd 低融点ガラス
JP2004087955A (ja) 2002-08-28 2004-03-18 Shindengen Electric Mfg Co Ltd 半導体装置の製造方法及び半導体装置
JP2006221942A (ja) * 2005-02-10 2006-08-24 Nippon Electric Glass Co Ltd プラズマディスプレイパネル基板作製用ガラスセット
JP2009046371A (ja) * 2007-08-22 2009-03-05 Nihon Yamamura Glass Co Ltd 封着用ガラス組成物
JP2009203154A (ja) * 2008-01-31 2009-09-10 Ohara Inc ガラス
JP2009215089A (ja) * 2008-03-07 2009-09-24 Mitsubishi Electric Corp グリーンシート用セラミック粉末及び低温焼成多層セラミック基板

Also Published As

Publication number Publication date
CN103403846B (zh) 2016-07-06
EP2811511B1 (en) 2018-12-26
CN103403846A (zh) 2013-11-20
JP5184717B1 (ja) 2013-04-17
TWI468360B (zh) 2015-01-11
JPWO2013114562A1 (ja) 2015-05-11
US9099483B2 (en) 2015-08-04
TW201331147A (zh) 2013-08-01
EP2811511A1 (en) 2014-12-10
EP2811511A4 (en) 2015-11-18
US20140339685A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5548276B2 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP4927237B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP5827398B2 (ja) 半導体接合保護用ガラス組成物の製造方法、半導体装置の製造方法及び半導体装置
JP5340511B1 (ja) 半導体装置の製造方法及び半導体装置
JP5184717B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP5508547B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
WO2012160961A1 (ja) 半導体装置の製造方法及び半導体装置
JP5833112B2 (ja) ガラス組成物の製造方法
JP4993399B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP5139596B2 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP5655140B2 (ja) 半導体装置の製造方法及び半導体装置
JP5848821B2 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法、半導体装置及び半導体接合保護用ガラス組成物の製造方法
JP5655139B2 (ja) 半導体装置の製造方法及び半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012525767

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012837604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883916

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE