WO2013111655A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2013111655A1
WO2013111655A1 PCT/JP2013/050708 JP2013050708W WO2013111655A1 WO 2013111655 A1 WO2013111655 A1 WO 2013111655A1 JP 2013050708 W JP2013050708 W JP 2013050708W WO 2013111655 A1 WO2013111655 A1 WO 2013111655A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
fuel
gas
unit
amount
Prior art date
Application number
PCT/JP2013/050708
Other languages
English (en)
French (fr)
Inventor
雅之 上山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013555228A priority Critical patent/JP5884836B2/ja
Priority to EP13741237.5A priority patent/EP2808931A4/en
Priority to US14/374,849 priority patent/US20150010837A1/en
Publication of WO2013111655A1 publication Critical patent/WO2013111655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04582Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/04902Current of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell unit and a fuel generation unit.
  • the fuel cell cogeneration system generates electricity in the fuel cell using city gas or the like as fuel, uses the generated electricity, and also uses the heat generated during power generation in the fuel cell for hot water supply and heating, etc. Is increasing.
  • the fuel cell cogeneration system if the amount of fuel gas that matches the amount of power generated by the fuel cell is not supplied, a large amount of fuel gas that does not contribute to power generation is discharged from the system, or conversely, the fuel gas is insufficient. It will be. Therefore, in the fuel cell cogeneration system, it is necessary to finely control the fuel gas supply amount according to the monitoring result while monitoring the fuel cell power generation amount or the physical quantity correlated with the fuel cell power generation amount. Normally, the fuel cell cogeneration system is operated so that the fuel gas utilization rate is about 70 to 80%.
  • any of the fuel cell systems proposed in Patent Documents 1 to 3 can be applied to the fuel cell cogeneration system and can control the supply amount of the fuel gas, but use the fuel gas so that the energy efficiency does not decrease.
  • a high level for example, about 70 to 80%
  • An object of the present invention is to provide a fuel cell system capable of preventing the shortage or waste of fuel gas without requiring fine control of the supply amount of fuel gas in view of the above situation. To do.
  • a fuel cell system includes a fuel generation unit that generates fuel gas, and a fuel cell unit that generates power using the fuel gas.
  • a fuel cell system for forcibly circulating a gas containing the fuel gas to and from the fuel generation unit, wherein a circulation amount of the gas circulated between the fuel cell unit and the fuel generation unit is related to time
  • a gas circulation amount setting unit is provided that sets a circulation amount of gas that circulates between the fuel cell unit and the fuel generation unit so that a circulation amount determined for a power demand prediction value per unit time is obtained.
  • the circulation amount may be a circulation amount per unit time related to time.
  • the gas circulation amount set in the gas circulation amount setting unit is set to exceed the amount necessary for the fuel cell system to generate the power demand predicted value per unit time related to the time. Can be.
  • the gas circulation amount set in the gas circulation amount setting unit is an amount necessary for the fuel cell system to generate power demand predicted value per unit time related to the time. It can be set so as to exceed the related requirement predicted value per unit time.
  • the fuel cell system by setting the unit time to a relatively long time, it is possible to prevent shortage of fuel gas without requiring fine control of the supply amount of fuel gas. Further, according to the fuel cell system, since the fuel gas that has not been used in the fuel cell unit is supplied again to the fuel cell unit and used by circulation, it is possible to prevent waste of the fuel gas.
  • FIG. 1 shows a schematic configuration of a fuel cell system according to an embodiment of the present invention.
  • a fuel cell system according to an embodiment of the present invention shown in FIG. 1 generates power by a reaction between a fuel generating member 1 that generates fuel gas, an oxidant containing oxygen, and a fuel gas supplied from the fuel generating member 1.
  • the container 3 for storing the fuel generating member 1 In order to configure the fuel cell unit 2 to be performed, the container 3 for storing the fuel generating member 1, the container 4 for storing the fuel cell unit 2, and the gas flow path 5 that communicates the fuel generating member 1 and the fuel cell unit 2.
  • a circulator for example, a blower or a pump
  • a controller 7 that sets a circulation amount of gas circulating between the fuel cell unit 2 and the fuel generating member 1 and controls the circulator 6 according to the setting.
  • the controller 7 also switches the connection state between the fuel cell unit 2, the solar power generation system 8, the power system 9, and the load 10 in addition to the control of the circulator 6. Therefore, when the fuel cell system according to an embodiment of the present invention is a secondary battery type fuel cell system capable of regenerating the fuel generating member 1 when the fuel cell unit 2 is operated as an electrolyzer, The midnight power supplied from the power system 9 or the output power of the solar power generation system 8 can be charged and generated at another time to supply power to the load 10 which is various electric appliances in the home.
  • the fuel generating member 1 for example, a material in which a metal is used as a base material, a metal or a metal oxide is added to the surface, and fuel is generated by a chemical reaction can be used.
  • the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process.
  • the added metal include Al, Rd, Pd, Cr, Ni, Cu, Co, V, and Mo.
  • the added metal oxide include SiO 2 and TiO 2 .
  • the metal used as a base material and the added metal are not the same material.
  • a hydrogen generating member mainly composed of Fe is used as the fuel generating member 1.
  • the fuel generating member 1 it is desirable to increase the surface area per unit volume in order to increase the reactivity.
  • the main body of the fuel generating member 1 may be made into fine particles, and the fine particles may be molded.
  • the fine particles include a method of crushing particles by crushing using a ball mill or the like.
  • the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased.
  • the fuel generating member 1 may be one in which fine particles are solidified leaving a space that allows gas to pass through, or in a form in which a large number of these particles are filled in a space formed into pellets. It doesn't matter.
  • the fuel cell unit 2 has an MEA structure (membrane / electrode assembly: Membrane Electrode Assembly) in which a fuel electrode 2B and an air electrode 2C that is an oxidant electrode are bonded to both surfaces of an electrolyte membrane 2A as shown in FIG.
  • FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.
  • an electrolyte that passes oxygen ions or hydroxide ions for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used, and water is generated on the fuel electrode 2B side during power generation. ing.
  • YSZ yttria-stabilized zirconia
  • hydrogen can be generated from the fuel generating member 1 by a chemical reaction using water generated on the fuel electrode 2B side during power generation.
  • the electrolyte membrane 2A can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like.
  • CVD-EVD method Chemical Vapor Deposition-Electrochemical Vapor Deposition
  • Each of the fuel electrode 2B and the air electrode 2C can be constituted by, for example, a catalyst layer in contact with the electrolyte membrane 2A and a diffusion electrode laminated on the catalyst layer.
  • the catalyst layer for example, platinum black or a platinum alloy supported on carbon black can be used.
  • the material of the diffusion electrode of the fuel electrode 2B for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet and the like can be used.
  • a material for the diffusion electrode of the air electrode 2C for example, carbon paper, La—Mn—O compound, La—Co—Ce compound or the like can be used.
  • Each of the fuel electrode 2B and the air electrode 2C can be formed by using, for example, vapor deposition.
  • the following reaction (1) occurs in the fuel cell unit 2 during power generation.
  • the fuel cell unit 2 generates power by consuming hydrogen at the fuel electrode 2B and consuming oxygen at the air electrode 2C.
  • the water vapor generated on the fuel electrode 2B side is supplied to the fuel generating member 1. H 2 + (1/2) O 2 ⁇ H 2 O (1)
  • reaction (2) occurs in the fuel generating member 1 during power generation.
  • the fuel generating member 1 consumes the water vapor supplied from the fuel cell unit 2 to generate hydrogen, and supplies the generated hydrogen to the fuel cell unit 2.
  • the fuel cell part 2 electrolyzes water vapor
  • the fuel generating member 1 consumes hydrogen supplied from the fuel electrode 2B of the fuel cell unit 2 to reduce iron oxide to generate water vapor, and the generated water vapor is used as the fuel electrode of the fuel cell unit 2. Supply to 2B.
  • the graph of average power consumption varies depending on the family structure and lifestyle, but shows a pattern that is determined to some extent by the season, day of the week, and time zone.
  • the average power usage graph 100 shown in FIG. 2 is a plot of the average power usage per hour, for example.
  • the actual power consumption graph 101 can vary greatly in a short period of about several minutes as illustrated in FIG. 2 as the electric appliances in the home are turned on / off, that is, the load 10 varies.
  • the controller 7 determines the power demand per unit time related to the time to be covered by the power generation of the fuel cell unit 2 based on the average power consumption in the home, that is, the power demand forecast value per unit time related to the time. is doing.
  • the hydrogen consumption per unit time is determined from the discharge current corresponding to the predicted power demand per unit time related to the time, and the hydrogen consumption per unit time and the circulating gas
  • the amount of gas to be circulated per unit time is obtained from the ratio of hydrogen to the total.
  • the amount of gas circulation required for charging and the amount of water vapor per unit time required for electrolysis is determined from the charging current, and the amount of water vapor per unit time required for electrolysis and the amount of water vapor in the circulating gas is determined.
  • the amount of gas to be circulated per unit time is determined from the ratio. Note that the ratio of water vapor to hydrogen in the gas circulating between the fuel generating member 1 and the fuel cell unit 2 is determined by the equilibrium condition depending on the iron temperature if there is an amount of iron that can react at a sufficient speed.
  • FIG. 3 is a diagram showing a setting example of the gas circulation amount when charging is performed using late-night power and power is generated in the daytime.
  • power is generated by the fuel cell system according to one embodiment of the present invention from 9:00 to 21:00. In other time periods, power can be supplied to the load 10 using, for example, power supplied from the power system 9.
  • the fuel cell system according to an embodiment of the present invention is charged from 23:00 to 5:00.
  • the controller 7 circulates the gas so as to exceed the required amount predicted value (graph 102 in FIG. 3) ( A graph 103) in FIG. 3 is set.
  • the controller 7 sets a value corresponding to the maximum power of the fuel cell system according to the embodiment of the present invention as a maximum value and 0 as a minimum value as shown in FIG.
  • Discrete circulation amounts (V1 to V4) in stages are provided, and the smallest circulation amount that exceeds the above-described required amount prediction value is set in relation to the time.
  • the fuel cell system is configured to circulate a gas containing fuel gas between the fuel generating member 1 and the fuel cell unit 2, and the fuel not used in the fuel cell unit 2 Since the gas is supplied to the fuel cell unit 2 again by circulation and used, it is possible to prevent waste of the fuel gas.
  • the controller 7 may not temporarily set the smallest amount of circulation that exceeds the required amount predicted value, because the fuel gas may be temporarily short due to power fluctuations shorter than the unit time.
  • the gas circulation amount may be set to be a predetermined multiple of the required amount predicted value or more, for example, 1.5 times or more, or a power fluctuation (see graph 101 in FIG. 2) that is shorter than a unit time.
  • the amount of gas circulation may be set so as to exceed the amount obtained by adding the margin to the required amount predicted value.
  • the number of stages of gas circulation is four stages up to V4 including V1, which is the minimum value 0, but the number of stages is not limited to this. While the number of steps may be larger than this, the number may be less than this, and may be the simplest on / off value (for example, V4 and V1 as indicated by 103A in FIG. 3). Thereby, the control of the gas circulation amount becomes extremely easy and simple.
  • the smallest circulation amount exceeding the required amount predicted value is related to the time with the aim of suppressing excessive operation of the circulator 6 and avoiding unnecessary power consumption and noise. The circulation amount is increased or decreased.
  • the controller 7 stops power generation.
  • power generation is stopped, power is supplied to the load 10 from one or both of the power system 9 and the solar power generation system 8 under the control of the controller 10.
  • charging is performed using power supplied from the power system 9. Since the controller 7 determines the charging current at this time, it is possible to prevent large short-term fluctuations and to circulate the gas circulation amount at a constant set value (for example, V4 in FIG. 3).
  • the controller 7 stops the charging operation.
  • the controller 7 serves as a detection unit that detects the oxidation / reduction state of the fuel generation member 1, for example, a device that detects the oxidation / reduction state based on a change in the weight of the fuel generation member 1 or an oxidation based on a change in the permeability of the fuel generation member 1.
  • An apparatus for detecting the reduction state may be provided, and a detection unit for detecting the oxidation / reduction state of the fuel generating member 1 is provided outside the fuel cell system according to the embodiment of the present invention. You may make it receive a detection result.
  • the simplest determination method is to store the average power usage data for the past year in the memory built in the controller 7, and use the average power usage on the same day of the same month last year as the power per unit time. This is a method for making a demand forecast value.
  • the power demand prediction value is determined based on the immediately preceding power demand prediction value and the power demand record for the fuel cell system according to the immediately preceding embodiment of the present invention. You may make it do. For example, when the predicted power demand from 9:00 to 10:00 is larger than the actual power demand for the fuel cell system according to an embodiment of the present invention from 9:00 to 10:00, in other words, the actual power demand Is lower than the predicted value, the next predicted power demand value from 10:00 to 11:00 is set smaller than the predicted power demand value from 9:00 to 10:00. Conversely, when the predicted power demand from 9:00 to 10:00 is smaller than the actual power demand for the fuel cell system according to the embodiment of the present invention from 9:00 to 10:00, in other words, the actual power demand.
  • the gas circulation amount is determined based on the required amount prediction value corresponding to the power demand prediction value set to be small or large.
  • the range of decreasing or increasing the power demand predicted value immediately before may be increased according to the difference.
  • the difference between the power demand prediction value immediately before and the power demand record for the fuel cell system when is large, it may be increased or decreased by two or more steps instead of one step.
  • the power demand prediction value is determined based on the past average power consumption and the power demand record for the fuel cell system according to the embodiment of the present invention immediately before. You may do it. For example, based on the average power usage on the same day of the previous year or the average power usage of yesterday, the average power usage on the same day of the previous year according to the power demand record for the fuel cell system according to the embodiment of the present invention immediately before or What corrected yesterday's average electric power consumption is good also as a power demand prediction value for every unit time relevant to time.
  • the predicted power demand value from the next 10 o'clock to 11 o'clock is set smaller than the past average power usage amount from 10 o'clock to 11 o'clock To do.
  • the value of past average power consumption from 9:00 to 10:00 is smaller than the actual power demand for the fuel cell system according to one embodiment of the present invention from 9:00 to 10:00, in other words, When the power demand amount of the past exceeds the past average power consumption, the predicted power demand value from the next 10 o'clock to 11 o'clock is set larger than the past average power usage amount from 10 o'clock to 11 o'clock . Then, the gas circulation amount is determined based on the required amount prediction value corresponding to the power demand prediction value set to be small or large. If there is a large difference between the previous power demand record for the fuel cell system and the corresponding average power consumption in the past, the power demand forecast value is reduced or increased according to the difference. The width may be increased.
  • the gas circulation amount when configured to be controlled stepwise so as to have a plurality of discrete values, the power demand record for the fuel cell system immediately before and the past average power corresponding thereto.
  • the difference from the value of usage is large, it may be increased or decreased by two or more steps instead of one step.
  • the controller 7 may be limited so that the discharge current of the fuel cell unit 2 does not exceed the current corresponding to the set value of the gas circulation amount set by the controller 7.
  • a method for limiting the discharge current of the fuel cell unit 2 for example, a method in which the controller 7 cuts off the electrical connection between the fuel cell unit 2 and the load 10, or the controller 7 supplies the excess current to the power system 9. The method of procuring from can be mentioned.
  • FIG. 4 is a diagram illustrating a setting example of the gas circulation amount when charging is performed using the generated power of the solar power generation system 8.
  • the fuel cell system according to an embodiment of the present invention is charged from 6:00 to 18:00.
  • the generated power of the solar power generation system 8 varies greatly depending on the weather, but the maximum generated power can be easily predicted based on the installation location, season, and time.
  • the amount of water vapor per unit time required for electrolysis is determined from the charging current corresponding to the maximum generated power of the photovoltaic power generation system 8 per unit time related to the time, and electrolysis is performed.
  • the amount of gas to be circulated per unit time can be determined from the amount of water vapor per unit time required for the above and the ratio of water vapor to the circulating gas.
  • the controller 7 circulates the gas circulation amount (graph 104 in FIG. 4) so as to exceed the above-described required amount prediction value (graph 104 in FIG. A graph 105) in FIG. 4 is set.
  • the unit time related to time Water vapor per unit time required for electrolysis from the charging current corresponding to the amount obtained by subtracting the average power consumption per unit time related to the time in the home from the maximum generated power of each solar power generation system 8 Decide the amount.
  • an average power consumption amount in the home (graph 100 in FIG. 2), that is, a predicted power demand value is set, and a predicted required gas amount (graph 102 in FIG. 3) corresponding thereto is obtained.
  • the gas circulation amount (graph 103 in FIG. 3) is determined so as to exceed this.
  • the scheduled power usage amount may be set in advance as an amount that exceeds the average power usage amount (predicted power demand value) by a certain amount or a certain ratio, and the gas circulation amount may be obtained correspondingly.
  • a solid oxide electrolyte is used as the electrolyte membrane 2A of the fuel cell unit 2, and water is generated on the fuel electrode 2B side during power generation. According to this configuration, water is generated on the side where the fuel generating member 1 is provided, which is advantageous for simplification and miniaturization of the apparatus.
  • a solid polymer electrolyte that allows hydrogen ions to pass through can be used as the electrolyte membrane 2A of the fuel cell unit 2.
  • one fuel cell unit 2 performs both power generation and water electrolysis.
  • a fuel cell for example, a solid oxide fuel cell dedicated to power generation
  • a water electrolyzer for example, water
  • a solid oxide fuel cell dedicated for electrolysis may be connected to the fuel generating member 1 in parallel on the gas flow path.
  • the fuel generating member 1 is a member that generates fuel by a chemical reaction.
  • the fuel is hydrogen
  • a hydrogen storage alloy can be used.
  • the fuel of the fuel cell unit 2 is hydrogen.
  • a reducing gas other than hydrogen such as carbon monoxide or hydrocarbon, may be used as the fuel of the fuel cell unit 2.
  • air is used as the oxidant gas, but an oxidant gas other than air may be used.
  • the fuel generating member 1 and the fuel cell unit 2 are housed in separate containers, but may be housed in the same container 11 as shown in FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a partition member 12 is provided between the fuel electrode 2 ⁇ / b> B and the fuel generating member 1.
  • the partition member 12 is connected to the inner wall of the container 11 in front of and behind the sheet of FIG.
  • a gap is provided between the partition member 12 and the inner wall of the container 11 in the left-right direction in FIG.
  • the fuel cell system according to another embodiment of the present invention shown in FIG. 5 is connected to the fuel cell unit 2 by the circulator 6 similarly to the fuel cell system according to one embodiment of the present invention shown in FIG.
  • Gas including fuel gas can be forcibly circulated with the fuel generating member 1.
  • the fuel cell system described above includes a fuel generation unit that generates fuel gas and a fuel cell unit that generates power using the fuel gas, and the fuel gas is interposed between the fuel cell unit and the fuel generation unit.
  • a fuel cell system that forcibly circulates a gas containing gas, wherein the amount of gas circulated between the fuel cell unit and the fuel generator is less than a predicted power demand per unit time related to time
  • a configuration (first configuration) is provided with a gas circulation amount setting unit that sets a circulation amount of the gas that circulates between the fuel cell unit and the fuel generation unit so that a predetermined circulation amount is obtained.
  • the circulation amount may be a circulation amount per unit time related to time.
  • the gas circulation amount set in the gas circulation amount setting unit is an amount necessary for the fuel cell system to generate a power demand predicted value per unit time related to the time. It can be set as the structure set so that it may exceed.
  • the gas circulation amount set in the gas circulation amount setting unit is an amount necessary for the fuel cell system to generate a power demand predicted value per unit time related to the time. It can be set as the structure set so that it may exceed the required amount prediction value for every unit time relevant to time.
  • the gas circulation amount setting unit may be configured to determine the required amount predicted value based on the previous power demand record (second configuration).
  • the set value set by the gas circulation amount setting unit is a value greater than or equal to an amount necessary for the maximum discharge current of the fuel cell unit. It is good also as a structure (3rd structure) which is a several discrete value to do.
  • the gas circulation amount setting unit is configured so that a circulation amount of a gas circulated between the fuel cell unit and the fuel generation unit is the unit.
  • a configuration in which a circulation amount of gas circulating between the fuel cell unit and the fuel generation unit is set so as to exceed an amount obtained by adding a margin of electric power fluctuation for a short period of time to the required amount predicted value (shorter than time) The fourth configuration may be adopted.
  • the fuel cell unit may be configured such that a discharge current of the fuel cell unit does not exceed a current corresponding to a set value set by the gas circulation amount setting unit. It is good also as a structure provided with the current limiting part which restrict
  • each configuration as described above by setting the unit time to be a relatively long time, it is possible to prevent fuel gas shortage without requiring fine control of the supply amount of fuel gas. it can. Further, according to such a configuration, the fuel gas that has not been used in the fuel cell unit is supplied to the fuel cell unit again by circulation and used, so that waste of the fuel gas can be prevented.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池システムは、燃料ガスを発生する燃料発生部と、前記燃料ガスを用いた発電を行う燃料電池部とを備え、前記燃料電池部と前記燃料発生部との間で前記燃料ガスを含むガスを強制循環させる燃料電池システムであって、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、時刻に関連した単位時間毎の電力需要予測値に対して定められる、時刻に関連した単位時間毎の循環量となるよう前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定するガス循環量設定部を備える。

Description

燃料電池システム
 本発明は、燃料電池部と燃料発生部とを備える燃料電池システムに関する。
 燃料電池コジェネレーションシステムは、都市ガス等を燃料として燃料電池で発電を行い、発電した電気を利用するとともに、燃料電池での発電の際に発生する熱も給湯や暖房等に利用してエネルギー効率を高めている。
特開2006-73316号公報 特開2006-140103号公報 特開2006-244882号公報
 しかしながら、燃料電池コジェネレーションシステムでは、燃料電池の発電量に合った量の燃料ガスを供給しないと、発電に寄与しない燃料ガスが大量にシステムから排出されたり、逆に燃料ガスが不足したりすることになる。したがって、燃料電池コジェネレーションシステムでは、燃料電池の発電量あるいは燃料電池の発電量と相関がある物理量をモニタしながら、モニタ結果に応じて燃料ガスの供給量を細かく制御する必要がある。通常、燃料電池コジェネレーションシステムは、燃料ガス利用率が70~80%程度になるように運転されている。
 特許文献1~3で提案されている燃料電池システムはいずれも燃料電池コジェネレーションシステムに適用可能であって燃料ガスの供給量を制御することができるが、エネルギー効率が低下しないように燃料ガス利用率を高レベル(例えば70~80%程度)で維持するためには燃料ガスの供給量を細かく制御する必要がある。
 本発明は、上記の状況に鑑み、燃料ガスの供給量の細かな制御を必要とせずに、燃料ガスの不足や無駄が生じないようにすることができる燃料電池システムを提供することを目的とする。
 上記目的を達成するために本発明の一側面に係る燃料電池システムは、燃料ガスを発生する燃料発生部と、前記燃料ガスを用いた発電を行う燃料電池部とを備え、前記燃料電池部と前記燃料発生部との間で前記燃料ガスを含むガスを強制循環させる燃料電池システムであって、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、時刻に関連した単位時間毎の電力需要予測値に対して定められる循環量となるよう前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定するガス循環量設定部を備える構成とする。上記循環量は時刻に関連した単位時間毎の循環量とすることができる。
 また、前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量を上回るよう設定されることができる。
 さらに、前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量である、時刻に関連した単位時間毎の必要量予測値を上回るように設定されることができる。
 上記燃料電池システムによると、前記単位時間を比較的長い時間とすることで、燃料ガスの供給量の細かな制御を必要とせずに、燃料ガスの不足が生じないようにすることができる。また、上記燃料電池システムによると、燃料電池部で使用されなかった燃料ガスは循環によって再度燃料電池部に供給されて利用されるので、燃料ガスの無駄が生じないようにすることができる。
本発明の一実施形態に係る燃料電池システムの概略構成を示す模式図である。 家庭内での平均電力使用量の推移例を示す図である。 深夜電力を用いて充電し、昼間に発電する場合のガス循環量の設定例を示す図である。 太陽光発電システムの発電電力を用いて充電する場合のガス循環量の設定例を示す図である。 本発明の他の実施形態に係る燃料電池システムの概略構成を示す模式図である。
 本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。
 本発明の一実施形態に係る燃料電池システムの概略構成を図1に示す。図1に示す本発明の一実施形態に係る燃料電池システムは、燃料ガスを発生する燃料発生部材1と、酸素を含む酸化剤と燃料発生部材1から供給される燃料ガスとの反応により発電を行う燃料電池部2と、燃料発生部材1を収容する容器3と、燃料電池部2を収容する容器4と、燃料発生部材1と燃料電池部2とを連通するガス流通経路5を構成するためのガス流通経路構成部材5Aと、燃料電池部2と燃料発生部材1との間で燃料ガスを含むガスを強制循環させるためにガス流通経路5上に設けられる循環器(例えばブロアやポンプ等)6と、燃料電池部2と燃料発生部材1との間を循環するガスの循環量を設定し、その設定に応じて循環器6を制御するコントローラ7とを備えている。なお、燃料発生部材1の周辺や燃料電池部2の周辺には必要に応じて、温度を調節するヒーター等を設けてもよい。
 コントローラ7は、循環器6の制御の他に、燃料電池部2と、太陽光発電システム8、電力系統9、及び負荷10との各接続状態の切り替えも行っている。したがって、本発明の一実施形態に係る燃料電池システムは、燃料電池部2を電気分解器として動作させたときに燃料発生部材1の再生が可能な2次電池型燃料電池システムである場合、例えば、電力系統9から供給される深夜電力あるいは太陽光発電システム8の出力電力を充電し、別の時間に発電して家庭内の各種電気器具である負荷10に電力を供給することができる。
 燃料発生部材1としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、化学反応によって燃料を発生するものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rd、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO、TiOが挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。なお、本実施形態においては、燃料発生部材1として、Feを主体とする水素発生部材を用いる。
 また、燃料発生部材1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材1の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生部材1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。また、燃料発生部材1としては、微粒子をガスが通過する程度の空隙を残して固めたものであってもよいし、ペレット状の粒に形成してこの粒を多数空間内に埋める形態であっても構わない。
 燃料電池部2は、図1に示す通り、電解質膜2Aの両面に燃料極2Bと酸化剤極である空気極2Cを接合したMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。
 電解質膜2Aの材料としては、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用い、発電時に燃料極2B側に水を発生させるようにしている。この場合、発電時に燃料極2B側に発生した水を用いた化学反応によって燃料発生部材1から水素を発生させることができる。
 電解質膜2Aは、電気化学蒸着法(CVD-EVD法;Chemical Vapor Deposition - Electrochemical Vapor Deposition)等を用いて形成することができる。
 燃料極2B、空気極2Cはそれぞれ、例えば、電解質膜2Aに接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極2Bの拡散電極の材料としては、例えばカーボンペーパ、Ni-Fe系サーメットやNi-YSZ系サーメット等を用いることができる。また、空気極2Cの拡散電極の材料としては、例えばカーボンペーパ、La-Mn-O系化合物やLa-Co-Ce系化合物等を用いることができる。燃料極2B、空気極2Cはそれぞれ、例えば蒸着法等を用いて形成することができる。
 燃料電池部2として固体酸化物燃料電池を用いた場合、発電時の燃料電池部2では下記の(1)式の反応が起こる。燃料電池部2は、燃料極2Bで水素を消費し、空気極2Cで酸素を消費して発電を行う。そして、燃料極2B側で生成された水蒸気は燃料発生部材1に供給される。
 H+(1/2)O→HO …(1)
 また、発電時の燃料発生部材1では下記の(2)式の反応が起こる。燃料発生部材1は、燃料電池部2から供給された水蒸気を消費して水素を生成し、その生成した水素を燃料電池部2へと供給する。
 3Fe+4HO→Fe+4H …(2)
 また、充電時においては、上記の(1)式および(2)式の逆反応がそれぞれ起こる。このため、充電時に燃料電池部2は水蒸気を電気分解し、燃料極2Bで水素を生成し、空気極2Cで酸素を生成する。また、充電時に燃料発生部材1は、燃料電池部2の燃料極2Bから供給された水素を消費して酸化鉄を還元して水蒸気を生成し、その生成した水蒸気を燃料電池部2の燃料極2Bへと供給する。
 ここで、家庭内での平均電力使用量の推移例を図2に示す。平均電力使用量のグラフの形は家族構成や生活スタイルで様々であるが、季節、曜日、時間帯によってある程度決まったパターンを示す。図2に示す平均電力使用量のグラフ100は、例えば1時間あたりの電力使用量の平均をプロットしたものである。実電力使用量のグラフ101は、家庭内の各電気機器のオン/オフすなわち負荷10の変動に伴い、図2上に一部を例示するように数分程度の短期期間で大きく変動し得る。
 コントローラ7は、家庭内での平均電力使用量を基に、燃料電池部2の発電によって賄うべき時刻に関連した単位時間毎の電力、すなわち時刻に関連した単位時間毎の電力需要予測値を決定している。発電時に必要なガスの循環量に関しては、時刻に関連した単位時間毎の電力需要予測値に対応する放電電流から単位時間毎の水素消費量が決まり、単位時間毎の水素消費量と循環するガスに占める水素の割合とから単位時間毎に循環させるべきガス量(必要量予測値)が求まる。充電時に必要なガスの循環量に関しても同様であり、充電電流から電気分解に必要な単位時間毎の水蒸気量が決まり、電気分解に必要な単位時間毎の水蒸気量と循環するガスに占める水蒸気の割合とから単位時間に循環させるべきガス量が求まる。なお、燃料発生部材1と燃料電池部2とを循環するガスにおける水蒸気と水素の比率は、十分な速さで反応できるだけの鉄量があれば、鉄の温度による平衡条件で決まる。
 図3は、深夜電力を用いて充電し、昼間に発電する場合のガス循環量の設定例を示す図である。図3に示す例では、9時から21時まで本発明の一実施形態に係る燃料電池システムで発電している。それ以外の時間帯は例えば電力系統9から供給される電力を用いて負荷10に電力を供給することができる。また、図3に示す例では、23時から5時まで本発明の一実施形態に係る燃料電池システムを充電している。
 コントローラ7は、本発明の一実施形態に係る燃料電池システムの発電時(9時から21時)に、前述した必要量予測値(図3中のグラフ102)を上回るようにガスの循環量(図3中のグラフ103)を設定している。ここで、コントローラ7は、制御を簡略化するため、図3に示す通り、本発明の一実施形態に係る燃料電池システムの最大電力に対応できる値を最大値とし、0を最小値とした4段階の離散的な循環量(V1~V4)を設け、前述した必要量予測値を上回る最も小さい循環量を時刻に関連して設定している。
 単位時間を比較的長い時間(例えば1時間)とすることで、燃料ガスの供給量の細かな制御を必要とせずに、燃料ガスの不足が生じないようにすることができる。また、本発明の一実施形態に係る燃料電池システムは、燃料発生部材1と燃料電池部2との間で燃料ガスを含むガスを循環させる構成であり、燃料電池部2で使用されなかった燃料ガスは循環によって再度燃料電池部2に供給されて利用されるので、燃料ガスの無駄が生じないようにすることができる。
 なお、単位時間を長くすると、単位時間より短期の電力変動によって一時的に燃料ガスが不足するおそれがあるため、コントローラ7は、必要量予測値を上回る最も小さい循環量を設定するのではなく、ガスの循環量が必要量予測値の所定倍以上、例えば1.5倍以上になるように設定してもよく、或いは、単位時間より短期の電力変動(図2中のグラフ101参照)分以上の余裕分を必要量予測値に加えた量を上回るように、ガスの循環量を設定してもよい。
 ガスの循環量の段階数は、図3中の103の例では最小値の0であるV1を含めてV4までの4段階であるが、段階数はこれに限られない。これより多い段階数でも構わない一方、これより少なく、最も簡単にはオン/オフの2値(例えば図3中に103Aで示すようにV4とV1)であってよい。それにより、ガス循環量の制御がきわめて容易で簡易なものとなる。一方、図3に示す設定例103では、循環器6の過剰な運転を抑制し、無駄な電力消費や騒音を避けることを狙って、必要量予測値を上回る最も小さい循環量を時刻に関連して設定し、循環量を増減させている。
 燃料発生部材1の鉄のほとんどが酸化し、発電余力が無くなると、コントローラ7は発電を停止させる。発電が停止された状態のときには、コントローラ10の制御により、負荷10には電力系統9及び太陽光発電システム8の一方もしくは両方から電力が供給される。深夜には電力系統9から供給される電力を用いて充電を行う。このときの充電電流はコントローラ7が決定するので、大きな短期変動が発生しないようにすることができ、ガスの循環量を一定の設定値(例えば図3中のV4)で循環させることができる。燃料発生部材1の酸化鉄のほとんどが還元されて充電が完了すると、コントローラ7は充電動作を停止させる。コントローラ7は、燃料発生部材1の酸化還元状態を検出する検出部として、例えば燃料発生部材1の重量変化に基づいて酸化還元状態を検出する装置や燃料発生部材1の透磁率変化に基づいて酸化還元状態を検出する装置などを備えてもよく、本発明の一実施形態に係る燃料電池システムの外部に燃料発生部材1の酸化還元状態を検出する検出部を設け、コントローラ7が当該検出部の検出結果を受け取るようにしてもよい。
 ここで、時刻に関連した単位時間毎の電力需要予測値の決定方法について説明する。最も簡単な決定方法としては、コントローラ7が内蔵するメモリに過去1年分の平均電力使用量のデータを記憶しておき、前年同月同日の平均電力使用量を時刻に関連した単位時間毎の電力需要予測値とする方法である。
 また、電力需要予測値の予測精度を向上させる観点から、電力需要予測値を、直前の電力需要予測値と直前の本発明の一実施形態に係る燃料電池システムに対する電力需要実績とに基づいて決定するようにしてもよい。例えば、9時から10時までの電力需要予測値が9時から10時までの本発明の一実施形態に係る燃料電池システムに対する電力需要実績よりも大きかった場合、換言すると、実際の電力需要量が予測値よりも下回った場合、次の10時から11時までの電力需要予測値を9時から10時までの電力需要予測値よりも小さく設定する。逆に9時から10時までの電力需要予測値が9時から10時までの本発明の一実施形態に係る燃料電池システムに対する電力需要実績よりも小さかった場合、換言すると、実際の電力需要量が予測値を上回った場合、次の10時から11時までの電力需要予測値を9時から10時までの電力需要予測値よりも大きく設定する。そして、前記小さく、あるいは前記大きく設定された電力需要予測値に対応した必要量予測値に基づき、ガス循環量を決定する。なお、直前における電力需要予測値と燃料電池システムに対する電力需要実績との差が大きい場合に、その差に応じて直前の電力需要予測値から小さくしたり大きくしたりする幅を拡大してもよい。例えば図3に示すように、ガス循環量が複数の離散的な値となるよう段階的に制御するよう構成している場合、直前における電力需要予測値と燃料電池システムに対する電力需要実績との差が大きいときには、一段階ではなく二段階以上増減するようにしてもよい。
 また、電力需要予測値の予測精度を向上させる観点から、電力需要予測値を、過去の平均電力使用量と直前の本発明の一実施形態に係る燃料電池システムに対する電力需要実績に基づいて決定するようにしてもよい。例えば、前年同月同日の平均電力使用量あるいは昨日の平均電力使用量を基準とし、直前の本発明の一実施形態に係る燃料電池システムに対する電力需要実績に応じて前年同月同日の平均電力使用量あるいは昨日の平均電力使用量を補正したものを時刻に関連した単位時間毎の電力需要予測値としてもよい。例えば、過去の平均電力使用量の9時から10時までの値が9時から10時までの本発明の一実施形態に係る燃料電池システムに対する電力需要実績よりも大きかった場合、換言すると、実際の電力需要量が過去の平均電力使用量よりも下回った場合、次の10時から11時までの電力需要予測値を過去の平均電力使用量の10時から11時までの値よりも小さく設定する。逆に過去の平均電力使用量の9時から10時までの値が9時から10時までの本発明の一実施形態に係る燃料電池システムに対する電力需要実績よりも小さかった場合、換言すると、実際の電力需要量が過去の平均電力使用量を上回った場合、次の10時から11時までの電力需要予測値を過去の平均電力使用量の10時から11時までの値よりも大きく設定する。そして、前記小さく、あるいは前記大きく設定された電力需要予測値に対応した必要量予測値に基づき、ガス循環量を決定する。なお、直前における燃料電池システムに対する電力需要実績とそれに対応する過去の平均電力使用量の値との差が大きい場合に、その差に応じて直前の電力需要予測値から小さくしたり大きくしたりする幅を拡大してもよい。例えば図3に示すように、ガス循環量が複数の離散的な値となるよう段階的に制御するよう構成している場合、直前における燃料電池システムに対する電力需要実績とそれに対応する過去の平均電力使用量の値との差が大きいときには、一段階ではなく二段階以上増減するようにしてもよい。
 また、コントローラ7が設定したガスの循環量に相当する電流値を超えた電流を燃料電池部2が流そうとして燃料極2Bや空気極2Cが損傷するなどの事態を避けるために、コントローラ7が、燃料電池部2の放電電流がコントローラ7によって設定されるガスの循環量の設定値に相当する電流を超えないように燃料電池部2の放電電流を制限するようにしてもよい。燃料電池部2の放電電流を制限する方法としては、例えば、コントローラ7が燃料電池部2と負荷10との電気的な接続を遮断する方法、或いは、コントローラ7が超過分の電流を電力系統9から調達する方法などを挙げることができる。
 図4は、太陽光発電システム8の発電電力を用いて充電する場合のガス循環量の設定例を示す図である。図4に示す例では、6時から18時まで本発明の一実施形態に係る燃料電池システムで充電している。太陽光発電システム8の発電電力は天候によって大きく変化するが、設置場所、季節、および時刻によって最大発電電力は容易に予測することができる。
 充電時に必要なガスの循環量に関しては、時刻に関連した単位時間毎の太陽光発電システム8の最大発電電力に対応する充電電流から電気分解に必要な単位時間毎の水蒸気量が決まり、電気分解に必要な単位時間毎の水蒸気量と循環するガスに占める水蒸気の割合とから単位時間に循環させるべきガス量(必要量予測値)が求まる。
 コントローラ7は、本発明の一実施形態に係る燃料電池システムの充電時(6時から18時)に、前述した必要量予測値(図4中のグラフ104)を上回るようにガスの循環量(図4中のグラフ105)を設定している。なお、太陽光発電システム8の発電電力を負荷10で使用しながら、太陽光発電システム8の余剰電力によって本発明の一実施形態に係る燃料電池システムを充電する場合は、時刻に関連した単位時間毎の太陽光発電システム8の最大発電電力から上述した家庭内での時刻に関連した単位時間毎の平均電力使用量を引いた量に対応する充電電流から電気分解に必要な単位時間毎の水蒸気量を決めるようにすればよい。
<変形例>
 上述した実施形態においては、まず家庭内での平均電力使用量(図2におけるグラフ100)すなわち電力需要予測値を設定し、それに対応するガスの必要量予測値(図3におけるグラフ102)を求め、それを上回るようにガスの循環量(図3におけるグラフ103)を決定している。しかしながら、予め平均電力使用量(電力需要予測値)を一定量もしくは一定比率上回る量として電力使用予定量を設定し、ガスの循環量をそれに対応して求めるようにしてもよい。
 上述した実施形態においては、燃料電池部2の電解質膜2Aとして固体酸化物電解質を用いて、発電の際に燃料極2B側で水を発生させるようにする。この構成によれば、燃料発生部材1が設けられた側で水を発生するため、装置の簡素化や小型化に有利である。一方、特開2009-99491号公報に開示された燃料電池のように、燃料電池部2の電解質膜2Aとして水素イオンを通す固体高分子電解質を用いることも可能である。但し、この場合には、発電の際に燃料電池部2の酸化剤極である空気極2C側で水が発生されることになるため、この水を燃料発生部材1に伝搬する流路を設ければよい。また、上述した実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。
 上述した実施形態では、燃料発生部材1として、化学反応によって燃料を発生するものを用いたが、例えば燃料を水素とした場合、水素吸蔵合金を用いることも可能である。
 また、上述した実施形態では、燃料電池部2の燃料を水素にしているが、一酸化炭素や炭化水素など水素以外の還元性ガスを燃料電池部2の燃料として用いても構わない。
 また、上述した各実施形態では、酸化剤ガスに空気を用いているが、空気以外の酸化剤ガスを用いても構わない。
 また、上述した実施形態では、燃料発生部材1と燃料電池部2とを別々の容器に収容しているが、図5に示すように同一の容器11に収容するようにしてもよい。図5において図1と同一の部分には同一の符号を付し詳細な説明を省略する。図5に示す本発明の他の実施形態に係る燃料電池システムでは、燃料極2Bと燃料発生部材1との間に仕切部材12が設けられている。仕切部材12は、図5の紙面手前及び紙面奥において、容器11の内壁に接続されている。一方、図5の紙面左右方向において、仕切部材12と容器11の内壁との間に隙間が設けられている。このような構成により、図5に示す本発明の他の実施形態に係る燃料電池システムも図1に示す本発明の一実施形態に係る燃料電池システムと同様に循環器6によって燃料電池部2と燃料発生部材1との間で燃料ガスを含むガスを強制循環させることができる。
 以上説明した燃料電池システムは、燃料ガスを発生する燃料発生部と、前記燃料ガスを用いた発電を行う燃料電池部とを備え、前記燃料電池部と前記燃料発生部との間で前記燃料ガスを含むガスを強制循環させる燃料電池システムであって、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、時刻に関連した単位時間毎の電力需要予測値に対して定められる循環量となるよう前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定するガス循環量設定部を備える構成(第1の構成)である。上記循環量は時刻に関連した単位時間毎の循環量とすることができる。
 上記第1の構成において、前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量を上回るよう設定される構成とすることができる。
 上記第1の構成において、前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量である、時刻に関連した単位時間毎の必要量予測値を上回るように設定される構成とすることができる。
 また、上記第1の構成の燃料電池システムにおいて、前記ガス循環量設定部は、前記必要量予測値を直前の電力需要実績に基づいて決定する構成(第2の構成)としてもよい。
 また、上記第1の構成または上記第2の構成の燃料電池システムにおいて、前記ガス循環量設定部によって設定される設定値は、前記燃料電池部の最大放電電流に必要な量以上を最大値とする複数の離散的な値である構成(第3の構成)としてもよい。
 また、上記第1~第3のいずれかの構成の燃料電池システムにおいて、前記ガス循環量設定部は、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、前記単位時間より短期の電力変動分以上の余裕分を前記必要量予測値に加えた量を上回るように、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定する構成(第4の構成)としてもよい。
 また、上記第1~第4のいずれかの構成の燃料電池システムにおいて、前記燃料電池部の放電電流が前記ガス循環量設定部によって設定される設定値に相当する電流を超えないように前記燃料電池部の放電電流を制限する電流制限部を備える構成としてもよい。
 以上のような各構成によれば、前記単位時間を比較的長い時間とすることで、燃料ガスの供給量の細かな制御を必要とせずに、燃料ガスの不足が生じないようにすることができる。また、このような構成によると、燃料電池部で使用されなかった燃料ガスは循環によって再度燃料電池部に供給されて利用されるので、燃料ガスの無駄が生じないようにすることができる。
   1 燃料発生部材
   2 燃料電池部
   2A 電解質膜
   2B 燃料極
   2C 空気極
   3、4、11 容器
   5 ガス流通経路
   5A ガス流通経路構成部材
   6 循環器
   7 コントローラ
   8 太陽光発電システム
   9 電力系統
   10 負荷
   100 平均電力使用量のグラフ
   101 実電力使用量のグラフ
   102、104 必要量予測値のグラフ
   103、103A、105 ガスの循環量のグラフ

Claims (7)

  1.  燃料ガスを発生する燃料発生部と、
     前記燃料ガスを用いた発電を行う燃料電池部とを備え、
     前記燃料電池部と前記燃料発生部との間で前記燃料ガスを含むガスを強制循環させる燃料電池システムであって、
     前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、時刻に関連した単位時間毎の電力需要予測値に対して定められる、時刻に関連した単位時間毎の循環量となるよう前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定するガス循環量設定部を備えることを特徴とする燃料電池システム。
  2.  前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量を上回るよう設定されるものであることを特徴とする請求項1に記載の燃料電池システム。
  3.  前記ガス循環量設定部において設定されるガスの循環量は、前記時刻に関連した単位時間毎の電力需要予測値の発電を前記燃料電池システムが行うために必要な量である、時刻に関連した単位時間毎の必要量予測値を上回るように設定されるものであることを特徴とする請求項2に記載の燃料電池システム。
  4.  前記ガス循環量設定部は、前記必要量予測値を直前の電力需要実績に基づいて決定することを特徴とする請求項1~3のいずれか一項に記載の燃料電池システム。
  5.  前記ガス循環量設定部によって設定される設定値は、
     前記燃料電池部の最大放電電流に必要な量以上を最大値とする複数の離散的な値であることを特徴とする請求項1~4のいずれか一項に記載の燃料電池システム。
  6.  前記ガス循環量設定部は、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量が、前記単位時間より短期の電力変動分以上の余裕分を前記必要量予測値に加えた量を上回るように、前記燃料電池部と前記燃料発生部との間を循環するガスの循環量を設定することを特徴とする請求項1~5のいずれか一項に記載の燃料電池システム。
  7.  前記燃料電池部の放電電流が前記ガス循環量設定部によって設定される設定値に相当する電流を超えないように前記燃料電池部の放電電流を制限する電流制限部を備えることを特徴とする請求項1~6のいずれか一項に記載の燃料電池システム。
PCT/JP2013/050708 2012-01-26 2013-01-17 燃料電池システム WO2013111655A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013555228A JP5884836B2 (ja) 2012-01-26 2013-01-17 燃料電池システム
EP13741237.5A EP2808931A4 (en) 2012-01-26 2013-01-17 FUEL CELL SYSTEM
US14/374,849 US20150010837A1 (en) 2012-01-26 2013-01-17 Fuel Cell System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-014213 2012-01-26
JP2012014213 2012-01-26

Publications (1)

Publication Number Publication Date
WO2013111655A1 true WO2013111655A1 (ja) 2013-08-01

Family

ID=48873376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050708 WO2013111655A1 (ja) 2012-01-26 2013-01-17 燃料電池システム

Country Status (4)

Country Link
US (1) US20150010837A1 (ja)
EP (1) EP2808931A4 (ja)
JP (1) JP5884836B2 (ja)
WO (1) WO2013111655A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275300A (ja) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
JP2003100326A (ja) * 2001-09-20 2003-04-04 Sekisui Chem Co Ltd 燃料電池発電システム
JP2004139914A (ja) * 2002-10-21 2004-05-13 Hitachi Home & Life Solutions Inc 燃料電池発電・給湯システム
JP2004362857A (ja) * 2003-06-03 2004-12-24 Hitachi Ltd 学習制御を有する燃料電池発電システム
JP2006073316A (ja) 2004-09-01 2006-03-16 Tokyo Gas Co Ltd 燃料電池コジェネレーションシステムとその制御方法
JP2006140103A (ja) 2004-11-15 2006-06-01 Tokyo Gas Co Ltd 燃料電池の運転制御方法及びそのためのシステム
JP2006244882A (ja) 2005-03-03 2006-09-14 Tokyo Gas Co Ltd 固体酸化物形燃料電池の運転制御方法及びシステム
JP2006275479A (ja) * 2005-03-30 2006-10-12 Osaka Gas Co Ltd エネルギ供給システム
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2011175742A (ja) * 2010-02-23 2011-09-08 Panasonic Corp 燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492777A (en) * 1995-01-25 1996-02-20 Westinghouse Electric Corporation Electrochemical energy conversion and storage system
JP3294088B2 (ja) * 1995-11-15 2002-06-17 三菱重工業株式会社 燃料電池システム
JPH1131521A (ja) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd 燃料電池システムおよび電力負荷予測装置
JP4972821B2 (ja) * 2000-12-11 2012-07-11 トヨタ自動車株式会社 燃料電池装置
JP2003173808A (ja) * 2001-09-27 2003-06-20 Fuji Electric Co Ltd 分散型発電装置の系統連系システム
US20080160370A1 (en) * 2004-07-12 2008-07-03 Hydrogenics Corporation Adaptive Current Controller for a Fuel-Cell System
KR101102750B1 (ko) * 2006-03-28 2012-01-05 미츠비시 쥬고교 가부시키가이샤 수소 생성 물질의 제조 방법
KR20100061453A (ko) * 2007-07-25 2010-06-07 트루라이트 인크. 하이브리드 전력의 생성 및 사용을 관리하는 장치, 시스템 및 방법
JP2009213203A (ja) * 2008-02-29 2009-09-17 Aisin Seiki Co Ltd コジェネレーションシステム及びユーザi/f装置
WO2012008266A1 (ja) * 2010-07-15 2012-01-19 コニカミノルタホールディングス株式会社 燃料電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275300A (ja) * 1993-03-24 1994-09-30 Sanyo Electric Co Ltd 燃料電池システム
JP2003100326A (ja) * 2001-09-20 2003-04-04 Sekisui Chem Co Ltd 燃料電池発電システム
JP2004139914A (ja) * 2002-10-21 2004-05-13 Hitachi Home & Life Solutions Inc 燃料電池発電・給湯システム
JP2004362857A (ja) * 2003-06-03 2004-12-24 Hitachi Ltd 学習制御を有する燃料電池発電システム
JP2006073316A (ja) 2004-09-01 2006-03-16 Tokyo Gas Co Ltd 燃料電池コジェネレーションシステムとその制御方法
JP2006140103A (ja) 2004-11-15 2006-06-01 Tokyo Gas Co Ltd 燃料電池の運転制御方法及びそのためのシステム
JP2006244882A (ja) 2005-03-03 2006-09-14 Tokyo Gas Co Ltd 固体酸化物形燃料電池の運転制御方法及びシステム
JP2006275479A (ja) * 2005-03-30 2006-10-12 Osaka Gas Co Ltd エネルギ供給システム
JP2009099491A (ja) 2007-10-19 2009-05-07 Sharp Corp 燃料電池システムおよび電子機器
JP2011175742A (ja) * 2010-02-23 2011-09-08 Panasonic Corp 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808931A4

Also Published As

Publication number Publication date
US20150010837A1 (en) 2015-01-08
JP5884836B2 (ja) 2016-03-15
EP2808931A1 (en) 2014-12-03
JPWO2013111655A1 (ja) 2015-05-11
EP2808931A4 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5578294B1 (ja) 燃料電池システム
JP2008084715A (ja) 固体電解質形燃料電池システム
JP2012234745A (ja) 2次電池型燃料電池システム
JP6462369B2 (ja) 電力供給システム
JP6826436B2 (ja) 燃料電池システム及びその運転方法
JP2005276628A (ja) 固体高分子形燃料電池発電システムおよび家庭用定置分散電源システム
US20150044584A1 (en) Fuel Cell System
JP5884836B2 (ja) 燃料電池システム
JP5896015B2 (ja) 2次電池型燃料電池システム
JP2014216062A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP2013157189A (ja) エネルギー管理装置
JP6445096B2 (ja) 燃料電池システムおよびその運転方法
JP5435178B2 (ja) 2次電池型燃料電池システム
JP5679097B1 (ja) 2次電池型燃料電池システム
WO2012165245A1 (ja) 2次電池型燃料電池システム
JP5895736B2 (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP2012003884A (ja) 燃料電池システムとその運転方法
JP5266782B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
WO2014188904A1 (ja) 給電システム
JP2014207115A (ja) 2次電池型燃料電池システム
JP6695263B2 (ja) 燃料電池システム、制御装置、及びプログラム
JP2014110075A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム
JP2014154358A (ja) 2次電池型燃料電池システム
JP5774403B2 (ja) 燃料電池システムおよびその運転方法
JP2014110074A (ja) 2次電池型燃料電池システム及びそれを備えた給電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555228

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013741237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013741237

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14374849

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE