WO2013111543A1 - 蒸気タービン軸受の支持構造および蒸気タービン - Google Patents

蒸気タービン軸受の支持構造および蒸気タービン Download PDF

Info

Publication number
WO2013111543A1
WO2013111543A1 PCT/JP2013/000205 JP2013000205W WO2013111543A1 WO 2013111543 A1 WO2013111543 A1 WO 2013111543A1 JP 2013000205 W JP2013000205 W JP 2013000205W WO 2013111543 A1 WO2013111543 A1 WO 2013111543A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing support
support member
base
bearing
steam turbine
Prior art date
Application number
PCT/JP2013/000205
Other languages
English (en)
French (fr)
Inventor
真人 三澤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP13740750.8A priority Critical patent/EP2808499B1/en
Publication of WO2013111543A1 publication Critical patent/WO2013111543A1/ja
Priority to US14/337,858 priority patent/US9683457B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/28Supporting or mounting arrangements, e.g. for turbine casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings

Definitions

  • Embodiments of the present invention relate to a support structure for a steam turbine bearing and a steam turbine.
  • FIG. 1 is a side cross-sectional view schematically showing a steam turbine in a form in which a turbine rotor is supported by a bearing installed in a cone part of a passenger compartment.
  • a steam turbine 10 shown in FIG. 1 is a low-pressure steam turbine in which a steam inlet portion is installed at a central portion and a steam exhaust portion is installed on both sides, and a foundation base 14 formed of a concrete portion 16, and the foundation base 14
  • a casing 13 supported by the casing 13 a turbine rotor 12 inserted into the casing 13, and the turbine rotor 12 are rotatably supported on both sides, and the lower casing 13 is supported via a bearing support portion 15 ⁇ / b> S. It is comprised from the bearing 15 installed in the cone part 13C.
  • the base plate 24 is installed on the top of the concrete portion 16 of the base 14. Further, the moving blade 11 is provided in the turbine rotor 12 and constitutes a turbine stage with a stationary blade (not shown) fixed to a stationary portion on the side of the passenger compartment 13.
  • the turbine rotor 12 is increased in size with an increase in capacity and output. Therefore, as shown in FIG. 1, the bearing 15 is installed in the cone portion 13 ⁇ / b> C of the passenger compartment 13 to support the turbine rotor 12. Then, because the casing 13 itself is deformed due to the weight of the turbine rotor 12 due to use over time, it is difficult to maintain the rigidity of the stationary portion and the rotating portion, or it is difficult to maintain the rigidity of the cone portion 13C. There was a problem that it was easy to do.
  • the bearing 15 is moved to the top of the concrete portion 16 of the foundation 14 outside the cone portion 13 ⁇ / b> C, and the concrete portion 16 of the foundation 14 is moved through the base plate 24.
  • the bearing 15 is disposed outside the cone portion 13 ⁇ / b> C of the vehicle interior 13, so that the distance between the bearings 15 and 15 is increased.
  • the axial length of the casing 13 is reduced, the turbine performance is significantly impaired. 14 cannot be narrowed more than a certain distance.
  • Patent Document 1 Japanese Patent Laid-Open No. 52-57412
  • the reinforcing member formed with the overhanging portion as shown in FIG. 2 is embedded in the top of the concrete portion 16 of the foundation 14, if a load of several tens of tons or more of the turbine rotor 12 is applied to the overhanging portion, the reinforcing member is passed through. A strong shear stress is applied to the concrete portion 16 of the foundation 14.
  • the embodiment of the present invention prevents the tensile stress and shear stress from acting on the foundation as much as possible, and does not interfere with the bearing support member that supports the bearing during installation of the passenger compartment. And it aims at providing a steam turbine.
  • an embodiment of the present invention includes a turbine rotor having turbine blades, a casing having a stationary blade that houses the turbine rotor and forms a turbine stage with the turbine blade, and the turbine described above.
  • the foundation platform is installed on both sides of the vehicle compartment and is opposed to the opposing wall surface.
  • a rectangular parallelepiped cutout having a predetermined width and depth from a flat surface at the top to a predetermined depth is formed, and the above-mentioned cutout formed on each of the foundations is
  • the present invention is characterized in that a bearing support member in which an overhang portion is formed toward the vehicle interior side is laid, and the above-mentioned bearing is installed in the above-described overhang portion of the above-described bearing support member.
  • Sectional drawing which shows another structure of the conventional steam turbine. 1 is a cross-sectional view schematically showing a configuration of a steam turbine according to Embodiment 1 of the present invention.
  • the expansion perspective view which shows the state which laid the bearing support member of FIG. 1 on the base stand.
  • the side view of the bearing support member of FIG. The expansion perspective view which shows the state which laid the bearing support member of Embodiment 2 of this invention in the base stand.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the steam turbine according to the first embodiment
  • FIG. 4 is an enlarged perspective view showing a state in which the bearing support member shown in FIG. FIG. 3 is a side view of the bearing support member of FIG. 2.
  • a steam turbine 10 includes a turbine rotor 12 in which turbine blades 11 are implanted, and a vehicle having a stationary blade (not shown) that houses the turbine rotor 12 and constitutes a turbine stage with the turbine blades 11.
  • the chamber 13 includes a base 14 formed by reinforcing concrete with a steel frame and the like, and a bearing 15 that rotatably supports the turbine rotor 12 on the base 14.
  • One foundation platform 14 is installed on each side of the passenger compartment 13 such that a bearing support member 17 is laid on the top of the concrete portion 16.
  • the concrete portion 16 of the base 14 has a flat surface 16 ⁇ / b> T at the top, and is flat at the top with respect to the wall surface 16 ⁇ / b> W facing the lower compartment 13.
  • a rectangular parallelepiped cutout 23 having a predetermined width and depth is formed in a downward direction with respect to the position of the surface 16T.
  • the notch 23 includes a reinforcing member 19 that is a component of the bearing support member 17 and is formed in an inverted substantially right triangle shape, and a lower plate fixed to the lower portion of the reinforcing member 19.
  • the depth (h), the depth (d1), and the width (w) from the top flat surface 16T are determined by the weight of the turbine rotor 12.
  • the bearing support member 17 is composed of three components. That is, the steel flat plate upper plate 18 installed on the top flat surface 16T of the concrete portion 16 of the foundation 14 is welded to the lower surface of the upper plate 18 and on the side in contact with the lower surface of the upper plate 18. A plurality of steel reinforcing members 19 formed in a substantially right triangle in an inverted state by horizontally cutting opposing corners, and steel fixed to the cut surfaces of the plurality of reinforcing members 19 by welding, respectively.
  • the bearing support member 17 is composed of a flat plate 20 made of a flat plate. Moreover, one end of the upper plate 18 is formed so as to protrude into the vehicle compartment 13 from the projection position of the lower plate 20.
  • the lower plate 20 is installed on the bottom 23 ⁇ / b> B of the notch 23 and receives a load acting in the vertical direction from the plurality of reinforcing members 19.
  • a gap is formed between the vertical side of the reinforcing member 19 and the inner wall surface 23 ⁇ / b> W of the notch 23. Therefore, if the depth of the lower plate 20 is (d3), a gap (d1-d3) is formed between the vertical side of the reinforcing member 19 and the inner wall surface 23W of the notch 23. Incidentally, if the dimension of the portion where the upper plate 18 projects from the edge of the flat surface 16T on the top of the concrete portion 16 to the notch portion 23 side is (d2), the dimensional relationship of d2> d1> d3 is established.
  • the bearing support member 17 is formed with an overhanging portion 22 that protrudes from the flat surface 16T of the base 14 beyond the notch 23 to the vehicle compartment 13 side by a dimensional difference of (d2-d1) according to the above dimensional relationship. As shown in FIG. 3, the bearing 15 is installed on the projecting portion 22 via the base plate 24.
  • the support interval of the turbine rotor 12 can be reduced as compared with the conventional example of FIG. Vibration during rotation of the rotor 12 can be suppressed.
  • the bearing support member 17 receives a moment with the lower plate 20 of the bottom portion 23B as a fulcrum by the load applied to the bearing 15, but the upper plate 18 of the bearing support member 17 is provided with a through hole 21, Since the foundation bolt (not shown) is passed through the through hole 21 and fixed, the moment can be sufficiently resisted.
  • the load of the turbine rotor 12 applied to the overhanging portion 22 of the upper plate 18 is applied to the bottom portion 23B of the cutout portion 23 of the foundation base 14 through the reinforcing member 19 and the lower plate 20 in the vertical direction.
  • the concrete part 16 which comprises 14 has strong intensity
  • the bearing support member 17 is laid in the notch 23 formed in the top without burying the bearing support member 17 in the top of the foundation platform 14. Even if the bearing support member 17 is laid on the foundation 14 after the installation, there is an advantage that the bearing support member and the vehicle compartment 13 do not interfere with each other during the installation.
  • the first embodiment has been described based on the “downward exhaust type steam turbine” in which the steam that has worked by rotating the steam turbine 10 is exhausted vertically downward.
  • the structure of the present embodiment can be applied even to a “side exhaust type steam turbine” that is in a direction perpendicular to the vertical direction.
  • FIG. 6 is a perspective view showing a state in which the bearing support member according to the second embodiment is laid on the foundation.
  • FIG. 6 the same parts or the same parts as those in FIGS.
  • a through hole 21 is formed in the upper plate 18, and a foundation bolt (not shown) is passed through the through hole 21.
  • a plurality of square block-shaped embedded hardware 25 is embedded at a predetermined depth on the top of the base 14, and the embedded hardware 25 is placed on the upper plate 18.
  • the upper plate 18 of the bearing support member 17 is fixed to the base table 14 by being clamped by a protrusion 26 provided on a portion opposite to the overhanging portion.
  • the fulcrum of the moment acting on the bearing support member 17 is not the top of the base 14 but the lower plate 20 arranged at the bottom 23B of the notch 23.
  • the load applied in the vertical direction of the concrete portion 16 is the same as that in the first embodiment.
  • FIG. 7 is an enlarged perspective view showing a state in which the bearing support member according to the third embodiment is laid on a base.
  • the horizontal position of the upper plate 18 of the bearing support member 17 in the first embodiment described above is adjusted.
  • the leveling blocks 28 are respectively installed on the flat surface 16T at the top of the concrete portion 16 of the foundation 14 and the bottom 23B of the notch 23, and then the upper plate 18 and the leveling block 28 are placed on each leveling block 28.
  • the upper plate 18 becomes horizontal or at an appropriate angle.
  • the bearing 15 After adjusting the height of the upper plate 18 by the leveling block 28, the bearing 15 is installed through the base plate 24. Thereafter, grout (not shown) is filled between the flat surface 16T of the upper plate 18 and the concrete portion 16 of the base 14 and between the lower plate 20 and the bottom portion 23B of the cutout portion 23, respectively, and solidified.
  • the turbine rotor 12 is adjusted to an appropriate height, so that bending of the turbine rotor shaft joint (not shown) is suppressed, and excessive stress is applied to the bolts of the turbine rotor shaft joint. Therefore, a serious accident due to shaft joint bolt breakage can be suppressed.
  • the bearing support member 17 when the bearing support member 17 is embedded in the top of the concrete portion 16 of the foundation 14 as in the prior art, the height cannot be adjusted after installation, but in the third embodiment, the bearing support member 17 is Since it is laid on the top of the base 14, the leveling block 28 can be installed between the concrete portion 16 and the bearing support member 17, and the height of the bearing support member 17 can be adjusted. it can.
  • FIG. 8 is an enlarged perspective view showing a state in which the bearing support member according to the fourth embodiment is laid on a base.
  • Embodiment 4 is characterized in that the bearing support member 17 and the bearing base 15P are integrated.
  • the sole plate 30 is laid on the bottom 23B of the notch 23 provided in the concrete portion 16 of the foundation base 14, and the bearing base 15P integrated with the bearing support member 17 is installed thereon. It is what I did.
  • the bearing stand 15 ⁇ / b> P supports the bearing 15 and is fixed integrally with the protruding portion 22 of the bearing support member 17.
  • a lower plate 20 is installed under the overhanging portion 22 via a reinforcing member 19, and the lower plate 20 supports a bearing load.
  • the base plate 24 is not necessary, and the laying process of the bearing support member 17 and the installation process of the bearing are combined.
  • the construction period can be shortened.
  • the height adjustment of the upper plate 18 by the leveling block 28 can be performed not only in the third embodiment of FIG. 7 but also in the second embodiment of FIG. 6 and the fourth embodiment of FIG. In the case of Embodiment 4 in FIG. 8, the leveling block 28 is installed between the sole plate 30 and the lower plate 20.
  • the bearing that supports the turbine rotor on both sides is provided with a rectangular parallelepiped notch portion having a predetermined depth from the flat surface of the top portion on the wall surface facing the casing of the foundation platform. Since a bearing support member having an overhang portion is laid in the notch portion and the bearing is installed in this overhang portion, the bearing support member has a moment with the lower plate at the bottom of the notch portion as a fulcrum by the load applied to the bearing However, since the upper plate of the bearing support member is fixed to the top of the foundation base with foundation bolts or embedded hardware, it can sufficiently withstand the moment. Further, the interval between the bearings can be shortened.
  • the present invention is used in a steam turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

 タービンロータの両端を基礎台(14)に設置された軸受により回転自在に支持し、基礎台(14)は、コンクリート部(16)の車室側壁面(16W)の頂上の平坦面(16T)から所定の深さ(h)に亘り、所定の幅(w)および奥行き(d1)を有する直方体状の切り欠き部(23)を設け、この切り欠き部(23)に張出し部(22)を形成した軸受支持部材(17)を敷設し、この張出し部(22)に軸受を設置する。

Description

蒸気タービン軸受の支持構造および蒸気タービン
 本発明の実施形態は、蒸気タービン軸受の支持構造および蒸気タービンに関する。
 蒸気タービンは、通常コンクリート製の基礎台上に設置される。図1は、車室のコーン部に設置した軸受によってタービンロータを支持する形態の蒸気タービンを模式的に示した側面断面図である。
 図1に示した蒸気タービン10は、中央部に蒸気入口部を設置し両側に蒸気排気部を設置した低圧蒸気タービンであって、コンクリート部16で形成された基礎台14と、この基礎台14に支持された車室13と、この車室13内に挿通されるタービンロータ12と、このタービンロータ12を両側で回転自在に支持するとともに、軸受支持部15Sを介して下部の車室13のコーン部13Cに設置された軸受15とから構成されている。
 台板24は基礎台14のコンクリート部16の頂上部に設置されている。また、動翼11はタービンロータ12に備えられており、車室13側の静止部に固定された図示しない静翼との間でタービン段落を構成している。
 近年の蒸気タービン10は、大容量高出力化に伴いタービンロータ12が大型化しているため、図1のように車室13のコーン部13Cに軸受15を設置してタービンロータ12を支持する形態では、経年使用によりタービンロータ12の重量によって車室13自体が変形して静止部と回転部とが接触するとか、コーン部13Cの剛性を保持することが難しいため、タービンロータ12に振動が発生しやすいという課題があった。
 この課題を解決するために、図2のように軸受15をコーン部13Cよりも外側の基礎台14のコンクリート部16の頂上部に移し、台板24を介して基礎台14のコンクリート部16で軸受15を固定し、タービンロータ12を支持するという形態の蒸気タービン10もある。
 しかしながら、図2の形態の蒸気タービン10では、軸受15が車室13のコーン部13Cの外側に配置されるため、軸受15、15相互間の距離が長くなる。一般に、軸受15、15相互間の距離が長くなるほどタービンロータ12に振動が発生しやすいことが知られている。軸受15、15相互間の距離を短縮すればタービンロータ12の振動を効果的に抑制することはできるが、車室13の軸長寸法を小さくするとタービン性能が著しく損なわれるため、基礎台14、14相互間は一定の距離以上狭めることはできない。
 さらに、図2の形態の蒸気タービン10の課題を改善するために、長方形の板状の補強部材を基礎台14のコンクリート部16の頂上部に対して縦方向に複数枚並べた状態で埋設し、その端部をタービン翼11側に張り出すようにし、この張り出した部分で軸受15を支持することによって基礎台14、14相互間の距離は変えずに軸受15、15相互間の距離を短縮した発明も提案されている。このようなものとして、日本国の公開特許公報、特開昭52-57412号公報(以下、特許文献1という)があり、更に同じく、日本国の公開特許公報、特開2003-278504号公報(以下、特許文献2という)がある。
特開昭52-57412号公報 特開2003-278504号公報
 しかしながら、図2のように張り出し部を形成した補強部材を基礎台14のコンクリート部16の頂上部に埋設する場合、張り出し部に数十トン以上のタービンロータ12の荷重がかかると、補強部材を通して基礎台14のコンクリート部16に強いせん断応力がかかる。
 コンクリートは圧縮応力に対しては強度が強いものの、引張応力やせん断応力に対しては10分の1程度の強度しか有しないことが一般に知られており、埋設された補強部材によるタービンロータ支持方法では、張り出し部を長く張り出すことが困難である。
 さらに、この埋設された補強部材でタービンロータを支持する方法では、補強部材を基礎台14のコンクリート部16に設置した後に車室13を据え付けようとする場合、埋設金物が車室に干渉してしまう恐れがある。この干渉を避けるためには、車室13を据え付け後に補強部材を埋設するか、あるいは、車室13の一部を分解可能な構造とする必要がある。前者の場合、車室13支持用の基礎台14のコンクリートを打設後に、車室13を据え付け、補強部材を埋設するために再度コンクリートを打設しなければならず、工程の増加を招く欠点がある。また後者の場合には、補強部材と車室とが干渉しないように車室の一部を分解構造にする必要があり、その分、車室構造が複雑になるという欠点がある。
 そこで、本発明の実施形態は、基礎台に引張応力やせん断応力が極力作用しないようにするとともに、車室の据付け時に軸受を支持する軸受支持部材と干渉することのない蒸気タービン軸受の支持構造および蒸気タービンを提供することを目的とするものである。
 上記の目的を達成するため、本発明の実施形態は、タービン翼を有するタービンロータと、前述のタービンロータを収容しタービン翼とでタービン段落を構成する静翼を有する車室と、前述のタービンロータの両端を基礎台に設置された軸受により回転自在に支持するようにした蒸気タービン軸受の支持構造において、前述の基礎台は、前述の車室の両側に設置され、対向する壁面に対して、頂上部の平坦面から所定の深さに亘って所定の幅および奥行きを有する直方体状の切り欠き部を形成し、前述の各基礎台に形成された前述の切り欠き部に対し、前述の車室側に向けて張出し部を形成した軸受支持部材を敷設し、前述の軸受支持部材の前述の張出し部に前述の軸受を設置するようにしたことを特徴とする。
従来の蒸気タービンの一つの構成を示す断面図。 従来の蒸気タービンの別の構成を示す断面図。 本発明の実施形態1に係る蒸気タービンの構成を模式的に示す断面図。 図1の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図。 図2の軸受支持部材の側面図。 本発明の実施形態2の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図。 本発明の実施形態3の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図。 本発明の実施形態4の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図。
 以下、本発明の実施形態について図面を参照して説明する。なお、各図を通して同一部材には同一符号を付けて、重複する説明は適宜省略する。
[実施形態1]
 図3は、本実施形態1に係る蒸気タービンの構成を模式的に示す断面図であり、図4は図1に記載した軸受支持部材を基礎台に敷設した状態を示す拡大斜視図、図5は図2の軸受支持部材の側面図である。
 図3において、蒸気タービン10は、タービン翼11を植設したタービンロータ12と、このタービンロータ12を収容し、タービン翼11との間でタービン段落を構成する静翼(図示せず)有する車室13と、コンクリートを鉄骨等で補強するようにして形成された基礎台14と、この基礎台14上でタービンロータ12を回転自在に支持する軸受15とから構成される。基礎台14は、コンクリート部16の頂上部に軸受支持部材17を敷設するようにして、車室13の両側にそれぞれ1基ずつ設置される。
 図4および図5で示すように、基礎台14のコンクリート部16は頂上部に平坦面16Tを有しており、さらに、下部の車室13に面した壁面16Wに対して、頂上部の平坦面16Tの位置を基準にして下方向に所定の深さに亘って、所定の幅および奥行きを有する直方体状の切り欠き部23を形成している。
 この切り欠き部23は、後述するように、軸受支持部材17の構成部品である倒立状態のほぼ直角三角形状に形成された補強部材19と、この補強部材19の下部に固定された下部板を収納するために設けられたものであり、頂上平坦面16Tからの深さ(h)、奥行き(d1)および幅(w)は、タービンロータ12の重量によって定められる。
 軸受支持部材17は、本実施形態1の場合、3個の構成部品によって構成されている。すなわち、基礎台14のコンクリート部16の頂上平坦面16Tに設置される鋼製で平板状の上部板18と、この上部板18の下面に溶接されるとともに、上部板18の下面と接する辺に対向する角部を水平にカットして倒立状態のほぼ直角三角形状に形成された鋼製の複数枚の補強部材19と、この複数枚の補強部材19のカット面にそれぞれ溶接により固定された鋼製で平板状の下部板20とから軸受支持部材17は構成されている。しかも、上部板18の一端は下部板20の投影位置から車室13内に張り出すように形成されている。
 そして、上部板18の切り欠き部23側と反対側の部位にはコンクリート部16の頂上部の平坦面16Tに当該上部板18を固定するための基礎ボルト用の貫通穴21を4箇所設けており、一方、下部板20は、切り欠き部23の底部23Bに設置されて、複数枚の補強部材19から鉛直方向に作用する荷重を受けるようになっている。
 なお、補強部材19の垂直辺と、切り欠き部23の内壁面23Wとの間には隙間が形成されるようになっている。このため、下部板20の奥行きを(d3)とすると、補強部材19の垂直辺と切り欠き部23の内壁面23Wとの間に(d1-d3)の隙間ができる。因みに、上部板18がコンクリート部16の頂上の平坦面16Tの縁から切り欠き部23側に張出している部分の寸法を(d2)とすると、d2>d1>d3の寸法関係が成立する。
 軸受支持部材17には上記の寸法関係によって基礎台14の平坦面16Tから切り欠き部23を越えて車室13側に(d2-d1)の寸法差分だけ張り出す張り出し部22が形成される。そして、図3で示すようにこの張り出し部22上に台板24を介して軸受15が設置されるようになっている。
 張り出し部22上に設置された軸受15でタービンロータ12を回転自在に支持することにより、前述した図2の従来例と比較して、タービンロータ12の支持間隔を狭めることができ、これによりタービンロータ12回転時の振動を抑制することができる。
 また、本実施形態1では、軸受15にかかる荷重によって軸受支持部材17は底部23Bの下部板20を支点とするモーメントを受けるが、軸受支持部材17の上部板18には貫通穴21を設け、この貫通穴21に基礎ボルト(図示省略)を貫通させて固定するようにしたので、上記モーメントには十分に耐えることができる。
 本実施形態1では、上部板18の張り出し部22にかかるタービンロータ12の荷重は、補強部材19および下部板20を通して基礎台14の切り欠き部23の底部23Bに鉛直方向にかかるが、基礎台14を構成するコンクリート部16は圧縮方向に対して強い強度を有するため、コンクリート材の損壊は発生しにくい。このため、発電所運用中の長期間にわたり、タービンロータの振動に対して軸受を安定して保持できる利点がある。
 また、本実施形態1では、基礎台14の頂上部に軸受支持部材17を埋設せずに、頂上部に形成した切り欠き部23に軸受支持部材17を敷設するようにしたので、車室13を据え付け後に、基礎台14に軸受支持部材17を敷設しても、据付時の軸受支持部材と車室13との干渉は起こらないという長所を有する。
 尚、蒸気タービン10を回転させて仕事をした蒸気が鉛直下方へ排気される「下方排気型の蒸気タービン」をもとに、実施形態1を説明したが、これに限らず、排気方向が紙面に直行する方向である「側方排気型の蒸気タービン」であっても、本実施形態の構造が適用可能である。
[実施形態2]
 本実施形態2について図6を参照して説明する。
 図6は本実施形態2おける軸受支持部材を基礎台に敷設した状態を示す斜視図である。
 図6において、図3ないし図5と同一部品又は同一部位については、対応する符号を付与して重複する説明は適宜省略する。
 上述した実施形態1では軸受支持部材17の上部板18を基礎台14に固定保持するために、上部板18に貫通穴21を開け、この貫通穴21に図示しない基礎ボルトを通すようにしたが、本実施形態2では、図6で示すように、基礎台14の頂上部に複数個の四角いブロック状の埋設金物25を所定の深さだけ埋設し、この埋設金物25を上部板18の当該張出し部と反対側の部位に設けた突起26により挟持することにより軸受支持部材17の上部板18を基礎台14に固定するようにしたものである。
 本実施形態2においても、軸受支持部材17に作用するモーメントの支点は、基礎台14の頂上部ではなく、切り欠き部23の底部23Bに配置した下部板20であるために、基礎台14のコンクリート部16鉛直方向にかかる荷重は実施形態1の場合と同じである。
 したがって、実施形態1と同様、基礎台14のコンクリート部16に過大な水平方向の力がかからないため、コンクリート基礎の長期的な信頼性を増し、また基礎台14のコンクリート部16を過度に高強度にする必要がなくなるといった効果が得られる。
 なお、本実施形態2では、上記の効果に加えて、基礎台14にボルトを通す必要がないため、工事が省略できるといった効果も併せて得ることができる。
[実施形態3]
 本実施形態3について図7を参照して説明する。
 図7は本実施形態3の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図である。
 図7において、図3ないし図6と同一部品又は同一部位については、対応する符号を付与して重複する説明は適宜省略する。
 本実施形態3は、上述した実施形態1における軸受支持部材17の上部板18の水平位置を調整するようにしたものである。
 本実施形態は、基礎台14のコンクリート部16頂上部の平坦面16Tと切り欠き部23の底部23Bとにそれぞれレベリングブロック28を設置してから、それぞれのレベリングブロック28の上に上部板18および下部板20を設置してレベリングブロック28の高さ調整を行なうことにより、上部板18が水平、または適正な角度にする。
 レベリングブロック28によって上部板18の高さ調整をした後に台板24を介して軸受15を設置する。その後、上部板18および基礎台14のコンクリート部16の平坦面16T間、下部板20および切り欠き部23の底部23B間にそれぞれグラウト(図示せず)を充填して固化させる。
 以上の構造により、タービンロータ12は適正な高さに調整されるため、タービンロータの軸継手部(図示省略)の曲がりが抑えられ、タービンロータの軸継手部のボルトに過大な応力がかかることがないので、軸継手ボルト破損による重大な事故を抑止することができる。
 また、従来技術のように軸受支持部材17を基礎台14のコンクリート部16の頂上部に埋設した場合は、設置後に高さを調整することができないが、本実施形態3では軸受支持部材17を基礎台14の頂上部に敷設するようにしているため、コンクリート部16と軸受支持部材17の間にレベリングブロック28を設置することが可能になり、軸受支持部材17の高さを調整することができる。
[実施形態4]
 本実施形態4について図8を参照して説明する。
 図8は本実施形態4の軸受支持部材を基礎台に敷設した状態を示す拡大斜視図である。
 図8において、図3ないし図7と同一部品又は同一部位については、対応する符号を付与して重複する説明は適宜省略する。
 本実施形態4は軸受支持部材17と軸受台15Pとを一体化したことを特徴とするものである。
 本実施形態4では、基礎台14のコンクリート部16に設けた切り欠き部23の底部23B上にソールプレート30を敷設し、その上に軸受支持部材17と一体となった軸受台15Pを設置するようにしたものである。軸受台15Pは軸受15を支持するとともに軸受支持部材17の張り出し部22と一体的に固定されている。張り出し部22の下部には補強部材19を介して下部板20が設置され、この下部板20で軸受荷重を支持する。
 本実施形態4によれば、軸受支持部材17と軸受台15Pを一体化したために、台板24が不要になる上に、軸受支持部材17の敷設工程と軸受の設置工程とが一緒になるので、工期短縮を行うことができる。
[変形例]
 レベリングブロック28による上部板18の高さ調整は、図7の実施形態3だけでなく、図6の実施形態2や図8の実施形態4でも実施できるものである。なお、図8の実施形態4の場合、レベリングブロック28はソールプレート30と下部板20との間に設置される。
[各実施形態に共通する効果]
 以上述べた実施形態によれば、タービンロータを両側で支持する軸受を基礎台の車室に対向する壁面に、頂上部の平坦面から所定の深さの直方体状の切り欠き部を設け、この切り欠き部に張出し部を有する軸受支持部材を敷設し、この張出し部に軸受を設置するようにしたので、軸受支持部材は軸受にかかる荷重によって切り欠き部の底部の下部板を支点とするモーメントを受けるが、軸受支持部材の上部板は基礎ボルトや埋設金物で基礎台の頂部に固定するようにしたので、上記モーメントには十分に耐えることができる。また、軸受相互間の間隔を短くすることもできる。
 なお、以上説明した実施形態は、それぞれ例として提示したものであり、発明の範囲を限定することを意図するものではない。また、これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
産業上の利用分野
 本発明は、蒸気タービンにおいて利用される。
 10…蒸気タービン、11…タービン翼、12…タービンロータ、13…タービン低圧車室、14…基礎台、15…軸受、15P…軸受台、16…コンクリート部、16T…頂上の平坦面,16W…コンクリート部壁面、17…軸受支持部材、18…上部板、19…補強部材、20…下部板、21…貫通穴、22…張り出し部、23…切り欠き部、23B…切り欠き部底部、23W…切り欠き部壁面、24…台板、25…埋設金物、26…突起、28…レベリングブロック。

Claims (8)

  1.  タービン翼を有するタービンロータと、前記タービンロータを収容しタービン翼とでタービン段落を構成する静翼を有する車室と、前記タービンロータの両端を基礎台に設置された軸受により回転自在に支持するようにした蒸気タービン軸受の支持構造において、
     前記基礎台は、前記車室の両側に設置され、対向する壁面に対して、頂上部の平坦面から所定の深さに亘って所定の幅および奥行きを有する直方体状の切り欠き部を形成し、
     前記各基礎台に形成された前記切り欠き部に対し、前記車室側に向けて張出し部を形成した軸受支持部材を敷設し、
     前記軸受支持部材の前記張出し部に前記軸受を設置する蒸気タービン軸受の支持構造。
  2.  前記軸受支持部材は、
     前記基礎台の頂上面に設置される上部板と、
     前記切り欠き部の底部に設置される下部板と、
     これら上部板および下部板を連結する倒立状態でほぼ直角三角形状の支持部材と
     を具備する請求項1記載の蒸気タービン軸受の支持構造。
  3.  前記軸受支持部材は、前記上部板の前記張出し部と反対側の部位を基礎ボルトによって前記基礎台の頂上部に固定する請求項2記載の蒸気タービン軸受の支持構造。
  4.  前記軸受支持部材は、前記基礎台の頂上面の所定位置に埋め込まれた埋め込み金物を前記上部板の前記張出し部と反対側の部位に形成した突起で固定する請求項2記載の蒸気タービン軸受の支持構造。
  5.  前記基礎台の頂上面と前記軸受支持部材の上部板との間、及び、前記切り欠き部の底部と前記軸受支持部材の下部板との間に、それぞれレベリングブロックを設置し、前記各レベリングブロックの高さ調整を行なうことにより、前記上部板の水平角度を調整する請求項2記載の蒸気タービン軸受の支持構造。
  6.  前記レベリングブロックによる水平角度調整後、前記基礎台の頂上面と前記軸受支持部材の上部板との間、及び、前記切り欠き部の底部と前記軸受支持部材の下部板との間に、それぞれグラウトを充填し固化する請求項5記載の蒸気タービン軸受の支持構造。
  7.  前記軸受支持部材の前記上部板と軸受台とを一体的に構成した上で、前記軸受支持部材を前記基礎台に設置する請求項1ないし6のいずれか1項に記載の蒸気タービン軸受の支持構造。
  8.  請求項1ないし6のいずれか1項に記載の蒸気タービン軸受の支持構造を備える蒸気タービン。
PCT/JP2013/000205 2012-01-23 2013-01-17 蒸気タービン軸受の支持構造および蒸気タービン WO2013111543A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13740750.8A EP2808499B1 (en) 2012-01-23 2013-01-17 Support structure for vapor turbine bearings, and vapor turbine
US14/337,858 US9683457B2 (en) 2012-01-23 2014-07-22 Steam turbine bearing support structure and steam turbine thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012011102A JP5743914B2 (ja) 2012-01-23 2012-01-23 蒸気タービン軸受の支持構造および蒸気タービン
JP2012-011102 2012-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/337,858 Continuation US9683457B2 (en) 2012-01-23 2014-07-22 Steam turbine bearing support structure and steam turbine thereof

Publications (1)

Publication Number Publication Date
WO2013111543A1 true WO2013111543A1 (ja) 2013-08-01

Family

ID=48873277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000205 WO2013111543A1 (ja) 2012-01-23 2013-01-17 蒸気タービン軸受の支持構造および蒸気タービン

Country Status (4)

Country Link
US (1) US9683457B2 (ja)
EP (1) EP2808499B1 (ja)
JP (1) JP5743914B2 (ja)
WO (1) WO2013111543A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005797B (zh) * 2014-06-04 2015-12-30 中国航空动力机械研究所 燃气轮机转子支撑机构及带有该支撑机构的燃气轮机
US10612420B2 (en) 2016-11-17 2020-04-07 General Electric Company Support structures for rotors
JP6694837B2 (ja) 2017-02-27 2020-05-20 三菱日立パワーシステムズ株式会社 蒸気タービン
CN107905855A (zh) * 2017-11-09 2018-04-13 杭州国能汽轮工程有限公司 凝汽器的支撑机构
CN109113811B (zh) * 2018-07-06 2023-09-08 华电电力科学研究院有限公司 一种汽轮机用基架及其安装方法
JP7038626B2 (ja) 2018-08-07 2022-03-18 三菱重工コンプレッサ株式会社 蒸気タービン及び蒸気タービンの製造方法
CN111608747B (zh) * 2020-04-07 2022-05-10 东方电气集团东方汽轮机有限公司 短跨距汽轮机转子支承结构及汽轮机转子支撑安装方法
CN114542206B (zh) * 2022-03-09 2024-02-20 中国船舶重工集团公司第七0三研究所 一种结构紧凑型机组的轴承箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257412A (en) 1975-11-07 1977-05-11 Hitachi Ltd Low pressure casing of turbine
JPS5499811A (en) * 1978-01-24 1979-08-07 Toshiba Corp Bearing device for low pressure turbine
JP2003278504A (ja) 2002-03-26 2003-10-02 Mitsubishi Heavy Ind Ltd 蒸気タービン
JP2010223146A (ja) * 2009-03-25 2010-10-07 Hitachi Ltd タービン支持架台及びそれを用いた蒸気タービン設備
WO2012008322A1 (ja) * 2010-07-16 2012-01-19 三菱重工業株式会社 軸受箱固定方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509782A (en) * 1995-03-02 1996-04-23 Dresser-Rand Company Bearing case support
JP3772019B2 (ja) * 1998-04-21 2006-05-10 株式会社東芝 蒸気タービン
EP1249579A1 (de) * 2001-04-11 2002-10-16 Siemens Aktiengesellschaft Turbinenanlage, inbesondere Dampfturbinenanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5257412A (en) 1975-11-07 1977-05-11 Hitachi Ltd Low pressure casing of turbine
JPS5499811A (en) * 1978-01-24 1979-08-07 Toshiba Corp Bearing device for low pressure turbine
JP2003278504A (ja) 2002-03-26 2003-10-02 Mitsubishi Heavy Ind Ltd 蒸気タービン
JP2010223146A (ja) * 2009-03-25 2010-10-07 Hitachi Ltd タービン支持架台及びそれを用いた蒸気タービン設備
WO2012008322A1 (ja) * 2010-07-16 2012-01-19 三菱重工業株式会社 軸受箱固定方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808499A4

Also Published As

Publication number Publication date
US20140334919A1 (en) 2014-11-13
EP2808499B1 (en) 2017-03-01
JP2013148064A (ja) 2013-08-01
EP2808499A4 (en) 2015-12-09
US9683457B2 (en) 2017-06-20
JP5743914B2 (ja) 2015-07-01
EP2808499A1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2013111543A1 (ja) 蒸気タービン軸受の支持構造および蒸気タービン
JP4363799B2 (ja) タービン組立輸送架台および同架台を用いたタービン組立方法、輸送方法
EP2551471B1 (en) Method and apparatus for affixing bearing box
US8047779B2 (en) Combined axial and transverse constraint and alignment system and method for rotary machines
JP5766447B2 (ja) タービン外部車室
JP6833745B2 (ja) 蒸気タービン
JP5656377B2 (ja) 蒸気タービン車室、これを備えた蒸気タービンおよびこれを備えた原子力発電プラントならびに蒸気タービン車室の組立方法
JP5002610B2 (ja) タービン支持架台及びそれを用いた蒸気タービン設備
JP5766835B2 (ja) タービン外部車室用架台の施工方法
JP3697130B2 (ja) 蒸気タービン車室の支持構造
JP3782747B2 (ja) 蒸気タービン
JP6512428B2 (ja) 杭基礎と架台との接合構造
JP6614576B2 (ja) 車室の製造方法、及び回転機械の製造方法
JP6596268B2 (ja) 機器設置用架台及びその製造方法、プラント
JP6501558B2 (ja) 免震改修方法
JP6596267B2 (ja) 機器設置用架台及びその製造方法、プラント
JP2015001063A (ja) 建設用構造体、架台及びタービン発電機設備、並びに建設用構造体の製造方法
JP2021116700A (ja) 回転機械の支持装置、支持方法および回転機械
JP5322634B2 (ja) カップリング面倒れ補強方法及び間隔板
JP2008150924A (ja) 滑り免震装置及び滑り免震装置の施工方法
JP2019023461A (ja) ブレードアウト事象のための軸受バンパー
JP2005207130A (ja) 設備機器用架台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740750

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013740750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013740750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE