WO2013108844A1 - 窒化物半導体装置 - Google Patents

窒化物半導体装置 Download PDF

Info

Publication number
WO2013108844A1
WO2013108844A1 PCT/JP2013/050824 JP2013050824W WO2013108844A1 WO 2013108844 A1 WO2013108844 A1 WO 2013108844A1 JP 2013050824 W JP2013050824 W JP 2013050824W WO 2013108844 A1 WO2013108844 A1 WO 2013108844A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
nitride semiconductor
gate electrode
electrode
Prior art date
Application number
PCT/JP2013/050824
Other languages
English (en)
French (fr)
Inventor
大佑 栗田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013108844A1 publication Critical patent/WO2013108844A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Definitions

  • the present invention relates to a nitride semiconductor device in which a source electrode, a drain electrode, and a gate electrode are formed on a nitride semiconductor layer.
  • a source electrode and a drain electrode are separately formed on a nitride semiconductor layer, a gate electrode is formed between the source electrode and the drain electrode, and a first electrode is formed on the nitride semiconductor layer.
  • a field effect transistor in which one insulating film and a second insulating film are stacked (see, for example, Japanese Patent Application Laid-Open No. 2004-200248 (Patent Document 1)).
  • the gate electrode has a field plate structure and an attempt is made to suppress current collapse by forming the first insulating film with a silicon nitride film.
  • This current collapse is a particular problem in GaN-based semiconductor devices, and the on-resistance of a transistor in high-voltage operation is significantly higher than the on-resistance of the transistor in low-voltage operation. It is a phenomenon.
  • the field effect transistor has a problem in that even if the current collapse phenomenon can be suppressed, a leakage current is generated under a high voltage and a breakdown voltage is lowered.
  • an object of the present invention is to provide a nitride semiconductor device that can suppress a current collapse phenomenon and improve a breakdown voltage by suppressing a leakage current.
  • a nitride semiconductor device of the present invention includes a nitride semiconductor layer, A source electrode and a drain electrode which are at least partially formed on or in the nitride semiconductor layer and spaced apart from each other; A gate electrode formed on the nitride semiconductor layer between the source electrode and the drain electrode and having a base and a field plate extending from the base toward the drain electrode; It is formed on the nitride semiconductor layer and in a region between the drain electrode and the source electrode so as to extend under the field plate portion of the gate electrode and to the gate electrode in advance.
  • a first insulating film for suppressing current collapse having edge portions spaced at a set interval;
  • the first insulating film is formed so as to fill a region between the edge of the first insulating film and the gate electrode, and extends from the nitride semiconductor layer over the edge of the first insulating film.
  • a second insulating film, The first insulating film is formed on the second insulating film so as to be farther from the base than the end on the base side and to extend under the field plate portion of the gate electrode.
  • a third insulating film formed, The field plate portion of the gate electrode is A first portion extending from the base to the second insulating film on an edge of the first insulating film; And a second portion extending on the third insulating film from the first portion.
  • the nitride semiconductor layer of the present invention current collapse can be suppressed by the first insulating film formed on the nitride semiconductor layer. Further, a second insulating film is formed between the gate electrode and the first insulating film, and the first insulating film is separated from the gate electrode, so that the first insulating film is interposed therebetween. Thus, the withstand voltage can be improved by suppressing the leak current flowing through the gate electrode.
  • the field plate portion of the gate electrode may have a multi-stage structure including a first portion on the second insulating film and a second portion on the third insulating film. Therefore, the electric field concentration can be relaxed and the leakage current to the gate electrode can be reduced.
  • the first insulating film is It is a silicon nitride film with a higher ratio of silicon than stoichiometric silicon nitride film
  • the second insulating film is It is an oxide film or a silicon nitride film having a higher nitrogen ratio than the first insulating film.
  • current collapse can be effectively suppressed by the first insulating film made of the silicon nitride film having a higher silicon ratio than the stoichiometric silicon nitride film.
  • a leakage current to the gate electrode can be effectively suppressed by the second insulating film formed using the oxide film or the silicon nitride film having a higher nitrogen ratio than the first insulating film.
  • the gate electrode is The base is a Schottky electrode having a Schottky junction with the nitride semiconductor layer.
  • the first stage of the first portion of the field plate portion of the gate electrode extending on the second insulating film from the base portion to the edge of the first insulating film.
  • a second-stage portion extending from the first-stage portion to the second insulating film extending from the first-stage portion to the edge of the first insulation film.
  • the part 2 can be the third stage part.
  • Such a three-stage field plate portion can alleviate electric field concentration and reduce a leakage current to the gate electrode.
  • the base portion of the gate electrode has a MIS structure formed on the second insulating film.
  • the leakage current to the gate electrode can be reduced by the MIS (Metal Insulator Semiconductor) structure.
  • the nitride semiconductor device of the present invention current collapse can be suppressed by the first insulating film formed on the nitride semiconductor layer, and the second insulating film is interposed between the gate electrode and the first insulating film.
  • the field plate portion of the gate electrode may have a multi-stage structure including a first portion on the second insulating film and a second portion on the third insulating film. Therefore, the electric field concentration can be relaxed and the leakage current to the gate electrode can be reduced.
  • FIG. 1 is a cross-sectional view showing a GaN-based HFET which is a first embodiment of a nitride semiconductor device of the present invention. It is sectional drawing explaining the manufacturing process of the GaN-type HFET of the said 1st Embodiment.
  • FIG. 3 is a cross-sectional view illustrating a process that follows the process of FIG. 2.
  • FIG. 4 is a cross-sectional view illustrating a step that follows the step of FIG. 3. It is sectional drawing explaining the process following the process of FIG.
  • FIG. 6 is a cross-sectional view illustrating a step that follows the step of FIG. 5. It is sectional drawing which shows the GaN-type HFET of a comparative example.
  • FIG. 10 is a cross-sectional view illustrating a process that follows the process of FIG. 9. It is sectional drawing explaining the process following the process of FIG.
  • FIG. 12 is a cross-sectional view illustrating a process that follows the process of FIG. 11.
  • FIG. 13 is a cross-sectional view illustrating a process that follows the process of FIG. 12.
  • FIG. 1 is a cross-sectional view showing a normally-on type GaN-based HFET (heterojunction field effect transistor) which is a first embodiment of the nitride semiconductor device of the present invention.
  • an undoped GaN layer 11 and an undoped AlGaN layer 12 are sequentially formed on a Si substrate (not shown).
  • 2DEG (two-dimensional electron gas) 19 is generated at the interface between the undoped GaN layer 11 and the undoped AlGaN layer 12.
  • the undoped GaN layer 11 and the undoped AlGaN layer 12 constitute a nitride semiconductor laminate.
  • the substrate is not limited to the Si substrate, and a sapphire substrate or SiC substrate may be used.
  • a nitride semiconductor layer may be grown on the sapphire substrate or SiC substrate, or an AlGaN layer is grown on the GaN substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor. Further, a buffer layer may be appropriately formed between the substrate and each layer. Further, an AlN layer having a thickness of about 1 nm may be formed as a hetero improvement layer between the undoped GaN layer 11 and the undoped AlGaN layer 12. A GaN cap layer may be formed on the AlGaN layer 12.
  • Recesses 21 and 22 penetrating the undoped AlGaN layer 12 and reaching the undoped GaN layer 11 are formed at predetermined intervals.
  • a source electrode 13 and a drain electrode 14 are formed on the recesses 21 and 22.
  • a gate electrode 15 is formed between the source electrode 13 and the drain electrode 14.
  • the source electrode 13 and the drain electrode 14 may be formed on the undoped AlGaN layer 12 without forming the recesses 21 and 22.
  • ohmic contact can be made by annealing the source electrode 13 and the drain electrode 14 with the thickness of the undoped AlGaN layer 12 being, for example, 10 nm.
  • the thickness of the undoped AlGaN layer 12 may be set to 30 nm, for example, and the ohmic contact portion of the undoped AlGaN layer 12 may be preliminarily doped with Si so as to be n-type to enable ohmic contact of the electrode.
  • the gate electrode 15 includes a base portion 15a that is Schottky-bonded to the undoped AlGaN layer 12, a first field plate portion 15b that extends from the base portion 15a toward the drain electrode 14, and the base portion 15a.
  • a second field plate portion 15c extending toward the source electrode 13 is provided.
  • the second field plate portion 15c may not be provided.
  • a collapse suppression film 18 for suppressing current collapse is formed as a first insulating film on the undoped AlGaN layer 12 between the source electrode 13 and the drain electrode 14.
  • the collapse suppression film 18 as the first insulating film extends under the first and second field plate portions 15b and 15c of the gate electrode 15.
  • the collapse suppression film 18 has an opening 25 defined by a first end edge 18a and a second end edge 18b.
  • the collapse suppression film 18 is made of, for example, a Si-rich silicon nitride film.
  • the composition ratio Si between Si and N : N 1.1 to 1.9: 1.
  • a second insulating film 23 is formed on the collapse suppression film 18 as the first insulating film.
  • the second insulating film 23 is formed so as to fill a region between the edge portions 18 a and 18 b of the collapse suppression film 18 and the gate electrode 15.
  • the second insulating film 23 has an opening 26 defined by first and second edge portions 23a and 23b formed on the undoped AlGaN layer 12. The base portion 15 a of the gate electrode 15 passes through the opening 26.
  • the second insulating film 23 is made of SiN having a larger ratio of nitrogen N and a refractive index of 1.8 to 2.2 than the Si-rich silicon nitride film for forming the collapse suppression film 18.
  • the Further, the second insulating film 23 may be made of SiO or SiO 2 .
  • a third insulating film 27 is formed on the second insulating film 23.
  • the third insulating film 27 is separated from the base 15a than the ends of the first and second end edges 18a and 18b of the collapse suppression film 18 serving as the first insulating film on the base 15a side. Yes.
  • the third insulating film 27 extends under the first and second field plate portions 15b and 15c of the gate electrode 15.
  • the third insulating film 27 is made of SiN having a higher ratio of nitrogen N and a refractive index of 1.7 to 1.9 than the Si-rich silicon nitride film for forming the collapse suppression film 18.
  • the Further, the third insulating film 27 may be made of SiO or SiO 2.
  • the first field plate portion 15b of the gate electrode 15 extends from the base portion 15a onto the second insulating film 23 on the first end edge portion 18a of the collapse suppression film 18.
  • 15b-1 and a second portion 15b-2 extending from the first portion 15b-1 to the third insulating film 27.
  • the first portion 15b-1 includes the first-stage portion 15p formed on the first end edge portion 23a of the second insulating film 23 and the first end edge of the collapse suppression film 18.
  • the second field plate portion 15c of the gate electrode 15 extends from the base portion 15a onto the second insulating film 23 on the second end edge portion 18b of the collapse suppression film 18.
  • Part 15c-1 and a second part 15c-2 extending from the first part 15c-1 onto the third insulating film 27.
  • the first portion 15c-1 includes the first stage portion 15r formed on the second end edge portion 23b of the second insulating film 23 and the second end edge of the collapse suppression film 18.
  • the gate electrode 15 is made of, for example, WN / W in which a WN layer and a W layer are sequentially stacked, or TiN.
  • the source electrode 13 and the drain electrode 14 are made of Ti / Al in which a Ti layer and an Al layer are sequentially stacked, or Hf / Al / Hf / Au in which Hf / Au is stacked on Hf / Al. .
  • an undoped GaN layer 11 and an undoped AlGaN layer 12 are sequentially formed on a Si substrate (not shown) by using a MOCVD (metal organic chemical vapor deposition) method.
  • the substrate is not limited to the Si substrate, and a sapphire substrate or SiC substrate may be used, a nitride semiconductor layer may be grown on the sapphire substrate or SiC substrate, or an AlGaN layer is grown on the GaN substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor. Further, a buffer layer may be appropriately formed between the substrate and each layer.
  • a silicon nitride film 38 to be the collapse suppression film 18 is formed on the undoped AlGaN layer 12 by using a plasma CVD method.
  • the growth temperature of the silicon nitride film 38 to be the collapse suppression film 18 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C.
  • the thickness of the silicon nitride film 38 to be the collapse suppression film 18 is 20 nm as an example, but may be set in the range of 20 nm to 50 nm.
  • the silicon nitride film 38 when the silicon nitride film 38 is formed by the plasma CVD method, by adjusting the gas flow ratio of N 2 / NH 3 / SiH 4 , the silicon Si film is made more than the stoichiometric silicon nitride film. A silicon nitride film 38 having a large ratio can be formed. According to the silicon nitride film 38, current collapse can be further suppressed as compared with a stoichiometric silicon nitride film.
  • a photoresist (not shown) is formed on the silicon nitride film 38 to be the collapse suppression film 18, and is exposed and developed, whereby the photoresist in the region where the source electrode 13 and the drain electrode 14 are to be formed.
  • the photoresist in the region where the opening 25 is to be formed is removed, and wet etching using buffered hydrofluoric acid (BHF) is performed using this photoresist as a mask.
  • BHF buffered hydrofluoric acid
  • the photoresist is removed.
  • a region where the source electrode 13 and the drain electrode 14 are to be formed and a region where the opening 25 is to be formed are removed from the silicon nitride film 38 which is the collapse suppression film 18.
  • the undoped AlGaN layer 12 is exposed in this region.
  • the silicon nitride film 38 that becomes the collapse suppression film 18 is heat-treated.
  • the temperature of this heat treatment was, for example, 500 ° C. for 30 minutes. Note that the temperature of the heat treatment may be set in a range of 500 ° C. to 700 ° C. as an example.
  • an SiO film 33 to be the second insulating film 23 for reducing the gate leakage current is formed on the collapse suppression film 18 by plasma CVD (chemical vapor deposition).
  • a photoresist (not shown) is formed in a region where the second insulating film 23 is to be formed by patterning using a photoresist, and wet etching using buffered hydrofluoric acid (BHF) is performed.
  • BHF buffered hydrofluoric acid
  • the photoresist is removed.
  • the SiO film 33 other than the region where the second insulating film 23 is to be formed is removed, and the second insulating film 23 is formed.
  • the second insulating film 23 is annealed at 500 ° C. for 30 minutes. By performing this annealing, the second insulating film 23 under the opening is prevented from disappearing when the third insulating film 27 described below is opened by wet etching.
  • a third insulating film is formed on the second insulating film 23 and the undoped AlGaN layer 12 exposed from the second insulating film 23 by plasma CVD (chemical vapor deposition).
  • a SiO 2 film 37 to be the film 27 is formed.
  • a photoresist (not shown) is formed in a region where the third insulating film 27 is to be formed by patterning using a photoresist, and wet etching using buffered hydrofluoric acid (BHF) is performed.
  • BHF buffered hydrofluoric acid
  • the photoresist is removed.
  • the SiO 2 film 37 other than the region where the third insulating film 27 is to be formed is removed, and the third insulating film 27 is formed.
  • a resist pattern (not shown) is formed in an electrode formation region where the gate electrode 15 is to be formed by photolithography, and dry etching is performed using this resist pattern as a mask.
  • a photoresist (not shown) in which regions where the recesses 21 and 22 are to be formed is formed by photolithography, and dry etching is performed using the photoresist as a mask.
  • the third insulating film 27 passes through the second insulating film 23, the collapse suppression film (first insulating film) 18, and the AlGaN layer 12 to reach the GaN layer 11.
  • Recesses 21 and 22 are formed.
  • the recesses 21 and 22 form an ohmic electrode formation region.
  • a photoresist (not shown) in which regions (regions of the recesses 21 and 22) where the source electrode 13 and the drain electrode 14 are to be formed is formed by photolithography, and Ti, Al is formed on the photoresist.
  • a source electrode 13 and a drain electrode 14 made of Ti / Al electrodes are formed on the recesses 21 and 22 by lift-off.
  • the Ti / Al electrode is an electrode having a laminated structure in which a Ti layer and an Al layer are sequentially laminated.
  • the source electrode 13 and the drain electrode 14 are heat-treated to form ohmic electrodes.
  • the condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this.
  • the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
  • the GaN-based HFET of the first embodiment thus manufactured, current collapse can be suppressed by the collapse suppression film 18 as the first insulating film formed on the undoped AlGaN layer 12, and the gate electrode 15 and
  • the second insulating film 23 made of SiO between the collapse suppression film 18 the leakage current flowing through the gate electrode 15 through the collapse suppression film 18 can be suppressed, and the breakdown voltage can be improved.
  • first and second field plate portions 15b and 15c of the gate electrode 15 are formed on the first portions 15b-1 and 15c-1 on the second insulating film 23 and on the third insulating film 27, respectively.
  • the second portion 15b-2, 15c-2 can be a multi-stage structure.
  • the first and second field plate portions 15b and 15c having the multi-stage structure can alleviate electric field concentration and reduce the leakage current to the gate electrode 15.
  • the first portion 15b-1 of the first field plate portion 15b of the gate electrode 15 is connected to the second portion from the base portion 15a to the edge portion 18a of the collapse suppression film 18.
  • the first-stage portion 15p extending on the insulating film 23 and the second-stage insulating film 23 extending from the first-stage portion 15p onto the edge 18a of the collapse suppression film 18 are extended. It has a structure having a second stage portion 15q.
  • the second portion 15b-2 of the first field plate portion 15b can be a third-stage portion.
  • Such a three-stage field plate portion 15b can further reduce the concentration of the electric field and reduce the leakage current to the gate electrode.
  • the first portion 15 c-1 of the second field plate portion 15 c of the gate electrode 15 is moved from the base portion 15 a to the end edge portion 18 b of the collapse suppression film 18.
  • the first-stage portion 15r extending on the insulating film 23 and the second-stage insulating film 23 extending from the first-stage portion 15r onto the edge 18b of the collapse suppression film 18 And a second-stage portion 15s.
  • the second portion 15c-2 of the second field plate portion 15c can be a third-stage portion.
  • Such a three-stage field plate portion 15c can further reduce electric field concentration and reduce the leakage current to the gate electrode.
  • the gate leakage current of the GaN-based HFET of the first embodiment is 5.0 ⁇ 10 ⁇ 7 (A)
  • the gate leakage current of the comparative GaN-based HFET shown in FIG. 7 is 1.8.
  • the gate leakage current is the value of the gate leakage current measured at room temperature (25 ° C.) under the condition that 0 V is applied to the source electrode, 600 V is applied to the drain electrode, and ⁇ 10 V is applied to the gate electrode. is there.
  • the comparative example includes an undoped GaN layer 11 and an undoped AlGaN layer 12 that are sequentially formed on a Si substrate (not shown) as in the first embodiment. Source electrodes 13 and 14 are formed on the substrate.
  • this comparative example has a gate electrode 201 instead of the gate electrode 15 of the first embodiment, and the collapse suppression film 18, the second insulating film 23, and the third insulating film 27 of the first embodiment. Instead of the first embodiment, the collapse suppression film 205 and the second insulating film 206 are provided.
  • the collapse suppression film 205 has the same composition as the collapse suppression film 18 of the first embodiment, but reaches the base 201a of the gate electrode 201.
  • the second insulating film 206 has the same composition as the second insulating film 23 of the first embodiment, but reaches the base 201 a on the collapse suppression film 18.
  • the first field plate portion 201b and the second field plate portion 201c of the gate electrode 201 extend flatly on the collapse suppression film 205 and the second insulating film 206.
  • the edge portions 18a and 18b of the collapse suppression film 18 are separated from the gate electrode 15 and the edge portions 23a and 23b of the second insulating film 23 on the collapse suppression film 18 are formed.
  • a three-layer structure of an insulating film extending to the gate electrode 15 and having a third insulating film 27 formed on the second insulating film 23 and a three-stage structure of field plate portions 15b and 15c of the gate electrode 15 Therefore, the gate leakage current can be remarkably reduced as compared with the comparative example of the conventional insulating film having the two-layer structure.
  • the collapse value of the comparative example is 3.0, whereas the collapse value is 1.4 in the first embodiment. Reduced.
  • the collapse value was obtained as follows.
  • Vgs (V) is set to -10 V to turn it off.
  • the drain-source voltage Vds (V) is switched from the test voltage Vds (off) to 1 V, and after 5 ( ⁇ seconds) from this switching, the gate-source voltage Vgs (V) is changed.
  • Ron / RonDC The value obtained by dividing the second resistance value Ron by the first resistance value RonDC is obtained as the collapse value.
  • FIG. 8 is a cross-sectional view showing a normally-on type GaN-based HFET (heterojunction field effect transistor) which is a second embodiment of the nitride semiconductor device of the present invention.
  • This second embodiment is a GaN-based HFET having a MIS structure.
  • an undoped GaN layer 71 and an undoped AlGaN layer 72 are sequentially formed on a Si substrate (not shown).
  • 2DEG (two-dimensional electron gas) 79 is generated at the interface between the undoped GaN layer 71 and the undoped AlGaN layer 72.
  • the undoped GaN layer 71 and the undoped AlGaN layer 72 constitute a nitride semiconductor laminate.
  • the substrate is not limited to the Si substrate, and a sapphire substrate or SiC substrate may be used.
  • a nitride semiconductor layer may be grown on the sapphire substrate or SiC substrate, or an AlGaN layer is grown on the GaN substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor. Further, a buffer layer may be appropriately formed between the substrate and each layer. Further, an AlN layer having a thickness of about 1 nm may be formed as a hetero improvement layer between the undoped GaN layer 71 and the undoped AlGaN layer 72. A GaN cap layer may be formed on the AlGaN layer 72.
  • Recesses 81 and 82 that penetrate the undoped AlGaN layer 72 and reach the undoped GaN layer 71 are formed at predetermined intervals.
  • a source electrode 73 and a drain electrode 74 are formed on the recesses 81 and 82.
  • a gate electrode 75 is formed between the source electrode 73 and the drain electrode 74.
  • the source electrode 73 and the drain electrode 74 may be formed on the undoped AlGaN layer 72 without forming the recesses 81 and 82.
  • ohmic contact can be made by annealing the source electrode 73 and the drain electrode 74 by setting the thickness of the undoped AlGaN layer 72 to 10 nm, for example.
  • the thickness of the undoped AlGaN layer 72 may be set to 30 nm, for example, and the ohmic contact portion of the undoped AlGaN layer 72 may be preliminarily doped with Si so as to be n-type, thereby enabling ohmic contact of the electrode.
  • the gate electrode 75 includes a base portion 75a, a first field plate portion 75b extending from the base portion 75a toward the drain electrode 14, and a first field plate portion 75b extending from the base portion 75a toward the source electrode 73. 2 field plate portions 75c. Note that the second field plate portion 75c may be omitted.
  • a collapse suppression film 78 for suppressing current collapse is formed as a first insulating film on the undoped AlGaN layer 72 between the source electrode 73 and the drain electrode 74.
  • the collapse suppression film 78 as the first insulating film extends under the first and second field plate portions 75b and 75c of the gate electrode 75.
  • the collapse suppression film 78 has an opening 85 defined by a first end edge portion 78a and a second end edge portion 78b.
  • the collapse suppression film 78 is made of, for example, a Si-rich silicon nitride film.
  • the composition ratio Si between Si and N : N 1.1 to 1.9: 1.
  • a second insulating film 83 is formed on the collapse suppression film 78 as the first insulating film.
  • the second insulating film 83 is formed so as to fill a region between the edge portions 78 a and 78 b of the collapse suppression film 78 and the gate electrode 75.
  • the second insulating film 83 has a base 83 a that extends on the undoped AlGaN layer 72 and below the base 75 a of the gate electrode 75 in the opening 85 of the collapse suppression film 78.
  • the second insulating film 83 extends from the base portion 83a onto the first end edge portion 78a and the second end edge portion 78b of the collapse suppression film 78.
  • the second insulating film 83 is made of SiN having a larger ratio of nitrogen N and a refractive index of 1.8 to 2.2 than the Si-rich silicon nitride film for forming the collapse suppression film 78.
  • the Further, the second insulating film 83 may be made of SiO or SiO 2 .
  • a third insulating film 87 is formed on the second insulating film 83.
  • the third insulating film 87 is separated from the base 75a than the ends of the first and second end edges 78a and 78b of the collapse suppression film 78 as the first insulating film on the base 75a side. Yes.
  • the third insulating film 87 extends under the first and second field plate portions 75b and 75c of the gate electrode 75.
  • the third insulating film 87 is made of SiN having a higher ratio of nitrogen N and a refractive index of 1.7 to 1.9 than the Si-rich silicon nitride film for forming the collapse suppression film 78.
  • the Further, the third insulating film 87 may be made of SiO or SiO 2.
  • the first field plate portion 75b of the gate electrode 75 is a first portion extending from the base portion 75a onto the second insulating film 83 on the first edge portion 78a of the collapse suppression film 78. 75b-1 and a second portion 75b-2 extending from the first portion 75b-1 onto the third insulating film 87.
  • the second field plate portion 75c of the gate electrode 75 extends from the base portion 75a onto the second insulating film 83 on the second end edge portion 78b of the collapse suppression film 78.
  • Part 75c-1 and a second part 75c-2 extending from the first part 75c-1 onto the third insulating film 27.
  • the gate electrode 75 is made of, for example, WN / W in which a WN layer and a W layer are sequentially stacked, or TiN.
  • the source electrode 13 and the drain electrode 14 are made of Ti / Al in which a Ti layer and an Al layer are sequentially stacked, or Hf / Al / Hf / Au in which Hf / Au is stacked on Hf / Al. .
  • an undoped GaN layer 71 and an undoped AlGaN layer 72 are formed in this order on a Si substrate (not shown) using a MOCVD (metal organic chemical vapor deposition) method.
  • the substrate is not limited to the Si substrate, and a sapphire substrate or SiC substrate may be used, a nitride semiconductor layer may be grown on the sapphire substrate or SiC substrate, or an AlGaN layer is grown on the GaN substrate.
  • a nitride semiconductor layer may be grown on a substrate made of a nitride semiconductor. Further, a buffer layer may be appropriately formed between the substrate and each layer.
  • a silicon nitride film 98 to be a collapse suppression film 78 is formed on the undoped AlGaN layer 72 by plasma CVD.
  • the growth temperature of the silicon nitride film 98 to be the collapse suppression film 78 is 225 ° C. as an example, but may be set in the range of 200 ° C. to 400 ° C.
  • the thickness of the silicon nitride film 98 to be the collapse suppression film 78 is 20 nm as an example, but may be set in the range of 20 nm to 50 nm.
  • the silicon nitride film 98 when the silicon nitride film 98 is formed by the plasma CVD method, by adjusting the gas flow rate ratio of N 2 / NH 3 / SiH 4 , the silicon Si film is made more than the stoichiometric silicon nitride film. A silicon nitride film 98 having a large ratio can be formed. According to the silicon nitride film 98, current collapse can be further suppressed as compared with a stoichiometric silicon nitride film.
  • the Si: N composition ratio Si: N 1.1 to 1.9: 1 of the silicon nitride film 98 to be the collapse suppression film 78
  • the stoichiometric ratio of Si: N 0.75: 1. It is more effective in suppressing current collapse than a metric silicon nitride film.
  • a photoresist (not shown) is formed on the silicon nitride film 98 to be the collapse suppression film 78, and is exposed and developed, whereby the photoresist in the region where the source electrode 73 and the drain electrode 74 are to be formed.
  • the photoresist in the region where the opening 85 is to be formed is removed, and wet etching using buffered hydrofluoric acid (BHF) is performed using the photoresist as a mask.
  • BHF buffered hydrofluoric acid
  • the photoresist is removed.
  • the region where the source electrode 73 and the drain electrode 74 are to be formed and the region where the opening 85 is to be formed are removed from the silicon nitride film 98 which becomes the collapse suppression film 78.
  • the undoped AlGaN layer 72 is exposed in this region.
  • the silicon nitride film 98 that becomes the collapse suppression film 78 is heat-treated.
  • the temperature of this heat treatment was, for example, 500 ° C. for 30 minutes. Note that the temperature of the heat treatment may be set in a range of 500 ° C. to 700 ° C. as an example.
  • an SiO film 93 to be the second insulating film 83 for reducing the gate leakage current is formed on the collapse suppression film 78 by plasma CVD (chemical vapor deposition).
  • a photoresist (not shown) is formed in a region where the second insulating film 83 is to be formed by patterning using a photoresist, and wet etching using buffered hydrofluoric acid (BHF) is performed.
  • BHF buffered hydrofluoric acid
  • the photoresist is removed.
  • the SiO film 93 other than the region where the second insulating film 83 is to be formed is removed, and the second insulating film 83 is formed.
  • the second insulating film 83 is annealed at 500 ° C. for 30 minutes. By performing this annealing, the second insulating film 83 under the opening is prevented from disappearing when the third insulating film 87 described below is opened by wet etching.
  • a third insulating film is formed on the second insulating film 83 and on the undoped AlGaN layer 72 exposed from the second insulating film 83 by plasma CVD (chemical vapor deposition).
  • a SiO 2 film 97 to be the film 87 is formed.
  • a photoresist (not shown) is formed in a region where the third insulating film 87 is to be formed by patterning using a photoresist, and wet etching using buffered hydrofluoric acid (BHF) is performed.
  • BHF buffered hydrofluoric acid
  • a resist pattern (not shown) is formed in an electrode formation region where the gate electrode 75 is to be formed by photolithography, and dry etching is performed using this resist pattern as a mask, and the electrode formation region is formed.
  • a photoresist (not shown) in which regions where the recesses 81 and 82 are to be formed is formed by photolithography, and dry etching is performed using this photoresist as a mask.
  • the third insulating film 87 passes through the second insulating film 83, the collapse suppression film (first insulating film) 78, and the AlGaN layer 72 to reach the GaN layer 71.
  • Recesses 81 and 82 are formed.
  • the recesses 81 and 82 form an ohmic electrode formation region.
  • a photoresist (not shown) in which regions (regions of the recesses 81 and 82) where the source electrode 73 and the drain electrode 74 are to be formed is formed by photolithography, and Ti, Al is formed on the photoresist.
  • a source electrode 73 and a drain electrode 74 made of Ti / Al electrodes are formed on the recesses 81 and 82 by lift-off.
  • the Ti / Al electrode is an electrode having a laminated structure in which a Ti layer and an Al layer are sequentially laminated.
  • the source electrode 73 and the drain electrode 74 are heat-treated to form ohmic electrodes.
  • the condition of this heat treatment (ohmic annealing) is set to 500 ° C. for 30 minutes as an example, but the condition of the heat treatment is not limited to this.
  • the heat treatment temperature is set within a range of 400 ° C. to 600 ° C. May be.
  • the GaN-based HFET of the second embodiment thus fabricated, current collapse can be suppressed by the collapse suppression film 78 as the first insulating film formed on the undoped AlGaN layer 72, and the gate electrode 75 and
  • the second insulating film 83 made of SiO between the collapse suppression film 78 the leakage current flowing through the gate electrode 75 via the collapse suppression film 78 can be suppressed, and the breakdown voltage can be improved.
  • the first and second field plate portions 75 b and 75 c of the gate electrode 75 are arranged on the first portions 75 b-1 and 75 c-1 on the second insulating film 83 and the third insulating film 87.
  • the second portion 75b-2, 75c-2 can be a multi-stage structure.
  • the first and second field plate portions 75b and 75c having the multi-stage structure can alleviate electric field concentration and reduce the leakage current to the gate electrode 75.
  • the gate leakage current of the GaN-based HFET of the second embodiment is 5.0 ⁇ 10 ⁇ 8 (A), and the gate leakage current 1.8 of the comparative GaN-based HFET shown in FIG. Compared with ⁇ 10 ⁇ 5 (A), the gate leakage current could be remarkably reduced.
  • the gate leakage current is the value of the gate leakage current measured at room temperature (25 ° C.) under the condition that 0 V is applied to the source electrode, 600 V is applied to the drain electrode, and ⁇ 10 V is applied to the gate electrode. is there.
  • the collapse value of the comparative example is 3.0, whereas in the second embodiment, the collapse value is set to 1.4. Reduced.
  • the gate electrodes 15 and 75 have the first field plate portions 15b and 75b extending to the drain electrodes 14 and 74 and the second electrodes extending to the source electrodes 13 and 73.
  • first field plate portions 15b and 75b of the first and second field plate portions 15b, 15c, 75b and 75c may be provided.
  • the GaN-based semiconductor stack is composed of a GaN layer or an AlGaN layer.
  • Al x In y Ga 1-xy N (x ⁇ 0, y ⁇ 0, 0 ⁇ x + y It may include a GaN-based semiconductor layer represented by ⁇ 1). That is, the GaN-based semiconductor laminate may include AlGaN, GaN, InGaN, or the like.
  • the normally-on type HFET has been described. However, the normally-off type can achieve the same effect.
  • the gate electrodes 15 and 75 are made of TiN or WN / W, but may be made of WN.
  • the gate electrodes 15 and 75 may be made of Pt / Au or Ni / Au.
  • the source electrodes 13 and 73 and the drain electrodes 14 and 74 serving as the ohmic electrodes are made of Ti / Al electrodes in which a Ti layer and an Al layer are sequentially stacked, or Hf / Al.
  • Hf / Al / Hf / Au electrode having Hf / Au laminated thereon is used, a Ti / Al / TiN electrode in which a Ti layer, an Al layer, and a TiN layer are sequentially laminated may be used.
  • the source electrode and the drain electrode may be Hf / Al electrodes.
  • Ni / Au may be stacked on Ti / Al or Hf / Al, or Pt / Au may be stacked on Ti / Al or Hf / Al. It is good also as what laminated

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 窒化物半導体装置は、ソース電極(13)とドレイン電極(14)との間で窒化物半導体層(11,12)上に形成されていると共に基部(15a)とこの基部(15a)からドレイン電極(14)に向かって延在しているフィールドプレート部(15b)を有するゲート電極(15,75)を備える。ゲート電極(15)のフィールドプレート部(15b)は、基部(15a)から第1の絶縁膜(18)の端縁部(18a,18b)上の第2の絶縁膜(23)上に延在している第1の部分(15b-1)と、第1の部分(15b-1)から第3の絶縁膜(27)上に延在している第2の部分(15b-2)とを有する。

Description

窒化物半導体装置
 この発明は、窒化物半導体層上にソース電極とドレイン電極およびゲート電極が形成された窒化物半導体装置に関する。
 従来、窒化物半導体装置としては、窒化物半導体層上にソース電極とドレイン電極が離間して形成され、このソース電極とドレイン電極との間にゲート電極が形成され、窒化物半導体層上に第1の絶縁膜と第2の絶縁膜が積層された電界効果トランジスタがある(例えば、特開2004-200248号公報(特許文献1)参照)。
 この電界効果トランジスタは、ゲート電極がフィールドプレート構造であり、第1の絶縁膜をシリコン窒化膜で形成することにより電流コラプスを抑えようとしている。この電流コラプスとは、GaN系半導体素子において、特に、問題になっているもので、低電圧動作でのトランジスタのオン抵抗と比べて、高電圧動作でのトランジスタのオン抵抗が著しく高くなってしまう現象である。
 しかしながら、上記電界効果トランジスタでは、電流コラプス現象を抑えることができても、高電圧下ではリーク電流が生じて耐圧が低下するという問題がある。
特開2004-200248号公報
 そこで、この発明の課題は、電流コラプス現象を抑えることができると共に、リーク電流を抑制して耐圧を向上できる窒化物半導体装置を提供することにある。
 上記課題を解決するため、この発明の窒化物半導体装置は、窒化物半導体層と、
 上記窒化物半導体層上または上記窒化物半導体層内に少なくとも一部が形成されると共に互いに間隔をおいて配置されたソース電極およびドレイン電極と、
 上記ソース電極と上記ドレイン電極との間で上記窒化物半導体層上に形成されていると共に基部とこの基部から上記ドレイン電極に向かって延在しているフィールドプレート部を有するゲート電極と、
 上記窒化物半導体層上、かつ、上記ドレイン電極と上記ソース電極との間の領域に、上記ゲート電極のフィールドプレート部の下で延在するように形成されていると共に上記ゲート電極に対して予め設定された間隔を隔てた端縁部を有する電流コラプスを抑制するための第1の絶縁膜と、
 上記第1の絶縁膜の端縁部と上記ゲート電極との間の領域を埋めるように形成されていると共に上記窒化物半導体層上から上記第1の絶縁膜の端縁部上に亘って延在している第2の絶縁膜と、
 上記第1の絶縁膜の端縁部の上記基部側の端よりも上記基部から離隔していると共に上記ゲート電極のフィールドプレート部の下に延在していて上記第2の絶縁膜上に形成された第3の絶縁膜とを備え、
 上記ゲート電極のフィールドプレート部は、
 上記基部から上記第1の絶縁膜の端縁部上の上記第2の絶縁膜上に延在している第1の部分と、
 上記第1の部分から上記第3の絶縁膜上に延在している第2の部分と
を有することを特徴としている。
 この発明の窒化物半導体層によれば、上記窒化物半導体層上に形成された第1の絶縁膜により電流コラプスを抑制できる。また、上記ゲート電極と上記第1の絶縁膜との間に第2の絶縁膜を形成し、上記第1の絶縁膜がゲート電極から離隔していることで、上記第1の絶縁膜を介してゲート電極に流れるリーク電流を抑制して耐圧を向上できる。
 また、上記ゲート電極のフィールドプレート部を、上記第2の絶縁膜上の第1の部分と上記第3の絶縁膜上の第2の部分による複数段構造とすることができ、上記フィールドプレート部によって電界集中を緩和でき、ゲート電極へのリーク電流を低減できる。
 また、一実施形態の窒化物半導体装置では、上記第1の絶縁膜は、
 ストイキオメトリなシリコン窒化膜よりもシリコンの比率が高いシリコン窒化膜であり、
 上記第2の絶縁膜は、
 酸化膜、または、上記第1の絶縁膜よりも窒素の比率が高いシリコン窒化膜である。
 この実施形態によれば、上記ストイキオメトリなシリコン窒化膜よりもシリコンの比率が高いシリコン窒化膜で作製した第1の絶縁膜によって、電流コラプスを効果的に抑制できる。また、上記酸化膜、または、上記第1の絶縁膜よりも窒素の比率が高いシリコン窒化膜で作製した第2の絶縁膜によって、ゲート電極へのリーク電流を効果的に抑制できる。
 また、一実施形態の窒化物半導体装置では、上記ゲート電極は、
 上記基部が上記窒化物半導体層にショットキー接合しているショットキー電極である。
 この実施形態によれば、上記ゲート電極のフィールドプレート部の第1の部分を上記基部から上記第1の絶縁膜の端縁部までの上記第2の絶縁膜上に延在している一段目の部分とこの一段目部分から上記第1の絶縁膜の端縁部上に延在する第2の絶縁膜上に延在する二段目の部分とを有する構造とし、上記フィールドプレート部の第2の部分を三段目の部分とすることができる。このような三段のフィールドプレート部によって、電界集中の緩和を図れ、ゲート電極へのリーク電流を低減できる。
 また、一実施形態の窒化物半導体装置では、上記ゲート電極の基部が上記第2の絶縁膜上に形成されたMIS構造である。
 この実施形態によれば、上記MIS(メタル・インシュレータ・セミコンダクタ)構造により、ゲート電極へのリーク電流の低減を図れる。
 この発明の窒化物半導体装置によれば、窒化物半導体層上に形成された第1の絶縁膜により電流コラプスを抑制できるとともに、ゲート電極と第1の絶縁膜との間に第2の絶縁膜を形成したことで、上記第1の絶縁膜を介してゲート電極に流れるリーク電流を抑制して耐圧を向上できる。また、上記ゲート電極のフィールドプレート部を、上記第2の絶縁膜上の第1の部分と上記第3の絶縁膜上の第2の部分による複数段構造とすることができ、上記フィールドプレート部によって電界集中を緩和でき、ゲート電極へのリーク電流を低減できる。
この発明の窒化物半導体装置の第1実施形態であるGaN系HFETを示す断面図である。 上記第1実施形態のGaN系HFETの製造工程を説明する断面図である。 図2の工程に続く工程を説明する断面図である。 図3の工程に続く工程を説明する断面図である。 図4の工程に続く工程を説明する断面図である。 図5の工程に続く工程を説明する断面図である。 比較例のGaN系HFETを示す断面図である。 この発明の窒化物半導体装置の第2実施形態であるGaN系HFETを示す断面図である。 上記第2実施形態のGaN系HFETの製造工程を説明する断面図である。 図9の工程に続く工程を説明する断面図である。 図10の工程に続く工程を説明する断面図である。 図11の工程に続く工程を説明する断面図である。 図12の工程に続く工程を説明する断面図である。
 以下、この発明を図示の実施の形態により詳細に説明する。
   (第1の実施の形態)
 図1は、この発明の窒化物半導体装置の第1実施形態であるノーマリーオンタイプのGaN系HFET(ヘテロ接合電界効果トランジスタ)を示す断面図である。
 この実施形態のGaN系HFETは、図1に示すように、Si基板(図示せず)上に、アンドープGaN層11と、アンドープAlGaN層12を順に形成している。このアンドープGaN層11とアンドープAlGaN層12との界面に2DEG(2次元電子ガス)19が発生する。このアンドープGaN層11とアンドープAlGaN層12で窒化物半導体の積層体を構成している。なお、上記基板は、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。また、上記アンドープGaN層11とアンドープAlGaN層12との間に層厚1nm程度のAlN層をヘテロ改善層として形成してもよい。また、上記AlGaN層12上にGaNキャップ層を形成してもよい。
 上記アンドープAlGaN層12を貫通して上記アンドープGaN層11内に達するリセス21,22が予め定められた間隔をあけて形成され。このリセス21,22上に、ソース電極13とドレイン電極14を形成している。上記ソース電極13とドレイン電極14との間にゲート電極15を形成している。
 なお、上記リセス21,22を形成せずに、上記アンドープAlGaN層12上にソース電極13とドレイン電極14を形成してもよい。この場合は、上記アンドープAlGaN層12の厚さを例えば10nmとしてソース電極13とドレイン電極14をアニールすることでオーミックコンタクト可能にできる。また、上記アンドープAlGaN層12の厚さを例えば30nmとしてアンドープAlGaN層12のオーミックコンタクト部分に予めSiドープをしてn型化させることで電極のオーミックコンタクトを可能としてもよい。
 上記ゲート電極15は、上記アンドープAlGaN層12にショットキー接合している基部15aとこの基部15aから上記ドレイン電極14に向かって延在している第1のフィールドプレート部15bと上記基部15aから上記ソース電極13に向かって延在している第2のフィールドプレート部15cを有している。なお、この第2のフィールドプレート部15cはなくてもよい。
 また、電流コラプスを抑制するためのコラプス抑制膜18が、上記ソース電極13と上記ドレイン電極14との間で上記アンドープAlGaN層12上に第1の絶縁膜として形成されている。この第1の絶縁膜としてのコラプス抑制膜18は、上記ゲート電極15の第1,第2のフィールドプレート部15b,15cの下に延在している。このコラプス抑制膜18には、第1の端縁部18aと第2の端縁部18bで規定される開口25が形成されている。
 上記コラプス抑制膜18は、一例として、Siリッチなシリコン窒化膜で作製されている。このSiリッチなシリコン窒化膜とは、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きいSiN膜であり、例えば、SiとNとの組成比Si:N=1.1~1.9:1である。また、好ましい一例では、SiとNとの組成比Si:N=1.3~1.5:1である。
 また、上記第1の絶縁膜としてのコラプス抑制膜18上に第2の絶縁膜23が形成されている。この第2の絶縁膜23は、上記コラプス抑制膜18の端縁部18a,18bと上記ゲート電極15との間の領域を埋めるように形成されている。また、この第2の絶縁膜23は、上記アンドープAlGaN層12上に形成された第1,第2の端縁部23a,23bで規定される開口26が形成されている。この開口26をゲート電極15の基部15aが貫通している。
 上記第2の絶縁膜23は、一例として、上記コラプス抑制膜18を作製するSiリッチなシリコン窒化膜よりも窒素Nの比率が大きく、屈折率が1.8~2.2のSiNで作製される。また、上記第2の絶縁膜23を、SiOもしくはSiOで作製してもよい。
 また、第3の絶縁膜27が上記第2の絶縁膜23上に形成されている。この第3の絶縁膜27は、上記第1の絶縁膜としてのコラプス抑制膜18の第1,第2の端縁部18a,18bの上記基部15a側の端よりも上記基部15aから離隔している。また、上記第3の絶縁膜27は、上記ゲート電極15の第1,第2のフィールドプレート部15b,15cの下に延在している。
 上記第3の絶縁膜27は、一例として、上記コラプス抑制膜18を作製するSiリッチなシリコン窒化膜よりも窒素Nの比率が大きく、屈折率が1.7~1.9のSiNで作製される。また、上記第3の絶縁膜27を、SiOもしくはSiOで作製してもよい。
 上記ゲート電極15の第1のフィールドプレート部15bは、上記基部15aから上記コラプス抑制膜18の第1の端縁部18a上の第2の絶縁膜23上に延在している第1の部分15b-1と、この第1の部分15b-1から第3の絶縁膜27上に延在している第2の部分15b-2とを有する。また、上記第1の部分15b-1は、上記第2の絶縁膜23の第1の端縁部23a上に形成された1段目の部分15pと、コラプス抑制膜18の第1の端縁部18a上の第2の絶縁膜23上に形成された2段目の部分15qとを含む。
 また、上記ゲート電極15の第2のフィールドプレート部15cは、上記基部15aから上記コラプス抑制膜18の第2の端縁部18b上の第2の絶縁膜23上に延在している第1の部分15c-1と、この第1の部分15c-1から第3の絶縁膜27上に延在している第2の部分15c-2とを有する。また、上記第1の部分15c-1は、上記第2の絶縁膜23の第2の端縁部23b上に形成された1段目の部分15rと、コラプス抑制膜18の第2の端縁部18a上の第2の絶縁膜23上に形成された2段目の部分15sとを含む。
 上記ゲート電極15は、一例として、WN層,W層が順に積層されたWN/W、または、TiNで作製される。また、上記ソース電極13およびドレイン電極14は、Ti層,Al層が順に積層されたTi/Al、または、Hf/Al上にHf/Auを積層したHf/Al/Hf/Auで作製される。
 次に、図2~図6を順に参照して、この第1実施形態のGaN系HFETの製造方法の一例を説明する。
 まず、図示しないSi基板上に、図2に示すように、MOCVD(有機金属気相成長)法を用いて、アンドープGaN層11、アンドープAlGaN層12、を順に形成する。なお、上記基板は、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。
 次に、図2に示すように、上記アンドープAlGaN層12上に、プラズマCVD法を用いて、コラプス抑制膜18となるシリコン窒化膜38を形成する。このコラプス抑制膜18となるシリコン窒化膜38の成長温度は、一例として、225℃としたが、200℃~400℃の範囲で設定してもよい。また、上記コラプス抑制膜18となるシリコン窒化膜38の膜厚は、一例として、20nmとしたが、20nm~50nmの範囲で設定してもよい。
 また、一例として、上記プラズマCVD法によりシリコン窒化膜38を形成する際に、N/NH/SiHのガス流量比を調整することにより、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きなシリコン窒化膜38を形成できる。このシリコン窒化膜38によれば、ストイキオメトリなシリコン窒化膜に比べて、電流コラプスをより抑制できる。
 また、例えば、コラプス抑制膜18となるシリコン窒化膜38のSiとNとの組成比Si:N=1.1~1.9:1にすると、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりも電流コラプスの抑制に有効である。より好ましくは、上記シリコン窒化膜38のSiとNとの組成比Si:N=1.3~1.5:1にすることが、電流コラプスを抑制する上で特に有効である。この電流コラプスとは、特に、GaN系半導体素子において顕著に表れるもので、低電圧動作でのトランジスタのオン抵抗と比べて、高電圧動作でのトランジスタのオン抵抗が著しく高くなってしまう現象である。
 次に、上記コラプス抑制膜18となるシリコン窒化膜38上にフォトレジスト(図示せず)を形成し、露光,現像することにより、ソース電極13,ドレイン電極14を形成すべき領域の上記フォトレジスト、および、開口25を形成すべき領域の上記フォトレジストを除去し、このフォトレジストをマスクとして、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、図2に示すように、上記コラプス抑制膜18となるシリコン窒化膜38のうち、ソース電極13,ドレイン電極14を形成すべき領域、および、開口25を形成すべき領域を除去して、この領域にアンドープAlGaN層12を露出させる。
 次に、上記コラプス抑制膜18となるシリコン窒化膜38を熱処理する。この熱処理の温度は、例えば、500℃で30分間とした。なお、上記熱処理の温度は、一例として、500℃~700℃の範囲で設定してもよい。
 その後、図3に示すように、上記コラプス抑制膜18上に、プラズマCVD(化学的気相成長)法により、ゲートリーク電流を低減させる第2の絶縁膜23となるSiO膜33を形成する。次に、フォトレジストを用いたパターニングにより、上記第2の絶縁膜23を形成すべき領域にフォトレジスト(図示せず)を形成し、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、上記第2の絶縁膜23を形成すべき領域以外のSiO膜33を除去して、上記第2の絶縁膜23を形成する。次に、上記第2の絶縁膜23に、500℃で30分間のアニールを行なう。このアニールを行なうことで、次に述べる第3の絶縁膜27をウェットエッチングにより開口する際にこの開口下の第2の絶縁膜23が消失することを防止する。
 その後、図4に示すように、上記第2の絶縁膜23上および第2の絶縁膜23から露出したアンドープAlGaN層12上に、プラズマCVD(化学的気相成長)法により、第3の絶縁膜27となるSiO膜37を形成する。次に、フォトレジストを用いたパターニングにより、上記第3の絶縁膜27を形成すべき領域にフォトレジスト(図示せず)を形成し、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、上記第3の絶縁膜27を形成すべき領域以外のSiO膜37を除去して、上記第3の絶縁膜27を形成する。
 その後、TiNを全面スパッタし、フォトリソグラフィでゲート電極15を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングを行なって、上記電極形成領域以外のTiN膜を除去して、図5に示すように、TiN電極によるゲート電極15を形成する。
 次に、フォトリソグラフィにより、リセス21,22を形成すべき領域が開口したフォトレジスト(図示せず)を形成し、このフォトレジストをマスクとして、ドライエッチングを行なう。これにより、図6に示すように、上記第3の絶縁膜27から第2の絶縁膜23,コラプス抑制膜(第1の絶縁膜)18およびAlGaN層12を貫通してGaN層11内まで達するリセス21,22を形成する。このリセス21,22がオーミック電極形成領域をなす。
 次に、フォトリソグラフィにより、ソース電極13,ドレイン電極14を形成すべき領域(上記リセス21,22の領域)が開口したフォトレジスト(図示せず)を形成し、このフォトレジスト上にTi,Alを順に蒸着し、リフトオフにより、図1に示すように、上記リセス21,22上にTi/Al電極によるソース電極13,ドレイン電極14を形成する。上記Ti/Al電極は、Ti層,Al層が順に積層された積層構造の電極である。次に、上記ソース電極13,ドレイン電極14を、熱処理してオーミック電極にする。この熱処理(オーミックアニール)の条件は、一例として500℃で30分としたが、上記熱処理の条件は、これに限らず、例えば、上記熱処理温度を、400℃~600℃の範囲内で設定してもよい。
 こうして作製した上記第1実施形態のGaN系HFETによれば、上記アンドープAlGaN層12上に形成された第1の絶縁膜としてのコラプス抑制膜18により電流コラプスを抑制できると共に、上記ゲート電極15とコラプス抑制膜18との間にSiOで作製した第2の絶縁膜23を形成したことで、上記コラプス抑制膜18を介してゲート電極15に流れるリーク電流を抑制して耐圧を向上できる。
 また、上記ゲート電極15の第1,第2のフィールドプレート部15b,15cを、上記第2の絶縁膜23上の第1の部分15b-1,15c-1と上記第3の絶縁膜27上の第2の部分15b-2,15c-2とによる複数段構造とすることができる。この複数段構造の第1,第2のフィールドプレート部15b,15cによって電界集中を緩和でき、ゲート電極15へのリーク電流を低減できる。
 また、この実施形態によれば、上記ゲート電極15の第1のフィールドプレート部15bの第1の部分15b-1を、上記基部15aから上記コラプス抑制膜18の端縁部18aまでの上記第2の絶縁膜23上に延在している一段目の部分15pと、この一段目部分15pから上記コラプス抑制膜18の端縁部18a上に延在する第2の絶縁膜23上に延在する二段目の部分15qとを有する構造としている。これにより、上記第1のフィールドプレート部15bの第2の部分15b-2を三段目の部分とすることができる。このような三段のフィールドプレート部15bによって、電界集中の一層の緩和を図れ、ゲート電極へのリーク電流を低減できる。
 また、この実施形態によれば、上記ゲート電極15の第2のフィールドプレート部15cの第1の部分15c-1を、上記基部15aから上記コラプス抑制膜18の端縁部18bまでの上記第2の絶縁膜23上に延在している一段目の部分15rと、この一段目の部分15rから上記コラプス抑制膜18の端縁部18b上に延在する第2の絶縁膜23上に延在する二段目の部分15sとを有する構造としている。これにより、上記第2のフィールドプレート部15cの第2の部分15c-2を三段目の部分とすることができる。このような三段のフィールドプレート部15cによって、電界集中の一層の緩和を図れ、ゲート電極へのリーク電流を低減できる。
 具体的一例では、上記第1実施形態のGaN系HFETのゲートリーク電流は、5.0×10-7(A)であり、図7に示す比較例のGaN系HFETのゲートリーク電流1.8×10-5(A) と比較して、ゲートリーク電流を格段に低減できた。なお、上記ゲートリーク電流は、常温(25℃)で、ソース電極に0Vを印加し、ドレイン電極に600Vを印加し、ゲート電極に-10Vを印加した条件において、測定したゲートリーク電流の値である。
 上記比較例は、図7に示すように、上記第1実施形態と同様、Si基板(図示せず)上に順に形成されたアンドープGaN層11とアンドープAlGaN層12を有し、リセス21,22にソース電極13,14が形成されている。一方、この比較例は、上記第1実施形態のゲート電極15に替えてゲート電極201を有し、上記第1実施形態のコラプス抑制膜18,第2の絶縁膜23,第3の絶縁膜27に替えて、コラプス抑制膜205と第2の絶縁膜206を有する点が、上記第1実施形態と異なる。
 この比較例では、上記コラプス抑制膜205は、上記第1実施形態のコラプス抑制膜18と同じ組成であるが、ゲート電極201の基部201aに達している。また、上記第2の絶縁膜206は、上記第1実施形態の第2の絶縁膜23と同じ組成であるが、上記コラプス抑制膜18上において上記基部201aに達している。そして、上記ゲート電極201の第1のフィールドプレート部201bと第2のフィールドプレート部201cは、上記コラプス抑制膜205,第2の絶縁膜206上で平坦に延在している。
 上述の如く、この第1実施形態は、コラプス抑制膜18の端縁部18a,18bをゲート電極15から離隔させると共にコラプス抑制膜18上の第2の絶縁膜23の端縁部23a,23bをゲート電極15まで延在させ、かつ、第3の絶縁膜27を上記第2の絶縁膜23上に形成した絶縁膜の三層構造とゲート電極15のフィールドプレート部15b,15cの三段構造とでもって、従来の2層構造の絶縁膜の比較例に比べて、ゲートリーク電流を格段に低減できた。
 また、上記第1実施形態と上記比較例の電流コラプス特性を比較すると、上記比較例のコラプス値が3.0であったのに対して、上記第1実施形態ではコラプス値を1.4に低減できた。
 なお、上記コラプス値は、次のようにして求めた。
  (1) まず、ゲート-ソース間電圧Vgs(V)を、0Vとし、ドレイン-ソース間電圧Vds(V)を、1Vとした状態で、ドレイン-ソース間に流れるドレイン-ソース間電流Ids(A)を測定し、上記ドレイン-ソース間電圧Vdsを、ドレイン-ソース間電流Idsで除算した値(Vds/Ids)を、第1の抵抗値RonDC(Ω)として求める。
  (2) 次に、ゲート-ソース間電圧Vgs(V)を、-10Vとし、オフ状態にする。
  (3) 次に、上記ドレイン-ソース間電圧Vdsを、試験電圧Vds(off)=400Vに設定する。
  (4) 次に、ドレイン-ソース間電圧Vds(V)を、上記試験電圧Vds(off)から1Vに切換えて、この切換えから5(μ秒)後に、ゲート-ソース間電圧Vgs(V)を、0Vとし、ドレイン-ソース間電圧Vds(V)を、1Vとした状態で、ドレイン-ソース間に流れるドレイン-ソース間電流Ids(A)を測定する。この測定したIds(A)から、(Vds/Ids)を算出して、第2の抵抗値Ron(=Vds/Ids)を求める。
  (5) 上記第2の抵抗値Ronを上記第1の抵抗値RonDCで除算した値(Ron/RonDC)をコラプス値として求める。
   (第2の実施の形態)
 図8は、この発明の窒化物半導体装置の第2実施形態であるノーマリーオンタイプのGaN系HFET(ヘテロ接合電界効果トランジスタ)を示す断面図である。この第2実施形態は、MIS構造のGaN系HFETである。
 この実施形態のGaN系HFETは、図8に示すように、Si基板(図示せず)上に、アンドープGaN層71と、アンドープAlGaN層72を順に形成している。このアンドープGaN層71とアンドープAlGaN層72との界面に2DEG(2次元電子ガス)79が発生する。このアンドープGaN層71とアンドープAlGaN層72で窒化物半導体の積層体を構成している。なお、上記基板は、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。また、上記アンドープGaN層71とアンドープAlGaN層72との間に層厚1nm程度のAlN層をヘテロ改善層として形成してもよい。また、上記AlGaN層72上にGaNキャップ層を形成してもよい。
 上記アンドープAlGaN層72を貫通して上記アンドープGaN層71内に達するリセス81,82が予め定められた間隔をあけて形成され。このリセス81,82上に、ソース電極73とドレイン電極74を形成している。上記ソース電極73とドレイン電極74との間にゲート電極75を形成している。
 なお、上記リセス81,82を形成せずに、上記アンドープAlGaN層72上にソース電極73とドレイン電極74を形成してもよい。この場合は、上記アンドープAlGaN層72の厚さを例えば10nmとしてソース電極73とドレイン電極74をアニールすることでオーミックコンタクト可能にできる。また、上記アンドープAlGaN層72の厚さを例えば30nmとしてアンドープAlGaN層72のオーミックコンタクト部分に予めSiドープをしてn型化させることで電極のオーミックコンタクトを可能としてもよい。
 上記ゲート電極75は、基部75aとこの基部75aから上記ドレイン電極14に向かって延在している第1のフィールドプレート部75bと上記基部75aから上記ソース電極73に向かって延在している第2のフィールドプレート部75cを有している。なお、この第2のフィールドプレート部75cは、なくてもよい。
 また、電流コラプスを抑制するためのコラプス抑制膜78が、上記ソース電極73と上記ドレイン電極74との間で上記アンドープAlGaN層72上に第1の絶縁膜として形成されている。この第1の絶縁膜としてのコラプス抑制膜78は、上記ゲート電極75の第1,第2のフィールドプレート部75b,75cの下に延在している。このコラプス抑制膜78には、第1の端縁部78aと第2の端縁部78bで規定される開口85が形成されている。
 上記コラプス抑制膜78は、一例として、Siリッチなシリコン窒化膜で作製されている。このSiリッチなシリコン窒化膜とは、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きいSiN膜であり、例えば、SiとNとの組成比Si:N=1.1~1.9:1である。また、好ましい一例では、SiとNとの組成比Si:N=1.3~1.5:1である。
 また、上記第1の絶縁膜としてのコラプス抑制膜78上に第2の絶縁膜83が形成されている。この第2の絶縁膜83は、上記コラプス抑制膜78の端縁部78a,78bと上記ゲート電極75との間の領域を埋めるように形成されている。また、この第2の絶縁膜83は、上記コラプス抑制膜78の開口85内で上記アンドープAlGaN層72上かつ上記ゲート電極75の基部75a下で延在する基部83aを有する。この第2の絶縁膜83は、上記基部83aから上記コラプス抑制膜78の第1の端縁部78a上および第2の端縁部78b上に延在している。
 上記第2の絶縁膜83は、一例として、上記コラプス抑制膜78を作製するSiリッチなシリコン窒化膜よりも窒素Nの比率が大きく、屈折率が1.8~2.2のSiNで作製される。また、上記第2の絶縁膜83を、SiOもしくはSiOで作製してもよい。
 また、第3の絶縁膜87が上記第2の絶縁膜83上に形成されている。この第3の絶縁膜87は、上記第1の絶縁膜としてのコラプス抑制膜78の第1,第2の端縁部78a,78bの上記基部75a側の端よりも上記基部75aから離隔している。また、上記第3の絶縁膜87は、上記ゲート電極75の第1,第2のフィールドプレート部75b,75cの下に延在している。
 上記第3の絶縁膜87は、一例として、上記コラプス抑制膜78を作製するSiリッチなシリコン窒化膜よりも窒素Nの比率が大きく、屈折率が1.7~1.9のSiNで作製される。また、上記第3の絶縁膜87を、SiOもしくはSiOで作製してもよい。
 上記ゲート電極75の第1のフィールドプレート部75bは、上記基部75aから上記コラプス抑制膜78の第1の端縁部78a上の第2の絶縁膜83上に延在している第1の部分75b-1と、この第1の部分75b-1から第3の絶縁膜87上に延在している第2の部分75b-2とを有する。
 また、上記ゲート電極75の第2のフィールドプレート部75cは、上記基部75aから上記コラプス抑制膜78の第2の端縁部78b上の第2の絶縁膜83上に延在している第1の部分75c-1と、この第1の部分75c-1から第3の絶縁膜27上に延在している第2の部分75c-2とを有する。
 上記ゲート電極75は、一例として、WN層,W層が順に積層されたWN/W、または、TiNで作製される。また、上記ソース電極13およびドレイン電極14は、Ti層,Al層が順に積層されたTi/Al、または、Hf/Al上にHf/Auを積層したHf/Al/Hf/Auで作製される。
 次に、図9~図13を順に参照して、この第2実施形態のMIS構造のGaN系HFETの製造方法の一例を説明する。
 まず、図示しないSi基板上に、図9に示すように、MOCVD(有機金属気相成長)法を用いて、アンドープGaN層71、アンドープAlGaN層72、を順に形成する。なお、上記基板は、Si基板に限らず、サファイヤ基板やSiC基板を用いてもよく、サファイヤ基板やSiC基板上に窒化物半導体層を成長させてもよいし、GaN基板にAlGaN層を成長させる等のように、窒化物半導体からなる基板上に窒化物半導体層を成長させてもよい。また、適宜、バッファ層を基板と各層間に形成してもよい。
 次に、図9に示すように、上記アンドープAlGaN層72上に、プラズマCVD法を用いて、コラプス抑制膜78となるシリコン窒化膜98を形成する。このコラプス抑制膜78となるシリコン窒化膜98の成長温度は、一例として、225℃としたが、200℃~400℃の範囲で設定してもよい。また、上記コラプス抑制膜78となるシリコン窒化膜98の膜厚は、一例として、20nmとしたが、20nm~50nmの範囲で設定してもよい。
 また、一例として、上記プラズマCVD法によりシリコン窒化膜98を形成する際に、N/NH/SiHのガス流量比を調整することにより、ストイキオメトリなシリコン窒化膜よりもシリコンSiの比率の大きなシリコン窒化膜98を形成できる。このシリコン窒化膜98によれば、ストイキオメトリなシリコン窒化膜に比べて、電流コラプスをより抑制できる。
 また、例えば、コラプス抑制膜78となるシリコン窒化膜98のSiとNとの組成比Si:N=1.1~1.9:1にすると、Si:N=0.75:1のストイキオメトリなシリコン窒化膜よりも電流コラプスの抑制に有効である。より好ましくは、上記シリコン窒化膜98のSiとNとの組成比Si:N=1.3~1.5:1にすることが、電流コラプスを抑制する上で特に有効である。
 次に、上記コラプス抑制膜78となるシリコン窒化膜98上にフォトレジスト(図示せず)を形成し、露光,現像することにより、ソース電極73,ドレイン電極74を形成すべき領域の上記フォトレジスト、および、開口85を形成すべき領域の上記フォトレジストを除去し、このフォトレジストをマスクとして、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、図9に示すように、上記コラプス抑制膜78となるシリコン窒化膜98のうち、ソース電極73,ドレイン電極74を形成すべき領域、および、開口85を形成すべき領域を除去して、この領域にアンドープAlGaN層72を露出させる。
 次に、上記コラプス抑制膜78となるシリコン窒化膜98を熱処理する。この熱処理の温度は、例えば、500℃で30分間とした。なお、上記熱処理の温度は、一例として、500℃~700℃の範囲で設定してもよい。
 その後、図10に示すように、上記コラプス抑制膜78上に、プラズマCVD(化学的気相成長)法により、ゲートリーク電流を低減させる第2の絶縁膜83となるSiO膜93を形成する。次に、フォトレジストを用いたパターニングにより、上記第2の絶縁膜83を形成すべき領域にフォトレジスト(図示せず)を形成し、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、上記第2の絶縁膜83を形成すべき領域以外のSiO膜93を除去して、上記第2の絶縁膜83を形成する。次に、上記第2の絶縁膜83に、500℃で30分間のアニールを行なう。このアニールを行なうことで、次に述べる第3の絶縁膜87をウェットエッチングにより開口する際にこの開口下の第2の絶縁膜83が消失することを防止する。
 その後、図11に示すように、上記第2の絶縁膜83上および第2の絶縁膜83から露出したアンドープAlGaN層72上に、プラズマCVD(化学的気相成長)法により、第3の絶縁膜87となるSiO膜97を形成する。次に、フォトレジストを用いたパターニングにより、上記第3の絶縁膜87を形成すべき領域にフォトレジスト(図示せず)を形成し、バッファードふっ酸(BHF)を用いたウェットエッチングを行なう。次に、上記フォトレジストを剥離する。これにより、上記第3の絶縁膜87を形成すべき領域以外のSiO膜97を除去して、上記第3の絶縁膜87を形成する。
 その後、TiNを全面スパッタし、フォトリソグラフィでゲート電極75を形成すべき電極形成領域にレジストパターン(図示せず)を形成し、このレジストパターンをマスクとして、ドライエッチングを行なって、上記電極形成領域以外のTiN膜を除去して、図12に示すように、TiN電極によるゲート電極75を形成する。
 次に、フォトリソグラフィにより、リセス81,82を形成すべき領域が開口したフォトレジスト(図示せず)を形成し、このフォトレジストをマスクとして、ドライエッチングを行なう。これにより、図13に示すように、上記第3の絶縁膜87から第2の絶縁膜83,コラプス抑制膜(第1の絶縁膜)78およびAlGaN層72を貫通してGaN層71内まで達するリセス81,82を形成する。このリセス81,82がオーミック電極形成領域をなす。
 次に、フォトリソグラフィにより、ソース電極73,ドレイン電極74を形成すべき領域(上記リセス81,82の領域)が開口したフォトレジスト(図示せず)を形成し、このフォトレジスト上にTi,Alを順に蒸着し、リフトオフにより、図8に示すように、上記リセス81,82上にTi/Al電極によるソース電極73,ドレイン電極74を形成する。上記Ti/Al電極は、Ti層,Al層が順に積層された積層構造の電極である。次に、上記ソース電極73,ドレイン電極74を、熱処理してオーミック電極にする。この熱処理(オーミックアニール)の条件は、一例として500℃で30分としたが、上記熱処理の条件は、これに限らず、例えば、上記熱処理温度を、400℃~600℃の範囲内で設定してもよい。
 こうして作製した上記第2実施形態のGaN系HFETによれば、上記アンドープAlGaN層72上に形成された第1の絶縁膜としてのコラプス抑制膜78により電流コラプスを抑制できると共に、上記ゲート電極75とコラプス抑制膜78との間にSiOで作製した第2の絶縁膜83を形成したことで、上記コラプス抑制膜78を介してゲート電極75に流れるリーク電流を抑制して耐圧を向上できる。
 また、上記ゲート電極75の第1,第2のフィールドプレート部75b,75cを、上記第2の絶縁膜83上の第1の部分75b-1,75c-1と上記第3の絶縁膜87上の第2の部分75b-2,75c-2とによる複数段構造とすることができる。この複数段構造の第1,第2のフィールドプレート部75b,75cによって電界集中を緩和でき、ゲート電極75へのリーク電流を低減できる。
 具体的一例では、上記第2実施形態のGaN系HFETのゲートリーク電流は、5.0×10-8(A)であり、図7に示す比較例のGaN系HFETのゲートリーク電流1.8×10-5(A)と比較して、ゲートリーク電流を格段に低減できた。なお、上記ゲートリーク電流は、常温(25℃)で、ソース電極に0Vを印加し、ドレイン電極に600Vを印加し、ゲート電極に-10Vを印加した条件において、測定したゲートリーク電流の値である。
 また、上記第2実施形態と上記比較例の電流コラプス特性を比較すると、上記比較例のコラプス値が3.0であったのに対して、上記第2実施形態ではコラプス値を1.4に低減できた。
 尚、上記第1,第2実施形態では、ゲート電極15,75がドレイン電極14,74側に延在する第1のフィールドプレート部15b,75bとソース電極13,73側に延在する第2のフィールドプレート部15c,75cの両方を備えたが、第1,第2のフィールドプレート部15b,15c,75b,75cのうちの第1のフィールドプレート部15b,75bだけを備えてもよい。
 また、上記第1,第2実施形態では、GaN系半導体積層体を、GaN層やAlGaN層で構成したが、AlxInyGa1-x-yN(x≧0、y≧0、0≦x+y<1)で表されるGaN系半導体層を含むものでもよい。すなわち、上記GaN系半導体積層体は、AlGaN、GaN、InGaN等を含むものとしてもよい。また、上記第1実施形態では、ノーマリオンタイプのHFETについて説明したが、ノーマリオフタイプでも同様の効果が得られる。
 また、上記実施形態では、ゲート電極15,75をTiNまたはWN/Wで作製したが、WNで作製してもよい。また、ゲート電極15,75をPt/AuやNi/Auで作製してもよい。
 また、上記第1,第2実施形態では、上記オーミック電極としてのソース電極13,73とドレイン電極14,74を、Ti層,Al層が順に積層されたTi/Al電極、または、Hf/Al上にHf/Auを積層したHf/Al/Hf/Au電極としたが、Ti層,Al層,TiN層が順に積層されたTi/Al/TiN電極としてもよい。また、上記Al層の代わりにAlSi層やAlCu層を用いてもよい。また、ソース電極,ドレイン電極としては、Hf/Al電極としてもよい。また、ソース電極,ドレイン電極としては、Ti/AlまたはHf/Al上にNi/Auを積層したものとしてもよく、Ti/AlまたはHf/Al上にPt/Auを積層したものとしてもよく、Ti/AlまたはHf/Al上にAuを積層したものとしてもよい。
 この発明の具体的な実施の形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
11,71 アンドープGaN層
12,72 アンドープAlGaN層
13,73 ソース電極
14,74 ドレイン電極
15,75 ゲート電極
15a,75a 基部
15b,75b 第1のフィールドプレート部
15b-1,75b-1 第1の部分
15b-2,75b-2 第2の部分
15p 1段目の部分
15q 2段目の部分
15c,75c 第2のフィールドプレート部
15c-1,75c-1 第1の部分
15c-2,75c-2 第2の部分
15p,15r 1段目の部分
15q,15s 2段目の部分
18,78 コラプス抑制膜
18a,78a 第1の端縁部
18b,78b 第2の端縁部
19,79 2DEG(2次元電子ガス)
21,22,81,82 リセス
23,83 第2の絶縁膜
23a 第1の端縁部
23b 第2の端縁部
25,26,85 開口
27,87 第3の絶縁膜
33,93 SiO膜
37,97 SiO
38,98 シリコン窒化膜
83a 基部

Claims (4)

  1.  窒化物半導体層(11,12,71,72)と、
     上記窒化物半導体層(11,12,71,72)上または上記窒化物半導体層(11,12,71,72)内に少なくとも一部が形成されると共に互いに間隔をおいて配置されたソース電極(13,73)およびドレイン電極(14,74)と、
     上記ソース電極(13,73)と上記ドレイン電極(14,74)との間で上記窒化物半導体層(11,12,71,72)上に形成されていると共に基部(15a,75a)とこの基部(15a,75a)から上記ドレイン電極(14,74)に向かって延在しているフィールドプレート部(15b,75b)を有するゲート電極(15,75)と、
     上記窒化物半導体層(11,12,71,72)上、かつ、上記ドレイン電極(14,74)と上記ソース電極(13,73)との間の領域に、上記ゲート電極(15,75)のフィールドプレート部(15b,75b)の下で延在するように形成されていると共に上記ゲート電極(15,75)に対して予め設定された間隔を隔てた端縁部(18a,78a)を有する電流コラプスを抑制するための第1の絶縁膜(18,78)と、
     上記第1の絶縁膜(18,78)の端縁部(18a,78a)と上記ゲート電極(15,75)との間の領域を埋めるように形成されていると共に上記窒化物半導体層(11,12,71,72)上から上記第1の絶縁膜(18,78)の端縁部(18a,78a)上に亘って延在している第2の絶縁膜(23,83)と、
     上記第1の絶縁膜(18,78)の端縁部(18a,78a)の上記基部(15a,75a)側の端よりも上記基部(15a,75a)から離隔していると共に上記ゲート電極(15,75)のフィールドプレート部(15b,75b)の下に延在していて上記第2の絶縁膜(23,83)上に形成された第3の絶縁膜(27,87)とを備え、
     上記ゲート電極(15,75)のフィールドプレート部(15b,75b)は、
     上記基部(15a,75a)から上記第1の絶縁膜(18,78)の端縁部(18a,78a)上の上記第2の絶縁膜(23,83)上に延在している第1の部分(15b-1,75b-1)と、
     上記第1の部分(15b-1,75b-1)から上記第3の絶縁膜(27,87)上に延在している第2の部分(15b-2,75b-2)と
    を有することを特徴とする窒化物半導体装置。
  2.  請求項1に記載の窒化物半導体装置において、
     上記第1の絶縁膜(18,78)は、
     ストイキオメトリなシリコン窒化膜よりもシリコンの比率が高いシリコン窒化膜であり、
     上記第2の絶縁膜(23,83)は、
     酸化膜、または、上記第1の絶縁膜(18,78)よりも窒素の比率が高いシリコン窒化膜であることを特徴とする窒化物半導体装置。
  3.  請求項1または2に記載の窒化物半導体装置において、
     上記ゲート電極(15)は、
     上記基部(15a)が上記窒化物半導体層(12)にショットキー接合しているショットキー電極であることを特徴とする窒化物半導体装置。
  4.  請求項1または2に記載の窒化物半導体装置において、
     上記ゲート電極(75)の基部(75a)が上記第2の絶縁膜(83)上に形成されたMIS構造であることを特徴とする窒化物半導体装置。
PCT/JP2013/050824 2012-01-20 2013-01-17 窒化物半導体装置 WO2013108844A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012010310A JP2013149851A (ja) 2012-01-20 2012-01-20 窒化物半導体装置
JP2012-010310 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108844A1 true WO2013108844A1 (ja) 2013-07-25

Family

ID=48799267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050824 WO2013108844A1 (ja) 2012-01-20 2013-01-17 窒化物半導体装置

Country Status (2)

Country Link
JP (1) JP2013149851A (ja)
WO (1) WO2013108844A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179515A1 (en) * 2015-12-10 2017-06-14 Nexperia B.V. Semiconductor device and method of making a semiconductor device
WO2021101866A1 (en) 2019-11-19 2021-05-27 Cree, Inc. Semiconductors with improved thermal budget and process of making semiconductors with improved thermal budget
EP3961719A1 (en) * 2020-08-26 2022-03-02 MACOM Technology Solutions Holdings, Inc. Atomic layer deposition of barrier metal layer for electrode of gallium nitride material device
US20230094094A1 (en) * 2021-09-30 2023-03-30 Texas Instruments Incorporated Gallium nitride device having a combination of surface passivation layers
CN117769762A (zh) * 2021-07-27 2024-03-26 新唐科技日本株式会社 半导体装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940481B2 (ja) * 2013-03-22 2016-06-29 株式会社東芝 半導体装置
JP6270572B2 (ja) 2014-03-19 2018-01-31 株式会社東芝 半導体装置及びその製造方法
JP6230456B2 (ja) 2014-03-19 2017-11-15 株式会社東芝 半導体装置
JP2015213100A (ja) * 2014-05-01 2015-11-26 三菱電機株式会社 半導体装置およびその製造方法
CN115458580A (zh) 2021-06-08 2022-12-09 株式会社东芝 半导体装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277640A (ja) * 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
JP2008306025A (ja) * 2007-06-08 2008-12-18 Eudyna Devices Inc 半導体装置の製造方法
JP2009054807A (ja) * 2007-08-27 2009-03-12 Sanken Electric Co Ltd ヘテロ接合型電界効果半導体装置
JP2010251540A (ja) * 2009-04-16 2010-11-04 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
WO2011031431A2 (en) * 2009-08-28 2011-03-17 Transphorm Inc. Semiconductor devices with field plates
JP2011138973A (ja) * 2009-12-29 2011-07-14 New Japan Radio Co Ltd 窒化物半導体装置
JP2011210752A (ja) * 2010-03-26 2011-10-20 Nec Corp 半導体装置、電子装置、半導体装置の製造方法、および半導体装置の動作方法
JP2011228428A (ja) * 2010-04-19 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる半導体装置およびその製造方法、電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277640A (ja) * 2007-05-02 2008-11-13 Toshiba Corp 窒化物半導体素子
JP2008306025A (ja) * 2007-06-08 2008-12-18 Eudyna Devices Inc 半導体装置の製造方法
JP2009054807A (ja) * 2007-08-27 2009-03-12 Sanken Electric Co Ltd ヘテロ接合型電界効果半導体装置
JP2010251540A (ja) * 2009-04-16 2010-11-04 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
WO2011031431A2 (en) * 2009-08-28 2011-03-17 Transphorm Inc. Semiconductor devices with field plates
JP2011138973A (ja) * 2009-12-29 2011-07-14 New Japan Radio Co Ltd 窒化物半導体装置
JP2011210752A (ja) * 2010-03-26 2011-10-20 Nec Corp 半導体装置、電子装置、半導体装置の製造方法、および半導体装置の動作方法
JP2011228428A (ja) * 2010-04-19 2011-11-10 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる半導体装置およびその製造方法、電力変換装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179515A1 (en) * 2015-12-10 2017-06-14 Nexperia B.V. Semiconductor device and method of making a semiconductor device
CN107039517A (zh) * 2015-12-10 2017-08-11 安世有限公司 半导体装置和制作半导体装置的方法
US10157809B2 (en) 2015-12-10 2018-12-18 Nexperia BV Semiconductor device and method of making a semiconductor device with passivation layers providing tuned resistance
WO2021101866A1 (en) 2019-11-19 2021-05-27 Cree, Inc. Semiconductors with improved thermal budget and process of making semiconductors with improved thermal budget
EP4038659A4 (en) * 2019-11-19 2023-11-15 Wolfspeed, Inc. SEMICONDUCTORS WITH AN IMPROVED THERMAL BUDGET AND METHOD FOR MANUFACTURING SEMICONDUCTORS WITH AN IMPROVED THERMAL BUDGET
EP3961719A1 (en) * 2020-08-26 2022-03-02 MACOM Technology Solutions Holdings, Inc. Atomic layer deposition of barrier metal layer for electrode of gallium nitride material device
TWI823132B (zh) * 2020-08-26 2023-11-21 美商馬康科技解決方案控股有限公司 用於氮化鎵材料裝置之電極的阻障金屬層原子層沉積
US12112983B2 (en) 2020-08-26 2024-10-08 Macom Technology Solutions Holdings, Inc. Atomic layer deposition of barrier metal layer for electrode of gallium nitride material device
CN117769762A (zh) * 2021-07-27 2024-03-26 新唐科技日本株式会社 半导体装置
US20230094094A1 (en) * 2021-09-30 2023-03-30 Texas Instruments Incorporated Gallium nitride device having a combination of surface passivation layers

Also Published As

Publication number Publication date
JP2013149851A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2013108844A1 (ja) 窒化物半導体装置
CN103000685B (zh) 半导体器件及其制造方法、电源装置以及高频放大单元
JP6090764B2 (ja) 窒化物半導体装置およびその製造方法
JP5166576B2 (ja) GaN系半導体素子の製造方法
TWI512993B (zh) 電晶體與其形成方法與半導體元件
JP5306438B2 (ja) 電界効果トランジスタおよびその製造方法
JP6339762B2 (ja) 半導体装置及びその製造方法、電源装置、高周波増幅器
JP7175727B2 (ja) 窒化物半導体装置
JP6272557B2 (ja) 窒化物半導体電界効果トランジスタ
WO2012111363A1 (ja) 横型半導体装置
JP2014045174A (ja) 窒化物半導体装置
JP2014138111A (ja) 半導体装置及びその製造方法、電源装置、高周波増幅器
US20150179823A1 (en) Electrode structure for nitride semiconductor device, production method therefor, and nitride semiconductor field-effect transistor
JP2016054215A (ja) 化合物半導体装置及びその製造方法
US20150349108A1 (en) Electrode structure for nitride semiconductor device, and nitride semiconductor field effect transistor
CN107623030B (zh) 高电子迁移率晶体管的制造方法及高电子迁移率晶体管
JP5993632B2 (ja) GaN系半導体装置
JP2013115323A (ja) 電界効果トランジスタ
JP7308593B2 (ja) 窒化物半導体装置
WO2013084726A1 (ja) 電界効果トランジスタ
WO2014129245A1 (ja) 窒化物半導体装置
WO2014181556A1 (ja) 電界効果トランジスタ
WO2013094356A1 (ja) 半導体装置およびその製造方法
TW201624701A (zh) Hemt可相容之橫向整流器結構
JP2014007389A (ja) ヘテロ接合型fet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738897

Country of ref document: EP

Kind code of ref document: A1