WO2013108495A1 - 空調装置および空調制御方法 - Google Patents

空調装置および空調制御方法 Download PDF

Info

Publication number
WO2013108495A1
WO2013108495A1 PCT/JP2012/081190 JP2012081190W WO2013108495A1 WO 2013108495 A1 WO2013108495 A1 WO 2013108495A1 JP 2012081190 W JP2012081190 W JP 2012081190W WO 2013108495 A1 WO2013108495 A1 WO 2013108495A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning control
space
supply
outside air
Prior art date
Application number
PCT/JP2012/081190
Other languages
English (en)
French (fr)
Inventor
真 本多
博之 森本
一英 佐藤
秀吉 大谷
朋行 木下
村山 大
高木 康夫
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to EP12856585.0A priority Critical patent/EP2806225A4/en
Priority to CN201280004420.6A priority patent/CN103502744B/zh
Priority to US13/821,777 priority patent/US9420725B2/en
Priority to SG2013049978A priority patent/SG192566A1/en
Publication of WO2013108495A1 publication Critical patent/WO2013108495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • Embodiments of the present invention relate to an air conditioner and an air conditioning control method.
  • the air sucked from the lower space in the room is blown into the upper space, and the air is sucked into the upper part of the server rack.
  • An object of the present invention is to provide an air-conditioning apparatus and an air-conditioning control method that have high energy-saving effect and high efficiency.
  • An air conditioner includes an indoor unit that introduces at least one of outside air or return air of an air conditioning control target and discharges it as air supply to the air conditioning control target, and an air conditioning control unit. .
  • the indoor unit includes a first space having an outside air introduction device and a cooler for introducing outside air, and a second space having a return air introduction device for introducing return air from the air conditioning control target.
  • outside air is introduce
  • At least one is used as treated outside air, and the return air is introduced into the second space via the return air introduction device, and the treated outside air and the return air are mixed in this second space, so that the air conditioning control target is obtained. Discharge as supply air.
  • FIG. 1 is an overall view illustrating a configuration of an air conditioner according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of an air conditioning control unit of the air conditioner according to the embodiment.
  • FIG. 3 is a graph which shows the air state range of the external air classified by the air-conditioning control part of the air conditioner of the embodiment on an air diagram.
  • FIG. 4 is a graph showing, on an air diagram, the state of air conditioning control when the air conditioning control unit of the embodiment corresponds to the region VI.
  • FIG. 5 is a diagram illustrating the air conditioning control in the case of the region VI in the air conditioning control unit of the embodiment.
  • FIG. 6 is a graph showing an air conditioning control on the air diagram when the air conditioning control unit of the embodiment corresponds to the region VII.
  • FIG. 7 is a diagram illustrating the air conditioning control in the case where the air conditioning control unit according to the embodiment corresponds to the region VII.
  • FIG. 8 is a diagram showing server temperature and humidity conditions of ASHRAE 2011.
  • the server room management system 1 includes a server room 10 such as a data center and an air conditioner 20 that air-conditions the server room 10.
  • the server room 10 may be included in the air conditioner 20.
  • the server room management system 1 in FIG. 1 corresponds to the air conditioner 20.
  • the server room 10 is, for example, a container that can be easily constructed or a predetermined room in a building, and includes a cold area 11 that includes cold air as a third space, and a hot area 14 that includes warm air as a fourth space. Are separated into two spaces. Between the cold area 11 and the hot area 14, one or a plurality of server racks 12 in which a plurality of servers (not shown) are stored are installed.
  • a plurality of servers are stored in one or a plurality of server racks 12 so that airflow is generated in the same direction by operation of a built-in fan (not shown) as a blower.
  • a rack fan (not shown) is installed in the server rack 12 so that airflow is generated in a certain direction in the vicinity of a plurality of servers arranged in the server rack 12.
  • Reference numeral 13 indicates that the cold air flowing into the cold area 11 is taken in by the fan operation in the server rack 12 and the air heated by the heat generated by the plurality of servers in the server rack 12 flows out to the hot area 14. The airflow shown is generated.
  • the server room 10 may be configured such that a double floor having a plurality of openings is provided and one or a plurality of server racks storing a plurality of servers are installed on the double floor.
  • the cold air (air supply) that flows into the lower part of the double floor, which is the cold area 11, due to the operation of the fan in the installed server or the fan installed in the server rack is an opening on the double floor.
  • the air flow 13 is generated so that the sucked cold air is heated by the heat generated by the plurality of servers and flows out into the hot area 14 above the double floor as return air.
  • the server can operate normally.
  • the air conditioner 20 includes a return air duct 21, an indoor unit 22, an outdoor unit 23, an air supply duct 24, an air conditioning control unit 25, an outside air temperature sensor 26, an outside air humidity sensor 27, and an environment sensor 28.
  • the return air duct 21 includes a return air temperature sensor 29 and an exhaust damper 30.
  • signal lines to or from the air conditioning control unit 25 are shown using dotted lines.
  • the return air duct 21 is a pipe through which air (here, return air) passes, and connects the hot area 14 of the server room 10 and the indoor unit 22 of the air conditioner 20.
  • the return air temperature sensor 29 measures the temperature of the return air flowing from the hot area 14 and transmits the measured value to the air conditioning control unit 25.
  • the exhaust damper 30 adjusts the amount of return air when the return air is discharged from the return air duct 21 to the outside according to the opening degree.
  • the indoor unit 22 includes a first return air introduction damper 221 as a return air introduction unit into the space 22A (below), an outside air introduction damper 222 as an outside air introduction unit, a filter 223, and a humidifier as a humidifier. 224, a cooling coil (cooler) 225 as a cold air generating device, an air supply fan (blower) 226, an air supply temperature sensor 227 as an air supply temperature measuring device, and an air supply humidity sensor as an air supply humidity measuring device 228 and a second return air introduction damper 229 as a return air introduction unit into the space 22B (described below).
  • a first return air introduction damper 221 as a return air introduction unit into the space 22A (below)
  • an outside air introduction damper 222 as an outside air introduction unit
  • a filter 223, and a humidifier as a humidifier.
  • 224 a cooling coil (cooler) 225 as a cold air generating device
  • a space including the first return air introduction damper 221, the outside air introduction damper 222, the filter 223, the humidifier 224, and the cooling coil 225 is defined as a first space in the indoor unit 22 as a space 22 ⁇ / b> A.
  • the space including the blower 226, the supply air temperature sensor 227, the supply air humidity sensor 228, and the second return air introduction damper 229 is referred to as a space 22B as the second space in the indoor unit 22.
  • the first return air introduction damper 221 adjusts the amount of return air introduced from the return air duct 21 into the space 22A upstream of the cooling coil 225 in the indoor unit 22 according to its opening.
  • the outside air introduction damper 222 adjusts the amount of outside air introduced into the indoor unit 22 according to its opening degree.
  • the filter 223 mainly removes dust from the outside air introduced when the outside air introduction damper 222 is opened.
  • the humidifier 224 includes the outside air introduced when the outside air introduction damper 222 is opened, and the return air introduced from the return air duct 21 when the first return air introduction damper 221 is opened. Is humidified and cold-generated as necessary.
  • the cooling coil 225 includes the outside air introduced when the outside air introduction damper 222 is opened, and the return air introduced from the return air duct 21 when the first return air introduction damper 221 is opened. Is cooled as necessary to generate cold air.
  • the air supply fan 226 is humidified as necessary by the humidifier 224 and cooled by the cooling coil 225 as necessary, or further, a second return air introduction damper 229 described below.
  • the supply air mixed with the return air flowing in is blown and discharged from the supply air duct 24 to the cold area 11 of the server room 10.
  • the rotational speed of the air supply fan 226, the amount of air blown is controlled.
  • the air supply fan 226 for supplying the air to the cold area 11 of the server room 10 is provided.
  • the air supply is supplied to the cold area 11 of the server room 10 and the hot area of the server room
  • a return air fan that causes the return air to flow out from the hot area 14 of the server room 10 is provided instead of the air supply fan 226 on the return air duct 21 side in the air conditioner 20. May be.
  • the supply air temperature sensor 227 measures the temperature of the supply air that flows into the cold area 11 of the server room 10 and transmits the measured value to the air conditioning control unit 25.
  • the supply air humidity sensor 228 measures the humidity of the supply air flowing into the cold area 11 of the server room 10 and transmits the measured value to the air conditioning control unit 25.
  • the second return air introduction damper 229 adjusts the amount of return air introduced from the return air duct 21 into the space 22B downstream of the cooling coil (cooler) 225 in the indoor unit 22 according to its opening.
  • the outdoor unit 23 is connected to the cooling coil 225, and supplies the cooling coil 225 with a refrigerant that is used when the cooling coil 225 generates cold air.
  • the air supply duct 24 is a pipe through which air (air supply in this case) passes, and connects the indoor unit 22 and the cold area 11 of the server room 10.
  • the outside air temperature sensor 26 measures the outside air temperature and transmits the measured value to the air conditioning control unit 25.
  • the outside air humidity sensor 27 measures the outside air humidity and transmits the measured value to the air conditioning control unit 25.
  • the environmental sensor 28 measures smoke, dust, and the like of the air outside the indoor unit 22 (outside air), and transmits the measurement result to the air conditioning control unit 25.
  • the air conditioning control unit 25 includes an air supply target range information storage unit 251, an outside air temperature and humidity measurement value acquisition unit 252, an air conditioning control content setting unit 253, and a device control unit 254.
  • the supply air target range information storage unit 251 stores a supply air temperature target range and a supply air humidity target range for the cold area 11 of the server room 10.
  • the outside air temperature humidity measurement value acquisition unit 252 acquires the outside air temperature measurement value measured by the outside air temperature sensor 26 and the outside air humidity measurement value measured by the outside air humidity sensor 27.
  • the air conditioning control content setting unit 253 includes an outside air temperature measurement value acquired from the outside air temperature humidity measurement value acquisition unit 252, an outside air humidity measurement value, the return air temperature measurement value measured by the return air temperature sensor 29, and the supply air temperature.
  • the supply air temperature measurement value measured by the sensor 227 and the supply air humidity measurement value measured by the supply air humidity sensor 228 are acquired and stored in the supply air target range information storage unit 251. Based on the supply air temperature target range and the supply air humidity target range, the contents of air conditioning control for generating supply air within a preset temperature range and humidity range are set (details will be described later). Further, based on the measured values of smoke, dust and the like measured by the environment sensor 28, the exceptional air conditioning control content described later is set as necessary.
  • the device control unit 254 controls the operation of each device in the air conditioner 20 based on the air conditioning control content set by the air conditioning control content setting unit 253.
  • the air conditioning control unit 25 can be configured by a general computer device or the like, and the air supply target range information storage unit 251 can be realized as a storage device such as a memory provided in the computer device. Further, the outside air temperature and humidity measurement value acquisition unit 252, the air conditioning control content setting unit 253, and the device control unit 254 are a CPU provided in the computer device, a storage device, a control program stored in the storage device and executed by the CPU, It can be realized as a function by an input / output interface.
  • an air supply temperature target range and an air supply humidity target range for the cold area 11 of the server room 10 are stored in advance in the supply air target range information storage unit 251 of the air conditioning control unit 25 of the server room management system 1. Has been.
  • the air supply temperature target range and the supply air humidity target range for the cold area 11 of the server room 10 are set as 2011 of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
  • the range corresponding to the A1 class is adopted for temperature and humidity
  • the range corresponding to the A3 class is adopted for absolute humidity (corresponding to dew point temperature).
  • the temperature is within a range of 15 to 32 ° C., a relative humidity of 20% to 80% and an absolute humidity of 0.019 kg / kg (DA) or less corresponding to a dew point temperature of 24 ° C.
  • This information is stored in the air supply target range information storage unit 251.
  • any one of A1 to A4 can be set in the air supply target range information storage unit 251.
  • the outside air temperature measurement value and the outside air humidity measurement value acquired by the outside air temperature humidity measurement value acquisition unit 252 are acquired by the air conditioning control content setting unit 253.
  • the air-conditioning control content setting unit 253 based on the supply air temperature target range and supply air humidity target range stored in the supply air target range information storage unit 251, a preset supply air temperature target range and supply air The air conditioning control content for generating the supply air within the humidity target range is set.
  • the air conditioning control content setting process executed by the air conditioning control content setting unit 253 will be described in detail below.
  • the air diagram is a diagram in which the state of moist air is understood from the temperature, absolute / relative humidity, enthalpy (here, specific enthalpy), etc. on the diagram.
  • the state of the air having a relative humidity of 100% (saturated state) or less represented by the saturation line X100 is the above-described supply air temperature target range (the temperature lower limit line Tl and the temperature upper limit line Th of FIG. 3). Range) and a supply air humidity target range (range indicated by the relative humidity lower limit line Rl and the relative humidity upper limit line Rh in FIG. 3), and a range corresponding to the supply air temperature target range and the supply air humidity target range.
  • Enthalpy upper limit value indicated by enthalpy upper limit line Hh and enthalpy lower limit value indicated by enthalpy lower limit line Hl, upper limit value of absolute humidity indicated by absolute humidity upper limit line Xh, and absolute humidity lower limit line Xl Based on the absolute humidity value, the return air temperature (Tr), and the upper limit value of the outside air cooling enthalpy indicated by the outside air cooling enthalpy upper limit line Hho (described later), regions I to VII showing the following seven air condition ranges It is divided into In this embodiment, it is assumed that the enthalpy upper limit value corresponding to the above-described supply air temperature target range and supply air humidity target range is 50 kJ / kg (DA), and the enthalpy lower limit value is 35 kJ / kg (DA).
  • the region I is a target range of the supply air temperature target range, the supply air relative humidity range, and the supply air absolute humidity range, that is, a range that satisfies the following formula (1) on the air diagram.
  • Region II is less than the lower limit value of the target supply air relative humidity range in the range above the lower limit value of the supply air temperature range, and is less than the lower limit value of the supply air temperature range. It is less than the absolute humidity corresponding to the lower limit value and is less than the enthalpy lower limit value in the target range (namely, region I), that is, a range satisfying the following formula (2) on the air diagram.
  • Region III is equal to or lower than the upper limit value of the target supply absolute humidity and equal to or higher than the absolute humidity value indicated by the absolute humidity lower limit line Xl, and less than or equal to the lower limit value of the target supply air temperature range. It is a range that is equal to or higher than the upper limit of the supply air relative humidity, that is, a range that satisfies the following expression (3) on the air line.
  • Equation 3 (Absolute humidity 0.002kg / kg (DA) or more and 0.019kg / kg (DA) or less) ⁇ ⁇ (Temperature less than 15 degrees) ⁇ (Relative humidity 80% or more) ⁇ Equation (3)
  • Region IV is within the enthalpy range corresponding to the target supply air temperature and supply air humidity ranges, and is less than the lower limit value of the target supply air relative humidity range or the upper limit value of the target supply air temperature range Is a range that satisfies the following formula (4) on the air line.
  • Equation 4 (Specific enthalpy 35kJ / kg (DA) or more Specific enthalpy 50kJ / kg (DA) or less) ⁇ ⁇ (Relative humidity less than 20%) ⁇ (Temperature over 32 ° C) ⁇ Equation (4)
  • Region VI is less than the upper limit value of the target supply absolute humidity range, exceeds the upper limit value of the enthalpy range corresponding to the target supply air temperature and supply air humidity range, and is equal to or lower than the return air temperature, and A range that exceeds the upper limit of the target supply air temperature range, that is, a range that satisfies the following expression (5) on the air line.
  • Region VII is a range that exceeds the upper limit value of the target absolute air supply humidity and is not more than the upper limit value of the outside air cooling enthalpy, that is, a range that satisfies the following formula (6) on the air line.
  • the outdoor air cooling enthalpy upper limit line Hho is an enthalpy line corresponding to the upper limit value of the return air temperature and the target supply absolute humidity, and in the air diagram of FIG. 3, the return air temperature Tr and the absolute humidity upper limit line. It is defined as the enthalpy line that intersects the intersection with Xh.
  • the region V is a range other than the above regions I to VII. Specifically, as shown in FIG. 3, the region V corresponds to an air condition in a range corresponding to the supply air temperature target range and the supply air humidity target range.
  • the state corresponding to the region VI, the region VII, and the upper part of the region I and the upper part of the region III shown in FIG. 3 is the state of the outside air frequently observed in a hot and humid region such as a rainforest climate zone. Corresponds to the state.
  • Value, outside air humidity measurement value, return air temperature measurement value measured by the return air temperature sensor 29, supply air temperature measurement value measured by the supply air temperature sensor 227, and supply air humidity measured by the supply air humidity sensor 228 The measured values are used, and the air conditioning control content is set for each region as follows.
  • the air conditioning control target is a sensible heat load due to heat generated from the server in the server room 10, and that no latent heat load due to human exhalation or the like is generated.
  • the supply air humidity measurement value measured by the humidity sensor 228 is the same.
  • the control content is determined so that the outside air is heated and humidified by mixing the return air with the outside air. Specifically, after the second return air introduction damper 229 is closed, the opening degrees of the exhaust damper 30, the first return air introduction damper 221, and the outside air introduction damper 222 are 0 according to the outside air introduction ratio.
  • the control content is determined by the air conditioning control content setting unit 253 so that the required amount of humidification is performed by the humidifier 224 while being adjusted between ⁇ 100%.
  • the target value ⁇ of the outside air introduction ratio is a supply air temperature target set in advance within the air supply temperature target range and the supply air humidity target range stored in the supply air target range information storage unit 251 for the mixed air. It is adjusted by the outside air temperature measurement value and the return air temperature measurement value so as to become a value.
  • the absolute humidity value X of the air in which the outside air introduction ratio is adjusted and the outside air and the return air are mixed in this way is the outside air absolute humidity measurement value Xo, the return air absolute humidity measurement value Xr, and the outside air introduction ratio target value ⁇ . When used, it is expressed as the following formula (7).
  • the humidification of Xs0-X which is the difference between the absolute humidity value X of the mixed air and the supply absolute humidity target value Xs0 is required.
  • the required humidification amount to increase the humidity value of this difference is Fs ⁇ (Xs0-X) when the supply air flow rate Fs is used, and the water amount of the humidifier 224 is controlled so that this necessary humidification amount is supplied.
  • the control content of a valve (not shown) is determined. At this time, the cooling process of the mixed air by the cooling coil 225 is not performed.
  • the amount of humidification required when humidifying after mixing outside air and return air is determined as described above, but the return air is set in advance to the absolute humidity target value ⁇ Xr + (X-Xs0) / (1- ⁇ ). ⁇ , It is possible to eliminate the need for humidification after mixing.
  • the outside air introduction ratio target value ⁇ is expressed by the following equation (8), assuming that the outside air temperature measurement value To, the humidified return air temperature value Tr2, and the supply air temperature target value Ts0.
  • the control content is determined so as to warm the outside air temperature by mixing the return air with the outside air. Specifically, the opening degrees of the exhaust damper 30, the first return air introduction damper 221 or the second return air introduction damper 229 (one of which is closed at this time) and the outside air introduction damper 222 are in accordance with the outside air introduction ratio. Therefore, the control content is determined by the air conditioning control content setting unit 253 so as to be adjusted between 0 and 100%.
  • the control content is determined so as to humidify the outside air. Specifically, the exhaust damper 30 is fully opened, the first return air introduction damper 221 and the second return air introduction damper 229 are closed, and the outside air introduction damper 222 is fully opened, so that the outside air introduction ratio is 100.
  • the control content is determined by the air conditioning control content setting unit 253 so that the humidifier 224 performs the required amount of humidification.
  • the control content is determined so as to cool the return air. Specifically, by closing the exhaust damper 30 and the second return air introduction damper 229, fully opening the first return air introduction damper 221 and closing the outside air introduction damper 222, the outside air introduction ratio becomes 0%.
  • the control content is determined by the air conditioning control content setting unit 253 so that the cooling process is performed by the cooling coil 225. At this time, the humidification process by the humidifier 224 is not performed.
  • the control content is determined so as to cool the outside air. That is, as shown in FIG. 4, the control content is determined so that P 3 ⁇ P 1 .
  • the first return air introduction damper 221 and the second return air introduction damper 229 are closed, and the exhaust damper 30 and the outside air introduction damper 222 are fully opened.
  • the control content is determined by the air conditioning control content setting unit 253 so that the introduction ratio is set to 100% and the outside air (P 3 ) is cooled by the cooling coil 225. At this time, the humidification process by the humidifier 224 is not performed.
  • the control content is determined so that the outside air is cooled and dehumidified, and the cooled and dehumidified outside air is mixed with the return air. That is, as shown in FIG. 6, the introduced outside air (P 3 ) is cooled and dehumidified, the cooled outside air (P 3 ′) is mixed with the return air (P 2 ), and the air in the target region I is mixed.
  • the control content is determined so that the supply air (P 1 ) has a state. Specifically, as shown in FIG.
  • the air conditioning control content setting unit 253 controls the control contents so that the opening degrees of the second return air introduction damper 229 and the outside air introduction damper 222 are adjusted between 0% and 100% according to the outside air introduction ratio. Is determined.
  • the outside air temperature measurement value after cooling is used as the outside air temperature measurement value To, and the outside air introduction ratio target value ⁇ can be obtained using the above-described equation (9).
  • the humidification process by the humidifier 224 is not performed.
  • the outside air temperature after cooling may be estimated from the outside air temperature and the cooling capacity of the cooling coil 225, or may be measured by providing a temperature sensor on the outside air sending side of the cooling coil 225.
  • the control content is determined. Specifically, by closing the exhaust damper 30 and the second return air introduction damper 229, fully opening the first return air introduction damper 221 and closing the outside air introduction damper 222, the outside air introduction ratio becomes 0%.
  • the control content is determined by the air conditioning control content setting unit 253 so that the cooling process is performed on the introduced return air by the cooling coil 225. At this time, the humidification process by the humidifier 224 is not performed.
  • the exhaust damper 30, the first return air introduction damper 221, the second return air introduction damper 229, and the outside air introduction are based on this.
  • a control signal for controlling the opening degree of the damper 222, the amount of control of the humidifier 224 and the cooling coil 225, and the rotational speed of the air supply fan 226 is generated by the device control unit 254 and transmitted to each device for control.
  • the supply air of the supply air temperature value and the supply air humidity value within the target range is generated.
  • the air conditioning control content may be switched according to the state of the outside air for each season in a temperate region or the like, or may be switched according to the state of the outside air within a day in a rainforest climate zone or the like. It may be.
  • the outside temperature / humidity measurement value acquisition unit 252 acquires each measurement value a plurality of times within one day, and the air conditioning control content setting unit 253 obtains each measurement value by the outside temperature / humidity measurement value acquisition unit 252. Accordingly, necessary air conditioning control details are set.
  • the exceptional air conditioning control is performed as necessary from the amount of smoke or dust measured by the environment sensor 28.
  • the content of the air conditioning control is switched according to the state of the outside air, and the outside air is used as much as possible, and control suitable for server management is performed, so that server management with a high energy-saving effect is achieved.
  • Air conditioning control can be performed.
  • Air-conditioning control with high energy-saving effect can be realized.
  • the air conditioning control unit 25 when the air conditioning control content is set in the air conditioning control content setting unit 253, the air supply temperature target range and the air supply humidity stored in the air supply target range information storage unit 251 are set. The optimal supply air temperature target value and supply air humidity target value within the target range are calculated, and the air conditioning control content with high energy saving effect is set based on these target values.
  • the energy E consumed by the air conditioner 20 can be expressed by the following equation (10).
  • E gcol (Fs ⁇ ( ⁇ Ho + (1- ⁇ ) Hr ⁇ Hs)) + gfan (Fs) + ghum (Fw) Formula (10) here, Fs: Supply air flow rate Fw: Humidification water volume ⁇ : Outside air introduction ratio Ho: Outside air ratio enthalpy Hr: Return air ratio enthalpy Hs: Supply air ratio enthalpy gcol: Function indicating the relationship between coil cooling amount and cooling coil consumption energy gfan: Supply Function indicating the relationship between the air flow rate and fan energy consumption ghum: A function indicating the relationship between the amount of water for humidification and the energy consumption of the humidifier.
  • supply water flow rate Fs humidification water volume, outside air introduction ratio, outside air ratio enthalpy (calculated from outside air temperature and humidity measured values), return air ratio enthalpy (calculated from returned air temperature measured values and air supply absolute humidity measured values),
  • the air ratio enthalpy (calculated from the measured air temperature and humidity) can be measured or calculated from the measured value.
  • the target of air conditioning control is a sensible heat load due to heat generated from a plurality of servers in the server room 10, and that a latent heat load due to human breath or the like does not occur, and the return air humidity value is It is assumed that it is the same as the supply air humidity measurement value measured by the supply air humidity sensor 227.
  • the function gcol indicating the relationship between the coil cooling amount and the cooling coil consumption energy, the function gfan indicating the relationship between the supply air flow rate and the fan consumption energy, and the function ghum indicating the relationship between the humidification water amount and the humidifier consumption energy are This is a function indicating the characteristics of the devices constituting the control unit 25 and is known. Therefore, the energy E consumed by the air conditioner 20 can be calculated from these values.
  • the air-conditioning control unit 25 depends on the opening degree of the exhaust damper 30, the first return air introduction damper 221, the second return air introduction damper 229, and the outside air introduction damper 222.
  • One of the process for controlling the outside air introduction ratio, the process for controlling the cooling amount of the supply air by the cooling coil 225, the process for controlling the humidification amount by the humidifier 224, or a combination of a plurality of processes is combined with the supply air temperature and the supply rate.
  • the exhaust damper 30 In order to control the air humidity, by setting the supply air temperature target value and the supply air humidity target value, the exhaust damper 30, the first return air introduction damper 221, the second return air introduction damper 229, and the outside air introduction Necessary control amounts for the damper 222, the cooling coil 225, and the humidifier 224 are determined.
  • the supply air flow value Fs is calculated by the following equation (11) using the return air temperature measurement value Tr, the supply air temperature measurement value Ts0, the specific heat C of the air, and the heat generation amount Q of the server.
  • the energy consumption E calculated by the above equation (10) is minimized to operate with the theoretically minimum energy. It can be said that the control is performed by a combination of the supply air temperature value, the supply air humidity value, and the supply air flow value.
  • an outdoor air condition / air supply condition relationship table that calculates an air supply temperature target value and an air supply humidity target value that minimizes energy consumption in advance under various conditions of external air temperature, external air humidity, and server load, and indicates these relationships. Is stored in the air conditioning control content setting unit 253, and it becomes possible to calculate the air supply condition that minimizes the energy consumption from the measured outside air condition and the server load.
  • the server load Q may be calculated using the power consumption of the server, or may be calculated using the following equation (12).
  • the server load Q calculation process is executed in the air conditioning control content setting unit 253 before the supply condition calculation process using the outside air condition / supply condition relationship table.
  • the air conditioning control content is determined as described above using the supply air temperature target value and the supply air humidity target value thus calculated.
  • the operating environment of this system is a high temperature and high humidity environment ( Even in the area, air conditioning control with high energy saving effect can be executed.
  • each of the divided areas as shown in FIG. 3 may partially or entirely overlap with other areas.
  • the space in the server room 10 in which a plurality of servers are installed is described as an air conditioning control target (air conditioning target space) of the air conditioner 20, but the present invention is not limited to this.
  • the space in which various devices that generate heat are stored or installed can be the air conditioning control target of the air conditioner 20.
  • the cold area 11 and the hot area 12 are structurally separated. However, it is not always necessary to do so.
  • the area 11 may be configured as the hot area 12 on the side where the return air is discharged.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

 外気または空調制御対象の還気のすくなくとも一つを導入し、空調制御対象に給気として排出する室内ユニットと、空調制御部とを具備する。上記室内ユニットは、外気を導入する外気導入装置および冷却器を有する第1空間と、空調制御対象からの還気を導入する還気導入装置を有する第2空間を備える。そして、上記空調制御部が空調制御対象に対し空調制御が必要と判断した場合に、外気を外気導入装置を経由して第1空間に導入し、この第1空間では冷却器で冷却、除湿の少なくとも一つを行い処理済外気とし、還気を還気導入装置を経由して第2空間に導入し、この第2空間で処理済外気と還気とを混合することにより、空調制御対象に給気として排出する。

Description

空調装置および空調制御方法
 本発明の実施形態は、空調装置および空調制御方法に関する。
 近年、様々な分野でIT化が進むにつれ、ネットワークへの接続回線や保守・運用サービスなどを顧客に提供するデータセンターの必要性が高まってきている。
 データセンターのサーバ室には、一般的に多数のサーバが設置されているため、その発熱量が多い。そのようなサーバ室内で、これらのサーバを正常に稼働させるためには、サーバ室に対し適切に空調を行って所定範囲の環境条件に保つ必要がある。
 データセンターのサーバ室のように多数のコンピュータが設置された室内を冷却するための技術として、室内の下部空間から吸い込んだ空気を上部空間に吹き出すことにより、その空気がサーバラックの上部に吸い込まれるように構成した空調装置がある。
 この技術を利用することによりサーバ室内全体の温度勾配を少なくするとともに給気温度のばらつきを少なくして効率のよい空調制御を行うことが可能になる。
特開2005-172309号公報
 しかしながら、データセンターのサーバ室のように、空調すべき対象の負荷が情報機器である場合、負荷のほとんどが顕熱負荷である、設定温湿度が一定範囲であればよい、負荷でCOが発生しないのでCO濃度上昇防止のための換気が不要であるなど、一般のビル内の状態とは異なる特徴があるが、従来は、これらの特徴に対応した空調制御は行われておらず、無駄なエネルギーを消費している場合があるという問題があった。これに対して、ASHREA2008で許容された給気条件を実現するための外気を利用したサーバ室管理用の空調装置をすでに提案してきた。しかし、近年のサーバ室に対する給気条件の緩和を踏まえたASHREA2011で許容された給気条件を利用して、さらに省エネをはかる余地ができた。
 本発明が解決しようとする課題は、省エネ効果が高く効率のよい、空調装置および空調制御方法を提供することを目的とする。
 上記目的を達成するための実施形態の空調装置は、外気または空調制御対象の還気のすくなくとも一つを導入し、空調制御対象に給気として排出する室内ユニットと、空調制御部とを具備する。
 上記室内ユニットは、外気を導入する外気導入装置および冷却器を有する第1空間と、空調制御対象からの還気を導入する還気導入装置を有する第2空間を備える。
 そして、上記空調制御部が空調制御対象に対し空調制御が必要と判断した場合に、外気を外気導入装置を経由して第1空間に導入し、この第1空間では冷却器で冷却、除湿の少なくとも一つを行い処理済外気とし、還気を還気導入装置を経由して第2空間に導入し、この第2空間で処理済外気と還気とを混合することにより、空調制御対象に給気として排出する。
図1は、一実施形態である空調装置の構成を示す全体図である。 図2は、同実施形態の空調装置の空調制御部の構成を示すブロック図である。 図3は、同実施形態の空調装置の空調制御部で分類される外気の空気状態範囲を空気線図上に示すグラフである。 図4は、同実施形態の空調制御部において、領域VIに該当する場合の空調制御の様子を、空気線図上に示したグラフである。 図5は、同実施形態の空調制御部において、領域VIに該当する場合の空調制御を説明する図である。 図6は、同実施形態の空調制御部において、領域VIIに該当する場合の空調制御の様子を、空気線図上に示したグラフである。 図7は、同実施形態の空調制御部において、領域VIIに該当する場合の空調制御を説明する図である。 図8は、ASHRAE2011のサーバ温度湿度条件を示す図である。
 〈サーバ室管理システムの構成〉
 一実施形態であるサーバ室管理システムの構成について、図1を参照して説明する。
 本実施形態によるサーバ室管理システム1は、データセンター等のサーバ室10と、このサーバ室10の空調を行う空調装置20とから構成される。なお、空調装置20にサーバ室10を含める構成としてもよく、その場合、図1のサーバ室管理システム1が、空調装置20に相当するものとなる。
 サーバ室10は、例えば容易に構築可能なコンテナや、建築物内の所定の部屋であり、第3空間としての冷気を含んだコールドエリア11と、第4空間としての暖気を含んだホットエリア14とからなる2つの空間に分離されている。そして、コールドエリア11とホットエリア14との間には複数のサーバ(図示せず)が格納された1または複数のサーバラック12が設置されている。
 このように構成されるサーバ室10において、複数のサーバが、送風機である内蔵のファン(図示せず)の稼動により同一方向に気流が発生するように1または複数のサーバラック12に格納されるか、または、サーバラック12内に配置される複数のサーバの近傍に一定方向に気流が発生するように、サーバラック12内にラックファン(図示せず)が設置される。そして、コールドエリア11に流入した冷気が、サーバラック12内のファン稼動により取り込まれ、サーバラック12内の複数のサーバの発熱により暖められた空気がホットエリア14に流出するように、符号13で示す気流が発生する。
 また、サーバ室10の構成として、複数の開口部を有する二重床を設け、この二重床上に複数のサーバを格納した1または複数のサーバラックを設置する構成とすることもできる。このサーバ室10では、設置されたサーバ内のファンまたはサーバラックに設置されたファンの稼働により、コールドエリア11である二重床の下部に流入した冷気(給気)が二重床上の開口部からこの開口部の上部にあるサーバラックに吸入される。そして、吸入された冷気が複数のサーバの発熱により加熱されて還気として二重床の上部のホットエリア14に流出するように、気流13が発生することになる。
 以上のようにして、サーバにより発生する熱が冷気により冷却されるので、サーバは正常に稼働可能となる。
 空調装置20は、還気ダクト21と、室内ユニット22と、室外ユニット23と、給気ダクト24と、空調制御部25と、外気温度センサ26と、外気湿度センサ27と、環境センサ28とを有し、還気ダクト21には、還気温度センサ29と、排気用ダンパ30を具備する。なお、同図中、空調制御部25への、または空調制御部25からの信号線は、点線を用いて図示している。
 還気ダクト21は空気(ここでは還気)を通す管であり、サーバ室10のホットエリア14と空調装置20の室内ユニット22とを接続する。
 還気温度センサ29は、ホットエリア14から流入した還気の温度を計測し、計測値を空調制御部25に送信する。
 排気用ダンパ30は、還気ダクト21から還気を外部に排出する際の還気量を、その開度により調整する。
 室内ユニット22は、空間22A(下記)への還気導入部としての第1還気導入用ダンパ221と、外気導入部としての外気導入用ダンパ222と、フィルタ223と、加湿装置としての加湿器224、冷気生成装置としての冷却コイル(冷却器)225と、給気ファン(送風機)226と、給気温度計測器としての給気温度センサ227と、給気湿度計測器としての給気湿度センサ228と、空間22B(下記)への還気導入部としての第2還気導入用ダンパ229とを有する。なお、ここでは説明のため、第1還気導入用ダンパ221、外気導入用ダンパ222、フィルタ223、加湿器224、および冷却コイル225を含む空間を、室内ユニット22における第1空間として、空間22Aと称し、送風機226、給気温度センサ227、給気湿度センサ228、および第2還気導入用ダンパ229を含む空間を、室内ユニット22における第2空間として、空間22Bと称することとする。
 第1還気導入用ダンパ221は、還気ダクト21から室内ユニット22内の冷却コイル225の前段の空間22Aに導入する還気量を、その開度により調整する。
 外気導入用ダンパ222は、室内ユニット22内に導入する外気量を、その開度により調整する。
 フィルタ223は、主として外気導入用ダンパ222が開状態にされたときに導入される外気から、塵埃を除去する。
 加湿器224は、外気導入用ダンパ222が開状態にされたときに導入される外気、および第1還気導入用ダンパ221が開状態にされたときに還気ダクト21から導入される還気を、必要に応じて加湿および冷気生成する。
 冷却コイル225は、外気導入用ダンパ222が開状態にされたときに導入される外気、および第1還気導入用ダンパ221が開状態にされたときに還気ダクト21から導入される還気を、必要に応じて冷却して冷気を生成する。
 給気ファン226は、加湿器224により必要に応じて加湿されるとともに、冷却コイル225により必要に応じて冷却されて生成された給気を、または、さらに下記の第2還気導入用ダンパ229から流入された還気を混合した給気を、送風し、給気ダクト24からサーバ室10のコールドエリア11に排出させる。この給気ファン226の回転数を制御することによって、その送風量が制御される。なお、本実施形態では、給気をサーバ室10のコールドエリア11に流入させる給気ファン226を設けているが、給気をサーバ室10のコールドエリア11に流入させ、このサーバ室のホットエリア14から還気を流出させる送風機として、空調装置20内で還気ダクト21側に、サーバ室10のホットエリア14から還気を流出させる還気ファンを、給気ファン226の代わりに設けるようにしてもよい。
 給気温度センサ227は、サーバ室10のコールドエリア11に流入させる給気の温度を計測し、計測値を空調制御部25に送信する。
 給気湿度センサ228は、サーバ室10のコールドエリア11に流入させる給気の湿度を計測し、計測値を空調制御部25に送信する。
 第2還気導入用ダンパ229は、還気ダクト21から室内ユニット22内の冷却コイル(冷却器)225の後段の空間22Bに導入する還気量を、その開度により調整する。
 室外ユニット23は、冷却コイル225に接続されており、冷却コイル225で冷気を生成する際に利用される冷媒を冷却コイル225に供給する。
 給気ダクト24は空気(ここでは給気)を通す管であり、室内ユニット22と、サーバ室10のコールドエリア11とを接続する。
 外気温度センサ26は、外気温度を計測し、その計測値を空調制御部25に送信する。外気湿度センサ27は、外気湿度を計測し、その計測値を空調制御部25に送信する。環境センサ28は、室内ユニット22の外の空気(外気)の煙、塵埃等を計測し、その計測結果を空調制御部25に送信する。
 空調制御部25は、図2に示すように、給気目標範囲情報記憶部251と、外気温湿度計測値取得部252と、空調制御内容設定部253と、機器制御部254とを有する。
 給気目標範囲情報記憶部251は、サーバ室10のコールドエリア11への給気温度目標範囲および給気湿度目標範囲を記憶する。
 外気温湿度計測値取得部252は、外気温度センサ26で計測された外気温度計測値、および外気湿度センサ27で計測された外気湿度計測値を取得する。
 空調制御内容設定部253は、外気温湿度計測値取得部252から取得された外気温度計測値、および外気湿度計測値と、還気温度センサ29で計測された還気温度計測値、給気温度センサ227で計測された給気温度計測値、および給気湿度センサ228で計測された給気湿度計測値とを取得し、これらの計測値と、給気目標範囲情報記憶部251に記憶された給気温度目標範囲および給気湿度目標範囲とに基づいて、予め設定された温度範囲且つ湿度範囲内の給気を生成するための空調制御内容を設定する(詳細は後述)。また、環境センサ28で計測された煙、塵埃等の計測値に基づいて、後述の例外的空調制御内容を必要に応じて設定する。
 機器制御部254は、空調制御内容設定部253で設定された空調制御内容に基づいて、空調装置20内の各機器の動作を制御する。
 なお、空調制御部25は、一般的なコンピュータ装置等により構成することができ、上記給気目標範囲情報記憶部251は、このコンピュータ装置に備わるメモリ等の記憶装置として実現できる。また、外気温湿度計測値取得部252と、空調制御内容設定部253と、機器制御部254は、このコンピュータ装置に備わるCPU、記憶装置、この記憶装置に格納されCPUにより実行される制御プログラム、および入出力インタフェースによる機能として実現することができる。
 〈サーバ室管理システムの動作〉
 次に、本実施形態によるサーバ室管理システム1の動作について説明する。
 本実施形態において、サーバ室管理システム1の空調制御部25の給気目標範囲情報記憶部251には、サーバ室10のコールドエリア11への給気温度目標範囲および給気湿度目標範囲が予め記憶されている。
 本実施形態においては、サーバ室10のコールドエリア11への給気温度目標範囲および給気湿度目標範囲として、米国暖房冷凍空調学会(ASHRAE;American Society of Heating, Refrigerating and Air-Conditioning Engineers)の2011年版の規定(図8参照)に従って、温度および湿度についてはA1クラスに、また絶対湿度(露点温度に対応)についてはA3クラスに対応した範囲を採用している。具体的には、温度:15~32℃、相対湿度20%~80%且つ、露点温度24℃に対応する絶対湿度0.019kg/kg(DA)以下とする範囲としている。この情報が、給気目標範囲情報記憶部251に記憶されている。なお、給気目標範囲情報記憶部251にはA1~A4のいずれにも設定可能である。
 このように給気目標範囲情報記憶部251に給気温度目標範囲および給気湿度目標範囲が記憶されている状態で、空調制御部25において、各機器の制御が行われるときの動作について説明する。
 まず、外気温湿度計測値取得部252で取得された外気温度計測値および外気湿度計測値が空調制御内容設定部253で取得される。
 次に、空調制御内容設定部253において、給気目標範囲情報記憶部251に記憶された給気温度目標範囲および給気湿度目標範囲に基づいて、予め設定された給気温度目標範囲且つ給気湿度目標範囲内の給気を生成するための空調制御内容が設定される。以下に、空調制御内容設定部253で実行される空調制御内容の設定処理について、詳細に説明する。
 まず、取得された外気温度計測値および外気湿度計測値に基づいて、現在の外気の状態が、図3に示すように分割された空気線図上のどの領域に該当するかが判定される。空気線図は、線図上に温度、絶対/相対湿度、エンタルピ(ここでは比エンタルピ)などから湿り空気の状態が分かるようにした線図のことである。
 図3の空気線図では、飽和線X100で表した相対湿度100%(飽和状態)以下の空気の状態が、上述した給気温度目標範囲(図3の温度下限線Tlおよび温度上限線Thで示す範囲)および給気湿度目標範囲(図3の相対湿度下限線Rlおよび相対湿度上限線Rhで示す範囲)で示される値と、この給気温度目標範囲且つ給気湿度目標範囲に該当する範囲の空気状態に対応するエンタルピ上限線Hhで示すエンタルピの上限値およびエンタルピ下限線Hlで示すエンタルピの下限値と、絶対湿度上限線Xhで示す絶対湿度の上限値と、絶対湿度下限線Xlで示す絶対湿度の値と、還気温度(Tr)と、外気冷却エンタルピ上限線Hho(後述)で示す外気冷却エンタルピの上限値とに基づいて、以下に示す7つの空気状態範囲を示す領域I~VIIに分割されている。本実施形態において、上述した給気温度目標範囲且つ給気湿度目標範囲に対応するエンタルピ上限値は50kJ/kg(DA)であり、エンタルピ下限値は35kJ/kg(DA)であるものとする。
 -領域I(第1の空気状態範囲):
 領域Iは、目標とする、給気温度目標範囲、且つ給気相対湿度範囲、且つ給気絶対湿度範囲と同様の範囲、つまり空気線図上において下記式(1)を満たす範囲である。
  〔数1〕
 (温度15度以上32度以下)
 ∩(相対湿度20%以上80%以下)
 ∩(絶対湿度0.019kg/kg(DA)以下)   式(1)
 -領域II(第2の空気状態範囲):
 領域IIは、給気温度範囲の下限値以上の範囲においては目標とする給気相対湿度範囲の下限値未満であり、且つ給気温度範囲の下限値未満の範囲においては給気相対湿度範囲の下限値に相当する絶対湿度未満であり、且つ目標とする範囲(すなわち領域I)におけるエンタルピ下限値未満の範囲、つまり空気線図上において下記式(2)を満たす範囲である。
  〔数2〕
 {(温度15度以上)∩(相対湿度20%未満)∩(比エンタルピ35kJ/kg(DA)未満)}
 ∪{(温度15度未満)∩(絶対湿度0.002未満)}   式(2)
 -領域III(第3の空気状態範囲):
 領域IIIは、目標とする給気絶対湿度の上限値以下、且つ、絶対湿度下限線Xlで示す絶対湿度の値以上であり、且つ、目標とする給気温度範囲の下限値未満または目標とする給気相対湿度の上限値以上の範囲、つまり空気線上において下記式(3)を満たす範囲である。
  〔数3〕
 (絶対湿度0.002kg/kg(DA)以上0.019kg/kg(DA)以下)
 ∩{(温度15度未満)∪(相対湿度80%以上)}   式(3)
 -領域IV(第4の空気状態範囲):
 領域IVは、目標とする給気温度および給気湿度の範囲に対応するエンタルピ範囲内であり、且つ、目標とする給気相対湿度範囲の下限値未満または目標とする給気温度範囲の上限値を超える範囲、つまり空気線上において下記式(4)を満たす範囲である。
  〔数4〕
 (比エンタルピ35kJ/kg(DA)以上比エンタルピ50kJ/kg(DA)以下)
 ∩{(相対湿度20%未満)∪(温度32℃超)}  式(4)
 -領域VI(第6の空気状態範囲):
 領域VIは、目標とする給気絶対湿度範囲の上限値未満、且つ、目標とする給気温度および給気湿度の範囲に対応するエンタルピ範囲の上限値超、且つ、還気温度以下、且つ、目標とする給気温度範囲の上限値を超える範囲、つまり空気線上において下記式(5)を満たす範囲である。
  〔数5〕
 (絶対湿度0.019kg/kg(DA)以下)
 ∩(比エンタルピ50kJ/kg(DA)超)
 ∩(還気温度以下)
 ∩(温度32℃超)   式(5)
 -領域VII(第7の空気状態範囲):
 領域VIIは、目標とする給気絶対湿度の上限値超、且つ、外気冷却エンタルピの上限値以下の範囲、つまり空気線上において下記式(6)を満たす範囲である。なお、外気冷却エンタルピ上限線Hhoは、還気温度および目標とする給気絶対湿度の上限値に対応するエンタルピ線であり、図3の空気線図上において、還気温度Trと絶対湿度上限線Xhとの交点に交わるエンタルピ線として規定する。
  〔数6〕
 (絶対湿度0.019kg/kg(DA)超)
 ∩(外気冷却エンタルピの上限値以下)   式(6)
 -領域V(第5の空気状態範囲):
 領域Vは、上記の領域I~VII以外の範囲であるが、具体的には、図3に示すように、給気温度目標範囲且つ給気湿度目標範囲に該当する範囲の空気状態に対応するエンタルピ範囲の上限値超であり、且つ還気温度を超えるか、または外気冷却エンタルピの上限値を超える空気状態範囲である。
 なお、図3に示す上記領域VI、領域VII、ならびに、領域Iの上部および領域IIIの上部に該当する状態は、熱帯雨林気候区のような高温多湿な地域において高い頻度で観測される外気の状態に相当する。
 現在の外気の状態がこれらの領域I~VIIのうちいずれの領域に該当するかが判定されると、空調制御内容設定部253において、外気温湿度計測値取得部252で取得された外気温度計測値、外気湿度計測値、および還気温度センサ29で計測された還気温度計測値、給気温度センサ227で計測された給気温度計測値、給気湿度センサ228で計測された給気湿度計測値が用いられ、それぞれ領域ごとに以下のように空調制御内容が設定される。ここでは空調制御の対象となるのはサーバ室10内のサーバから発生する熱による顕熱負荷であり、人の呼気等による潜熱負荷は発生しないものと仮定し、還気湿度値は、給気湿度センサ228で計測される給気湿度計測値と同一であるものとする。
 -領域Iに該当する場合の空調制御内容:
 現在の外気の状態が領域Iの範囲内にあるときは、外気をそのまま給気とすることが可能である。このため、排気用ダンパ30を全開にし、第1還気導入用ダンパ221および第2還気導入用ダンパ229を閉じ、外気導入用ダンパ222を全開にすることで、外気導入比率が100%になるように、空調制御内容設定部253により、制御内容が決定される。またこのときは、加湿器224による加湿処理、および冷却コイル225による混合した空気の冷却処理は行われない。
 -領域IIに該当する場合の空調制御内容:
 現在の外気の状態が領域IIの範囲内にあるときは、外気に還気を混合することで外気温度を加温するとともに加湿を行うように制御内容が決定される。具体的には、第2還気導入用ダンパ229を閉じた上で、排気用ダンパ30、第1還気導入用ダンパ221、および外気導入用ダンパ222の開度が外気導入比率に応じて0~100%の間で調整されるとともに、加湿器224により必要量の加湿が行われるように、空調制御内容設定部253により、制御内容が決定される。
 このとき外気導入比率の目標値αは、混合後の空気が、給気目標範囲情報記憶部251に記憶された給気温度目標範囲且つ給気湿度目標範囲内で予め設定された給気温度目標値になるように、外気温度計測値および還気温度計測値により調整される。
 このようにして外気導入比率が調整されて外気と還気とが混合された空気の絶対湿度値Xは、外気絶対湿度計測値Xo、還気絶対湿度計測値Xr、外気導入比率目標値αを用いると、下記式(7)のように表される。
  〔数7〕
 X = Xo×α + Xr×(1 - α)   式(7)
 このため混合された空気を、目標とする温湿度状態の給気にするには、混合された空気の絶対湿度値Xと給気絶対湿度目標値Xs0との差分である Xs0-X 分の加湿が必要である。この差分の湿度値を上げるための必要加湿量は、給気流量Fsを用いると Fs×(Xs0-X)となり、この必要加湿量が供給されるように加湿器224の水量を制御するための弁(図示せず)の制御内容が決定される。このとき、冷却コイル225による混合した空気の冷却処理は行われない。
 なお、外気と還気とを混合後に加湿を行う際の必要加湿量は上記のように決定されるが、還気をあらかじめ絶対湿度目標値{Xr + (X - Xs0)/(1 - α)}になるように加湿しておくことで、混合後の加湿を不要にすることも可能である。
 この場合、外気導入比率目標値αは、外気温度計測値To、加湿後の還気温度値Tr2、給気温度目標値Ts0とすると、下記式(8)で表される。
  〔数8〕
 α = (Tr2 - Ts0)/(Tr2 - To)×100(%)   式(8)
 -領域IIIに該当する場合の空調制御内容:
 現在の外気の状態が領域IIIの範囲内にあるときは、外気に還気を混合することで外気温度を加温するように制御内容が決定される。具体的には、排気用ダンパ30、第1還気導入用ダンパ221または第2還気導入用ダンパ229(このとき一方は閉じる)、および外気導入用ダンパ222の開度が外気導入比率に応じて0~100%の間で調整されるように、空調制御内容設定部253により、制御内容が決定される。
 この場合、外気導入比率目標値αは外気温度計測値To、還気温度計測値Tr、給気温度目標値Ts0とすると、下記式(9)で表される。
  〔数9〕
 α = (Tr - Ts0)/(Tr - To)×100(%)   式(9)
 このとき、加湿器224による加湿処理、および冷却コイル225による冷却処理は行われない。
 -領域IVに該当する場合の空調制御内容:
 現在の外気の状態が領域IVの範囲内にあるときは、外気に加湿を行うように制御内容が決定される。具体的には、排気用ダンパ30を全開にし、第1還気導入用ダンパ221および第2還気導入用ダンパ229を閉じ、外気導入用ダンパ222を全開にすることで、外気導入比率が100%にされるとともに、加湿器224により必要量の加湿が行われるように、空調制御内容設定部253により、制御内容が決定される。
 この場合、外気相対湿度計測値Ro、給気湿度目標値Rs0とすると、必要加湿量はRs0-Roである。このとき、加湿に伴って外気温度がToからTに低下する。
 -領域Vに該当する場合の空調制御内容:
 現在の外気の状態が領域Vの範囲内にあるときは、還気を冷却するように制御内容が決定される。具体的には、排気用ダンパ30および第2還気導入用ダンパ229を閉じ、第1還気導入用ダンパ221を全開にし、外気導入用ダンパ222を閉じることで、外気導入比率が0%にされるとともに、冷却コイル225により冷却処理が行われるように、空調制御内容設定部253により、制御内容が決定される。このとき、加湿器224による加湿処理は行われない。
 なお、現在の外気の状態が領域Vの範囲内にあるときでも、サーバ室10内に作業者がおり換気が必要な場合は、一定量の外気を取り入れるように、予め外気導入比率に下限値を設定して制御してもよい。
 -領域VIに該当する場合の空調制御内容:
 現在の外気の状態が領域VIの範囲内にあるときは、外気を冷却するように制御内容が決定される。すなわち、図4に示すように、P→Pとなるように制御内容が決定される。具体的には、図5に示すように、第1還気導入用ダンパ221および第2還気導入用ダンパ229を閉じ、排気用ダンパ30および外気導入用ダンパ222を全開にすることで、外気導入比率が100%にされるとともに、外気(P)が冷却コイル225により冷却処理が行われるように、空調制御内容設定部253により、制御内容が決定される。このとき、加湿器224による加湿処理は行われない。
 -領域VIIに該当する場合の空調制御内容:
 現在の外気の状態が領域VIIの範囲内にあるときは、外気を冷却、除湿し、さらに、冷却、除湿された外気が還気と混合されるように制御内容が決定される。すなわち、図6に示すように、導入された外気(P)を冷却、除湿した冷却後の外気(P’)を還気(P)と混合して、目標の領域I内の空気状態をもつ給気(P)となるように制御内容が決定される。具体的には、図7に示すように、第1還気導入用ダンパ221を閉じ、排気用ダンパ30、第2還気導入用ダンパ229、および外気導入用ダンパ222を開くが、排気用ダンパ30、第2還気導入用ダンパ229、および外気導入用ダンパ222の開度は外気導入比率に応じて0~100%の間で調整されるように、空調制御内容設定部253により、制御内容が決定される。
 この場合、外気温度計測値Toとして冷却後の外気温度計測値を用い、前述の式(9)を用いて、外気導入比率目標値αを求めることができる。このとき、加湿器224による加湿処理は行われない。なお、冷却後の外気温度は、外気温度と冷却コイル225の冷却能力とから推定するようにしてもよいし、冷却コイル225の外気送出側に温度センサを設けて計測するようにしてもよい。
 -例外的空調制御内容:
 環境センサ28により外気に多くの煙や粉塵が含まれることが計測された場合、外気を導入するとフィルタ223等の劣化を招くため、外気の温度・湿度の状態にかかわらず、還気を冷却するように制御内容が決定される。具体的には、排気用ダンパ30および第2還気導入用ダンパ229を閉じ、第1還気導入用ダンパ221を全開にし、外気導入用ダンパ222を閉じることで、外気導入比率が0%にされるとともに、導入された還気に対し冷却コイル225により冷却処理が行われるように、空調制御内容設定部253により、制御内容が決定される。このとき、加湿器224による加湿処理は行われない。
 上述した処理により空調制御内容設定部253において空調制御内容が設定されると、これに基づいて排気用ダンパ30、第1還気導入用ダンパ221、第2還気導入用ダンパ229、および外気導入用ダンパ222の開度、加湿器224、冷却コイル225の制御量、給気ファン226の回転数を制御する制御信号が機器制御部254で生成され、各機器に送信されることにより制御が行われ、目標とする範囲内の給気温度値および給気湿度値の給気が生成される。
 なお、上記空調制御内容の切り替えは、温帯地域等では季節毎に外気の状態に応じて切り替えるようにしてもよいし、熱帯雨林気候区等では1日の内に外気の状態に応じて切り替えるようにしてもよい。その場合、外気温湿度計測値取得部252は、1日の内に複数回各計測値を取得し、空調制御内容設定部253は、外気温湿度計測値取得部252による各計測値の取得に応じて、必要な空調制御内容を設定するようにする。また、例外的空調制御は、環境センサ28により計測された煙や粉塵の量から、必要に応じて実施される。
 以上説明したように、本実施形態によれば、外気の状態に応じて空調制御内容を切り替え、なるべく外気を利用するとともにサーバ管理に適した制御を行うことで、省エネ効果の高いサーバ管理のための空調制御を行うことができる。
 また、なるべく外気を利用して空調制御を行うことで、空調に必要なエネルギーを低減しサーバ室管理システムの稼働に掛かる経費を低減させることができる。
 また、熱帯雨林気候区のような外気の状態が高温高湿となる環境であっても、1日における外気の状態の変化に応じて、上記空調制御内容を切り替えることで、サーバ管理のための省エネ効果の高い空調制御が実現できる。
 また、本実施形態による空調制御部25では、空調制御内容設定部253において空調制御内容が設定される際に、給気目標範囲情報記憶部251に記憶された給気温度目標範囲且つ給気湿度目標範囲内で最適な給気温度目標値および給気湿度目標値を算出し、これらの目標値に基づいて省エネ効果の高い空調制御内容を設定する。
 以下では、本実施形態における最適な給気温度目標値および給気湿度目標値として、消費エネルギーが最小となる給気温度目標値および給気湿度目標値を算出する処理について具体的に説明する。
 まず、空調装置20で消費されるエネルギーEは、以下の式(10)で表すことができる。
  〔数10〕
 E = gcol(Fs × (αHo + (1-α)Hr - Hs))
  + gfan(Fs)
  + ghum(Fw)   式(10)
ここで、
 Fs:給気流量
 Fw:加湿用水量
 α:外気導入比率
 Ho:外気比エンタルピ
 Hr:還気比エンタルピ
 Hs:給気比エンタルピ
 gcol:コイル冷却量と冷却コイル消費エネルギーの関係を示す関数
 gfan:給気流量とファン消費エネルギーの関係を示す関数
 ghum:加湿用水量と加湿器消費エネルギーの関係を示す関数
である。
 このうち、給水流量Fs、加湿用水量、外気導入比率、外気比エンタルピ(外気温湿度計測値より算出)、還気比エンタルピ(還気温度計測値と給気絶対湿度計測値より計算)、給気比エンタルピ(給気温湿度計測値より計算)は、測定もしくは測定値より計算が可能である。ここでは空調制御の対象となるのはサーバ室10内の複数のサーバから発生する熱による顕熱負荷であり、人の呼気等による潜熱負荷は発生しないものと仮定し、還気湿度値は、給気湿度センサ227で計測される給気湿度計測値と同一であるものとする。
 また、コイル冷却量と冷却コイル消費エネルギーの関係を示す関数gcolと、給気流量とファン消費エネルギーの関係を示す関数gfanと、加湿用水量と加湿器消費エネルギーの関係を示す関数ghumは、空調制御部25を構成する機器の特性を示す関数であり既知である。このため、これらの値により空調装置20で消費されるエネルギーEを算出可能である。
 一方、本実施形態における空調制御部25は、前述したように、排気用ダンパ30、第1還気導入用ダンパ221、第2還気導入用ダンパ229、および外気導入用ダンパ222の開度により外気導入比率を制御する処理と、冷却コイル225により給気の冷却量を制御する処理と、加湿器224により加湿量を制御する処理のいずれか、または複数の処理を組み合わせて給気温度および給気湿度を制御するため、給気温度目標値および給気湿度目標値を設定することで、排気用ダンパ30、第1還気導入用ダンパ221、第2還気導入用ダンパ229、外気導入用ダンパ222、冷却コイル225、加湿器224の必要制御量が決定される。
 また、給気流量値Fsについては、還気温度計測値Tr、給気温度計測値Ts0、空気の比熱C、サーバの発熱量Qを用いて、下記式(11)により算出される。
  〔数11〕
 Fs = Q /C /(Tr - Ts0)   式(11)
 このように考えると、給気温度目標値、給気湿度目標値、および給気流量値が与えられた場合、必要な消費エネルギーEは、上述した式(10)を用いて算出することが可能である。
 つまり、本実施形態における空調制御部25を用いたサーバ室10内の空調制御において、理論上必要最小限のエネルギーで稼動するのは、上記式(10)で算出される消費エネルギーEを最小とする給気温度値、給気湿度値、給気流量値の組み合わせで制御する場合であるといえる。
 そこで、予め諸条件の外気温度、外気湿度、サーバ負荷において、消費エネルギーが最小となる給気温度目標値、給気湿度目標値を算出し、これらの関係を示す外気条件/給気条件関係テーブルを作成して空調制御内容設定部253に保持しておくことで、計測された外気の条件およびサーバ負荷から、消費エネルギーが最小となる給気の条件を算出することが可能になる。
 ここでサーバ負荷Qは、サーバの消費動力を用いて計算してもよいし、下記式(12)を用いて計算してもよい。下記式(12)を用いて計算する場合、空調制御内容設定部253において、外気条件/給気条件関係テーブルによる給気条件の算出処理前に、このサーバ負荷Qの算出処理が実行されるようにする。
  〔数12〕
 Q = Fs ×C ×(Tr - Ts)   式(12)
 ここで、
 Q:空調対象負荷
 Fs:給気流量値
 C:空気比熱
 Tr:還気温度計測値
 Ts:給気温度計測値
である。
 このようにして算出された給気温度目標値、給気湿度目標値を用いて、前述したように空調制御内容が決定される。
 以上に説明したように、外気の状態の変化に応じて効率の良い給気温度設定値および給気湿度設定値を適宜変化させながら制御することで、本システムの使用環境が高温多湿な環境(地域)であっても、省エネ効果の高い空調制御を実行することができる。
 なお、上記実施形態においては、給気温度目標範囲および給気湿度目標範囲として米国暖房冷凍空調学会(ASHRAE)により規定された値を用いたがこれには限定されず、制御対象の状態等に応じて他の値を用いてもよい。また、図3のように分割された各領域は、一部もしくは全部が他の領域と重なっていてもよい。
 また、上記実施形態では、複数のサーバが設置されるサーバ室10内の空間を、空調装置20の空調制御対象(空調対象空間)として説明したが、これに限るものではなく、電源装置やその他の発熱する各種機器が格納または設置された空間を、空調装置20の空調制御対象とすることができる。また、上記実施形態では、コールドエリア11とホットエリア12を、構造的に、分離した構成としているが、必ずしもそうする必要はなく、構造的に分離せずに、給気が送り込まれる側をコールドエリア11とし、還気が排出される側をホットエリア12として構成してもよい。
 以上、本発明の実施形態を説明したが、上述の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。その新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (6)

  1.  外気または空調制御対象の還気のすくなくとも一つを導入し、前記空調制御対象に給気として排出する室内ユニットと、
     空調制御部とを具備し、
     前記室内ユニットは、前記外気を導入する外気導入部および冷却器を有する第1空間と、
     前記空調制御対象からの還気を導入する還気導入部を有する第2空間を備え、
     前記空調制御部が前記空調制御対象に対し空調制御が必要であると判断した場合に、
     外気を前記外気導入装置を経由して前記第1空間に導入し、この第1空間では前記冷却器で冷却、除湿の少なくとも一つを行い処理済外気とし、
     還気を前記還気導入部を経由して前記第2空間に導入し、この第2空間で前記処理済外気と前記還気とを混合することにより、前記空調制御対象に前記給気として排出する
    空調装置。
  2.  前記空調制御部は、
     外気の状態が、予め設定された温度および絶対湿度および相対湿度の目標範囲の絶対湿度の上限値超、且つ、前記目標範囲の絶対湿度の上限値および還気温度に対応するエンタルピの値以下となる空気状態範囲に該当すると判定したときに、前記空調制御対象に対し空調制御が必要であると判断する
    請求項1に記載の空調装置。
  3.  前記空調制御部は、
     外気の空気状態が、前記目標範囲の絶対湿度の上限値未満、且つ、前記目標範囲に該当する範囲の空気状態に対応するエンタルピ範囲の上限値超、且つ、還気温度以下、且つ、前記目標範囲の温度上限値超である空気状態範囲に該当すると判定したときにも、前記空調制御対象に対し空調制御が必要であると判断し、この場合には、前記の空調制御に代えて、前記外気導入装置から前記第1空間に外気を導入し、この第1空間では前記冷却器で冷却を行い処理済外気とし、該処理済外気を、前記空調制御対象に前記給気として排出する
    請求項2に記載の空調装置。
  4.  前記空調制御部は、1日の内に複数回、外気温度、外気湿度、および還気温度の各計測値を取得し、各計測値の取得に応じて、空調制御が必要か判断する
    請求項1から請求項3のいずれか1項に記載の空調装置。
  5.  サーバ室を備え、
     前記空調制御対象は、前記サーバ室内の空間であって、前記サーバ室は、分離された第3空間と第4空間とを有し、前記第3空間と前記第4空間との間にサーバが設置され、前記第3空間に流入した給気が前記サーバの発熱により加熱されて前記第4空間を経由して還気として流出するように構成されている
    請求項1から請求項3のいずれか1項に記載の空調装置。
  6.  外気または空調制御対象の還気のすくなくとも一つを導入し、前記空調制御対象に給気として排出する室内ユニットと、空調制御部とを具備し、前記室内ユニットが、前記外気を導入する外気導入部および冷却器を有する第1空間と、前記空調制御対象からの還気を導入する還気導入部を有する第2空間を備える空調装置の空調制御部が、
     前記空調制御対象に対し空調制御が必要と判断した場合に、
     外気を前記外気導入装置を経由して前記第1空間に導入し、この第1空間では前記冷却器で冷却、除湿の少なくとも一つを行い処理済外気とし、
     還気を前記還気導入部を経由して前記第2空間に導入し、この第2空間で前記処理済外気と前記還気とを混合することにより、前記空調制御対象に前記給気として排出するようにする
    空調制御方法。
PCT/JP2012/081190 2012-01-18 2012-11-30 空調装置および空調制御方法 WO2013108495A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12856585.0A EP2806225A4 (en) 2012-01-18 2012-11-30 AIR CONDITIONING AND METHOD FOR CONTROLLING AN AIR-CONDITIONING SYSTEM
CN201280004420.6A CN103502744B (zh) 2012-01-18 2012-11-30 空气调节装置以及空气调节控制方法
US13/821,777 US9420725B2 (en) 2012-01-18 2012-11-30 Air conditioning apparatus and air conditioning control method
SG2013049978A SG192566A1 (en) 2012-01-18 2012-11-30 Air conditioning apparatus and air conditioning control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012008469A JP5932350B2 (ja) 2012-01-18 2012-01-18 空調装置および空調制御方法
JP2012-008469 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108495A1 true WO2013108495A1 (ja) 2013-07-25

Family

ID=48798932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081190 WO2013108495A1 (ja) 2012-01-18 2012-11-30 空調装置および空調制御方法

Country Status (6)

Country Link
US (1) US9420725B2 (ja)
EP (1) EP2806225A4 (ja)
JP (1) JP5932350B2 (ja)
CN (1) CN103502744B (ja)
SG (1) SG192566A1 (ja)
WO (1) WO2013108495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829807A (zh) * 2014-01-06 2016-08-03 Naver商务平台株式会社 服务器机房冷却装置、引入外部空气用过滤模块以及包括该冷却装置和过滤模块的数据中心的空调系统
WO2021030462A3 (en) * 2019-08-13 2021-05-20 Eric Dickinson Improved method and system for configuring hvac systems

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720646B2 (ja) * 1991-08-12 1998-03-04 不二製油株式会社 7s蛋白の分画法
US9709294B2 (en) * 2012-09-20 2017-07-18 Consolidated Energy Solutions Inc. Air conditioning system for dehumidifying and cooling air
GB2513147A (en) * 2013-04-17 2014-10-22 Ibm Energy efficient data center
DE102013207449A1 (de) * 2013-04-24 2014-10-30 Dürr Systems GmbH Verfahren zum Konditionieren von Luft und Konditionieranlage
US10037061B1 (en) * 2013-04-30 2018-07-31 Amazon Technologies, Inc. Multiple-stage cooling system for rack
US20150073606A1 (en) * 2013-09-10 2015-03-12 Microsoft Corporation Cooling system management for server facility
JP6314533B2 (ja) 2014-02-25 2018-04-25 富士通株式会社 データセンター
US10646734B2 (en) * 2014-05-05 2020-05-12 Wayne Fueling Systems Sweden Ab Purge and pressurization system with feedback control
US10154614B1 (en) * 2014-06-04 2018-12-11 Amazon Technologies, Inc. Air handling unit intake air preheat system and method
JP6466108B2 (ja) * 2014-09-09 2019-02-06 株式会社デンソーエアクール 空調システムを制御する制御システムおよび空調システム
JP6519204B2 (ja) * 2015-01-30 2019-05-29 富士通株式会社 コンテナ型データセンター、評価方法及びプログラム
JP5989855B1 (ja) * 2015-05-15 2016-09-07 木村工機株式会社 空気調和システム
KR101582305B1 (ko) 2015-06-03 2016-01-05 엔에이치엔엔터테인먼트 주식회사 공조 시스템 및 이를 이용한 공조 방법
CN106659053B (zh) * 2015-10-28 2019-06-28 鸿富锦精密电子(天津)有限公司 数据中心散热系统
TWI605229B (zh) * 2016-06-06 2017-11-11 台達電子工業股份有限公司 複合式空氣調節設備
US10433466B2 (en) * 2016-06-16 2019-10-01 Dell Products L.P. Mixing chamber for air handling in an information handling system
CN106440167B (zh) * 2016-09-09 2019-06-25 郑州云海信息技术有限公司 一种制冷系统及其使用方法
JP6805714B2 (ja) * 2016-10-19 2020-12-23 富士通株式会社 データセンター
CN106353380B (zh) * 2016-11-01 2019-09-27 杭州潇楠科技有限公司 服务器机柜
CN106770510A (zh) * 2016-11-01 2017-05-31 深圳大图科创技术开发有限公司 一种带有气体检测功能的配电柜
KR102119510B1 (ko) * 2018-06-19 2020-06-08 엔에이치엔 주식회사 공조 시스템
CN111486557B (zh) * 2019-01-29 2024-02-23 Urecsys-城市生态系统-室内空气质量管理有限公司 用于最小化封闭结构中的空气污染的库、系统和方法
JP7255855B2 (ja) * 2019-04-26 2023-04-11 株式会社アイピーコア研究所 空調装置
JP7477739B2 (ja) * 2019-06-26 2024-05-02 ダイキン工業株式会社 外気処理装置及び空調システム
US11173447B2 (en) * 2019-08-07 2021-11-16 International Business Machines Corporation Portable dehumidifying chamber
US11692722B2 (en) 2020-06-26 2023-07-04 Panasonic Intellectual Property Management Co, Ltd. Humidifying device
US11946661B2 (en) * 2021-01-29 2024-04-02 Robert M. Rohde Variable airflow energy efficient HVAC systems and methods
CN114877443A (zh) * 2022-05-24 2022-08-09 巨石集团有限公司 空调器的控制方法、空调器和非易失性存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261696A (ja) * 2009-11-30 2010-11-18 Kajima Corp 外気冷房型電算室用空気調和機
JP2011047581A (ja) * 2009-08-27 2011-03-10 Sanki Eng Co Ltd 外気利用空調システム及び外気冷房運転方法
JP2011242010A (ja) * 2010-05-14 2011-12-01 Toshiba Corp サーバ室管理用の空調システムおよび空調制御方法
JP2011242077A (ja) * 2010-05-19 2011-12-01 Hitachi Ltd 外気導入式データセンタ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102636A (en) * 1980-01-21 1981-08-17 Toshiba Corp Air conditioner
US5324229A (en) * 1993-01-26 1994-06-28 American Standard Inc. Two section economizer damper assembly providing improved air mixing
US5346127A (en) * 1993-10-14 1994-09-13 Creighton And Associates, Inc. Air conditioning system with enhanced dehumidification feature
JPH10311590A (ja) * 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd 換気空調装置
US6062482A (en) * 1997-09-19 2000-05-16 Pentech Energy Solutions, Inc. Method and apparatus for energy recovery in an environmental control system
JP2005172309A (ja) 2003-12-09 2005-06-30 Ntt Power & Building Facilities Inc 送風装置および室用空調システム
US20060183419A1 (en) * 2005-02-17 2006-08-17 York International Corporation Air handling unit mixing method and system
JP4499630B2 (ja) * 2005-08-31 2010-07-07 三機工業株式会社 空気調和機
JP2007232331A (ja) 2006-03-03 2007-09-13 Sumitomo Electric Ind Ltd 空調制御方法及び空調制御装置
GB2446454B (en) * 2007-02-07 2011-09-21 Robert Michael Tozer Cool design data centre
JP4966184B2 (ja) * 2007-12-28 2012-07-04 株式会社東芝 空調制御装置および空調制御方法
JP4703692B2 (ja) * 2008-07-11 2011-06-15 株式会社東芝 空調制御システムおよびこれに利用する給気切替コントローラ、空調制御方法
CN101762111A (zh) * 2009-03-23 2010-06-30 何岳峰 组合式空调系统
US20100130117A1 (en) * 2010-01-20 2010-05-27 Larsen Arthur E Method and apparatus for data center air conditioning
JP5197675B2 (ja) 2010-05-14 2013-05-15 株式会社東芝 空調システム
JP5558201B2 (ja) 2010-05-14 2014-07-23 株式会社東芝 空調装置及び空調システム
JP5085716B2 (ja) 2010-11-02 2012-11-28 株式会社東芝 サーバ室管理用の空調システム、およびこれを利用したサーバ管理用システム、空調制御方法
US9021821B2 (en) * 2010-12-30 2015-05-05 Munters Corporation Ventilation device for use in systems and methods for removing heat from enclosed spaces with high internal heat generation
US9307679B2 (en) * 2011-03-15 2016-04-05 Kabushiki Kaisha Toshiba Server room managing air conditioning system
JP5602072B2 (ja) 2011-03-15 2014-10-08 株式会社東芝 サーバ室管理用の空調システム
JP5759808B2 (ja) * 2011-06-30 2015-08-05 株式会社東芝 サーバ室管理用の空調システムおよび空調制御方法
JP2013030027A (ja) 2011-07-28 2013-02-07 Toshiba Corp モジュールおよびモジュール型データセンタ
JP2013104639A (ja) 2011-11-16 2013-05-30 Toshiba Corp サーバ室管理用の空調システムおよび空調制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047581A (ja) * 2009-08-27 2011-03-10 Sanki Eng Co Ltd 外気利用空調システム及び外気冷房運転方法
JP2010261696A (ja) * 2009-11-30 2010-11-18 Kajima Corp 外気冷房型電算室用空気調和機
JP2011242010A (ja) * 2010-05-14 2011-12-01 Toshiba Corp サーバ室管理用の空調システムおよび空調制御方法
JP2011242077A (ja) * 2010-05-19 2011-12-01 Hitachi Ltd 外気導入式データセンタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806225A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829807A (zh) * 2014-01-06 2016-08-03 Naver商务平台株式会社 服务器机房冷却装置、引入外部空气用过滤模块以及包括该冷却装置和过滤模块的数据中心的空调系统
EP3093565A4 (en) * 2014-01-06 2017-09-13 Naver Business Platform Corp. Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
US10492338B2 (en) 2014-01-06 2019-11-26 Naver Business Platform Corporation Server room cooling device, filter module for introducing outer air, and data center air-conditioning system comprising same
WO2021030462A3 (en) * 2019-08-13 2021-05-20 Eric Dickinson Improved method and system for configuring hvac systems

Also Published As

Publication number Publication date
EP2806225A1 (en) 2014-11-26
JP2013148254A (ja) 2013-08-01
CN103502744B (zh) 2017-04-12
JP5932350B2 (ja) 2016-06-08
US20140349563A1 (en) 2014-11-27
US9420725B2 (en) 2016-08-16
EP2806225A4 (en) 2015-11-11
SG192566A1 (en) 2013-09-30
CN103502744A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5932350B2 (ja) 空調装置および空調制御方法
JP5185319B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
US9185829B2 (en) Air-conditioning system and air-conditioning method for server room management
JP5759808B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
KR101471494B1 (ko) 자연 공기를 이용한 서버룸 냉각 장치 및 방법
JP2011242011A (ja) サーバ用空調システム
WO2011142344A1 (ja) 空調装置及び空調システム
US9091454B2 (en) Air change rate measurement and control
JP4664190B2 (ja) 空調制御システム
JP5602072B2 (ja) サーバ室管理用の空調システム
JP2013253753A (ja) データセンタ用外気冷却システム
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP2013047603A (ja) 空調システム
JP2010014360A (ja) 空調システム
JP2017161111A (ja) 空調システム
JP6251646B2 (ja) 加湿システム及び加湿方法
WO2021166405A1 (ja) 空調システム、空調システムコントローラ
JP2011141079A (ja) パッケージ型空調機
Wright et al. The minimum capacity of HVAC secondary systems (with capacity reduction by interzonal airflow)(RP-1049)
KR20140105422A (ko) 자연 공기를 이용한 서버룸 냉각 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13821777

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012856585

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201404378

Country of ref document: ID