CN111486557B - 用于最小化封闭结构中的空气污染的库、系统和方法 - Google Patents

用于最小化封闭结构中的空气污染的库、系统和方法 Download PDF

Info

Publication number
CN111486557B
CN111486557B CN201910405983.XA CN201910405983A CN111486557B CN 111486557 B CN111486557 B CN 111486557B CN 201910405983 A CN201910405983 A CN 201910405983A CN 111486557 B CN111486557 B CN 111486557B
Authority
CN
China
Prior art keywords
ventilation
library
air
vap
related parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910405983.XA
Other languages
English (en)
Other versions
CN111486557A (zh
Inventor
尼尔·巴萨
科比·里希特
希蒙·阿米特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Urecsys Urban Ecosystem Indoor Air Quality Management Co ltd
Original Assignee
Urecsys Urban Ecosystem Indoor Air Quality Management Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Urecsys Urban Ecosystem Indoor Air Quality Management Co ltd filed Critical Urecsys Urban Ecosystem Indoor Air Quality Management Co ltd
Publication of CN111486557A publication Critical patent/CN111486557A/zh
Application granted granted Critical
Publication of CN111486557B publication Critical patent/CN111486557B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/028Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using expert systems only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/50HVAC for high buildings, e.g. thermal or pressure differences
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开涉及结合用于封闭结构的集成通风和温度控制使用的库。确切地说,本公开涉及用于基于用户限定的目标利用动态的用户限定的阈值和实施策略以最佳方式最小化污染且同时节省能量并维持多层结构和其内部空间内部的所需新鲜空气水平的库、系统和方法。

Description

用于最小化封闭结构中的空气污染的库、系统和方法
版权声明
以下公开内容的一部分包含受版权保护的材料。版权所有者不反对任何人复制专利和商标局专利文件或记录中出现的专利文档或专利公开内容,但无论如何另外保留所有版权。
背景技术
本公开涉及与封闭结构的集成式通风和温度控制结合使用的库。具体地,本公开涉及用于结合最小化能量需求及利用动态和自适应的用户限定的通风判断依据维持所需的新鲜空气水平,以最佳方式最小化封闭结构内的污染的库、系统和方法。
气候变化、环境标准和土地资源的减少迫使现代建筑标准设计和建造更高的结构。这些结构基于优越的结构完整性保留其价值,并且随着能源价格持续上涨,更节能。由于建筑围护结构(building envelope)的构造,这些建筑物可能或可能不保护居住者免受例如花粉、灰尘、湿气等室外污染物的不良渗透。
然而,这种结构的居住者、运营者和所有者也希望感到舒适并且没有暴露于可能引起例如健康问题的任何室内污染物的风险。具有优异结构完整性的建筑物需要外部空气的频繁通风以维持结构内的例如新鲜O2的水平,并降低CO2的水平。建筑物内部的通风(窗户和门的打开、主动通风等)主要发生在工作时间,即城市空气污染最严重的时候。因此,来自外部的空气污染被引入到建筑物中。
此外,在努力以有效的加热和冷却参数运营建筑物的过程中,正以固定的基于规定的关于定时和结构内的各种污染物浓度的参数将这些建筑物和封闭结构构造为日益严重隔绝的系统。
因此,需要更有效和高效的手段来确定为这些封闭结构通风的最佳条件。
发明内容
在各种实施例中,公开了用于结合最小化能量需求并利用动态和自适应的用户限定的通风判断依据以最佳方式维持所需的新鲜空气水平,最小化封闭结构内的污染的库、系统、方法和计算机可读介质。更具体地,本文提供了向多层封闭结构中的整体HVAC系统提供指令用于以将维持预选参数(无论是用户限定的还是基于规定的)的方式对结构进行通风的库和方法。
本发明提供了用于实时地集成和优化不同且有时冲突的要求的手段:维持对建筑物的新鲜空气供应、减小室内空气污染浓度和节能。系统可以计算不同冲突要求的量化加权组合。在本文提供的一些实施例中,系统可以计算考虑所有考虑因素和要求的单个值。此外,在本发明的一些实施例中,所述系统和方法利用阈值。当前系统和方法不是利用静态/固定的预定阈值,而是利用动态阈值,其实时考虑空气污染水平的动态变化并将它们与新鲜空气和能量要求相结合,以便计算控制通风系统的一个或多个值。这些计算出的最佳值决定了进入多层结构的新鲜空气通风的增加/减少。此外,在本文提供的一些实施例中,系统可以在不使用室内空气污染测量的情况下估计和计算动态阈值,而是仅使用室外空气污染测量的历史数据、通风历史、气体动力学模型(例如,扩散和分解速率)、启发式和/或机器学习方法,和/或统计方法。
在一实施例中,提供了一种处理器可访问的库,其包括用于多层结构的加热、通风和空气调节(heating,ventilation and air conditioning,HVAC)进程的控制信息,其中所述库包含数据和可执行命令,所述可执行命令在被执行时被配置成识别用于通风和/或加热和空气调节的最佳时段,并且其中所述数据包括外部和内部HVAC参数。
在另一实施例中,本文提供一种用于优化系统中可实施的多层结构中的加热、通风和空气调节(HVAC)进程的计算机化方法,所述系统包括所述多层结构、加热、通风和空气调节(HVAC)系统、与其上具有处理器可读介质的非易失性存储器通信的处理模块,以及库,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于多层结构的内部温度的空气调节相关参数(HACAP6),以及关于多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括多个主进程对象,其链接到第一、第二和第三通风相关参数以及链接到关于多层结构的内部和外部温度的加热和空气调节相关参数;所述方法包括:响应于通风提示,选择一组操作,所述操作被配置成从库中的所述多个目标实现预定主进程的优化目标;使选定组的操作相关联以在通风请求内创建一组进程命令并形成通风命令,其中所述库中的所述组主进程对象链接到所述通风命令,而不将所述组主进程对象复制到通风命令中;以及执行通风命令。
在又一实施例中,本文提供一种与库通信的处理器可读介质,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于多层结构的内部温度的空气调节相关参数(HACAP6),以及关于多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括与单个目标相关联的数据和信息,所述单个目标与多个主进程子目标相关联,所述多个主进程子目标链接到第一、第二和第三通风相关参数以及链接到关于多层结构的内部和外部温度的加热和空气调节相关参数,所述处理器可读介质具有一组可执行指令,所述可执行指令在被执行时被配置成致使处理器:从加热、通风和空气调节(HVAC)系统接收通风请求提示;响应于通风请求,选择一组操作,所述操作被配置成从所述多个主进程的优化目标实现预定主进程的优化目标;使选定组的操作与通风请求相关联;在通风请求内创建一组进程命令;形成通风命令,其中所述库中的所述组主进程对象链接到所述通风命令,而不将所述主进程对象复制到通风命令中;以及在通风命令中执行所述组通风相关进程对象。
在另一实施例中,本文提供了一种控制HVAC系统的状态的方法,以便启动预限定的优化策略,所述优化策略被设计成利用具有各种参数的链接数据库的内容在遵循预限定的先决条件的情况下追求预限定的优化目标,所述各种参数中的至少一个参数通过输入信道不断更新。
可以根据用户的自定义要求限定先决条件。例如,这些先决条件可能是,HVAC系统将符合特定通风规定或标准;在某一自定义的时间段内,平均室外气流将不低于某一自定义值;CO2的浓度将不会超过某个限定的值,等等。在任何情况下,一些先决条件被限定为与对多层封闭结构的最小强制室外空气供应有关。
数据库可以配置为包含一个通风相关参数(VAP3),其表示HVAC系统的状态的时间历史;以及一个通风相关参数(VAP2),其与由HVAC系统供应给建筑物的室外空气中测量或估计的一种所关注污染物若干污染物的组合的浓度的时间历史相关。此外,所述库包括一组完整的参数,这些参数用于携载由优化策略限定的计算,并验证是否符合每个限定的先决条件。这些参数可包括例如建筑物本身和其中的特征活动的各种参数。
优化目标可以是多个子目标的加权组合,例如,最小化室外源对室内空气的污染,以及最小化HVAC系统的能量需求。
在所提供的方法中使用的优化策略可以被配置为计算动态阈值(DTV),所述动态阈值基于由VAP3指示的先前通风事件期间VAP2的值的加权组合。该值基于在多层封闭结构通风的情况下HVAC系统的预期瞬时能量需求的估计值来进一步操作,其中DTV随着所述能量需求单调减小。减小的幅度由优化目标内的子目标的相应权重确定。
另外,在所提供的方法中,在实施例中,在VAP2的当前值与DTV之间进行比较。当VAP2例如小于或等于DTV时,将发生通风。否则,通风将停止,前提是此停止不会导致违反某些已限定的先决条件。
由优化策略实施并由处理模块执行的指令可以由控制单元致动,所述控制单元物理地连接到HVAC系统并且处理单元具有与所述控制单元的本地或远程通信信道。
在优化目标的处理和致动期间创建的数据可以连续地反馈到数据库中,以便用于随后的处理或系统的监视。
在某些实施例中,可以根据先决条件进一步操作动态阈值(例如,随着多层封闭结构中的当前条件接近根据先决条件强制通风的条件,阈值增加)。
此外,在某些实施例中,优化目标内的子目标的权重根据用户限定的标准动态地调整(例如,当入住率为低时,给予室内空气质量较低权重且给予能量节省较高权重,而当入住率为高时则相反)。
在一实施例中,可以根据例如在不久的将来(例如,在下一分钟、小时、天等内)VAP2的预期值的预测来进一步操作动态阈值。
在另一实施例中,另一通风相关参数(VAP1)可以在库中限定,并且与室内空气中一种或多种物质(例如,NOx)的浓度的测量或估计相关联。然后,可以计算DTV并基于VAP1的当前值和其它预测工具来确定DTV。
在又一实施例中,考虑到至少一个HVAC系统活动的影响、生物活动的影响,以及建筑物内任何其它种类的活动的影响,可以进一步基于建筑物内的气体和其它空气传播材料的流动力学和崩解动力学的化学、物理或计算模型来计算动态阈值。
在一实施例中,优化目标进一步包括最小化由于室内进程或室内气体组分(例如CO2的累积、O2的减少、例如挥发性有机化合物(VOC)等室内污染物的累积、令人不快的气味的出现或包含前述的某一组合)导致的室内空气的侵蚀和/或污染的子目标。
在这种情况下,可以例如基于归因于室内进程的室内空气污染和/或侵蚀的估计、基于参数VAP3的最近值和多层封闭结构的一些参数,以及基于数据库中出现的人类活动来进一步计算动态阈值。
在另一实施例中,优化目标可以进一步包括使室外源的污染物的平均浓度最小化的一个以上子目标。因此,然后基于所有所关注污染物的最近VAP2值的组合来计算DTV。另外,然后将DTV与基于所有所关注污染物的当前VAP2值的加权组合计算的指数进行比较。两种组合中的权重可以根据优化目标中的对应权重来确定。
在又一实施例中,可以在数据库中限定额外参数,其与例如远离封闭结构的位置处的污染水平、建筑物入住率、气象、交通等中的至少一个数据相关联并且可能通过额外的输入信道更新。上传到系统的处理模块的优化策略可以使用这些参数。
在决策空间是二元的实施例中(即,室外气流只能接通或断开的情况下),处于“接通”配置的室外气流可以进一步根据可变条件动态调适,所述可变条件例如室外湿度和温度以及室内设定温度的变化。然后可以在当前条件下将流量设定为最大可能水平,其中系统仍然可以防止液态水过量积聚在其中。
在另一实施例中,HVAC系统可以在多个值之间调节室外空气流量。因此,先决条件可以进一步包括根据室外温度和湿度允许的最大室外气流。
在又一实施例中,优化策略逻辑不基于阈值和VAP2之间的比较,而是基于预测搜索策略。因此,动态通风判断依据不限于DTV。
在一实施例中,系统进一步包括图形用户界面(GUI),其被配置为允许用户可选择地调整逻辑,以确定所选择的优化目标内的子目标的加权。
在一实施例中,使用所提供的库来实施所公开的方法的本文提供的系统进一步包括适于从离散方向提供可选择的空气流入的多向和可调节方向的进气模块中的至少一个。
此外,且在一实施例中,本文提供一种用于自适应地优化系统中可实施的多层结构中的加热、通风和空气调节(HVAC)进程的方法,所述系统包括所述多层结构、加热、通风和空气调节(HVAC)系统、与其上具有处理器可读介质的非易失性存储器通信的处理模块,以及库,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于多层结构的内部温度的空气调节相关参数(HACAP6),以及关于多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括具有动态阈值的由多个子目标构成的多个主进程对象,所述动态阈值链接到第一、第二和第三通风相关参数以及链接到关于多层结构的内部和外部温度的加热和空气调节相关参数;所述方法包括:选择历史数据集,所述历史数据集包括从一个或多个预测预告统计模型接收的第一组预告污染物的值和从污染物的一个或多个测量值接收的第一组实际污染物的值;产生机器学习模型的一个或多个变型以通过在历史数据集上训练机器学习模型的所述一个或多个变型来对所述一个或多个预测预告模型的性能建模;接收当前数据集,所述当前数据集包括从所述一个或多个预测预告模型导出的第二组预告污染物的值和从污染物的所述一个或多个测量值导出的第二组实际污染物的值;使当前数据集与历史数据集相关以自适应地获得过滤后历史数据集;选择历史数据集上训练的机器学习模型的所述一个或多个变型且在过滤后历史数据集上对其进行评估以向机器学习模型的所述一个或多个变型中的每一个和其输出指派权重;以及基于过滤后历史数据集上的机器学习模型的所述一个或多个变型的所述评估和历史数据集上训练的机器学习模型的所述一个或多个变型中的每一个的输出以最佳组合函数的形式导出统计模型,以通过组合指派到经过训练的机器学习模型的所述一个或多个变型中的每一个的权重来确定至少一个组合预告污染物的值,其中所述选择、所述产生、所述接收、所述相关、所述评估和所述导出由处理器使用存储于存储器中的计算机可读指令执行。
用于利用动态的用户限定的阈值以最佳方式最小化封闭结构内的污染的库、系统、方法和计算机可读介质的这些和其它特征将在结合图式和实例阅读时从以下详细描述中变得显而易见,图式和实例是示例性的而非限制性的。
附图说明
为了更好地理解用于利用动态的用户限定的阈值以最佳方式最小化封闭结构内的污染的库、系统、方法和计算机可读介质,参考所附的实例和图式,其中:
图1示出系统各单元之间的通用信息流;
图2是示出用于基于可用资源选择实现特定目标的最佳策略的决策流程的示意图;
图3是示出用于致动基于通风的计算DTV的命令流程的示意图;
图4示出处理器在选择优化策略时的逻辑;
图5是示出考虑通风系统中的冷凝的逻辑的示意图;且图6-10示出主要和次要外部和内部通风口配置的各种实施例的示意图。
具体实施方式
本文提供了用于结合最小化HVAC系统的能量需求,维持室外空气供应和额外要求,利用动态和自适应用户限定的通风判断依据以最佳方式最小化封闭结构内的污染的库、系统、方法和计算机可读介质的实施例。更具体地,本文提供了在多层封闭结构中向整体HVAC系统提供指令用于以将维持预选参数(无论是用户限定的还是基于规定的)的方式对结构进行通风的方法的实施例。
定义:
优化目标:系统预期追求的最佳结果的限定。由用户和每个实施例在给定时刻限定它是唯一的。可以由将它们组合成一个目标的若干目标和优先级逻辑组成。优化目标可以配置为对各种参数加权,例如:能量、热量、CO2水平、规定和封闭结构标准、空气质量和空气污染。
优化策略:系统采用的一种用以追求优化目标的方法。系统的例项可以包含不止一个优化策略,在这种情况下,它还具有选择最适合在给定时刻使用的策略的能力。
先决条件:系统必须始终以高优先级确保满足的条件集合。它们通常被限定为在努力改进HVAC操作的任何其它方面之前确保结构对于居民是安全和舒适的。
链接数据库:优化策略使用的数据集合,用于解释优化目标并追求该优化目标。链接数据库包含不断更新的参数(例如,室内/室外空气中污染物的时间浓度)以及静态参数(例如,结构的物理量度)和限定(例如,每个入住者所需的平均室外气流)。
可用的室外空气:在给定的时刻可由HVAC系统供应到封闭结构中的室外空气。包含封闭结构外的任何少量空气,如果通风,其成分对室内空气的成分具有可测量的因果影响。
所述系统被配置为尝试达到最佳结果并且始终满足先决条件要求。在不同的实施例中,根据系统或用户的特定需要,或者根据用户的特定偏好,可以用不同的优化目标和不同的先决条件初始化所提供的系统。在操作中,系统利用链接数据库,其可以包含数据、限定和可以提供的任何其它种类的信息,以帮助系统成功地解释先决条件,遵守它们并引导实现关于优化目标的最佳结果的操作进程。
值得注意的是,虽然已知各种系统将外部污染水平与测得的内部水平或固定阈值进行比较,但本文提供的系统采用动态且自适应的并且相对于不同的可用参数实时不断更新的通风判断依据,其方式为在当前时刻并且可能还在预测的未来期间反映封闭结构的当前(或即时确定的)状态以及用户的偏好。
因此,有可能在给定的一天(或时间)内某个外部空气污染水平将导致打开系统进行新鲜空气通风,而在另一天(或时间)内,相同的污染水平将导致关闭室外新鲜空气通风。此外,有可能在给定的一天(或时间)内,测得的外部和内部空气污染水平的某种组合将导致打开系统进行新鲜空气通风,而在另一天(或时间)内,相同的组合将导致关闭新鲜空气通风。因此,在连续的基础上,系统建立新的标准,该新标准将限定打开/关闭或增加/减少进入封闭结构的新鲜空气通风。
系统可以配置成控制室外空气供应到多层封闭结构中的流量。这种控制可以例如通过控制继电器(指代在电路中具有对应于断路的至少两个状态和导通路径的导通状态的电控制的装置)以便接通或切断室外空气供应扇来实施。另一选择可以是例如室外空气供应扇,其可通过本文公开的系统控制的变速驱动器(VSD)驱动,以调节室外空气流量。此外,系统可以配置成控制至少一个外部空气倾卸器(指代设置在空气轴等中的具有可变开口配置的板或板条),以便调节室外空气流量,或室外空气和供应给封闭结构的室内循环空气的流量之间的比率。如本文所用,阻尼器可以是任何计算机控制的机器,其可调节或调控通风管道、烟囱、VAV盒、空气处理器,或其它空气处理设备的有效横截面,从而修改、调制或调节通过所述管道、烟囱、VAV盒、空气处理器或其它空气处理设备的总空气流量。
更具体地,在并入有依赖于外部污染水平与污染水平阈值的比较的通风判断依据的实施例中,这些不是固定阈值,而是动态和自适应阈值,其在当前时刻期间且可能在预测的未来期间根据结构内部和外部的不断变化的条件通过优化策略实时地不断调整。
已知各种系统测量外部污染水平并将其与测得的内部水平或固定阈值进行比较。这些系统可以简单地基于外部污染水平是高于还是低于测得的内部污染水平或者与其比较的固定阈值来产生通风判断依据。相反,本文提供的系统可以被配置为考虑各种其它考虑因素:
-吞吐量(通量)要求和室内空气质量的维护,其根据由先决条件限定的公认的通风判断依据和用户的喜好。
-由优化目标限定的系统预期要追求的不同子目标的动态加权组合。这些可能是室内空气质量和空气污染、热量维持和/或能量节省的各种指标。
-动态优化策略可以考虑各种参数,这些参数允许其相对于优化目标实现更好的结果。例如:先前通风事件中的累积通风效果;先前通风事件与当前时刻之间的滞后时间;当前外部污染物水平与内部污染物水平之间的差异相对于该差异的历史值;通风吞吐量和通风体积相对于结构的体积;测得或估计的室内空气污染;结构的入住率;结构内的CO2水平;允许根据结构内外的通风状态和其它测得的条件估计室内空气质量和室内空气污染的各种模型;允许预测室外空气污染的各种模型。
在某些实施例中,系统将估计封闭结构中的当前污染水平。所述估计可以基于与结构相关联的污染监测装置(在一实施例中涉及室内空气中一种或多种预定气体或其它空气传播材料(例如NO2)的浓度)。其还可以基于计算,所述计算考虑先前通风事件期间可用室外空气的污染、自先前通风事件以来的滞后时间、先前通风事件持续到当前时刻的累积影响,以及通风系统和结构的特性。此外,系统还可以使用动态空气污染建模,其考虑内部和外部污染水平之间的测得/估计的差异以及室内污染物的崩解和分解动力学、影响崩解的因素(例如,温度、相对湿度、循环室内空气流量等)、各种污染物的半衰期、各种污染物的反应、结构中污染动态的统计特性,以及影响与污染物本身有关的室内污染物水平的类似参数。
影响率,换句话说,外部新鲜空气的通风将影响内部污染物水平的速度,将不仅取决于室外空气的吞吐量(通量),还取决于通风系统的特性,以及外部污染物水平和内部污染物水平之间的差异。无论是在通风期间还是在通风停止时,这种差异还将影响由于空气与结构外部的被动交换(即,借助于通过通风系统的入口的主动通风流以外的方式,例如扩散)导致的影响率。按理说,外部污染物水平与内部污染物水平之间的差异越大,则影响率就越快。
在某些实施例中,将在所公开的系统和库中实施对未来污染水平和趋势的预测。在每个时间点,系统将对未来的内部和外部污染水平、其增加还是减少,以及达到什么水平进行预测。根据预测,系统可以配置为改变在该时间点是否应该启动或增加通风,或者是否关闭/减弱通风系统的决定。
在一实施例中,本文提供的系统可进一步包括用户界面,该用户界面可以包含用于控制系统功能性的各个方面和/或监视关于HVAC系统和多层结构的状态的数据和曲线的命令。这些包含例如经由通过因特网从任何网络接入终端访问的图形用户界面(GUI)对其一些参数的动态控制。例如,结合例如本文所公开的策略,加权参数A量化最小化污染物浓度和最小化能量消耗的所期望优先级。在用户希望对例如A等调谐参数进行动态控制的情况下,将提供用户界面。这样的用户界面可以是虚拟的(例如,门户网站界面或应用),或者在控制面板内,作为处理模块和/或HVAC控制模块的一部分。
可以通过这样的用户界面给予用户的额外类型的动态控制可以是,例如:由主动优化策略合并的任何其它调谐参数;优化目标的限定,例如调整不同子目标之间的层次结构、从预限定的可能子目标列表中接通和切断不同的子目标;从预限定的可能先决条件列表中选择相关的先决条件;关于多层结构中的预期入住率的输入(例如,用户可以通知系统在某个未来时间期间在结构中预期异常高或低的入住率,从而允许系统进行更好的优化),和/或其组合。
所提供的系统还可以包括显示器,并且GUI还可以包含各种数据的图形表示,例如:系统的整体操作状态;最近的系统活动日志,例如最近的HVAC系统状态曲线;测得或计算出的有关室内和室外污染物浓度、室外空气到结构的供应和其它种类的所关注数据的最新数据;概述系统性能的汇总统计数据和曲线(例如,关于每个限定的目标)或其组合。
因此,且在一实施例中,本文提供了一种处理器可访问的库,其包括用于多层结构的加热、通风和空气调节(HVAC)进程的控制信息,其中所述库实施识别用于通风和/或加热和空气调节的优化时段的方法。应注意,本文提供的库、方法和系统可以被配置为在多层结构内的任何封闭体积中追求预限定的优化目标。例如,房间、办公室、公寓、开放式平面格局等或它们的组合,而不一定是整个多层结构。
利用本文提供的动态和自适应的用户限定的(即,可选择的)通风判断依据,以最佳方式最小化封闭结构内的污染的库、系统、方法和计算机可读介质中使用的通风参数可包括:与多层结构的内部相关的第一通风相关参数(VAP1);与多层结构的外部相关的第二通风相关参数(VAP2);以及与时间通风历史相关的第三通风相关参数(VAP3),其中所述库进一步包括链接到第一、第二和第三通风相关参数的多个主进程对象。
同样地,库可以进一步包括与包含有封闭体的中心相关的第四通风相关参数(VAP4);以及指明封闭体在中心内的位置的第五通风相关参数(VAP5),其中所述库进一步包括多个与所述第四和第五通风相关参数相关联的主进程对象;以及与封闭体的内部温度相关的第六加热和空气调节相关参数(HACAP6);以及与封闭体的外部温度相关的第七加热和空气调节相关参数(HACAP7),其中该库进一步包括多个链接到第六和第七通风相关参数的主进程对象。此外,库被配置为使得用于控制系统的信息可由用户选择性地修改。此外,库可以包括第八加热和空气调节相关参数(HACAP8),所述第八加热和空气调节相关参数(HACAP8)包括在通风功率被配置为在多个值之间调谐的情况下使用的露点。在这些情况下,系统被配置成确定最高气流,而非代替于冷却空气将液态水注入到多层封闭结构中。
在一实施例中,系统可以用系统必须始终确保满足的一组规则的形式用用户限定的(换句话说,可选择的)先决条件初始化。
可能的先决条件的实例:
■维持与通风规定或标准的兼容性,例如ASHRAE 62标准。
■维持封闭结构内的CO2浓度低于某个预限定阈值。
■在持续时间T的每个时间窗中向封闭结构供应至少体积V的室外新鲜空气,其中V和T是预限定值。
■切勿停止对封闭结构的室外空气通风持续超过某个预限定值。
■切勿将室外气流增加到将液态水而非冷却空气注入到封闭结构中的水平,如外部和内部温度及露点所限定。
在一实施例中,可以用用户限定的(换句话说,可选择的)优化目标来初始化系统,该优化目标包括一组子目标和优先级逻辑。优先级逻辑限定了子目标被组合在一起的方式,例如,在关于一个子目标的优化可能导致相对于另一子目标的子优化结果的任何情况下。
可能的子目标的实例可以是:
■在入住时间期间减小室外源的一种或多种污染物(例如NO、NOx、苯、PM2.5等)的室内浓度。
■最小化由于入住时间期间室内源或室内进程(例如,CO2的累积、O2的减少、例如挥发性有机化合物等污染物的累积、令人不快的气味的出现等)导致的室内空气腐败和污染的至少一个指示。
■减少加热、通风、空气调节和制冷进程的能量需求。
■最小化要求最少的室外空气供应的某一标准被违反的时间。
■作为先决条件可以给出的任何要求可以替代地以较少规定的方式给出,作为优化目标中的子目标。在这种情况下,遵守它将与其它限定的子目标一起考虑。
因此,并且在一实施例中,库的第一通风相关参数(VAP1)可以包括在多层结构内可选择地确定、预测和/或预告的污染物浓度;库的第二通风相关参数(VAP2)可包括紧靠在多层结构外部的空气(如本文所限定,可用室外空气)中的可选择地确定、预测和/或预告的污染物浓度。在另一实施例中,第一通风相关参数(VAP1)是包含封闭结构内空气污染水平的时间和空间量化中的至少一个的数据集。类似地,第二通风相关参数(VAP2)可以包括数据集,所述数据集包含进入封闭结构的室外污染的时间和空间状态中的至少一个。此外,第三通风相关参数(VAP3)可以包括数据集,所述数据集包含封闭结构的通风状态的时间和空间量化中的至少一个。
与目标集一起,优化目标可以包括借以将它们组合在一起的优先级逻辑,例如:
■严格的层次结构:首先相对于第一子目标进行优化,并且只有在不损害相对于所述第一子目标的结果的情况下实现这一点,才相对于优先级中的下一子目标进行进一步优化,等等。
■时间上的分离:在给定时间内仅针对单个子目标进行优化,所述单个子目标的选择根据某些条件(其可以是例如多层封闭结构的假定或测得的入住率)在不同时间之间改变。
■加权组合:将权重指派给每个子目标,并根据所述权重优先处理相对于所述子目标的优化。
■对人类健康的影响:当结合从最小化暴露于健康危害的尝试中获得的子目标时,可以通过使用毒性功能来进行组合。例如,室内空气中某些污染物的浓度的毒性越小,则其浓度的最小化将获得越低的权重。
■组合上述一个以上的优先级逻辑也是可能的,例如作为基于规则的算法。例如,加权组合,其中根据多层封闭结构的入住率并且还根据所关注污染物的毒性,在时间上动态地调谐权重。
系统中使用的库可以动态链接到远程数据库,并且进一步包括:与多层结构的物理特性相关联的参数;封闭结构和HVAC系统的物理特性;多层结构的紧靠的周围环境的地形和/或地理特征;关于多层结构中的入住率的时间数据;时空气象数据。
关于室内或室外空气中污染物浓度的时空(换句话说,时间和位置相关)数据,其可以在离散结构内部的某个位置、在其附近或更远的位置处参考;关于HVAC系统状态的时空数据;各种量,其可用作多层封闭结构附近当前或未来所关注污染物水平的指标;数据项的变换(例如,log、ln、1/x、e^x等)后数据;数据项的无量纲表示;或包括前述内容的参数的组合。
物理结构数据可以是例如天花板高度和地板面积;划分地板和分隔空间;通风系统不直接有效地循环空气的体积规格(例如,没有通风系统开口的房间、天花板以上和地板以下的体积等);接口和开口的规格(例如,可打开的窗户和门)允许与离散结构的周围环境交换气体,而不是通过通风系统;使用离散结构(例如,办公室、健身房、工厂、私人住宅等),或前述的组合。
同样地,HVAC系统的物理特性可以是,例如:系统可访问的其不同操作状态;在任何给定的条件组合下系统的最大加热和冷却功率;允许依据条件组合(例如,可以是室外温度、室外相对湿度、目标室内温度、室外空气流量、室内空气循环流量等,或其组合)计算其能量消耗的参数。
同样,关于离散结构周围环境的地形和地理信息可以是,例如:离散结构的坐标(经度、纬度、高度);基于2D地图的区域的3D模型或该区域的所估计3D模型;或其组合。另外,时空气象数据可以包括例如气象参数的日志,或者例如在结构附近的气象参数的描述性统计值(例如,周期性平均值)的日志。气象参数的实例为:温度、相对湿度、风速和风向、降水、云量、云层、大气压力、太阳辐射通量等。
此外,关于室内或室外空气中的污染物的浓度数据可包含例如:测得或计算出的浓度值的日志;基于一种或多种污染物浓度水平计算的量的日志(例如,若干污染物浓度的加权平均值、若干污染物的综合毒性指数等);描述性统计值的日志,其提供瞬时污染物水平的日志的精简表示。
在一实施例中,系统包括输入信道,每十秒钟提供一次NOx的室外测量,并且已经发现:在当前时刻之前的十分钟内浓度的高频波动的幅度可以用于预测稍后时刻浓度的趋势(例如,其预期增加还是减少);此外,在过去一周内通过15分钟的平均值量化的低频趋势可用于预测接下来几个小时内的预期浓度值。对于所述特定结构中的所述实施例,日志将仅保持15分钟的高频数据。日志的其余部分将仅包含每15分钟的平均值。周期性内部进程将计算平均值并擦除旧的高频数据。
关于HVAC系统的状态的数据可以是,例如:HVAC系统的状态的日志(包括例如室外空气供应和室内空气循环的流量、目标室内温度等);测得或计算出的HVAC系统的功耗的日志;或其组合。另外,关于结构入住率的数据可以是,例如:在任何给定时间多层封闭结构的预期入住率的限定;和/或多层封闭结构的测得或估计的实际入住率的日志。
此外,可以用作多层封闭结构附近的当前或未来所关注污染物水平的指标的各种量的日志可以是,例如:关于污染源的数据,例如:关于交通模式和密度的信息;关于例如工厂、发电厂、商业周边等其它空气污染源的活动的信息;或其组合。
数据项的无量纲表示可以是,例如,通过依据具有相同量纲的一些加权比例进行物理值的分割而得到的量。例如,运算,例如
其中L和H分别是一些特性高和低阈值,且表示是介于0(在x≤L时获得)和1(在x≥H时获得)之间的数字。同样,可使用非线性表示,例如:
在这种情况下,f在0和1之间平滑地变化,其曲率和中心(即,x的值,其中f(x)=1/2)分别由a和b限定。例如,这种无量纲表示可用于计算两种不同类型数据的量化组合。
本文提供的库和数据库可以进一步包括:与不同浓度和不同持续时间的暴露下每种所关注污染物的毒性相关的参数(例如,致死剂量50%、未观察到的不利影响的浓度等)以及可能多种污染物的综合作用和毒性;与一个或多个模型相关的参数,所述模型描述封闭结构中气体和其它空气传播材料的室内和室外动力学(例如,扩散系数、各种化学和物理过程的速率、从污染物的已知室外浓度预测所述污染物的室内浓度的统计回归模型的系数等);以及确保与先决条件兼容所需的参数(例如,为了符合ASHRAE 62标准,库可以根据所述标准以及所述标准针对每个类别限定的强制通风要求包含封闭结构中空间的入住率类别的限定)。这些参数可能会也可能不会保存在链接数据库中。
在一实施例中,库可以进一步包含用于确保与先决条件的兼容性的计算的实施方案。例如,在系统可以在0和R(体积/时间)之间切换室外气流的实施例中,先决条件包含要求在持续时间T的任何时间段内排入到封闭结构中的累积室外新鲜空气将至少为体积V,其中T和V是某些预限定值,可以在库中实施以下计算,确定从当前时刻t开始允许系统保持通风持续停止到什么时间,其中所述时间以步长dt离散化:
在一些实施例中,库将包括基于动态阈值(DTV)的一个或多个优化策略的实施方案。在这些策略中,系统在动态阈值和VAP2的当前值之间进行比较,并根据比较结果设定通风决策。例如,在决策空间是二元的实施例中(即,室外气流只能接通或切断的情况下),由此产生的通风决策将是在VAP2的值小于或等于动态阈值的情况下接通通风。否则,决策将是停止通风。这样做,假设选择的指令不会导致违反任何先决条件。示出这些策略的流程图在图3中示出。
在决策空间是非二元的另一实施例中(即,室外气流可以在多个值之间切换的情况下),可以实施额外的计算并且在发现VAP2的当前值小于或等于动态阈值的情况下使用所述额外的计算。该计算确定与VAP2的当前值和动态阈值之间的差相关联的通风室外气流。例如,在其中通风室外气流可以在零和某一最大值M之间连续调谐的实施例中,此计算可能是
f(x)=min(M,max(0,α·x))
其中a是某一预限定的系数,x是VAP2的当前值和动态阈值之间的差,且结果f是所需的通风室外气流。
另外并且在一实施例中,动态阈值(DTV)基于与限定的优化目标相关的各种考虑因素并且还可能基于所限定的先决条件来计算。这些可能是,例如:当前的室内污染水平;先前通风事件期间室外污染水平的加权组合;相对于封闭结构的体积的先前通风事件期间的室外气流;室外污染水平预测;室外污染程度的历史趋势;HVAC系统的瞬时能量需求的估计值,其预期是由系统启动的任何通风决策产生的;封闭结构的当前和预期入住率及入住率趋势;封闭结构中违反先决条件的条件有多接近;与优化目标或先决条件相关或相关的任何其它可用数据;或其组合。
值得注意的是,尽管可以用一种以上等效方式说明相同的优化策略,但是满足以下条件的每种可能的优化策略都可以被认为等同于所提供的动态阈值优化策略:假设d为在给定情形下由系统决定的通风功率。其中d是与室外空气的成分有关的某个量c的函数,也可能是额外参数的函数。存在至少一个这样的量c使得d相对于其单调增加。即,对于c1大于或等于c2的每两个值c1、c2,结果d(c1,…)大于或等于d(c2,…),条件是影响d的所有其它参数保持固定。
实例I:动态阈值策略
给定一实施例,其中优化目标需要同时最小化室内空气污染(在该实施例中由NOx浓度表示)并且最小化HVAC系统的能量需求;其中先决条件要求在入住时间内的每个时间窗T内,HVAC系统将提供每秒每平方米封闭结构的建筑面积至少V1立方米体积的总新鲜空气,并且每秒封闭结构中的每个入住者至少V2立方米;其中结构的入住率在所限定的入住时间内限定为P,否则为零;其中空气污染监测站提供有关可用室外空气中NOx浓度的连续实时数据,以及结构外的实时温度;其中假设室内温度在所有入住时间内都是固定的;其中系统能够接通或切断室外气流,通风接通时室外气流为F;其中库包括可执行模型,所述可执行模型产生HVAC系统的能量需求的估计,作为结构外部温度的函数;且其中库进一步包括计算,其根据直到当前时刻给定的相关通风历史产生允许从当前时刻开始连续停止对建筑物的室外空气通风的最长时间段,而不违反先决条件。在这样的实施例中,优化策略可以是例如动态阈值策略,其中VAP2包括测得的室外NOx浓度,并且动态阈值计算如下。如果当前时刻在结构的所限定的入住时间内,则计算第一值v1作为测得的VAP2的先前值的加权组合。如果当前时刻不在结构的所限定的入住时间内,则将v1设定为零。在当前时刻通风的情况下,第二值v2被计算为HVAC系统的预期能量需求。第三值v3被计算为从当前时刻开始允许连续停止通风的最长时间段。然后将动态阈值计算为DTV=v1+(B2xv2)+(B3xv3)-B0,其中B2、B3、B0是预限定系数。然后定期重新评估VAP2的当前值和动态阈值,并进行比较。每当发现VAP2的当前值低于或等于动态阈值时,将对建筑物的新鲜空气通风设定为接通,否则,每当发现VAP2的当前值高于动态阈值时,设定为切断。
实例I:统计预测策略
统计预测策略,使用本文所描述的预测模型之一来计算封闭结构中的预期未来条件(包括例如所关注污染物的室内水平和能量消耗)并将其与每个考虑的未来行动方案相关联。根据优化目标,启动整体预期未来对于其为最佳的行动方案。
实例II:META-策略
一种元策略,旨在检查不同的可能策略,并选择根据每个给定例项中发现为最适合的子集进行操作。实例:根据过去数据的不同策略模拟操作。评估根据每个策略获得的结果,并且当前选择根据最佳表现策略和/或对策略进行优先排序的的元策略进行操作。将使用最高优先级策略,除非其所需的某些资源(例如库要素、硬件装置等)不可用,在这种情况下,元策略转向优先级策略中的下一个策略,依此类推。
进一步包含在库中的可以是预测模型的集合,其产生对未来数据行为的预期。对给定数据的预测可以基于相同数据的过去值和/或可用数据的过去值(例如污染物的水平、入住率、污染源的活动、气象量度等),和/或基于可用历史数据的精简统计表示。
例如:在所限定的未来时刻或在所限定的未来时间间隔内,特定位置中的给定污染物浓度的预期值或其它统计量(例如标准偏差)的统计预测值,例如计算某一所限定的横截面上当前时刻(例如,当天的同一时间、一周的同一天和一年中的同一季节)的浓度的历史变化的平均值(或者,中间值)。使用此均值(或中间值)作为当前时刻浓度变化的预期。其它实例是机器学习模型使用深度神经网络以便进行上述预测之一;和/或并入有例如本文所描述的物理或化学模型的预测模型,基于其过去和当前水平、HVAC系统的过去、当前和计划状态以及这些模型所需的其它输入预测一种或多种污染物的浓度水平的未来趋势。
库可以包含存储在本地计算机的存储器中的要素,以及远程存储的要素。通过将库的每个要素标记为不可用的选项,从系统的其它组件中抽象出库的物理分布。因此,如果托管库的一个或多个要素的装置变得不可用(例如,由于网络故障或装置本身的故障),则由该装置托管的所有要素(以及可能还有其它对其具有强制相依性的要素)将被处理单元标记为不可用。然后处理模块将避免尝试访问不可用的要素,直到它们再次可用。
由处理单元处理的优化策略所作出的指令可以由控制单元启动和致动,所述控制单元与HVAC系统电通信并且处理单元具有到所述控制单元的本地或远程通信信道。
如所指示,本文提供的库用于实施本文提供的方法,所述方法可使用所公开的系统实施。因此并且在一实施例中,本文提供一种用于优化系统中可实施的多层结构中的加热、通风和空气调节(HVAC)进程的计算机化方法,所述系统包括所述多层结构、加热、通风和空气调节(HVAC)系统、与其上具有处理器可读介质的非易失性存储器通信的处理模块,以及库,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于多层结构的内部温度的空气调节相关参数(HACAP6),以及关于多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括多个主进程对象,其链接到第一、第二和第三通风相关参数以及链接到关于多层结构的内部和外部温度的加热和空气调节相关参数;所述方法包括:响应于通风提示,选择一组操作,所述操作被配置成实现预定优化目标;使选定组的操作相关联以在通风请求内创建一组进程命令并形成通风命令,其中所述库中的所述组主进程对象链接到所述通风命令,而不将所述主进程对象复制到通风命令中;以及执行通风命令。
所提供的用于控制HVAC系统的状态以便致动所限定的优化策略的方法可以被配置为追求所限定的优化目标(及其相关的子目标),同时遵循所限定的先决条件,利用具有各种参数的链接数据库的内容;通过作为多个输入信道的一部分的输入信道不断更新所述各种参数中的一个或多个(参见例如图1)。
任何优化策略的操作在一实施例中依赖于利用可以存储为链接数据库的一部分的数据。数据库的一些项目可以通过输入信道更新,而其它项目可以是恒定的,在系统最初部署时仅初始化一次,或者仅由提供商手动更新。
存储在数据库中的可能数据可以是,例如:
●与多层封闭结构的不同子空间处及各种条件下HVAC系统的操作相关的参数,例如限定室内再循环和室外气流、加热和冷却速率等的参数。
●允许在各种条件下估计HVAC系统的能量需求的参数。
●结构处的天花板高度和/或面积,其划分为地板和其它子空间。
●典型的活动发生在多层封闭结构和每个子空间(办公室、仓库、健身房厨房等)中。
●接口和开口的规格允许空气和其它气体与多层封闭结构的周围环境被动交换。
●与多层封闭结构的子空间中的通风效率相关的结构数据。特定来说,通风系统不直接有效地循环空气的体积的规格(例如,不直接由通风系统供给的房间、天花板以上和地板以下的体积、主办公室柜等)。
●关于多层封闭结构及其周围环境的地形和地理信息。可以包含多层封闭结构的坐标和周围环境的2D或3D模型。
●依据浓度和其它条件(例如毒性的饱和水平、材料组的联合效应等),与空气传播材料的健康危害相关的参数。
●与可能在多层封闭结构中发生并影响所关注材料的浓度的过程相关的参数:
○与例如流动、扩散、分散、分解、分子相互作用和反应等化学和物理过程相关的参数。可能涉及不止一种分子,并可能受温度、湿度和其它气象数据的影响。
○与HVAC系统在其每种可能状态中对这些进程的影响有关的参数。
例如,室内再循环气流和通风气流的热处理(加热/冷却)。
○与多层封闭结构中的活动对所关注材料浓度的影响有关的参数。
●关于室内或室外空气中材料(气体或其它空气传播材料)浓度的时间数据,所述室内或室外空气可以在多层封闭结构内部的位置、在其附近或更远的位置处参考。这些可能包含:
○测得或估计的所关注材料的时间浓度。
○时间浓度数据的描述性统计或其它精简的数学表示。
○基于一种或多种材料的浓度以及库中限定的其它数据和参数计算的指标。
●关于HVAC系统活动的时间数据,例如其状态和其所需的能量。
●关于多层封闭结构的入住率以及其中发生的人或其它活动的假设,估计或测得的时间数据。可能包含关于假期和周末和期间的预期入住率的数据。
●时间气象数据,例如温度、相对湿度、风速和风向、降水、云量、云层、大气压力、太阳辐射ux等。
●关于可能由优化策略使用的各种其它量的时间数据。例如,这可能包含可用作所关注材料浓度的指标的量,例如交通、工业活动等。
应注意,用于实施本文提供的方法的系统可以用系统必须始终满足的一组需求(换句话说,先决条件)来初始化。例如,在出现故障的情况下,在系统运行并控制HVAC系统的任何情况下都需要满足这些要求。这些决定了系统运行的决策空间的边界。例如,在出现故障的情况下,在系统运行并控制HVAC系统的任何情况下都需要满足这些要求。可以用不同组的先决条件初始化系统的不同实施例。这些先决条件可以是,例如,最小强制室外空气供应的限定,和/或HVAC系统的允许状态的限定,和/或在部分系统故障的情况下要执行的故障恢复策略(fallback policy)的限定。故障恢复策略包含将由下文中限定的HVAC控制单元每当检测到来自处理单元的输入流已经停止时(例如,由于通信问题或由于处理单元本身的故障)执行的简单指令。无论系统的其它组件的状态和与它们的通信如何,HVAC控制单元应该能够解释这些指令,只要它是可用的。因此,故障恢复策略不要求对在本地计算机上以外的地方存储或托管的资源和数据项进行强制访问。
如所指示,可以根据用户的自定义要求限定先决条件。在某些实施例中,一些先决条件可以涉及向多层封闭结构的最小强制性室外空气供应。例如,室外空气供应的先决条件可以是要求维持与例如ASHRAE 62标准等已知的通风判断依据的兼容性;限定某一自定义时间段内的平均室外气流不低于某个预定阈值;最大允许室内CO2浓度的限定,室内值的恒定阈值或室内和室外CO2浓度之间的差值阈值;限定允许针对多层封闭结构的室外空气供应持续停止的最长允许时间段;限定针对多层封闭结构的室外空气供应停止的最大时间百分比;要求在任何给定时间内室内温度将在与所选设定温度相差指定范围附近;或其组合。
类似地,先决条件可以与HVAC系统的允许状态的限定有关,其可以包括:室外空气流量的可能值;室内循环流量的可能值;可能的加热或冷却功率值,或其组合。此外,加热或冷却功率的值可以考虑各种考虑因素,例如:由HVAC系统使用的机器的机械限制确定的最大可能空气流量;HVAC系统的热限制,即被认为是安全的不受系统中水过度冷凝的风险的室外空气的最大流量;此最大流量通常取决于室外温度和露点,为HVAC系统设定的目标室内温度以及HVAC系统的机械和热力学性质。在确实限定了在任何给定时间室内温度将在与所选设定温度相差指定范围附近的先决条件的实施例中,需要涉及仍然允许HVAC系统符合前者的最大室外气流的另一先决条件。该限制通常取决于HVAC系统的冷却或加热能力、室外温度和相对湿度、目标室内温度以及HVAC系统的机械和热力学性质。
术语“系统”还应被视为包含单独或联合执行一组或多组指令以执行一个或多个功能的任何系统或子系统的集合。而且,术语“系统”指的是多个装置的逻辑组合布置,并且不限于其中所有组件装置在同一外壳中的布置。
在一实施例中,本文提供的系统可以包括:具有HVAC系统的多层结构;与HVAC系统通信的控制模块,其被配置为控制多层结构内的HVAC;处理模块,其与HVAC控制模块通信,所述处理模块包括处理器、所述处理模块与多个输入信道通信,每个输入信道与数据源通信;与处理模块通信的存储器,所述存储器上存储有包括一组可执行指令的库,所述可执行指令在被执行时被配置为使处理模块启动和致动被配置为维持多层封闭结构内的预选参数的指令,例如,最小化多层结构内的空气污染,同时以最佳方式最小化能量需求。
在一实施例中,输入信道与控制模块和/或处理器连续通信。术语“输入信道”是从控制器的角度来看并且是指各种数据源(例如传感器、预测算法等)和控制模块之间的通信方向。输入信道可以是,例如:
a.来自HVAC系统和/或测量其性能和/或状态的传感器的反馈输入。例如,此可以是关于其实际状态的量度的报告,例如设定的和实际的室外气流、设定的和实际的室内温度、其功耗等;
b.监测指定位置的污染物水平的来自传感器的输入,所述指定位置可能位于多层封闭结构内部和/或其附近和/或远程位置;
c.监测不同的天气量度的来自传感器的输入;
d.来自用于估计或测量多层封闭结构的入住率的系统的输入,例如考勤系统、连通的十字转门、CCTV、CO2传感器等;
e.从公共数据库(例如来自EPA、NOA、NASA等)手动或自动加载数据(例如下载和上传或自动拉/推通知);
f.来自终端用户的装置远程管理界面的输入;
g.来自远程服务器的输入,包含软件更新和数据项更新;
h.手动上传库中任何可能的项目,或其组合。
此外,如本文所使用,术语“处理器”被限定为包含但不必限于指令执行系统,例如基于计算机/处理器的系统、专用集成电路(ASIC)、计算装置或硬件和/或软件系统,其可以从非暂时性存储介质或非暂时性计算机可读存储介质提取或获取逻辑,并执行其中包含的指令。“处理器”还可以包含任何控制器、状态机、微处理器、基于云的实用程序、服务或特征,或其任何其它模拟、数字和/或机械实施方案。
在一实施例中,处理器是中央处理模块的一部分,该中央处理模块可以与控制模块集成或分开。处理模块可以配置为,例如:
a.根据上文描述的策略或元策略之一进行操作;和/或
b.使用库可用的数据执行由所选策略确定的逻辑。在每个给定的例项中,根据策略产生针对发送到HVAC系统的设定状态的指令。验证每条指令是否符合所限定的先决条件;和/或
c.包含自我控制子单元,其调整和更新用于当前可用和相关数据项及计算资源的策略。
需要这种调整的实例可以是:在显著降低处理模块可用的计算能力的硬件故障的情况下,控制子单元可以选择将策略从重(例如,多变量优化)策略切换到较轻的策略(例如,较少变量用于优化),从而确保系统的连续操作,即使以牺牲其性能为代价;和/或在使某个数据项不可用或过时的故障发生时,系统可以确保不遵守依赖于对该数据项的访问的策略;和/或在使得远离本地处理单元的库的所有要素不可用的通信故障的情况下,可以使用适当的子单元来配置系统以切换到本地故障恢复策略。
因此,在具有本地最小处理模块和主要远程处理模块(主从模式)的实施例中,远程模块将其指令定向到本地模块。后者继而将接受来自前者的指令并将它们原样转发到HVAC控制模块,除非检测到某一故障(例如,从远程模块接受错误消息,或者没有接收到消息、到达所限定的超时)。在这种情况下,本地模块将超驰控制远程模块并根据可访问的最佳策略进行操作。
另外或替代地,本地和远程处理模块可以在共享模式下操作,为它们中的每一个指派预期与其计算资源匹配的计算负载的一部分。因此,可以将大数据集上的聚合计算设定为由远程模块执行,而较小的操作和主工作流可以由本地处理模块完成。
在某些实施例中,HVAC控制模块可以配置为:
a.接受来自处理模块的指令并尝试使用HVAC系统致动它们。
b.HVAC控制单元将检测任何故障(例如,在与处理模块的通信或处理模块本身的严重故障中),此时,HVAC控制模块可被配置为致动如上所述的故障恢复策略。
c.由HVAC控制模块接收和处理的命令的结果可以被报告回处理模块,处理模块可以将其转发以存储在库中。
在一实施例中,使用所提供的库来实施所公开的方法的本文提供的系统进一步包括多向或可调节方向的进气模块(参见例如图6-10),其适于提供来自离散方向的空气的可选择流入,无论是预处理的空气还是直接新鲜空气。因此,通风方向被配置成从与紧靠在多层结构之外的最低所确定污染物浓度相关联的空气入口方向抽取空气(即,如本文限定的可用室外空气)。应注意,空气入口可沿多层封闭结构位于不同高度,并且空气流入可配置成从任何高度取得,以使内部空气污染最小化。
在一实施例中,使用所提供的库来实施所公开的方法的本文提供的系统进一步包括旁路出口和三通阀以及辅助风扇,其适于提供从入口直接到旁路出口的可选择的旁路空气流。这允许在室外空气供应停止时也维持通过入口的残余空气流,从而防止管道内的高污染物水平持续到对结构的空气供应恢复时。辅助风扇可以比主风扇轻,其设计成仅使空气循环通过入口和出口之间的管道的体积,而不是通过结构的整个体积,因此比主风扇消耗更少的功率。在一实施例中,旁路出口和三通阀以及辅助风扇可以与可用的室外空气的污染的测得的时间数据结合使用。然后可以配置优化策略以考虑少量空气从入口行进到三通阀所花费的时间。
在一实施例中,使用所提供的库来实施所公开的方法的本文提供的系统进一步包括进入未入住空间的通风口(例如,天花板以上和地板以下的体积)以及允许在这些空间和入住空间之间自由交换空气的通风口、管道或开口。这可以延长可以停止对结构的室外空气供应的持续时间,这继而可以提高优化策略减少由于室外源引起的室内空气污染的能力。
在一实施例中,这些未入住空间的通风以及这些空间和入住空间之间的空气流被配置为有效且可选择的。这样的实施例可以包括挡板,系统可以命令挡板以便可选择地使未入住的空间通风。这些实施例还可包括轻扇、管道和通风口或开口,其适于在入住空间和未入住空间之间选择性地建立循环气流。然后,优化策略可以被配置为利用未入住空间的通风以及在入住空间和未入住空间之间的循环空气流。
如所指示,使用使用库提供的系统可实施的所公开的方法是利用例如各种计算机程序等处理器可读介质的计算机化方法。此外,计算机程序(软件和/或固件)可以包括用于执行本文所描述的方法步骤的程序代码构件,以及存储在可以被计算机读取的介质上的包括程序代码构件的计算机程序产品,所述可以被计算机读取的介质例如软盘、硬盘、CD-ROM、DVD、USB记忆棒,或者当计算机程序产品被加载到计算机的主存储器中并由计算机执行可以通过例如因特网或内联网等数据网络访问的存储介质。因此,术语“非暂时性存储介质”和“非暂时性计算机可读存储介质”被限定为包含但不一定限于可以包含、存储或维持程序、信息和数据的任何介质。非暂时性存储介质和非暂时性计算机可读存储介质可以包含许多物理介质中的任何一种,例如电子、磁性、光学、电磁或半导体介质。合适的非暂时性存储介质和非暂时性计算机可读存储介质的更具体实例包含但不限于磁性计算机盘(例如软盘或硬盘驱动器)、磁带、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、闪存驱动器、紧密光盘(CD)或数字视频盘(DVD)。
因此并且在一实施例中,本文提供一种与库通信的处理器可读介质,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于多层结构的内部温度的空气调节相关参数(HACAP6),以及关于多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括多个主进程对象,其链接到第一、第二和第三通风相关参数以及链接到关于多层结构的内部和外部温度的加热和空气调节相关参数;所述处理器可读介质具有一族可执行指令,所述可执行指令在被执行时配置成致使处理器:从加热、通风和空气调节(HVAC)系统接收通风请求提示;响应于通风请求,选择一组操作,所述操作被配置成实现预定优化目标;使选定组的操作与通风请求相关联;在通风请求内创建一组进程命令;形成通风命令,其中所述库中的所述组主进程对象链接到所述通风命令,而不将所述主进程对象复制到通风命令中;以及在通风命令中执行所述组通风相关进程对象。
本文所描述的方法中使用的存储器装置可以是各种类型的非易失性存储器装置或存储装置(换句话说,在没有电源的情况下不丢失其上的信息的存储器装置)中的任何一种。术语“存储器装置”意在包括安装介质,例如,CD-ROM、软盘或磁带装置或非暂时性存储器(例如磁性介质),例如硬盘驱动器、光学存储装置,或ROM、EPROM、FLASH等。存储器装置也可包括其它类型的存储器或其组合。此外,存储器介质可位于在其中执行程序的第一计算机中,和/或可位于通过网络(例如因特网)连接到第一计算机的第二不同的计算机中。在后一种情况下,第二计算机可进一步向第一计算机提供程序指令用于执行。术语“存储器装置”还可以包含两个或两个以上存储器装置,其可位于不同的位置,例如在通过网络连接的不同计算机中。
此外,处理器可以用适当的电路可操作地联接到各种模块和组件。也可以在本文中使用的术语“可操作地联接到”、“联接到”和/或“联接”包含项目之间的直接联接和/或项目之间通过中间项目的间接联接(例如,项目包含但不限于,组件、元件、电路、引擎和/或模块),其中对于间接联接,中间项目不会修改信号的信息,但可以调整其电流电平、电压电平和/或功率电平。如本文中可进一步使用的,推断的联接(即,其中一个元件通过推断联接到另一元件)包含以与“联接到”相同的方式在两个项目之间的直接和间接联接。如本文可以更进一步使用的,术语“可操作地”或“可操作地联接到”指示项目包含在激活时执行一个或多个其相应的功能的电源连接、输入、输出等中的一个或多个,并且可进一步包含到一个或多个其它项目的推断的联接。如本文中还可进一步使用的,术语“与...相关联”包含单独项目的直接和/或间接联接,和/或一个项目嵌入在另一项目中。
本文使用术语“模块”来指代软件计算机程序代码和/或任何用于提供属于该模块的功能性的硬件或电路。此外,术语“模块”或“组件”还可以指代在计算系统上执行的软件对象或例程。本文所描述的不同组件、模块、引擎以及服务可以实施为计算系统上执行的对象或进程(例如,执行为单独线程)。
除非另有特别说明,如从以下论述中显而易见,应理解,在整个说明书的论述中,使用例如“处理”、“加载”、“通信”、“检测”、“计算”、“确定”、“分析”等术语指代计算机或计算系统或类似电子计算装置的行动和/或进程,其将表示为物理结构(例如晶体管架构)的数据操纵和/或变换成类似地表示为物理结构层的其它数据。
如本文还可以使用的,术语“通信处理模块”(CPM)、“模块”,“处理电路”和/或“处理单元”可以是单个处理装置或多个处理装置。这种处理装置可以是微处理器、微控制器、数字信号处理器、微计算机、中央处理单元、现场可编程门阵列、可编程逻辑装置、状态机、逻辑电路、模拟电路、数字电路和/或基于电路和/或操作指令的硬编码(换句话说,固件)来操纵信号(模拟和/或数字)的任何装置。处理器、处理电路和/或处理单元可以具有相关联的存储器和/或集成存储器元件,其可以是单个存储器装置、多个存储器装置,和/或处理模块、模块、处理电路和/或处理单元的嵌入式电路。这样的存储器装置可以是只读存储器、随机存取存储器、瞬态存储器、非瞬态存储器、静态存储器、动态存储器、闪存、高速缓冲存储器和/或存储数字信息的任何装置。
注意,如果处理器、模块、服务器、网络交换机等、处理电路和/或处理单元包含一个以上处理装置,则处理装置可以位于中央或可以是分布式的(例如,通过间接联接经由局域网和/或广域网的云计算)。还应注意,存储器元件可以存储,并且处理器、模块、处理电路和/或处理单元执行,对应于图1元件的一个或多个中示出的至少一些步骤和/或功能的硬编码和/或操作指令。这样的存储器装置或存储器元件可以且确实作为制品包含在实施例中。
现在参看图式,特别是参看图1-2,提供了其中可以实施说明性实施例的数据处理环境的示例性流程图。应理解,图1-10仅是示例性的,并非旨在声明或暗示关于其中可以实施不同实施例的环境的任何限制。可以对所描绘的环境进行许多修改。
现在转向图1和图2,示出了系统组件以及这些组件之间的相互关系。如图所示,系统的不同元件可以取决于它们对来自其它组件的输入和反馈的操作。例如,系统的一个元件的可用性对于另一元件的功能性可能是强制性的(例如,主从关系,因此是不可选择的)。在另一实施例中,依据污染物的室外传感器600p(未示出)和主策略,减少对并入有单个输入信道150的室外源的某种污染物的暴露。室外数据151的可用性对于待执行的策略可以是强制性的,且传感器107输入数据151是不可用的,处理单元200将搜索库100以寻找另一策略102k,其不依赖于室外传感器107数据151的可用性来操作,或者可以基于室内数据来计算。在其它情况下,系统的一个元件的可用性对于另一元件的功能性可能不是强制性的,而是限定为辅助它或增强其性能。因此,如上所述,另外假设库100包含特定污染物(例如,NOx)的测得的室内浓度,其是通过输入信道150i从室内传感器106(未示出)接收并且还通过计算获得,所述计算允许仅基于使用室外传感器107测量的室外浓度和通风历史(未示出,指代由室内传感器106测量的污染物的先前时间和浓度)估计污染物的室内浓度。在这种情况下,来自室内传感器106的数据151对于策略的功能性可能不是强制性的,并且其不可用性将不会导致后者的不可用性。
如在图1-4中示出,输入信道150i馈送对数据库110的项目111j的改变。在起始时,40,处理模块200从库100加载101可用的优化策略74和相关联的模型102k,并且执行两种操作:响应212于对数据库100中的数据的更新,方式是例如通过重新计算所加载策略的指令并通过经由HVAC控制模块400向HVAC系统发送命令220来致动该指令。HVAC控制模块400利用反馈401响应于命令220,反馈401可以被转发212以保存在数据库110中。然后,处理模块200通过检查现用策略是否仍可用24(参见例如图2),换句话说,对于其功能性为强制性的所有其它库项目102k是否可用24,来响应22于库110的不同项的可用性状态的改变。在发现现用策略不可用25的情况下,处理模块200加载优先级中的下一策略26,直到找到可用策略(根据22的可用必要资源)。由于故障恢复策略和对于其功能性为强制的所有组件都是处理模块200本身的物理部分,因此总能找到这样的策略。HVAC控制模块400致动HVAC系统状态的所需变化,并且还对相对于先决条件302的改变进行最终验证,从而在检测到违反先决条件302的情况下根据上文描述的故障恢复策略对它们进行超驰控制。当系统被启动20时,基于从库100加载102k的预选优化策略74用优化目标初始化20处理模块200,且用先决条件302初始化HVAC控制模块400。
如图1和2中所示,处理模块200在启动时或复位20之后,将监视21所有库项目22的可用性,以查看是否存在对存储在库100或数据库110中的任何参数111j和动态改变的阈值的改变。如果发现改变,则处理模块200将与库100通信202,以选择可用的最高优先级策略26,并再次与库100通信以重新检查22策略的资源的可用性,然后24如果策略不可用25,则选择可用的最高优先级策略74,并再次与库100通信以重新检查22策略的资源的可用性。然而,如果策略的资源是可用的29,则策略的指令从库100获得并且用来自数据库100的更新后数据重新计算30,因此如果重新计算不成功37,则进程复位20,否则33将指令发送34到HVAC控制模块400,随后,处理模块200在HVAC控制模块400的操作之后接收反馈401,并重新开始21重新检查策略的可用性22。
现在转向图3,其是“动态阈值”(DTV)二元策略的逻辑的说明。如图所示,在从处理模块200接收到命令后,初始化40进程并从数据库110收集42所需数据,将数据检索43到处理模块200,其中进一步计算44室内条件并询问结构中的室内条件是否允许关闭通风口46。如果发现在当前时刻禁止关闭通风口47,则打开通风口48。如果允许关闭通风口49,则收集的数据用于计算动态阈值50,然后将其与VAP2的当前值进行比较52。如果VAP2的当前值低于或等于DTV 55,则通风口打开48,否则53通风口关闭54。
现在转向图4,其是优化目标68的示意性描述,优化目标包括一组优化目标60n和优先级逻辑62。图4概述了系统应该追求的结果。先决条件70是系统必须始终满足的需求列表。优化策略74限定由处理器200致动的一组可执行操作,并且随后系统使用库100和数据库110来追求优化策略74,同时遵守先决条件701,例如将CO2水平维持在预定浓度。
现在转向图5,其是在应根据室外温度(Tout)和相对湿度(RHout)以及室内设定温度(Tset)调节室外气流的最大功率的情况下由处理单元200致动时执行的逻辑的图示。如图所示,在起始时80,处理模块200读取当前室外温度和相对湿度82,重新计算最大通风功率(Pmax)84(其将仍然符合所限定的先决条件,例如消除冷凝),发送85新的Pmax值以在HVAC控制模块400中更新86(因此其可以由HVAC控制模块400使用),然后根据Pmax的新值重新计算策略的指令并且利用HVAC控制模块400致动通风88。另外,HVAC控制单元400检查通风口的当前功率P是否大于Pmax,88,在这种情况下89,其立即将P减小到等于Pmax。90。此外,处理模块200在读取当前室外温度和相对湿度82并重新计算最大通风功率(Pmax)84之后,发送命令91,以(如果需要)重新计算并致动优化策略74(参见例如图4)。
现在转到图6-10,其是主要和次要通风口配置的各种实施例的示意图。如例如图6中所示,空气通过主导管610进入,其中传感器可以监测入口601处的空气质量,风扇单元650具有入口601和出口602,其配置成使空气通过后风扇管道616朝向阀605移动,阀605基于HVAC控制模块400,与处理模块200通信,将确定是否允许空气流入结构入口管道615,或者使空气离开而不通过具有出口604的出口管道614进入结构。换句话说,主导管610从入口(601,-主导管610的开口)输送室外空气。在入口处测量空气质量(601)。然后可以在将空气引入到建筑物700中或将空气排出602之间切换三通阀605。
可选地或另外地,如图7所示,额外轻扇单元611允许当风扇单元650未被启动以使多层封闭结构通风时也更换主导管610内的空气。
图8示出允许利用可控制的挡板605、606和辅助轻扇单元611从2个方向选择空气入口的配置,所述辅助轻扇单元具有从主风扇单元650沿相反方向延伸的入口管道617、618。在一实施例中,处理模块200可以被配置成从入口601、603的方向起始到主导管610的气流,这将具有室外空气污染物的最低浓度,或者在另一实施例中,从入口601、603的方向起始到主导管610的气流,这将为多层封闭结构中的节能提供最佳结果。后一主导管610可以与前者相同或不同。在一实施例中,当入口601、603不向结构700供应空气时,辅助风扇611可以被配置为在被执行时维持通过入口601、603进入排气口602的弱气流(参见例如图6)。
现在转向图9,示出了放置在多层封闭结构内部的空间700的吊顶705上方的空间750处的通风入口管道配置。如图所示,与外部主导管610连通的内部入口管道901具有两个出口(通风口)。第一个915通向吊顶705下方的空间700,第二个902通向吊顶705上方的空间750。还示出了挡板905。使用本文提供的系统和处理模块200的HVAC控制模块400(未示出)可以配置成使用吊顶705上方的体积750来存储新鲜空气。位于天花板705中的开口701中和内部入口管道901中的阀710允许确定空气是否被吹入天花板705上方的体积750中,以及是否允许空气在体积750和房间(700)之间穿过天花板开口701被动地通过。
类似地,图10示出了放置在多层封闭结构内部空间的吊顶705上方空间处的通风入口管道配置的另一实施例。如图所示,额外的内部轻扇单元950具有通向吊顶705下方的空间的入口/出口951和952,以及通向吊顶705上方的空间705的额外入口/出口953和954。还示出了挡板(或阀)905、954和955。在这种配置中,可以在吊顶705下方的空间700内再循环空气,同时关闭三通阀905,打开挡板954和955,从而在吊顶705下方的空间内驱动冲击(换句话说,加速空气更换)。在一实施例中,本文提供的系统包括通风入口管道配置,其布置在多层封闭结构内部的空间的吊顶下方的空间处,如图6-10中大体示出。同样地,位于房间中的单元950允许在房间700和吊顶705上方的体积750之间主动地传送空气。
如本文所使用,术语“包括”及其衍生词希望是开放式术语,其指定所陈述的特征、元件、组件、组、整体和/或步骤的存在,但不排除其它未陈述的特征、元件、组件、组、整体和/或步骤的存在。前述内容也适用于具有类似含义的词,例如术语“包含”、“具有”及其衍生词。
本文所公开的所有范围都包含端点,并且端点可以彼此独立地组合在一起。“组合”包含混合、混合物、合金、反应产物等。本文的术语“一个/一种(a)”、“一个/一种(an)”和“所述”并不表示数量的限制,并且应被解释为既涵盖单数也涵盖复数,除非本文另有说明或明显与上下文相抵触。本文使用的后缀“(s)”希望既包含它所修饰术语的单数也包含复数,因此包含一个或多个这样的术语(例如,流(stream(s))包含一个或多个流)。整个说明书中对“一个实施例”、“另一实施例”、“一实施例”等等的提及,当出现时,意味着结合该实施例描述的特定要素(例如特征、结构、和/或特性)包含在本文所描述的至少一个实施例中,而且可能在其它实施例中出现或不出现。此外,将理解的是,所描述的要素可以以任何适当的方式组合在不同的实施例中。
同样,术语“约”意味着,数量、大小、配方、参数以及其它量和特性并不精确并且不需要精确,但可能根据需要是近似的和/或更大或更小的,反映出公差、转换因素、四舍五入、测量误差等,以及本领域技术人员已知的其它因素。一般来说,数量、大小、配方、参数或其它量或特性都是“大约”或“近似”的,无论是否明确表示为这样。
尽管已经根据一些实施例描述了前述公开内容,但是根据本文的公开内容,其它实施例对于本领域普通技术人员将是显而易见的。此外,所描述的实施例仅以示例的方式呈现,并不意在限制本发明的范围。事实上,本文所描述的新颖的方法、程序、库以及系统可以在不背离其精神的情况下以各种其它形式体现。相应地,考虑到本文的公开内容,其它组合、省略、替换以及修改对于技术人员来说将是显而易见的。

Claims (32)

1.一种处理器可访问的库,其包括用于多层结构的加热、通风和空气调节(HVAC)进程的控制信息,其中所述库被配置成实施方法以采用动态通风判断依据识别用于通风和/或加热及空气调节的经优化周期,其中所述库进一步含有外部和内部HVAC参数,并因此识别用于通风和/或加热及空气调节的经优化周期,启动多层结构的HVAC系统,所述动态通风判断依据包括:
a.关于所述多层结构的外部的第二通风相关参数(VAP2);
b.关于时间通风历史的第三通风相关参数(VAP3);
c.关于包含有封闭体的中心的第四通风相关参数(VAP4);和
指明所述中心内的所述封闭体的位置的第五通风相关参数(VAP5),其中所述库进一步包括与所述第二、第三、第四和第五通风相关参数链接的多个用于加热、通风和空气调节的主进程对象。
2.根据权利要求1所述的库,其进一步包括:
a.关于所述封闭体的内部温度的第六加热和空气调节相关参数(HACAP6);以及
b.关于所述封闭体的外部温度的第七加热和空气调节相关参数(HACAP7),
其中所述库进一步包括链接到所述第六和第七通风相关参数的多个主进程对象。
3.根据权利要求2所述的库,其中所述库被配置成使得所述控制信息能够由用户修改。
4.根据权利要求2所述的库,其中被配置成从所述库中的所述多个主进程的优化子目标实现预定优化目标的一组操作被配置成可选的。
5.根据权利要求4所述的库,其中所述库还包括与所述多层结构的内部相关的第一通风相关参数(VAP1),所述第一通风相关参数(VAP1)包括所述多层结构内部的可选择地确定的污染物的浓度;所述第二通风相关参数(VAP2)包括紧靠在所述多层结构外部的可选择地确定的污染物的浓度。
6.根据权利要求5所述的库,其中基于规则的算法被配置成选择一组主进程的对象,该组主进程的对象被配置成最小化多层封闭体内的污染且最小化所述加热和空气调节进程的能量要求。
7.根据权利要求6所述的库,其中所述优化目标包括:减小室内和/或室外来源的污染物的浓度、最大化传入的空气流量、维持内部温度范围、最小化违反周期、最小化所述HVAC系统的能量要求,或包括以上的优化目标的组合。
8.根据权利要求7所述的库,其中所述库动态地链接到远程数据库。
9.根据权利要求8所述的库,其中所述库进一步包括与以下相关联的参数:所述多层结构的物理性质、所述HVAC系统的物理性质、所述多层结构的紧靠的周围环境的地形和/或地理特性、所述多层结构中的入住率、气象数据,或包括以上的参数的组合。
10.根据权利要求7所述的库,其进一步包括第八加热和空气调节相关参数(HACAP8),所述第八加热和空气调节相关参数(HACAP8)包括湿球温度。
11.根据权利要求1所述的库,其进一步包括与最低限度需要的外部空气供应相关联的参数。
12.一种用于优化系统中可实施的多层结构中的加热、通风和空气调节(HVAC)进程的计算机化方法,所述系统包括所述多层结构、加热、通风和空气调节HVAC系统、与其上具有处理器可读介质的非易失性存储器通信的处理模块,以及库,所述库包括:关于所述多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于所述多层结构的内部温度的空气调节相关参数(HACAP6),和关于所述多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括具有动态阈值的由多个子目标构成的多个主进程对象,所述动态阈值链接到所述第二和第三通风相关参数以及链接到关于所述多层结构的所述内部和外部温度的所述加热和空气调节相关参数;所述方法包括:
a.响应于通风请求,选择被配置成从所述库中的所述多个主进程的优化目标实现预定优化目标的一组操作;
b.使选定的所述组操作相关联以在所述通风请求内创建一组进程命令且形成通风命令,其中所述库中的组主进程对象链接到所述通风命令,而不将所述组主进程对象复制到所述通风命令中;以及
c.执行所述通风命令。
13.根据权利要求12所述的方法,其中使用基于规则的算法实施从所述库中的所述多个主进程对象选择一组主进程对象。
14.根据权利要求13所述的方法,其中所述库还包括与所述多层结构的内部相关的第一通风相关参数(VAP1),所述第一通风相关参数(VAP1)包括所述多层结构内部的可选择地确定的污染物的浓度;且所述第二通风相关参数(VAP2)包括紧靠在所述多层结构外部的可选择地确定的污染物的浓度。
15.根据权利要求14所述的方法,其中所述系统进一步包括多向空气入口模块,所述多向空气入口模块适于从离散方向提供可选空气流入。
16.根据权利要求12所述的方法,其中所述优化目标包括以下多个子目标中的至少一个:减小室内和/或室外来源的污染物的浓度、最大化传入的空气流量、维持内部温度范围、最小化违反周期、最小化所述HVAC系统的能量要求,或包括以上的子目标的组合。
17.根据权利要求12所述的方法,其中所述库进一步包括与以下相关联的参数:所述多层结构的物理性质、所述HVAC系统的物理性质、所述多层结构的紧靠的周围环境的地形和/或地理特性、所述多层结构中的入住率、气象数据,或包括以上的参数的组合。
18.根据权利要求13所述的方法,其中所述基于规则的算法被配置成选择一组主进程对象,该组主进程对象被配置成最小化封闭体内的污染且最小化所述加热和空气调节进程的能量要求。
19.根据权利要求15所述的方法,其中所述库进一步包括:
a.关于包含有封闭体的中心的第四通风相关参数(VAP4);以及
b.指定所述中心内所述封闭体的位置的第五通风相关参数(VAP5),
其中所述库进一步包括链接到所述第四和第五通风相关参数的多个主进程对象。
20.根据权利要求15所述的方法,其进一步包括以下步骤:确定湿球温度以及限制空气流量以便防止所述HVAC系统中湿气的冷凝。
21.根据权利要求15所述的方法,其中所述通风方向被配置成从与紧靠在所述多层结构外部的最低所确定的污染物的浓度相关联的空气入口方向抽吸空气。
22.根据权利要求12所述的方法,其中所述库进一步包括与最低限度需要的外部空气供应相关联的参数。
23.一种与库通信的处理器可读介质,所述库包括:关于多层结构的内部的第一通风相关参数(VAP1)、关于所述多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于所述多层结构的内部温度的空气调节相关参数(HACAP6),和关于所述多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括具有动态阈值的多个主进程对象,所述主进程对象链接到所述第一、第二和第三通风相关参数以及链接到关于所述多层结构的所述内部和外部温度的加热和空气调节相关参数,所述处理器可读介质具有一组可执行指令,所述可执行指令在被执行时被配置成致使处理器:
a.从加热、通风和空气调节HVAC系统接收通风请求提示;
b.响应于所述通风请求,选择一组操作,所述组操作被配置成从所述库中的所述多个主进程对象实现预定优化目标;
c.使选定的所述组操作与所述通风请求相关联;
d.在所述通风请求内创建一组进程命令;
e.形成通风命令,其中所述库中的组主进程对象链接到所述通风命令,而不将所述组主进程对象复制到所述通风命令中;以及
f.在所述通风命令中执行组通风相关主进程对象。
24.根据权利要求23所述的处理器可读介质,其中一组主进程对象被配置成能够使用基于规则的算法从所述库中的所述多个主进程对象选择。
25.根据权利要求24所述的处理器可读介质,其中所述优化目标包括以下多个子目标中的至少一个:减小室内和/或室外来源的污染物的浓度、最大化传入的空气流量、维持内部温度范围、最小化违反周期、最小化所述HVAC系统的能量要求,或包括以上的子目标的组合。
26.根据权利要求25所述的处理器可读介质,其中所述库进一步包括:
a.关于包含有封闭体的中心的第四通风相关参数(VAP4);以及
b.指定所述中心内所述封闭体的位置的第五通风相关参数(VAP5),
其中所述库进一步包括链接到所述第四和第五通风相关参数的多个主进程对象。
27.根据权利要求23所述的处理器可读介质,其中,在被执行时,所述处理器进一步被配置成使用用户输入修改控制信息。
28.根据权利要求27所述的处理器可读介质,其中所述用户输入包括:来自所述HVAC系统和/或测量其性能的传感器的反馈输入、来自监测指定位置处污染物的水平的传感器的输入,或其组合。
29.根据权利要求23所述的处理器可读介质,其中,在被执行时,所述处理器可读介质进一步被配置成致使所述处理器确定湿球温度且限制空气流量以便防止所述HVAC系统中湿气的冷凝。
30.一种用于自适应地优化系统中可实施的多层结构中的加热、通风和空气调节(HVAC)进程的方法,所述系统包括所述多层结构、加热、通风和空气调节(HVAC)系统、与其上具有处理器可读介质的非易失性存储器通信的处理模块,以及库,所述库包括:关于所述多层结构的内部的第一通风相关参数(VAP1)、关于所述多层结构的外部的第二通风相关参数(VAP2)、关于时间通风历史的第三通风相关参数(VAP3)、关于所述多层结构的内部温度的空气调节相关参数(HACAP6),和关于所述多层结构的外部温度的空气调节相关参数(HACAP7),其中所述库进一步包括具有动态阈值的由多个子目标构成的多个主进程对象,所述动态阈值链接到所述第一、第二和第三通风相关参数以及链接到关于所述多层结构的所述内部和外部温度的所述加热和空气调节相关参数;所述方法包括:选择历史数据集,所述历史数据集包括从一个或多个预测预告统计模型接收的第一组预告污染物的值和从所述污染物的一个或多个测量值接收的第一组实际污染物的值;产生机器学习模型的一个或多个变型以通过在所述历史数据集上训练所述机器学习模型的所述一个或多个变型来对所述一个或多个预测预告模型的性能建模;接收当前数据集,所述当前数据集包括从所述一个或多个预测预告模型导出的第二组预告污染物的值和从所述污染物的所述一个或多个测量值导出的第二组实际污染物的值;使所述当前数据集与所述历史数据集相关以自适应地获得过滤后历史数据集;选择所述历史数据集上训练的所述机器学习模型的所述一个或多个变型且在所述过滤后历史数据集上对其进行评估以向所述机器学习模型的所述一个或多个变型中的每一个和其输出指派权重;以及基于所述过滤后历史数据集上的所述机器学习模型的所述一个或多个变型的所述评估和所述历史数据集上训练的所述机器学习模型的所述一个或多个变型中的每一个的输出以最佳组合函数的形式导出统计模型,以通过组合指派到经过训练的所述机器学习模型的所述一个或多个变型中的每一个的权重来确定至少一个组合预告污染物的值,其中所述选择、所述产生、所述接收、所述相关、所述评估和所述导出由所述处理器使用存储于所述存储器中的计算机可读指令执行。
31.根据权利要求30所述的方法,其中所述一个或多个预测预告模型包含监控与数据采集(SCADA)模型、包含数值污染物的反应动力学预测模型的物理模型、统计模型、机器学习模型、供替换的预告模型,或其组合。
32.根据权利要求30所述的方法,其中所述机器学习模型的所述一个或多个变型包含人工神经网络(ANN)、基底函数模型、内核方法、支持向量机、决策树、变化方法、分布取样方法、系综方法、图形模型、搜索方法,或其组合。
CN201910405983.XA 2019-01-29 2019-05-16 用于最小化封闭结构中的空气污染的库、系统和方法 Active CN111486557B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962798027P 2019-01-29 2019-01-29
US62/798,027 2019-01-29

Publications (2)

Publication Number Publication Date
CN111486557A CN111486557A (zh) 2020-08-04
CN111486557B true CN111486557B (zh) 2024-02-23

Family

ID=71733558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910405983.XA Active CN111486557B (zh) 2019-01-29 2019-05-16 用于最小化封闭结构中的空气污染的库、系统和方法

Country Status (7)

Country Link
US (2) US20220146128A1 (zh)
EP (1) EP3918255A4 (zh)
KR (1) KR102628483B1 (zh)
CN (1) CN111486557B (zh)
CA (1) CA3128157A1 (zh)
IL (1) IL285244A (zh)
WO (1) WO2020157758A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11751360B2 (en) * 2020-03-17 2023-09-05 International Business Machines Corporation Intelligently deployed cooling fins
US20200378638A1 (en) * 2020-08-16 2020-12-03 Atharva Deepak Keni System, method and computer program product of air management control
US11796202B2 (en) * 2020-11-17 2023-10-24 Enerallies, Inc. Intelligent ventilation monitoring, controls and optimization
US11674707B2 (en) * 2020-12-07 2023-06-13 Syracuse University System for minimizing indoor infection risk and maximizing energy savings
US12018853B2 (en) * 2021-03-31 2024-06-25 International Business Machines Corporation Smart ventilation for air quality control
CN113553788B (zh) * 2021-07-23 2022-12-06 中国航发贵阳发动机设计研究所 一种航空发动机润滑系统通风能力仿真计算方法
CN113867218B (zh) * 2021-10-09 2024-05-03 浙江方易检测技术有限公司 一种洁净空间环境检测控制装置
US20230168648A1 (en) * 2021-11-29 2023-06-01 Airsset Technologies Inc. Enviromental parameter determination based on indoor air quality
CN114707711B (zh) * 2022-03-23 2022-09-16 特斯联科技集团有限公司 园区制冷机组多时间尺度最优调度方法及系统
US11934166B2 (en) * 2022-04-10 2024-03-19 Building Lens Inc. Systems and methods for managing energy and air quality
US11829218B1 (en) * 2022-05-10 2023-11-28 Western Digital Technologies, Inc. Solid-state device with multiple thermal power states
US11822401B1 (en) * 2022-05-10 2023-11-21 Western Digital Technologies, Inc. History-based prediction modeling of solid-state device temperature
CN117029219B (zh) * 2023-10-09 2023-12-26 湖南省交通规划勘察设计院有限公司 一种卫生间系统的自适应空气调节方法及卫生间通风系统
CN117928068B (zh) * 2024-03-14 2024-06-07 江门市宝士制冷电器有限公司 一种用于移动空调的节能温度风量控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096865A2 (en) * 2006-02-21 2007-08-30 G.R.G Patents Ltd. A system and a method for assessing and reducing air pollution by regulating airflow ventiilation
CN106907821A (zh) * 2015-12-23 2017-06-30 上海九谷智能科技有限公司 一种应用于质子重离子医院设备区的hvac控制系统
CN207963057U (zh) * 2018-02-02 2018-10-12 天津大学 一种降低厨房污染物水平的自然通风控制系统

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932350B2 (ja) * 1980-12-17 1984-08-08 神鋼電機株式会社 ブレ−キ制御装置
US6651037B1 (en) * 1999-12-10 2003-11-18 Visteon Global Technologies, Inc. Method of optimizing design of an HVAC air-handling assembly for a climate control system
JP4618099B2 (ja) * 2005-11-04 2011-01-26 パナソニック株式会社 換気装置
US8092285B2 (en) * 2006-03-21 2012-01-10 Calsonickansei North America, Inc. System and method for controlling a ventilation unit of a vehicle
JP2008039274A (ja) * 2006-08-04 2008-02-21 Matsushita Electric Ind Co Ltd 換気装置
US8160752B2 (en) * 2008-09-30 2012-04-17 Zome Networks, Inc. Managing energy usage
WO2010000077A1 (en) * 2008-07-03 2010-01-07 Belimo Holding Ag Actuator for hvac systems and method for operating the actuator
US8457802B1 (en) 2009-10-23 2013-06-04 Viridity Energy, Inc. System and method for energy management
KR101034936B1 (ko) * 2009-11-02 2011-05-17 주식회사 경동나비엔 전열교환형 환기장치 및 그 제어방법
US20120052791A1 (en) * 2010-08-26 2012-03-01 Kurelowech Richard S Heat recovery and demand ventiliation system
US20150178865A1 (en) * 2011-09-20 2015-06-25 The Trustees Of Columbia University In The City Of New York Total property optimization system for energy efficiency and smart buildings
US8930030B2 (en) * 2011-09-30 2015-01-06 Siemens Industry, Inc. Method and system for improving energy efficiency in an HVAC system
JP5932350B2 (ja) * 2012-01-18 2016-06-08 株式会社東芝 空調装置および空調制御方法
US10406303B2 (en) * 2013-09-25 2019-09-10 Vaidyanathan Anandhakrishnan Intelligent inhaler holster with a system and method to sense, track properties of inhaled air and medication, alert in hostile environments, map medication with personal dynamics, inhaled air and environment for better health
TWI551830B (zh) * 2013-12-12 2016-10-01 財團法人工業技術研究院 用於暖通空調系統之控制裝置及其方法
US10060642B2 (en) * 2014-10-22 2018-08-28 Honeywell International Inc. Damper fault detection
US20160217674A1 (en) * 2015-01-26 2016-07-28 Trane International Inc. Remote monitoring of an hvac system for fault detection and diagnostics
US20160320081A1 (en) * 2015-04-28 2016-11-03 Mitsubishi Electric Research Laboratories, Inc. Method and System for Personalization of Heating, Ventilation, and Air Conditioning Services
JP6455326B2 (ja) * 2015-06-12 2019-01-23 三菱電機株式会社 換気システム
US10281166B1 (en) * 2015-06-12 2019-05-07 Alarm.Com Incorporated Distributed monitoring sensor networks
US10592821B2 (en) * 2015-06-19 2020-03-17 Trane International Inc. Self-learning fault detection for HVAC systems
US10401262B2 (en) * 2015-06-19 2019-09-03 Johnson Controls Technology Company Building management system with voting-based fault detection and diagnostics
US20160370026A1 (en) * 2015-06-22 2016-12-22 Trane International Inc. Post-installation learning fault detection
JP6503305B2 (ja) * 2016-01-25 2019-04-17 株式会社日立情報通信エンジニアリング 空調制御システム、空調計画装置、及び、計画方法
WO2017173406A1 (en) * 2016-04-01 2017-10-05 Tendril Networks, Inc. Orchestrated energy
US10663186B2 (en) * 2016-05-31 2020-05-26 Robert J. Mowris Apparatus and methods to determine economizer faults
US20180087790A1 (en) * 2016-09-28 2018-03-29 Johnson Controls Technology Company Systems and methods for automatically creating and using adaptive pca models to control building equipment
US10372146B2 (en) * 2016-10-21 2019-08-06 Johnson Controls Technology Company Systems and methods for creating and using combined predictive models to control HVAC equipment
US10837665B2 (en) * 2017-04-14 2020-11-17 Johnson Controls Technology Company Multi-function thermostat with intelligent ventilator control for frost/mold protection and air quality control
US10146237B2 (en) * 2017-04-28 2018-12-04 Johnson Controls Technology Company Smart thermostat with model predictive control
US11353234B2 (en) * 2017-10-13 2022-06-07 Mitsubishi Electric Corporation Air conditioning system
US11274839B1 (en) * 2018-09-21 2022-03-15 Qc Manufacturing, Inc. Systems and methods for controlling and adjusting volume of fresh air intake in a building structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096865A2 (en) * 2006-02-21 2007-08-30 G.R.G Patents Ltd. A system and a method for assessing and reducing air pollution by regulating airflow ventiilation
CN106907821A (zh) * 2015-12-23 2017-06-30 上海九谷智能科技有限公司 一种应用于质子重离子医院设备区的hvac控制系统
CN207963057U (zh) * 2018-02-02 2018-10-12 天津大学 一种降低厨房污染物水平的自然通风控制系统

Also Published As

Publication number Publication date
KR102628483B1 (ko) 2024-01-23
EP3918255A1 (en) 2021-12-08
US20220146128A1 (en) 2022-05-12
US11506415B2 (en) 2022-11-22
IL285244A (en) 2021-09-30
WO2020157758A1 (en) 2020-08-06
EP3918255A4 (en) 2022-11-02
KR20210118922A (ko) 2021-10-01
US20200240668A1 (en) 2020-07-30
CA3128157A1 (en) 2020-08-06
CN111486557A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN111486557B (zh) 用于最小化封闭结构中的空气污染的库、系统和方法
WO2019114489A1 (en) Machine learning control of environmental systems
Goyal et al. Experimental study of occupancy-based control of HVAC zones
US11686492B2 (en) Systems and methods for HVAC filter replacement type recommendation
US11783203B2 (en) Building energy system with energy data simulation for pre-training predictive building models
Yang et al. Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control
US9400119B2 (en) Retrofitting a constant volume air handling unit with a variable frequency drive
CN109312941B (zh) 洁净室控制系统和方法
US10371405B2 (en) Building power management systems
Kim et al. Model-based multi-objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions
US20220221184A1 (en) Dynamic ventilation control for a building
Reena et al. A flexible control strategy for energy and comfort aware HVAC in large buildings
US11674707B2 (en) System for minimizing indoor infection risk and maximizing energy savings
Goyal et al. Energy-efficient control of an air handling unit for a single-zone VAV system
Majdi et al. A novel method for Indoor Air Quality Control of Smart Homes using a Machine learning model
US20110153088A1 (en) Method and system for controlling and/or regulating room comfort variables in a building
Kusiak et al. Optimal decision making in ventilation control
Brooks et al. Energy-efficient control of under-actuated HVAC zones in buildings
Peng et al. Case study review: Prediction techniques in intelligent HVAC control systems
Kim et al. Optimization of supply air flow and temperature for VAV terminal unit by artificial neural network
US20230314030A1 (en) Critical environment feedforward-feedback control system with room pressure and temperature control
Li et al. Multi-objective optimal control of multi-zone VAV systems for adaptive switching between normal and pandemic modes
Shan et al. In-situ validation of a fault tolerant control strategy for VAV systems
CN103080663B (zh) 控制房屋的空气质量的方法及其控制设备
Liu et al. Investigating Occupant Behaviour to Inform Terminal Devices' Control in Mixed-Mode Ventilation Buildings.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant