WO2021166405A1 - 空調システム、空調システムコントローラ - Google Patents

空調システム、空調システムコントローラ Download PDF

Info

Publication number
WO2021166405A1
WO2021166405A1 PCT/JP2020/047199 JP2020047199W WO2021166405A1 WO 2021166405 A1 WO2021166405 A1 WO 2021166405A1 JP 2020047199 W JP2020047199 W JP 2020047199W WO 2021166405 A1 WO2021166405 A1 WO 2021166405A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity
room
conditioning
living
Prior art date
Application number
PCT/JP2020/047199
Other languages
English (en)
French (fr)
Inventor
雅史 坪内
歩 小西
直之 舟田
拓磨 荒牧
中曽根 孝昭
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CA3166904A priority Critical patent/CA3166904A1/en
Priority to US17/797,752 priority patent/US20230082958A1/en
Publication of WO2021166405A1 publication Critical patent/WO2021166405A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to an air conditioning system and an air conditioning system controller.
  • the ambient temperature and humidity are detected at the start of the air conditioning operation, the temperature and humidity are controlled to be comfortable according to the environment, and as much as possible within the comfortable temperature and humidity.
  • Control devices for air conditioners that determine the target temperature and humidity so as not to cause wasteful energy consumption are known.
  • an object of the present invention is to provide an air conditioning system and an air conditioning system controller that contribute to miniaturization of an air conditioning room by efficient dehumidification and humidification.
  • the present invention includes a humidifier that humidifies the air in the air conditioning room, a dehumidifier that dehumidifies the air in the air conditioning room, and a plurality of living rooms in which the air in the air conditioning room is independent of the air conditioning room.
  • a humidifier, a dehumidifier, and a damper which are provided corresponding to a plurality of living rooms and can independently control the amount of air blown to each living room.
  • the system is equipped with a system controller to control, a living room humidity sensor that acquires the indoor humidity of each of a plurality of living rooms and transmits it to the system controller, and an air conditioning room humidity sensor that acquires the humidity of the air conditioning room and transmits it to the system controller.
  • the controller is acquired by the air-conditioning room humidity control unit that controls the humidifier and / or dehumidifier to maintain the humidity of the air-conditioning room within the predetermined humidity range defined by the minimum humidity and the maximum humidity, and the living room humidity sensor.
  • the air-conditioning unit determines the amount of air blown through the damper based on the indoor humidity of each room and the humidity of the air-conditioning room acquired by the air-conditioning room humidity sensor, and the air-conditioning unit determines the amount of air blown through the damper.
  • An air-conditioning system or the like equipped with a damper air volume control unit that controls the amount of air blown to each living room is provided to achieve the intended purpose.
  • a humidifier that humidifies the air in the air-conditioning room a dehumidifier that dehumidifies the air in the air-conditioning room, and air in the air-conditioning room blown by a transport fan are applied to each living room independent of the air-conditioning room.
  • the air-conditioning room humidity control unit that maintains the range, the air-blowing amount determining unit that determines the air-blowing amount through the damper based on the indoor humidity of each room and the humidity of the air-conditioning room, and the air-blowing amount determined by the air-conditioning volume determining unit.
  • An air-conditioning system controller or the like equipped with a damper air volume control unit for controlling the amount of air blown to each living room via the damper is provided, thereby achieving the intended purpose.
  • an air conditioning system or the like that contributes to miniaturization of an air conditioning room by efficient dehumidification and humidification.
  • FIG. 1 is a schematic connection diagram of an air conditioning system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic functional block diagram of a system controller of an air conditioning system.
  • FIG. 3 is a flowchart showing the air conditioning process.
  • FIG. 4 is a flowchart showing the humidity control process in the air conditioning room.
  • FIG. 5 is a flowchart showing a fan air volume setting process.
  • FIG. 6 is a flowchart showing the air flow amount determination process.
  • FIG. 7A is a diagram showing an example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • FIG. 7B is a diagram showing an example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • FIG. 8A is a diagram showing another example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • FIG. 8B is a diagram showing another example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • FIG. 8C is a diagram showing another example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • FIG. 9 is a schematic view of the air-conditioning room when the air-conditioning room is divided into three sections.
  • FIG. 10 is a schematic view of the air-conditioning room when the air-conditioning room is divided into two.
  • FIG. 11 is a schematic functional block diagram of the system controller when the air conditioning chamber is divided into three sections.
  • FIG. 12 is a schematic connection diagram of the air conditioning system according to the second embodiment of the present invention.
  • FIG. 13 is a schematic functional block diagram of the system controller according to the second embodiment.
  • FIG. 1 is a schematic connection diagram of the air conditioning system 20 according to the first embodiment.
  • the air conditioning system 20 includes an outside air introduction fan 4, a plurality of exhaust fans 5 (exhaust fans 5a, 5b, 5c, 5d), a plurality of transport fans 3 (convey fans 3a, 3b, 3c, 3d), and a plurality of circulations.
  • Fan 6 (6a, 6b, 6c, 6d), living room temperature sensor 11 (living room temperature sensor 11a, 11b, 11c, 11d), living room humidity sensor 12 (living room humidity sensor 12a, 12b, 12c, 12d), and air conditioning. It is configured to include a room temperature sensor 14, an air conditioning room humidity sensor 15, an air conditioner 9, a humidifier 16, a dehumidifier 17, an input / output terminal 19, and a system controller 10 (corresponding to an air conditioning system controller). Will be done.
  • the air conditioning system 20 is installed in a general house 1 which is an example of a building.
  • the general house 1 has at least one air-conditioning room 18 independent of the living room 2 in addition to a plurality of (four in the present embodiment) living rooms 2 (living rooms 2a, 2b, 2c, 2d).
  • the general house 1 (house) is a house provided as a place where the resident lives a private life, and as a general structure, the living room 2 includes a living room, a dining room, a bedroom, a private room, a children's room, and the like. Is done.
  • the living room provided by the air conditioning system 20 may include a toilet, a bathroom, a washroom, a dressing room, and the like.
  • the air conveyed from each living room 2 is mixed with each other. Further, the outside air is taken into the air conditioning chamber 18 by the outside air introduction fan 4, and is mixed with the air conveyed from each living room 2 by the circulation fan 6.
  • the temperature and humidity of the air in the air conditioning chamber 18 are controlled by the air conditioner 9, the humidifier 16 and the dehumidifier 17 provided in the air conditioning chamber 18, that is, the air is air-conditioned to generate air to be conveyed to the living room 2. ..
  • the air conditioned in the air-conditioning room 18 is conveyed to each living room 2 by the transfer fan 3.
  • the air conditioning room 18 means a space having a certain size in which an air conditioner 9, other humidifiers 16, a dehumidifier 17, and the like can be arranged and can control the air conditioning of each living room, but is intended as a living space. It does not mean a room in which a resident stays.
  • the air in each living room 2 is conveyed to the air conditioning room 18 by the circulation fan 6, and is discharged as outside air from the inside of the living room 2 to the outside of the general house 1 by the exhaust fan 5.
  • the air conditioning system 20 controls the exhaust air volume of the exhaust fan 5 to exhaust the outside air from the room, and controls the supply air volume of the outside air introduction fan 4 while interlocking with the exhaust air volume of the exhaust fan 5 to exhaust the outside air into the room. By taking in, the first type ventilation system ventilation is performed.
  • the outside air introduction fan 4 is a fan that takes in outside air into the room of the general house 1, and corresponds to the air supply function of the air supply fan and the heat exchange air fan. As described above, the outside air taken in by the outside air introduction fan 4 is introduced into the air conditioning chamber 18.
  • the air supply air volume of the outside air introduction fan 4 is configured to be set in a plurality of stages, and the exhaust air volume thereof is set according to the exhaust air volume of the exhaust fan 5 as described later.
  • the exhaust fan 5 is a fan that discharges a part of the air in the corresponding living room 2 as outside air through, for example, an exhaust duct, and corresponds to an exhaust function of a ceiling-mounted ventilation fan, a wall-mounted ventilation fan, a range hood, a heat exchange air fan, and the like.
  • the exhaust duct connected to the exhaust fan 5 is directly connected to the outside of the general house 1, but when using the exhaust function of the heat exchange air fan, the exhaust duct is once connected to the heat exchange air fan. After that, it is connected to the outside of the general house 1. That is, the air passing through the exhaust duct exchanges heat with the air passing through the air supply air passage of the heat exchange air fan, and then is discharged to the outside of the general house 1.
  • the exhaust fan 5a is provided in the living room 2a
  • the exhaust fan 5b is provided in the living room 2b
  • the exhaust fan 5c is provided in the living room 2c
  • the exhaust fan 5d is provided in the living room 2d.
  • Each exhaust fan 5 is configured so that its exhaust air volume can be set in a plurality of stages. Normally, each exhaust fan 5 is controlled so that the exhaust air volume is set in advance. Then, the exhaust air volume is controlled for each of the exhaust fans 5a to 5d according to the setting by the user and the values acquired by various sensors.
  • the transport fans 3a to 3d are provided on, for example, the wall surface of the air conditioning chamber 18 corresponding to the respective living rooms 2a to 2d.
  • the air in the air conditioning chamber 18 is conveyed to the living room 2a via the transfer duct by the transfer fan 3a, is conveyed to the living room 2b via the transfer duct by the transfer fan 3b, and is conveyed to the living room 2c via the transfer duct by the transfer fan 3c. Then, it is conveyed to the living room 2d through the transfer duct by the transfer fan 3d.
  • the transport ducts connected to each living room are provided independently.
  • the circulation fan 6a is provided in the living room 2a
  • the circulation fan 6b is provided in the living room 2b
  • the circulation fan 6c is provided in the living room 2c
  • the circulation fan 6d is provided in the living room 2d.
  • a part of the air in each of the living rooms 2a to 2d is conveyed to the air conditioning room 18 through the circulation duct by the corresponding circulation fans 6a to 6d.
  • the circulation ducts connecting the air conditioning chamber 18 and each living room may be provided independently, but a plurality of tributary ducts that are a part of the circulation ducts are merged from the middle and integrated into one circulation duct. After that, it may be connected to the air conditioning chamber 18.
  • the air conditioner 9 corresponds to an air conditioner and controls the air conditioning of the air conditioning chamber 18.
  • the air conditioner 9 cools or heats the air in the air conditioning chamber 18 so that the temperature of the air in the air conditioning chamber 18 becomes a set target temperature (target temperature in the air conditioning room).
  • the humidifier 16 humidifies the air in the air conditioning room 18 so that when the humidity of the air in the air conditioning room 18 is lower than the set target humidity (target humidity in the air conditioning room), the humidity becomes the target humidity in the air conditioning room.
  • the humidifier 16 may be built in the air conditioner 9, it is desirable to provide the humidifier 16 independent of the air conditioner 9 in order to obtain a humidifying capacity sufficient for a plurality of living rooms 2.
  • the target humidity of the air conditioning room is defined as a predetermined humidity range in which the lower limit is defined by the minimum humidity and the upper limit is defined by the maximum humidity.
  • the minimum humidity, the maximum humidity, and the humidity treated in this embodiment are shown as relative humidity, respectively, but they may be treated as absolute humidity in a predetermined conversion process. In this case, it is preferable to treat the entire handling in the air conditioning system including the humidity of the living room as absolute humidity.
  • the dehumidifier 17 dehumidifies the air in the air conditioning room 18 so that when the humidity of the air in the air conditioning room 18 is higher than the set target humidity (target humidity in the air conditioning room), the humidity becomes the target humidity in the air conditioning room.
  • the dehumidifier 17 may be built in the air conditioner 9, it is desirable to provide the dehumidifier 17 independent of the air conditioner 9 in order to obtain a dehumidifying capacity sufficient for a plurality of living rooms 2. ..
  • the living room temperature sensor 11a is provided in the living room 2a
  • the living room temperature sensor 11b is provided in the living room 2b
  • the living room temperature sensor 11c is provided in the living room 2c
  • the living room temperature sensor 11d is provided in the living room 2d.
  • the living room temperature sensors 11a to 11d are sensors that acquire the room temperatures of the corresponding living rooms 2a to 2d and transmit them to the system controller 10.
  • the living room humidity sensor 12a is provided in the living room 2a
  • the living room humidity sensor 12b is provided in the living room 2b
  • the living room humidity sensor 12c is provided in the living room 2c
  • the living room humidity sensor 12d is provided in the living room 2d.
  • the living room humidity sensor 12 is a sensor that acquires the indoor humidity (living room humidity) of each of the corresponding living rooms 2a to 2d and transmits it to the system controller 10.
  • the air conditioning room temperature sensor 14 is a sensor that acquires the temperature of the air in the air conditioning room 18 and transmits it to the system controller 10.
  • the air conditioning room temperature sensor 14 may be built in the air conditioner 9, but when it is built in the air conditioner 9, only information around the air conditioner 9 (for example, near the air supply port) can be obtained. .. Since the air-conditioning chamber 18 mixes the outside air with the air conveyed from each living room 2 as described above, the air-conditioning chamber 18 should be provided independently of the air-conditioning conditioner 9 so that information on the air-conditioning chamber 18 as a whole can be obtained. desirable.
  • the air conditioning room humidity sensor 15 is a sensor that acquires the humidity of the air in the air conditioning room 18, that is, the humidity of the air conditioning room and transmits it to the system controller 10. For the same reason as the air-conditioning room temperature sensor 14, it is desirable that the air-conditioning room humidity sensor 15 is provided independently of the air-conditioning room 9 so that information on the air-conditioning room 18 as a whole can be obtained.
  • the system controller 10 is a controller that controls the entire air conditioning system 20.
  • the system controller 10 includes an outside air introduction fan 4, an exhaust fan 5, a conveyor fan 3, a circulation fan 6, a living room temperature sensor 11, a living room humidity sensor 12, an air conditioning room temperature sensor 14, an air conditioning room humidity sensor 15, an air conditioner conditioner 9, and a humidifier. It is communicably connected to 16 and the dehumidifier 17 by wireless communication.
  • the system controller 10 controls the outside air introduction fan 4 and the exhaust fan 5 in conjunction with each other, such as setting the supply air volume of the outside air introduction fan 4 so that the air volume corresponds to the exhaust air volume of the exhaust fan 5.
  • the general house 1 is ventilated by the first-class ventilation method.
  • the temperature and / or humidity of the air conditioner room 18 is adjusted to the air conditioner room 18 based on the temperature and humidity of the air in the air conditioner room 18 acquired by the air conditioner room temperature sensor 14 and the air conditioner room humidity sensor 15.
  • the air conditioner 9, the humidifier 16, and the dehumidifier 17 as air conditioners are controlled so as to reach the set target temperature of the air conditioner room and / or the target humidity of the air conditioner room.
  • the system controller 10 includes the room temperature and / or the room humidity of each room 2 acquired by the room temperature sensor 11 and the room humidity sensor 12, and the target temperature (living room target temperature) set for each of the living rooms 2a to 2d. And / or set the air volume of the transport fan 3 and the air volume of the circulation fan 6 according to the target humidity (target humidity of the living room) and the like.
  • the air conditioned in the air-conditioned room 18 is conveyed to each living room 2 with the air volume set in each transport fan 3, and the air in each living room 2 is conveyed in the air volume set in each circulation fan 6. It is transported to the air conditioning chamber 18. Therefore, the room temperature and / or the room humidity of each room 2 is controlled to be the room target temperature and / or the room target humidity.
  • the system controller 10 By connecting the humidifier 16 and the dehumidifier 17 by wireless communication, complicated wiring work can be eliminated. However, all of them, or the system controller 10 and a part of them may be configured to be communicable by wire communication.
  • the input / output terminal 19 is communicably connected to the system controller 10 by wireless communication, receives input of information necessary for constructing the air conditioning system 20 and stores it in the system controller 10, and displays the state of the air conditioning system 20 in the system. It is acquired from the controller 10 and displayed.
  • Examples of the input / output terminal 19 include mobile information terminals such as mobile phones, smartphones, and tablets.
  • the input / output terminal 19 does not necessarily have to be connected to the system controller 10 by wireless communication, and may be connected to the system controller 10 so as to be able to communicate by wired communication.
  • the input / output terminal 19 may be realized by, for example, a wall-mounted remote controller.
  • FIG. 2 is a schematic functional block diagram of the system controller 10.
  • the system controller 10 includes a living room target humidity acquisition unit 54, an air conditioning room humidity control unit 55, an air volume determination unit 40, a fan air volume control unit 31, and a storage unit 46.
  • the system controller 10 has a computer system having a processor and a memory. Then, when the processor executes the program stored in the memory, the computer system functions as the system controller 10.
  • the program executed by the processor may be pre-recorded in a computer system, recorded in a non-temporary recording medium such as a memory card, or provided through a telecommunication line such as the Internet. good.
  • the living room target humidity acquisition unit 54 acquires the living room target humidity commonly set for the entire living room 2 by the input / output terminal 19.
  • the living room target humidity is set as a predetermined humidity range defined by the lower limit being the minimum humidity and the upper limit being the maximum humidity.
  • the target humidity of the living room coincides with the target humidity of the air conditioning room.
  • the target humidity of the living room can be set by the user, but it may be set as a fixed value in the air conditioning system in advance.
  • the maximum humidity and the minimum humidity acquired by the living room target humidity acquisition unit 54 or preset are stored in the storage unit 46.
  • the air-conditioning room humidity control unit 55 uses the humidifier 16 and the dehumidifier 17 to control the humidity in the air-conditioning room to the air-conditioning room target humidity acquired by the living room target humidity acquisition unit 54. Specifically, when the humidity of the air-conditioning room acquired by the air-conditioning room humidity sensor 15 is higher than the maximum humidity constituting a predetermined humidity range, the dehumidifier 17 is operated. Further, when the humidity of the air conditioning room acquired by the air conditioning room humidity sensor 15 is lower than the minimum humidity, the humidifier 16 is operated.
  • the air volume determination unit 40 includes a humidity determination unit 53, a humidity difference comparison unit 56, and a height determination unit 57. Then, the air-blowing amount determination unit 40 determines the air-blowing amount of the transport fan 3 based on the indoor humidity of each living room acquired by the living room humidity sensor 12 and the humidity of the air-conditioning room 18 acquired by the air-conditioning room humidity sensor 15. The procedure for determining the amount of air blown will be described later.
  • the humidity determination unit 53 is based on the indoor humidity of each room 2 acquired by the room humidity sensor 12 and the target humidity of the room acquired by the target humidity acquisition unit 54, that is, the target humidity of the air conditioning room indicating a predetermined humidity range. It is determined whether or not the indoor humidity of the living room 2 is within a predetermined humidity range.
  • the humidity difference comparison unit 56 calculates the difference between the indoor humidity of each living room acquired by the living room humidity sensor 12 and the humidity of the air conditioning room 18 acquired by the air conditioning room humidity sensor 15. Specifically, for example, when the humidity of the living room 2a is 90% and the humidity of the air conditioning room is 50%, the difference is 40. In addition, when calculating the difference, it is not always necessary to obtain the difference in humidity expressed in%. For example, the difference may be calculated based on the amount of water obtained from the humidity, that is, the magnitude of the difference between the humidity in the air conditioning room and the humidity in the living room. Should be quantified.
  • the height determination unit 57 determines the height of the indoor humidity of each living room acquired by the living room humidity sensor 12 with respect to the humidity of the air conditioning room 18 acquired by the air conditioning room humidity sensor 15. Specifically, for example, when the humidity of the living room 2a is 90% and the humidity of the air conditioning room is 50%, it is determined that the humidity of the living room 2a is "higher” than 50% of the humidity of the air conditioning room. On the other hand, when the humidity of the living room 2c is 30% and the humidity of the air conditioning room is 50%, it is determined that the humidity of the living room 2c is "lower” than 50% of the humidity of the air conditioning room. These judgments may be made for all rooms, or only for rooms with a humidity higher than the maximum humidity and a room with a humidity lower than the minimum humidity.
  • the fan air volume control unit 31 determines the individual air volumes of the plurality of transport fans 3a to 3d provided for each of the plurality of living rooms 2a to 2d, and the air volume of each of the transport fans 3a to 3d determined by the air flow rate determination unit 40. Control the amount of air blown. Further, the fan air volume control unit 31 may also control the circulation fans 6a to 6d, but detailed description thereof will be omitted here.
  • the storage unit 46 is a so-called memory that stores a predetermined humidity range acquired by the living room target humidity acquisition unit 54 or preset, that is, the maximum humidity and the minimum humidity. In addition, the storage unit 46 is also used when it is necessary to store information such as numerical values for control by the system controller 10.
  • FIG. 3 is a flowchart showing the air conditioning process.
  • FIG. 4 is a flowchart showing the humidity control process in the air conditioning room.
  • FIG. 5 is a flowchart showing a fan air volume setting process.
  • FIG. 6 is a flowchart showing the air flow amount determination process.
  • 7A and 7B are diagrams showing an example of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room, and the humidity of the living room.
  • 8A, 8B and 8C are diagrams showing other examples of the relationship between the target humidity of the air conditioning room, the humidity of the air conditioning room and the humidity of the living room.
  • the air conditioning process executed by the system controller 10 is mainly composed of the air conditioning room humidity control process S100 and the fan air volume setting process S200, and is executed in this order.
  • the system controller 10 When the user executes the air conditioning process, the system controller 10 first executes the air conditioning room humidity control process S100 shown in FIG.
  • the system controller 10 acquires the living room target humidity set by the input / output terminal 19 and stores it in the storage unit 46 (S101).
  • the target humidity in the living room is a humidity that the user feels comfortable with, and is a humidity common to all living rooms.
  • the target humidity of a living room is defined as a predetermined humidity range in which the lower limit is defined as the minimum humidity and the upper limit is defined as the maximum humidity.
  • This predetermined humidity range is the humidity range targeted by the air conditioning chamber 18, that is, is the same as the target humidity of the air conditioning chamber.
  • the user sets, for example, the maximum humidity to 65% and the minimum humidity to 45% for the input / output terminal 19, so that the system controller 10 inputs to the input / output terminal 19 via the living room target humidity acquisition unit 54. Acquire the target humidity of the living room as the target humidity of the air conditioning room.
  • the humidity control unit 55 of the air-conditioning room maintains the humidity of the air-conditioning room 18 within the range of the target humidity of the air-conditioning room by using the air-conditioning room humidity sensor 15, the humidifier 16 and the dehumidifier 17. (S102).
  • the maintenance of the target humidity in the air conditioning room is performed as follows. That is, when the humidity in the air conditioning room acquired by the humidity sensor 15 in the air conditioning room is higher than the maximum humidity, the dehumidifier 17 is operated. Further, when the humidity in the air conditioning room acquired by the humidity sensor 15 in the air conditioning room is lower than the minimum humidity, the humidifier 16 is operated. Considering the fluctuation of the humidity of the air-conditioning room due to the air flowing into the air-conditioning room 18 after the humidity control process of the air-conditioning room, it is assumed that the humidity is within a predetermined humidity range at the time of dehumidification. Dehumidify to -5%). Then, at the time of humidification, for example, the humidity may be humidified to a humidity higher than the minimum humidity within a certain range (for example, + 5%).
  • the humidity of the air conditioning chamber 18 is maintained within a predetermined humidity range.
  • the system controller 10 executes the fan air volume setting process S200 shown in FIG.
  • the air volume determination unit 40 acquires the humidity of the air conditioning room via the air conditioning room humidity sensor 15 (S201). Further, the air flow rate determining unit 40 acquires the humidity of each living room 2 via the living room humidity sensor 12 (S202). Further, the system controller 10 acquires a predetermined humidity range, that is, the maximum humidity and the minimum humidity from the storage unit 46 via the living room target humidity acquisition unit 54 (S203).
  • the air flow rate determination unit 40 determines whether or not the humidity in each room is within a predetermined humidity range by the humidity determination unit 53 (S203).
  • the humidity difference comparison unit 56 calculates the difference between the humidity of the room and the humidity of the air-conditioning room for the corresponding room (a room that is not within the humidity range). (S204 No ⁇ S205). Further, the high / low determination unit 57 determines whether the humidity of the living room is high or low with respect to the humidity of the air conditioning room, that is, high or low (S206). Here, the high / low judgment may be made by comparing the air-conditioning room humidity acquired by the air-conditioning room humidity sensor 15 with the living room humidity as the humidity of the air-conditioning room, or even if the high / low with respect to a predetermined humidity range is judged, the result is It is the same.
  • the high / low determination unit 57 determines the height and classifies the living rooms 2 (living rooms 2a to 2d) that are not within the predetermined range into a high humidity room having a higher maximum humidity and a low humidity room having a lower humidity than the minimum humidity.
  • the comparison unit 56 associates with the compared temperature difference. That is, in this process, the air-blowing amount determining unit 40 can grasp the number of high-humidity living rooms and low-humidity living rooms, and the difference between the humidity of each air-conditioning room.
  • the air volume determination unit 40 performs the air volume determination process (S300).
  • the air volume determination unit 40 executes the air volume determination process S300 shown in FIG. That is, in the air-conditioning amount determining process S300, first, the air-conditioning amount determining unit 40 counts the number of low-humidity living rooms and the number of high-humidity living rooms with respect to the humidity of the air-conditioning room.
  • FIG. 7A is an example in which only a plurality of low-humidity living rooms exist.
  • a indicates the living room 2a
  • b indicates the living room 2b
  • c indicates the living room 2c
  • d indicates the living room 2d
  • the numerical value at the lower part indicates the living room humidity.
  • the maximum humidity is 65%
  • the minimum humidity is 45%
  • the humidity in the air conditioning room is 50%.
  • the air blowing amount determining unit 40 sets the air blowing amount of the transport fan 3d corresponding to the living room 2d having a large humidity difference to be larger than the air blowing amount of the transport fan 3c corresponding to the living room 2c.
  • the air blowing amount can be the air blowing capacity of the transport fan or the operating notch.
  • the air flow rate determining unit 40 sets the air flow rate of the transfer fan 3d to the maximum value here.
  • the air volume is determined to be 10.
  • the air blowing amount determination unit 40 determines the air blowing amount of the transport fan 3c to be smaller than that of the transport fan 3d, for example, the air flow amount 7.
  • the air in the air-conditioning room flows into the living room 2c and the living room 2d, and the humidity in each living room gradually approaches a predetermined humidity range.
  • the humidity of the living room 2d which is more uncomfortable due to the difference in the amount of air blown, has a large humidity difference from the air-conditioning room humidity, and is improved from the humidity of the living room 2c, which has a smaller humidity difference from the air-conditioning room 2d.
  • the speed becomes faster. That is, the air flow rate determining unit 40 gives priority to improving the humidity of the living room with respect to the living room having a worse humidity environment.
  • the humidity in the air-conditioning room gradually decreases from 50% due to the inflow of dry air in the living room 2c and 2d. Therefore, if the humidity is likely to fall below the minimum humidity, the humidity in the air-conditioning room is controlled as necessary.
  • the unit 55 operates the humidifier 16 to maintain the humidity in the air conditioning room within a predetermined humidity range.
  • the air-conditioning amount determination unit 40 counts the number of low-humidity living rooms and the number of high-humidity living rooms with respect to the humidity of the air-conditioning room, and similarly, when there are only a plurality of high-humidity living rooms, the air-blowing amount of the living room having a large humidity difference. Is largely determined (S301No ⁇ S302Yes ⁇ S303).
  • FIG. 7B is an example in which a plurality of high-humidity living rooms exist.
  • the air blowing amount determining unit 40 sets the air blowing amount of the transport fan 3a corresponding to the living room 2a having a large humidity difference to be larger than the air blowing amount of the transport fan 3b corresponding to the living room 2b. That is, the air flow rate determining unit 40 determines the air flow rate of the transport fan 3a to the maximum value of the air flow rate 10. Then, the air blowing amount determining unit 40 determines the air blowing amount of the transport fan 3b to be smaller than that of the transport fan 3b, for example, the air blowing amount 7.
  • the air in the air-conditioning room flows into the living room 2a and the living room 2b, and the humidity in each living room gradually approaches a predetermined humidity range.
  • the humidity of the living room 2a which is more uncomfortable due to the difference in the amount of air blown, has a large humidity difference from the air-conditioning room humidity, and is improved from the humidity of the living room 2b, which has a smaller humidity difference from the air-conditioning room humidity than the living room 2a.
  • the speed becomes faster. That is, the air flow rate determining unit 40 gives priority to improving the humidity of the living room with respect to the living room having a worse humidity environment.
  • the humidity in the air-conditioning room gradually rises from 50% due to the inflow of moist air in the living room 2a and 2b. Therefore, if the humidity is likely to exceed the maximum humidity, the humidity in the air-conditioning room is controlled as necessary.
  • the unit 55 operates the dehumidifier 17 to maintain the humidity in the air conditioning room within a predetermined humidity range.
  • the air-conditioning volume determination unit 40 counts the number of low-humidity living rooms and the number of high-humidity living rooms with respect to the humidity of the air-conditioning room, and when both high-humidity living rooms and low-humidity living rooms are present, the humidity difference is small. (S302No ⁇ S304Yes ⁇ S305).
  • FIG. 8A is an example in which a plurality of low-humidity living rooms exist.
  • the expressions in FIGS. 8A, 8B and 8C are the same as those in FIGS. 7A and 7B.
  • FIG. 8A there are a living room 2c which is a low humidity living room and a living room 2a which is a high humidity living room.
  • the humidity difference between the living room 2c and the humidity of the air-conditioning room is 20%, and the humidity difference between the living room 2a and the humidity of the air-conditioning room is 40%.
  • the air blowing amount determining unit 40 sets the air blowing amount of the transport fan 3a corresponding to the living room 2a having a large humidity difference to be smaller than the air blowing amount of the transport fan 3c corresponding to the living room 2c having a small humidity difference.
  • the air blowing amount determining unit 40 sets the air blowing amount of the transport fan 3c corresponding to the living room 2c having a small humidity difference to be larger than the air blowing amount of the transport fan 3a corresponding to the living room 2a having a large humidity difference. Specifically, the air flow rate determining unit 40 determines the air flow rate of the transport fan 3c to the maximum value of the air flow rate 10. Then, the air blowing amount determining unit 40 determines the air blowing amount of the conveying fan 3a to be smaller than the conveying fan 3c, for example, the blowing amount 5.
  • the air in the air-conditioning room flows into the living room 2a and the living room 2c, and the humidity in each living room gradually approaches a predetermined humidity range.
  • the humidity of the living room 2c which has a small humidity difference, is first improved by the difference in the amount of air blown.
  • the difference from S303 is that the fluctuation of humidity in the humidity of the air conditioning room is suppressed to the minimum by controlling the inflow amount of air from the two living rooms.
  • the amount of air flowing into the air-conditioning room from the low-humidity room with a small humidity difference is increased.
  • Control the inflow and outflow of water so that they are (ideally) equivalent.
  • fluctuations in the humidity of the air conditioning room can be suppressed, so that the operation of the humidifier 16 and the dehumidifier 17 can be suppressed, and energy saving control becomes possible.
  • the air-conditioning room can be operated efficiently, and the air-conditioning room can be miniaturized.
  • the air blower amount determining unit 40 may make the air blown amount of the transport fan 3c corresponding to the living room 2c having a small humidity difference the same as the air blown amount of the transport fan 3a corresponding to the living room 2a having a large humidity difference. Specifically, the air flow rate determining unit 40 determines the air flow rate of the transfer fan 3c and the air flow rate of the transfer fan 3a to, for example, the air flow rate 10. In this case, as shown in FIG. 8C, first, the humidity of the living room 2c is improved.
  • the humidity control unit 55 of the air-conditioning room may deal with this by using the dehumidifier 17. Even this process can contribute to energy saving control and miniaturization of the air conditioner.
  • the air-conditioning volume determination unit 40 counts the number of low-humidity living rooms and the number of high-humidity living rooms with respect to the humidity of the air-conditioning room. It means that it exists. In this case, the air volume determining unit 40 can shift the humidity of the living room to a predetermined humidity range by blowing air to the corresponding low humidity room or high humidity living room with a predetermined air volume (S304No ⁇ S306). ).
  • the air conditioning process has been described above, but after the air conditioning process is executed for the first time, the air conditioning room humidity control process S100 and the fan air volume setting process S200 are repeatedly processed independently.
  • the circulation fans 6a to 6d and the transfer fans 3a to 3d are communicated with each other by a duct connecting the living room and the air conditioning room.
  • the circulation fans 6a to 6d do not necessarily have to be connected by a duct, and a space such as a corridor connecting the living rooms can be regarded as a duct.
  • the air in the living room is conveyed from the living room to the corridor by the circulation fans 6a to 6d.
  • the air in the living room conveyed to the corridor is taken into the air conditioning room 18 communicating with the corridor.
  • the intake into the air-conditioning chamber 18 may be performed by newly providing a circulation fan on the wall surface facing the corridor of the air-conditioning chamber 18, or may be taken in by making the air-conditioning chamber negative pressure without using the circulation fan. Even with such a configuration, it is expected that the circulation efficiency will be lower than that of connecting with a duct, but it can contribute to the air conditioning system.
  • 9 and 10 are schematic views of the air-conditioning chamber 18 according to the first embodiment
  • FIG. 9 is a schematic view of the air-conditioning chamber when the air-conditioning chamber is divided into three
  • FIG. 10 is a schematic view of the air-conditioning chamber of 2. It is a schematic diagram of the air-conditioning room when it is divided.
  • FIG. 11 is a schematic functional block diagram of the system controller when the air conditioning chamber is divided into three sections.
  • the first space humidity calculation unit 58 is further added to the schematic functional block diagram shown in FIG.
  • the air conditioning chamber 18 is not divided, that is, the temperature and humidity are controlled by the air conditioner 9, the humidifier 16, and the dehumidifier 17 in the same space.
  • FIGS. 9 and 10 by classifying the air conditioning chamber 18, efficient dehumidification and humidification can be realized.
  • dehumidification, temperature control, and humidification are performed in different spaces.
  • the air conditioning chamber 18 is separated into three independent spaces, a first space 22, a second space 23, and a third space 24, by a partition plate 21.
  • the air conditioner 9, the humidifier 16, the dehumidifier 17, and the like are controlled by the system controller 10 in the same manner as described above.
  • the first space 22, the second space 23, and the third space 24 are arranged in this order from the upstream to the downstream, and the air in each space is blown to the downstream by the transport fan 3.
  • the partition board 21 has the role of a partition between the first space 22 and the second space 23 and a partition between the second space 23 and the third space 24, and is a board formed of a wooden board, a gypsum board, or the like. Further, the partition plate 21 can further prevent heat and humidity transfer between the spaces by attaching a heat insulating board in addition to the board to be used. Further, the partition plate 21 is provided with a space connecting opening 25 having a round hole or a square hole in a part of the plate surface. As a result, the first space 22, the second space 23, and the second space 23 and the third space 24 become independent spaces that can be ventilated to each other through the space connecting opening 25.
  • the space connecting opening 25 has an opening area of, for example, 30% or less, more preferably 20% or less, with respect to the area of the surface where the first space 22 and the second space 23 are in contact with each other when the partition plate 21 is not present. .. This is because if the space connection opening 25 is too large, the contribution to the efficiency of dehumidification and humidification capacity decreases, and if it is too small, the pressure loss increases and the ventilation efficiency between spaces may be adversely affected. .. Further, although the space connection opening 25 is provided as a mere opening here, by installing a fan for forcibly blowing air in the opening, for example, a fan for a pipe, the space can be changed from the upstream independent space to the downstream independent space. The ventilation efficiency of the air can be improved.
  • the first space 22 is spatially connected to the first air supply opening 26 for supplying indoor air upstream, the second air supply opening 27 for supplying outdoor air, and the second space 23 downstream. It has an opening 25. Further, in the first space 22, a dehumidifier 17, a first space temperature sensor 28, and a first space humidity sensor 29 are arranged. With this configuration, the indoor air from the first air supply opening 26 and the outdoor air from the second air supply opening 27 are mixed in the first space 22. The mixed air usually contains more fresh outdoor air than indoor air. The indoor air is close to the target temperature and the target humidity set by the system controller 10 because the air conveyed from the transfer fans 3a to 3d returns to the first space 22 via the rooms 2a to 2d. Temperature and humidity.
  • the outdoor air is high temperature and high humidity with respect to the set target temperature and target humidity in, for example, a high temperature and high humidity environment during summer or rainy season.
  • the first space 22 becomes a high temperature and high humidity environment.
  • the mixed air in the first space 22 is dehumidified by the dehumidifier 17 in the first space 22 so as to reach the target humidity of the air conditioning room when the humidity is higher than the target humidity of the air conditioning room of the air conditioning room 18. do.
  • the dehumidified air is blown to the second space 23 through the space connecting opening 25.
  • the first space temperature sensor 28 is a sensor that acquires the temperature of the air in the first space 22 and transmits it to the system controller 10. Since the outside air and the air conveyed from each living room 2 are mixed in the first space 22 as described above, the first space temperature sensor 28 is moved downstream, that is, so that the information of the first space 22 as a whole can be obtained. It is desirable to prepare in the vicinity of the spatial connection opening 25.
  • the first space humidity sensor 29 is a sensor that acquires the humidity of the air in the first space 22, that is, the humidity of the first space 22, and transmits it to the system controller 10. For the same reason as the first space temperature sensor 28, it is desirable that the first space humidity sensor 29 is provided downstream, that is, in the vicinity of the space connecting opening 25 so that information on the first space 22 as a whole can be obtained.
  • the second space 23 is provided with a space connecting opening 25 with the first space 22 upstream and a space connecting opening 25 with the third space 24 downstream.
  • An air conditioner 9 is arranged in the second space 23. With this configuration, the air dehumidified in the first space 22 is cooled or heated by the air conditioner 9 in the second space 23 so that the temperature of the air in the second space 23 becomes the set target temperature of the air conditioning room. .. Then, the cooled or heated air is blown to the third space 24 through the space connection opening 25 with the third space 24.
  • the third space 24 is provided with a space connection opening 25 with the second space 23 upstream and transfer fans 3a to 3d downstream.
  • a humidifier 16 is arranged in the third space 24. Further, in the third space 24, the air conditioning room temperature sensor 14 and the air conditioning room humidity sensor 15 are arranged downstream, that is, in the vicinity of the conveyor fans 3a to 3d. With this configuration, the air cooled or heated in the second space 23 is humidified by the humidifier 16 in the third space 24 so that the humidity becomes the target humidity in the air conditioning room when the humidity is lower than the target humidity in the air conditioning room 23. .. Then, the humidified air is conveyed to each living room 2a to 2d via the transfer fans 3a to 3d.
  • control of the target temperature of the air conditioning room and the control of the target humidity of the air conditioning room can be performed separately in independent spaces, so that efficient dehumidification and humidification can be performed.
  • the specific procedure and effect of dehumidification / humidification will be described below.
  • the air in the air conditioning room 18 is dehumidified or cooled.
  • the air-conditioning room humidity control unit 55 calculates the difference between the target humidity of the air-conditioning room and the humidity of the air-conditioning room 18, that is, the humidity of the third space 24. Then, when the humidity of the third space 24 is higher than the target humidity of the air conditioning room, the dehumidifier 17 provided in the first space 22 dehumidifies. The air dehumidified in the first space 22 is blown into the second space 23.
  • the air conditioner 9 provided in the second space 23 cools the second space 23.
  • the humidity controlled in the first space 22 is cooled in the second space 23, so that the relative humidity changes.
  • the air in the first space 22 is the humidity of the transported air blown out of the air-conditioned room 18 by the air-conditioned room humidity control unit 55 via the transport fan 3 (in this case, the relative humidity). ) Is controlled below the predetermined dehumidifying humidity. That is, the first space humidity calculation unit 58 calculates (back calculation) the humidity to be reached in the first space 22 in anticipation of cooling by the air conditioner 9.
  • the first space humidity calculation unit 58 is based on the set target humidity of the transport air (in this case, relative humidity), the set target temperature of the transport air, and the temperature of the first space 22.
  • the humidity (in this case, relative humidity) that the air in one space 22 should reach is calculated by the following procedure.
  • the moisture content of the transport air is calculated based on the conditions of the set target humidity of the transport air (in this case, the relative humidity) and the set target temperature of the transport air.
  • the air In summer or during the rainy season, the air is cooled in the second space 23 as described above, and then transported from the third space 24 to each of the living rooms 2a to 2d. That is, by determining the absolute humidity in the first space 22, the air conveyed to each of the living rooms 2a to 2d becomes the target absolute humidity.
  • the first space humidity calculation unit 58 the temperature of the first space 22 is detected. Thereby, the humidity (in this case, the relative humidity) at the temperature of the first space 22 to be reached can be calculated.
  • the temperature of the second space 23 is cooled by the air conditioner 9 with respect to the temperature of the first space 22 as needed. Therefore, the humidity of the air in the first space 22 (in this case, the relative humidity) is smaller than the humidity of the air in the second space 23 (in this case, the relative humidity). Therefore, the humidity of the air in the first space 22 (in this case, the relative humidity) is controlled to a dehumidifying humidity lower than the humidity of the transport air (in this case, the relative humidity).
  • the air conditioner 9 and the dehumidifier 17 are provided in the same space of the air conditioner room 18, the temperature difference between the air in the air conditioner 9 and the air in the air conditioner room 18 is small, and the air conditioner 9 is in a thermo-off state.
  • the dehumidifier 17 operates, and the heat radiation of the dehumidifier 17 causes the temperature of the air conditioning room 18 to be higher than the outdoor temperature, and the air is transported to each of the living rooms 2a to 2d.
  • the air heated by the heat radiation of the dehumidifier 17 is blown to the air conditioner 9, so that the air conditioner 9 performs the cooling operation and the set air conditioning room.
  • the air conditioning chamber 18 is expected to be a relatively narrow space. Therefore, when the air conditioner 9 and the dehumidifier 17 are provided in the same space of the air conditioner room 18, the air conditioner 9 cools the air and the dehumidifier 17 dissipates heat to heat the air at the same time. It becomes difficult to control the target temperature. However, since the air conditioning chamber 18 is divided, the heat radiation of the dehumidifier 17 can be separated from the second space 23 where the air conditioner 9 is located, so that the set air conditioning chamber target temperature and air conditioning chamber target humidity can be controlled. Becomes easier.
  • the air in the air conditioning room 18 is heated and humidified.
  • the air-conditioning room humidity control unit 55 determines whether or not the air is subject to dehumidification by detecting the humidity of the air in the first space 22, but the air in winter, which is already sufficiently low in humidity, is subject to dehumidification. Must not be. That is, in the first space 22, only the indoor air from the first air supply opening 26 and the outdoor air from the second air supply opening 27 are mixed.
  • the air in the second space 23 is lower than the set target temperature of the air conditioning room, it is heated to the target temperature of the air conditioning room set by the air conditioner 9.
  • the humidity in this case, relative humidity
  • the air heated in the second space 23 is conveyed to the third space 24 in a state where the condition of the target temperature of the air conditioning room is satisfied.
  • the air-conditioning room humidity control unit 55 calculates the difference between the set target humidity of the air-conditioning room and the humidity of the third space 24.
  • the air conditioning room humidity control unit 55 humidifies with the humidifier 16 provided in the third space 24.
  • the air conveyed from the transfer fans 3a to 3d in the third space 24 becomes the set target temperature of the air conditioning room and the target humidity of the air conditioning room.
  • the air after being heated by the air conditioner 9 is blown to the third space 24.
  • the higher the temperature the more water the air can contain, i.e. the absolute humidity can be increased.
  • the air in the third space 24 can efficiently absorb the moisture from the humidifier 16. That is, the air in the third space 24 can be more efficiently humidified to the set target humidity of the air conditioning room and transported from the transfer fans 3a to 3d to each living room 2.
  • the second space 23 may be a space that also serves as the third space 24, that is, the second and third spaces 30 may be used.
  • the space for cooling or heating the air and the space for humidifying the air may be the same space.
  • the air is dehumidified in the first space 22 and cooled in the second and third spaces 30 as in the case of the above three divisions. Further, in the case of a low temperature and low humidity environment in winter, heating and humidification are performed at the same time in the second and third spaces 30. In this configuration, air having a temperature lower than that of the air conditioning room is blown into the second and third spaces 30 from the first space 22, and the efficiency of humidifying the air becomes worse than in the case of the above three divisions. ..
  • the volume of the humidified space can be made larger than that of the third space 24.
  • the amount of humidified air having a high humidity is larger in the second and third spaces 30 than in the third space 24, and it is possible to humidify to the set target humidity of the air conditioning room more efficiently. Further, the number of partition plates 21 can be reduced from two to one, and the cost for the air conditioning chamber 18 can be reduced.
  • FIG. 12 is a schematic connection diagram of the air conditioning system 20b according to the second embodiment
  • FIG. 13 is a schematic functional block diagram of the system controller 10b according to the second embodiment.
  • the air conditioning system 20b includes transfer fans 3e and 3f instead of the transfer fans 3a, 3b, 3c, and 3d in the first embodiment.
  • chambers 7 are newly provided.
  • system controller 10b includes a damper air volume control unit 32 instead of the fan air volume control unit 31 in the first embodiment.
  • the transfer fan 3 is provided on, for example, the wall surface of the air conditioning chamber 18, and is connected to different chambers 7.
  • the transport fans 3e and 3f are communicably connected to the system controller 10b, and the damper air volume control unit 32 constituting the system controller 10b can independently change (adjust) the air volume and turn on / off the air flow.
  • the air in the air conditioning chamber 18 is conveyed to the chamber 7a by the transfer fan 3e via the transfer duct, and is conveyed to the chamber 7b via the transfer duct by the transfer fan 3f.
  • the chamber 7 has a hollow box shape and is provided with a plurality of ventilation openings, and each of the ventilation openings is provided with a damper 8.
  • the chamber 7a is provided with two ventilation openings, and dampers 8a and 8b are connected to the two ventilation openings, respectively.
  • the damper 8a is connected to the living room 2c via a transport duct, and the damper 8b is connected to the living room 2d.
  • the chamber 7b is provided with two ventilation openings, and the damper 8c and the damper 8d are connected to the two ventilation openings, respectively.
  • the damper 8c is connected to the living room 2b via a transport duct, and the damper 8d is connected to the living room 2a.
  • the damper 8 is communicably connected to the system controller 10b, and the opening degree, in other words, the air volume passing through the ventilation opening can be changed (adjusted) independently by the damper air volume control unit 32.
  • the transport fans 3e, 3f, and dampers 8a to 8d allow the system controller 10b to adjust the air volume of the air sent from the air conditioning chamber 18 for each living room.
  • the air-conditioning amount determination unit 40 blows air for each room based on the indoor humidity of each room acquired by the room humidity sensor 12 and the humidity of the air-conditioning room 18 acquired by the air-conditioning room humidity sensor 15. Determine the amount of air to be blown.
  • the amount of air to be blown for each living room is the same as the amount of air blown by the transport fan 3 in the first embodiment.
  • the damper air volume control unit 32 adjusts the opening degree of the plurality of dampers 8a to 8d provided corresponding to each of the plurality of living rooms 2a to 2d, in other words, the air volume, and each of the air volume is determined by the air volume determination unit 40. Blow air into your room. Further, the damper air volume control unit 32 increases the air volume when the air volume of the transport fans 3e and 3f is insufficient, and adjusts the opening degree of the damper 8 in conjunction with this. Similarly, when the air volume of the transport fans 3e and 3f is excessive, the air volume is reduced, and the opening degree of the damper 8 is adjusted in conjunction with this.
  • the operation and processing of the air blower amount determination unit 40 are the same as those of the air blower amount determination process S200 and the air flow amount determination process S300 shown in the first embodiment.
  • one chamber 7 may be provided.
  • the number of dampers 8 provided in the chamber 7 can be arbitrarily changed according to the capacity of the transfer fan and the number of living rooms to be connected.
  • the living room does not necessarily have to have a person and can be regarded as one space. In other words, if the corridor and kitchen are also separated to some extent, they can be regarded as one space, which corresponds to one living room.
  • the air conditioning system according to the present invention can be applied to a complex house such as a detached house or a condominium.
  • a complex house such as a detached house or a condominium.
  • one system corresponds to each household, and each household does not have one living room.
  • the system is described as a system including both a humidifier and a dehumidifier.
  • an air conditioning system provided with only a humidifier may be used according to the living environment.
  • the air-conditioning room humidity control unit controls the humidifier to maintain the humidity of the air-conditioning room within a predetermined humidity range defined by a predetermined minimum humidity or higher. That is, the air conditioning system controls the minimum humidity to a predetermined value or higher, and does not control the maximum humidity.
  • the air conditioning system may be provided with only a dehumidifier.
  • the air-conditioning room humidity control unit controls the dehumidifier to maintain the humidity of the air-conditioning room within a predetermined humidity range defined below a predetermined maximum humidity. That is, the air conditioning system controls the maximum humidity to a predetermined value or less, and does not control the minimum humidity.
  • blower using only the transfer fan of the first embodiment and the blower using the transfer fan and the damper of the second embodiment may be combined.
  • the air conditioning system and the air conditioning system controller according to the present invention are useful as an air conditioning system and an air conditioning system controller that contribute to miniaturization of the air conditioning room by efficient dehumidification and humidification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Ventilation (AREA)

Abstract

加湿器と、除湿器と、空調室の空気を複数の居室に搬送するための搬送ファンと、各居室への風量を独立して制御可能なダンパーと、加湿器と除湿器とダンパーとを制御するシステムコントローラと、居室湿度センサーと、空調室湿度センサーと、を備え、システムコントローラは、加湿器及び/又は除湿器を制御して空調室の湿度を最低湿度と最高湿度とで定義される所定の湿度範囲内に維持する空調室湿度制御部と、居室湿度センサーが取得した各居室の室内湿度と、空調室湿度センサーが取得した空調室の湿度とに基づいてダンパーを介した送風量を決定する送風量決定部と、送風量決定部が決定した送風量でダンパーを介したそれぞれの居室への送風量を制御するダンパー風量制御部と、を備えた空調システム。

Description

空調システム、空調システムコントローラ
 本発明は、空調システム及び空調システムコントローラに関するものである。
 従来、住居に対して全館空調機での空調が行なわれている。また、省エネルギー住宅需要の高まりや規制強化に伴い、高断熱・高気密住宅が増加していくことが予想されており、その特徴に適した空調システムが要望されている。
 また、空気調和機の制御として、例えば特許文献1に示されるように、空調運転開始時に周囲温度、湿度を検知し、環境に応じた快適温湿度にコントロールすると共に快適な温湿度内で、できるだけ無駄なエネルギー消費をおこさないよう目標温湿度を決定する空気調和機の制御装置が知られている。
特開2004-12006号公報
 このような従来の空気調和機による温湿度制御、特に湿度制御においては、空調室にて空調を行い、複数の居室に対して搬送ファンにより送風を行うシステムへの適用が困難であった。つまり、従来の空気調和機においては周囲湿度を検知し、これらに対して目標湿度を設定して維持制御することで、湿度に対して快適な環境を提供している。ここで空気調和機が設けられた居室の湿度は空気調和機の制御下にあり、基本的に外部からの影響をさほど受けない。
 これに対して、上記システムでは複数の居室に接続されている故に様々な湿度の空気が空調室に流入するため、空調室の湿度環境が短時間で大きく変動する。よって、このような状況下の空調室の湿度を所定の範囲に制御するには、複数の居室に対して十分に余裕を持った非常に大きな空調室を設けて湿度を制御するか、あるいは除湿能力、加湿能力を非常に高める必要があった。しかしながら、このような手段では空間的、あるいはエネルギー的に非効率であり、新たな湿度制御が求められていた。
 そこで本発明は、上記従来の課題を解決するものであり、効率的な除加湿により空調室の小型化に寄与する空調システム、及び空調システムコントローラを提供することを目的とする。
 そして、この目的を達成するために、本発明は、空調室の空気を加湿する加湿器と、空調室の空気を除湿する除湿器と、空調室の空気を空調室とは独立した複数の居室に搬送するための搬送ファンと、複数の居室に対応して設けられ搬送ファンによって送風された空気の各居室への風量を独立して制御可能なダンパーと、加湿器と除湿器とダンパーとを制御するシステムコントローラと、複数の居室それぞれの室内湿度を取得してシステムコントローラに送信する居室湿度センサーと、空調室の湿度を取得してシステムコントローラに送信する空調室湿度センサーと、を備え、システムコントローラは、加湿器及び/又は除湿器を制御して空調室の湿度を最低湿度と最高湿度とで定義される所定の湿度範囲内に維持する空調室湿度制御部と、居室湿度センサーが取得した各居室の室内湿度と、空調室湿度センサーが取得した空調室の湿度とに基づいてダンパーを介した送風量を決定する送風量決定部と、送風量決定部が決定した送風量でダンパーを介したそれぞれの居室への送風量を制御するダンパー風量制御部と、を備えた空調システム等とし、これにより所期の目的を達成するものである。
 また、本発明は、空調室の空気を加湿する加湿器と、空調室の空気を除湿する除湿器と、搬送ファンによって送風された空調室の空気の、空調室とは独立した各居室への風量を独立して制御可能なダンパーと、を制御する空調システムコントローラであって、加湿器及び/又は除湿器を制御して空調室の湿度を最低湿度と最高湿度とで定義される所定の湿度範囲内に維持する空調室湿度制御部と、各居室の室内湿度と空調室の湿度とに基づいてダンパーを介した送風量を決定する送風量決定部と、送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの居室への送風量を制御するダンパー風量制御部と、を備えた空調システムコントローラ等とし、これにより所期の目的を達成するものである。
 本発明によれば、効率的な除加湿により空調室の小型化に寄与する空調システム等を提供することができる。
図1は、本発明の第1実施形態に係る空調システムの接続概略図である。 図2は、空調システムのシステムコントローラの概略機能ブロック図である。 図3は、空調処理を示すフローチャートである。 図4は、空調室湿度制御処理を示すフローチャートである。 図5は、ファン風量設定処理を示すフローチャートである。 図6は、送風量決定処理を示すフローチャートである。 図7Aは、空調室目標湿度と空調室湿度と居室湿度との関係の一例を示す図である。 図7Bは、空調室目標湿度と空調室湿度と居室湿度との関係の一例を示す図である。 図8Aは、空調室目標湿度と空調室湿度と居室湿度との関係の他の例を示す図である。 図8Bは、空調室目標湿度と空調室湿度と居室湿度との関係の他の例を示す図である。 図8Cは、空調室目標湿度と空調室湿度と居室湿度との関係の他の例を示す図である。 図9は、空調室を3区分化した場合の空調室の概略図である。 図10は、空調室を2区分化した場合の空調室の概略図である。 図11は、空調室を3区分化した場合のシステムコントローラの概略機能ブロック図である。 図12は、本発明の第2実施形態に係る空調システムの接続概略図である。 図13は、第2実施形態に係るシステムコントローラの概略機能ブロック図である。
 以下、本発明を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。よって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本発明を限定する主旨ではない。従って、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 まず、図1を参照して、本発明の第1実施形態に係る空調システム20について説明する。図1は、第1実施形態に係る空調システム20の接続概略図である。
 空調システム20は、外気導入ファン4と、複数の排気ファン5(排気ファン5a,5b,5c,5d)と、複数の搬送ファン3(搬送ファン3a,3b,3c,3d)と、複数の循環ファン6(6a,6b,6c,6d)と、居室温度センサー11(居室温度センサー11a,11b,11c,11d)と、居室湿度センサー12(居室湿度センサー12a,12b,12c,12d)と、空調室温度センサー14と、空調室湿度センサー15と、エアコンディショナー9と、加湿器16と、除湿器17と、入出力端末19と、システムコントローラ10(空調システムコントローラに該当)と、を備えて構成される。
 空調システム20は、建物の一例である一般住宅1内に設置される。一般住宅1は、複数(本実施形態では4つ)の居室2(居室2a,2b,2c,2d)に加え、居室2と独立した少なくとも1つの空調室18を有している。ここで一般住宅1(住宅)とは、居住者がプライベートな生活を営む場として提供された住居であり、一般的な構成として居室2にはリビング、ダイニング、寝室、個室、子供部屋等が含まれる。また空調システム20が提供する居室にトイレ、浴室、洗面所、脱衣所等を含んでもよい。
 空調室18では、各居室2より搬送された空気同士が混合される。また、外気導入ファン4により外気が空調室18内に取り込まれ、循環ファン6によって各居室2より搬送された空気と混合される。空調室18の空気は、空調室18内に設けられたエアコンディショナー9、加湿器16及び除湿器17によって温度及び湿度が制御され、すなわち空調されて、居室2に搬送すべき空気が生成される。空調室18にて空調された空気は、搬送ファン3により、各居室2に搬送される。ここで、空調室18は、エアコンディショナー9やその他加湿器16、除湿器17などが配置でき、各居室の空調をコントロールできる一定の広さを備えた空間を意味するが、居住空間を意図するものではなく、基本的に居住者が滞在する部屋を意味するものではない。
 各居室2の空気は、循環ファン6により空調室18へ搬送される他、排気ファン5によって居室2内から一般住宅1外へ外気として排出される。空調システム20は、排気ファン5の排気風量を制御して室内から外気を排出しつつ、その排気ファン5の排気風量と連動させながら外気導入ファン4の給気風量を制御して室内に外気を取り込むことで、第1種換気方式の換気が行われる。
 外気導入ファン4は、一般住宅1の室内に外気を取り込むファンであり、給気ファンや熱交換気扇の給気機能等が該当する。上述した通り、外気導入ファン4により取り込まれた外気は、空調室18内に導入される。外気導入ファン4の給気風量は、複数段階で設定可能に構成されており、その排気風量は、後述するように、排気ファン5の排気風量に応じて設定される。
 排気ファン5は、対応する居室2の空気の一部を例えば排気ダクトを介して外気として排出するファンであり、天埋換気扇、壁掛換気扇、レンジフード、熱交換気扇の排気機能等が該当する。なお、図1においては排気ファン5に接続された排気ダクトは直接一般住宅1外へ接続されているが、熱交換気扇の排気機能を利用する場合には、排気ダクトはいったん熱交換気扇に接続されてから一般住宅1外へ接続される。つまり排気ダクトを通る空気が熱交換気扇の給気風路を通る空気との間で熱交換されたのち、一般住宅1外へ排出される。排気ファン5aは居室2aに、排気ファン5bは居室2bに、排気ファン5cは居室2cに、排気ファン5dは居室2dに設けられている。
 各排気ファン5は、それぞれ、その排気風量が複数段階で設定可能に構成されている。通常時は、予め設定された排気風量となるように各排気ファン5は制御される。そして、ユーザによる設定や、各種センサーにより取得された値に応じて、排気ファン5a~5d毎に排気風量が制御される。
 搬送ファン3a~3dは、各居室2a~2dに対応して空調室18の例えば壁面に設けられている。空調室18の空気は、搬送ファン3aによって搬送ダクトを介して居室2aに搬送され、搬送ファン3bによって搬送ダクトを介して居室2bに搬送され、搬送ファン3cによって搬送ダクトを介して居室2cに搬送され、搬送ファン3dによって搬送ダクトを介して居室2dに搬送される。なお、各居室と接続される搬送ダクトはそれぞれ独立して設けられる。
 循環ファン6aは居室2aに、循環ファン6bは居室2bに、循環ファン6cは居室2cに、循環ファン6dは居室2dに設けられている。各居室2a~2dの空気の一部は、対応する循環ファン6a~6dによって、循環ダクトを介して空調室18に搬送される。なお、空調室18と各居室とを接続する循環ダクトはそれぞれ独立して設けられてもよいが、循環ダクトの一部である複数の支流ダクトを途中より合流させて1つの循環ダクトに統合した後、空調室18に接続されてもよい。
 エアコンディショナー9は、空調機に該当するものであり、空調室18の空調を制御する。エアコンディショナー9は、空調室18の空気の温度が設定された目標温度(空調室目標温度)となるように、空調室18の空気を冷却又は加熱する。
 加湿器16は、空調室18の空気の湿度が設定された目標湿度(空調室目標湿度)よりも低い場合にその湿度が空調室目標湿度となるように、空調室18の空気を加湿する。なお、加湿器16がエアコンディショナー9に内蔵されている場合もあるが、複数の居室2に対応するだけの加湿能力を得るために、エアコンディショナー9とは独立した加湿器16を備えるのが望ましい。ここで空調室目標湿度は、下限を最低湿度で、上限を最高湿度で定義される所定の湿度範囲として定義される。また最低湿度、最高湿度、及び本実施例で扱われる湿度はそれぞれ相対湿度で示されるが、所定の変換処理にて絶対湿度として扱ってもよい。この場合、居室の湿度を含めて空調システムでの取り扱い全体を絶対湿度として取り扱うのが好ましい。
 除湿器17は、空調室18の空気の湿度が設定された目標湿度(空調室目標湿度)よりも高い場合にその湿度が空調室目標湿度となるように、空調室18の空気を除湿する。なお、除湿器17がエアコンディショナー9に内蔵されている場合もあるが、複数の居室2に対応するだけの除湿能力を得るために、エアコンディショナー9とは独立した除湿器17を備えるのが望ましい。
 居室温度センサー11aは、居室2aに設けられ、居室温度センサー11bは、居室2bに設けられ、居室温度センサー11cは、居室2cに設けられ、居室温度センサー11dは、居室2dに設けられている。居室温度センサー11a~11dは、対応する居室2a~2dそれぞれの室内温度を取得して、システムコントローラ10に送信するセンサーである。
 居室湿度センサー12aは、居室2aに設けられ、居室湿度センサー12bは、居室2bに設けられ、居室湿度センサー12cは、居室2cに設けられ、居室湿度センサー12dは、居室2dに設けられている。居室湿度センサー12は、対応する居室2a~2dそれぞれの室内湿度(居室湿度)を取得して、システムコントローラ10に送信するセンサーである。
 空調室温度センサー14は、空調室18の空気の温度を取得して、システムコントローラ10に送信するセンサーである。なお、空調室温度センサー14は、エアコンディショナー9に内蔵されている場合もあるが、エアコンディショナー9に内蔵されている場合にはエアコンディショナー9周囲(例えば給気口付近)の情報しか得られない。空調室18は、上述のように外気と各居室2から搬送された空気とが混合されるため、空調室18全体としての情報が得られるように、エアコンディショナー9とは独立して備えるのが望ましい。
 空調室湿度センサー15は、空調室18の空気の湿度、すなわち空調室湿度を取得して、システムコントローラ10に送信するセンサーである。なお、空調室湿度センサー15も空調室温度センサー14と同様の理由で、空調室18全体としての情報が得られるように、エアコンディショナー9とは独立して備えるのが望ましい。
 システムコントローラ10は、空調システム20全体を制御するコントローラである。システムコントローラ10は、外気導入ファン4、排気ファン5、搬送ファン3、循環ファン6、居室温度センサー11、居室湿度センサー12、空調室温度センサー14、空調室湿度センサー15、エアコンディショナー9、加湿器16及び除湿器17と、無線通信により通信可能に接続されている。
 システムコントローラ10は、排気ファン5の排気風量に応じた風量となるように、外気導入ファン4の給気風量を設定する等、外気導入ファン4と排気ファン5とを連動させて制御する。これにより、一般住宅1に対して第1種換気方式による換気が行われる。
 また、システムコントローラ10は、空調室温度センサー14及び空調室湿度センサー15により取得される空調室18の空気の温度及び湿度に基づいて、空調室18の温度及び/又は湿度が、空調室18に設定された空調室目標温度及び/又は空調室目標湿度となるように、空調機としてのエアコンディショナー9、加湿器16、除湿器17を制御する。
 また、システムコントローラ10は、居室温度センサー11及び居室湿度センサー12により取得された各居室2それぞれの室内温度及び/又は室内湿度と、居室2a~2d毎に設定された目標温度(居室目標温度)及び/又は目標湿度(居室目標湿度)等に応じて、搬送ファン3の風量や循環ファン6の風量を設定する。
 これにより、空調室18にて空調された空気が、各搬送ファン3に設定された風量で各居室2に搬送され、また、各居室2の空気が、各循環ファン6に設定された風量で空調室18に搬送される。よって、各居室2の室内温度及び/又は室内湿度が、居室目標温度及び/又は居室目標湿度となるように制御される。
 ここで、システムコントローラ10と、外気導入ファン4、排気ファン5、搬送ファン3、循環ファン6、居室温度センサー11、居室湿度センサー12、空調室温度センサー14、空調室湿度センサー15、エアコンディショナー9、加湿器16及び除湿器17とが、無線通信で接続されることにより、複雑な配線工事を不要とすることができる。ただし、これら全体を、又は、システムコントローラ10とこれらの一部を、有線通信により通信可能に構成してもよい。
 入出力端末19は、システムコントローラ10と無線通信により通信可能に接続され、空調システム20を構築するうえで必要な情報の入力を受け付けてシステムコントローラ10に記憶させたり、空調システム20の状態をシステムコントローラ10から取得して表示したりするものである。入出力端末19は、携帯電話、スマートフォン、タブレットといった携帯情報端末が例として挙げられる。
 なお、入出力端末19は、必ずしも無線通信によりシステムコントローラ10と接続される必要はなく、有線通信により通信可能にシステムコントローラ10と接続されてもよい。この場合、入出力端末19は、例えば、壁掛のリモートコントローラにより実現されるものであってもよい。
 次いで、図2を参照して、システムコントローラ10の各機能について説明する。図2は、システムコントローラ10の概略機能ブロック図である。
 システムコントローラ10は、居室目標湿度取得部54、空調室湿度制御部55、送風量決定部40、ファン風量制御部31、記憶部46を備える。なお、システムコントローラ10は、プロセッサおよびメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムがシステムコントローラ10として機能する。プロセッサが実行するプログラムは、コンピュータシステムに予め記録されてもよいし、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。
 居室目標湿度取得部54は、入出力端末19により居室2全体に共通して設定された居室目標湿度を取得する。居室目標湿度は、下限を最低湿度で、上限を最高湿度で定義される所定の湿度範囲として設定される。本実施の形態では、居室目標湿度が空調室目標湿度と一致する。なお、本実施の形態では居室目標湿度をユーザが設定可能としているが、あらかじめ空調システムに固定値として設定されていてもよい。居室目標湿度取得部54により取得され、あるいはあらかじめ設定された最高湿度及び最低湿度は、記憶部46に記憶される。
 空調室湿度制御部55は、加湿器16及び除湿器17を利用して空調室内の湿度を居室目標湿度取得部54にて取得した空調室目標湿度に制御する。具体的には、空調室湿度センサー15にて取得した空調室の湿度が所定の湿度範囲を構成する最高湿度よりも高い場合には、除湿器17を動作させる。また、空調室湿度センサー15にて取得した空調室の湿度が最低湿度よりも低い場合には、加湿器16を動作させる。
 送風量決定部40は、湿度判定部53と、湿度差比較部56と、高低判断部57とを備える。そして送風量決定部40は、居室湿度センサー12が取得した各居室の室内湿度と、空調室湿度センサー15が取得した空調室18の湿度とに基づいて搬送ファン3の送風量を決定する。なお、送風量の決定手順については後述する。
 湿度判定部53は、居室湿度センサー12が取得した各居室2の室内湿度と居室目標湿度取得部54により取得した居室目標湿度、すなわち所定の湿度範囲を示す空調室目標湿度とに基づいて、各居室2の室内湿度が所定の湿度範囲内であるか否か判定する。
 湿度差比較部56は、居室湿度センサー12が取得した各居室の室内湿度と空調室湿度センサー15が取得した空調室18の湿度との差を算出する。具体的には、例えば居室2aの湿度が90%、空調室湿度が50%の場合、差は40となる。なお、差を算出するにあたって必ずしも%表記の湿度の差を求める必要はなく、例えば湿度から求められる水分量等により差を算出してもよく、即ち空調室湿度と居室湿度との乖離の大きさが数値化できれば良い。
 高低判断部57は、居室湿度センサー12が取得した各居室の室内湿度の、空調室湿度センサー15が取得した空調室18の湿度に対する高低を判断する。具体的には、例えば居室2aの湿度が90%であり、空調室湿度が50%である場合、居室2aの湿度は空調室湿度の50%よりも「高い」と判断する。他方、居室2cの湿度が30%であり、空調室湿度が50%である場合、居室2cの湿度は空調室湿度の50%よりも「低い」と判断する。これら判断は、すべての居室に対して行われてもよく、また、最高湿度より湿度の高い居室及び最低湿度より湿度の低い居室に対してのみ行われてもよい。
 ファン風量制御部31は、複数の居室2a~2d毎に対応して設けられた複数の搬送ファン3a~3d個々の風量を、送風量決定部40にて決定された各搬送ファン3a~3dの送風量に制御する。また、ファン風量制御部31は、循環ファン6a~6dについても制御してよいが、ここでは詳細説明を省略する。
 記憶部46は、居室目標湿度取得部54により取得され、あるいはあらかじめ設定された所定の湿度範囲、すなわち最高湿度及び最低湿度を記憶する、いわゆるメモリである。また、その他システムコントローラ10による制御に数値などの情報の記憶が必要な場合にも記憶部46が利用される。
 次いで、図3~図8Cを参照して、システムコントローラ10により実行される空調処理について説明する。図3は、空調処理を示すフローチャートである。図4は、空調室湿度制御処理を示すフローチャートである。図5は、ファン風量設定処理を示すフローチャートである。図6は、送風量決定処理を示すフローチャートである。図7A及び図7Bは、空調室目標湿度と空調室湿度と居室湿度との関係の一例を示す図である。図8A、図8Bおよび図8Cは、空調室目標湿度と空調室湿度と居室湿度との関係の他の例を示す図である。
 システムコントローラ10が実行する空調処理は、図3に示すように、主に空調室湿度制御処理S100、ファン風量設定処理S200により構成され、この順で実行される。
 ユーザが空調処理を実行すると、まず、システムコントローラ10は、図4に示す空調室湿度制御処理S100を実行する。
 空調室湿度制御処理S100では、システムコントローラ10は、入出力端末19にて設定された居室目標湿度を取得して記憶部46に記憶する(S101)。ここで居室目標湿度とは、ユーザが心地よいと感じる湿度であり、すべての居室に共通する湿度である。居室目標湿度は、下限を最低湿度で、上限を最高湿度で定義される所定の湿度範囲として定義される。この所定の湿度範囲は、空調室18が目標とする湿度範囲であり、即ち空調室目標湿度と同一である。ユーザは、入出力端末19に対して、例えば最高湿度を65%とし、最低湿度を45%として設定することで、システムコントローラ10は、居室目標湿度取得部54を介して入出力端末19に入力された居室目標湿度を空調室目標湿度として取得する。
 空調室目標湿度を取得すると、空調室湿度制御部55は、空調室湿度センサー15と加湿器16と除湿器17とを利用して、空調室18の湿度を空調室目標湿度の範囲内に維持する(S102)。
 具体的に空調室目標湿度の維持は、以下のように行われる。すなわち、空調室湿度センサー15にて取得した空調室湿度が最高湿度よりも高い場合には、除湿器17を動作させる。また、空調室湿度センサー15にて取得した空調室湿度が最低湿度よりも低い場合には、加湿器16を動作させる。空調室湿度制御処理後に空調室18に流入する空気による空調室湿度の変動を考慮すると、除湿時には、所定の湿度範囲であることを前提として、例えば最高湿度よりも一定の範囲で低い湿度(例えば-5%)まで除湿を行う。そして加湿時には例えば最低湿度よりも一定の範囲で高い湿度(例えば+5%)まで加湿してもよい。
 以上の処理により、空調室18の湿度が所定の湿度範囲内に維持される。
 続いて、システムコントローラ10は、図5に示すファン風量設定処理S200を実行する。
 ファン風量設定処理S200では、送風量決定部40は、空調室湿度センサー15を介して空調室湿度を取得する(S201)。また、送風量決定部40は、居室湿度センサー12を介して各居室2の居室湿度を取得する(S202)。さらにシステムコントローラ10は、居室目標湿度取得部54を介して記憶部46より、所定の湿度範囲、すなわち最高湿度と最低湿度とを取得する(S203)。
 次に、送風量決定部40は、湿度判定部53により各居室の居室湿度が所定の湿度範囲内であるか否か判定する(S203)。
 ここで、すべての居室が所定の湿度範囲内であれば、処理を終了する(S204Yes→終了)。
 なお、少なくとも1つの居室が所定の湿度範囲内でなければ、湿度差比較部56は、該当する居室(湿度範囲内ではない居室)について、その居室の居室湿度と空調室湿度との差を算出する(S204No→S205)。さらに高低判断部57は、該当する居室について、その居室の居室湿度が空調室の湿度に対して高いか又は低いか、即ち高低を判断する(S206)。ここで、高低の判断は、空調室の湿度として、空調室湿度センサー15が取得した空調室湿度と居室湿度とを比較してもよいし、所定の湿度範囲に対する高低を判断しても結果は同じである。高低判断部57は、高低を判断し、所定の範囲内に無い居室2(居室2a~2d)を、最高湿度より高い高湿度居室と最低湿度より低い低湿度居室とに分類するとともに、湿度差比較部56が比較した温度差と関連付ける。つまり、送風量決定部40は、この処理において、高湿度居室と低湿度居室の数、及びそれぞれの空調室湿度との差とを把握することができる。
 上記処理が完了すると、送風量決定部40は、送風量決定処理を行う(S300)。
 送風量決定部40は、図6に示す送風量決定処理S300を実行する。すなわち、送風量決定処理S300においては、まず、送風量決定部40は、空調室湿度に対する低湿度居室の数と高湿度居室の数とをカウントする。
 ここで、低湿度居室のみが複数存在する場合、湿度差の大きい居室の送風量を大きく決定する(S301Yes→S303)。この処理を、図7Aを参照しながら詳しく説明する。なお、図7Aは、低湿度居室のみが複数存在する一例である。そして図7Aにおけるaは居室2aを、bは居室2bを、cは居室2cを、dは居室2dを示し、下部の数値は居室湿度を示す。また、最高湿度は65%、最低湿度は45%、空調室湿度は50%であるものとする。
 図7Aによると、低湿度居室のみが2室(居室2c、居室2d)存在する。そして居室2cは、空調室湿度との湿度差(絶対値)が20%、居室2dは、空調室湿度との湿度差が30%である。この場合、送風量決定部40は、湿度差が大きい居室2dに対応する搬送ファン3dの送風量を、居室2cに対応する搬送ファン3cの送風量よりも大きく設定する。ここで送風量とは、搬送ファンの送風能力、あるいは動作ノッチとすることができる。例えば搬送ファン3の送風量を送風量の小さいものから順に送風量1~送風量10の10段階の設定が可能とすると、送風量決定部40は、ここでは搬送ファン3dの送風量を最大値の送風量10に決定する。そして、送風量決定部40は、搬送ファン3cの送風量を搬送ファン3dよりも小さい例えば送風量7に決定する。
 これにより、居室2c及び居室2dには空調室の空気が流入し、各居室の居室湿度は、徐々に所定の湿度範囲内に近づいて行く。この際、送風量の差により、より不快とされる、空調室湿度との湿度差が大きい居室2dの湿度は、空調室湿度との湿度差が居室2dよりも小さい居室2cの湿度よりも改善速度が速くなる。つまり、送風量決定部40は、より湿度環境の悪い居室に対して居室の湿度改善を優先する。
 なおこの際、空調室湿度は、居室2c及び居室2dの乾燥した空気の流入により、50%から徐々に低下していくため、最低湿度を下回りそうな場合には必要に応じて空調室湿度制御部55が加湿器16を動作させ、空調室湿度を所定の湿度範囲に維持する。
 また、送風量決定部40は、空調室湿度に対する低湿度居室の数と高湿度居室の数とをカウントし、高湿度居室のみが複数存在する場合も同様に、湿度差の大きい居室の送風量を大きく決定する(S301No→S302Yes→S303)。
 この処理を、図7Bを参照しながら詳しく説明する。なお、図7Bは、高湿度居室のみが複数存在する一例である。
 図7Bによると、高湿度居室のみが2室(居室2a、居室2b)存在する。そして居室2aは、空調室湿度との湿度差(絶対値)が40%、居室2bは、空調室湿度との湿度差が30%である。この場合、送風量決定部40は、湿度差が大きい居室2aに対応する搬送ファン3aの送風量を、居室2bに対応する搬送ファン3bの送風量よりも大きく設定する。つまり送風量決定部40は、ここでは搬送ファン3aの送風量を最大値の送風量10に決定する。そして、送風量決定部40は、搬送ファン3bの送風量を搬送ファン3bよりも小さい例えば送風量7に決定する。
 これにより、居室2a及び居室2bには空調室の空気が流入し、各居室の居室湿度は、徐々に所定の湿度範囲内に近づいて行く。この際、送風量の差により、より不快とされる、空調室湿度との湿度差が大きい居室2aの湿度は、空調室湿度との湿度差が居室2aよりも小さい居室2bの湿度よりも改善速度が速くなる。つまり、送風量決定部40は、より湿度環境の悪い居室に対して居室の湿度改善を優先する。
 なおこの際、空調室湿度は、居室2a及び居室2bの湿った空気の流入により、50%から徐々に上昇していくため、最高湿度を上回りそうな場合には必要に応じて空調室湿度制御部55が除湿器17を動作させ、空調室湿度を所定の湿度範囲に維持する。
 また、送風量決定部40は、空調室湿度に対する低湿度居室の数と高湿度居室の数とをカウントし、高湿度居室と低湿度居室の両方が存在する場合には、湿度差が小さい居室の送風量を大きく設定する(S302No→S304Yes→S305)。
 この処理を、図8を参照しながら詳しく説明する。なお、図8Aは、低湿度居室のみが複数存在する一例である。なお、図8A、図8B及び図8C中の表現は図7A及び図7Bと同一である。
 図8Aによると、低湿度居室である居室2cと、高湿度居室である居室2aとが存在する。そして居室2cは、空調室湿度との湿度差が20%、居室2aは、空調室湿度との湿度差が40%である。この場合、送風量決定部40は、湿度差が大きい居室2aに対応する搬送ファン3aの送風量を、湿度差が小さい居室2cに対応する搬送ファン3cの送風量よりも小さく設定する。言い換えると、送風量決定部40は、湿度差が小さい居室2cに対応する搬送ファン3cの送風量を、湿度差が大きい居室2aに対応する搬送ファン3aの送風量よりも大きく設定する。具体的には、送風量決定部40は、ここでは搬送ファン3cの送風量を最大値の送風量10に決定する。そして、送風量決定部40は、搬送ファン3aの送風量を搬送ファン3cよりも小さい例えば送風量5に決定する。
 これにより、居室2a及び居室2cには空調室の空気が流入し、各居室の居室湿度は、徐々に所定の湿度範囲内に近づいて行く。この際、送風量の差により、図8Bに示すように、湿度差の小さい居室2cの湿度がまず改善される。
 ここで、S303と異なる点は、2つの居室からの空気の流入量を制御することで、空調室湿度内の湿度の変動を最低限に抑制している点である。つまり、湿度差の大きい高湿度居室からの空調室への空気の流入量に対して、湿度差の小さい低湿度居室からの空調室への空気の流入量を多くすることで、空調室への水分の流入、流出を(理想的には)等価となるように制御する。これにより、空調室湿度の変動を抑制できるため、加湿器16や除湿器17の稼働を抑制でき、省エネルギー制御が可能となる。また、湿度の面で空調室の効率的な運用が可能となり、空調室の小型化が可能となる。
 なお、送風量決定部40は、湿度差が小さい居室2cに対応する搬送ファン3cの送風量と、湿度差が大きい居室2aに対応する搬送ファン3aの送風量とを同一にしてもよい。具体的には、送風量決定部40は、搬送ファン3cの送風量と搬送ファン3aの送風量を例えば送風量10に決定する。この場合、図8Cに示すように、まず、居室2cの湿度が改善される。この際、居室2cの湿度が改善されるまでの間は、居室2cの低湿度の空気と居室2aの高湿度の空気とが湿度を相殺するため、空調室湿度の変動を抑制することができる。なお、居室2aの湿度が高いため、空調室湿度がわずかながら上昇することが予想されるが、これに対しては必要に応じて空調室湿度制御部55が除湿器17により対応すればよい。この処理であっても、省エネルギー制御及び空調機の小型化に寄与することが可能である。
 送風量決定部40は、空調室湿度に対する低湿度居室の数と高湿度居室の数とをカウントし、高湿度居室と低湿度居室の両方が存在しない場合、低湿度居室又は高湿度居室が1つ、存在することを意味する。この場合には、送風量決定部40は、該当する低湿度居室又は高湿度居室に所定の風量で送風することで、当該居室の湿度を所定の湿度範囲に遷移させることができる(S304No→S306)。
 以上、空調処理について述べたが、空調処理が初回に空調処理が実行された後は、空調室湿度制御処理S100とファン風量設定処理S200とは独立して繰り返し処理される。
 以上、本発明に係る空調システム及びシステムコントローラについて説明を行ったが、上記実施の形態は、一例であり、これに限定されるものではない。
 例えば、循環ファン6a~6d、及び搬送ファン3a~3dは、居室と空調室とを接続するダクトによって連通されている。しかしながら循環ファン6a~6dについては必ずしもダクトで接続する必要はなく、居室間を結ぶ廊下等の空間をダクトとみなすことも可能である。この場合、居室内の空気は居室から循環ファン6a~6dによって廊下に搬送される。廊下に搬送された居室内の空気は、廊下と連通する空調室18に取り込まれる。空調室18への取り込みは、空調室18の廊下に面した壁面に新たに循環ファンを備えることで行われ、あるいは循環ファンを利用することなく空調室の負圧化により取り込んでもよい。このような構成によっても、ダクトで接続するのに対して循環効率は下がることが予想されるが、空調システムに寄与することができる。
 続いて、図9、図10、図11を参照して、本発明の第1実施形態に係る空調室18について説明する。図9、図10は、本第1実施形態に係る空調室18の概略図であり、図9は、空調室を3区分化した場合の空調室の概略図、図10は、空調室を2区分化した場合の空調室の概略図である。図11は、空調室を3区分化した場合のシステムコントローラの概略機能ブロック図である。なお図11では、図2で示した概略機能ブロック図に対して、さらに第一空間湿度算出部58が加えられている。
 ところで、上述の図1では、空調室18は区分化されておらず、つまり同一空間で、エアコンディショナー9、加湿器16、及び除湿器17によって温度及び湿度が制御されている。これに対して、図9、図10では、空調室18を区分化することにより、効率的な除加湿を実現可能となる。
 具体的には、図9に示すように、除湿、温度制御、加湿をそれぞれ別の空間で行う。例えば、図9に示すように、空調室18は仕切り板21により第一空間22、第二空間23、第三空間24の3つの独立した空間に分離される。この場合においても、エアコンディショナー9、加湿器16及び除湿器17等は、上記同様にシステムコントローラ10で制御される。なお、上流から下流に向かって順に第一空間22、第二空間23、第三空間24が配置されており、搬送ファン3によって各空間内の空気が下流に送風される。
 仕切り板21は、第一空間22と第二空間23の仕切りと、第二空間23と第三空間24の仕切りの役割を持ち、木板や石膏ボード等により形成されるボードである。さらに、仕切り板21は、使用するボードに加えて、断熱ボードを貼り合わせることで、より各空間間での熱や湿度移動を防止することができる。また、仕切り板21は、板面の一部分に丸穴もしくは四角穴の空間連接開口25を備える。これにより、第一空間22と第二空間23及び第二空間23と第三空間24は、空間連接開口25を介して互いに通風可能な独立空間となる。
 空間連接開口25は、仕切り板21が存在しない場合に第一空間22と第二空間23とが接する面の面積に対して、例えば30%以下、さらに好適には20%以下の開口面積を有する。空間連接開口25が大すぎる場合には、除湿、加湿能力の効率化への寄与度が下がり、小さすぎる場合には圧損が上昇して空間同士の通風効率に悪影響を及ぼす恐れがあるためである。また、ここでは空間連接開口25は単なる開口として設けられているが、開口内に強制的に送風を行うファン、例えばパイプ用ファン等を設置することで、上流の独立空間から下流の独立空間への送風効率を高めることができる。
 第一空間22は、上流に屋内の空気を給気するための第一給気開口26と屋外の空気を給気するための第二給気開口27、下流に第二空間23との空間連接開口25を備える。また、第一空間22は、除湿器17、第一空間温度センサー28、第一空間湿度センサー29が配置される。この構成により、第一給気開口26からの屋内の空気と第二給気開口27からの屋外の空気を第一空間22で混合する。混合された空気は、通常、屋内の空気よりも屋外の新鮮な空気を多く含む。屋内の空気は、搬送ファン3a~3dから搬送された空気が各居室2a~2dを経由して、第一空間22に戻ってくるため、システムコントローラ10で設定された目標温度、目標湿度に近い温度、湿度である。一方、屋外の空気は、例えば、夏季や梅雨時の高温高湿環境においては、設定された目標温度、目標湿度に対して高温、高湿である。上述のように、屋外の空気が屋内の空気よりも多く第一空間22に給気されるため、第一空間22は高温、高湿の環境となる。混合された第一空間22の空気は、空調室18の空調室目標湿度よりも高い場合に、空調室目標湿度となるように、第一空間22で除湿器17により除湿されるが詳細は後述する。除湿された空気は、空間連接開口25を介して第二空間23へと送風される。
 第一空間温度センサー28は、第一空間22の空気の温度を取得してシステムコントローラ10に送信するセンサーである。第一空間22は、上述のように外気と各居室2から搬送された空気とが混合されるため、第一空間22全体としての情報が得られるように第一空間温度センサー28を、下流すなわち空間連接開口25近傍に備えるのが望ましい。
 第一空間湿度センサー29は、第一空間22の空気の湿度、すなわち第一空間22の湿度を取得して、システムコントローラ10に送信するセンサーである。なお、第一空間湿度センサー29も第一空間温度センサー28と同様の理由で、第一空間22全体としての情報が得られるように、下流すなわち空間連接開口25近傍に備えるのが望ましい。
 第二空間23は、上流に第一空間22との空間連接開口25、下流に第三空間24との空間連接開口25を備える。また、第二空間23は、エアコンディショナー9が配置される。この構成により、第一空間22で除湿された空気は、第二空間23でエアコンディショナー9により、第二空間23の空気の温度が設定された空調室目標温度となるように冷却又は加熱される。そして、冷却又は加熱された空気は、第三空間24との空間連接開口25を介して第三空間24へと送風される。
 第三空間24は、上流に第二空間23との空間連接開口25、下流に搬送ファン3a~3dを備える。また、第三空間24は、加湿器16が配置される。さらに、第三空間24は、下流すなわち搬送ファン3a~3d近傍に空調室温度センサー14と空調室湿度センサー15が配置される。この構成により、第二空間23で冷却又は加熱された空気は、空調室目標湿度よりも低い場合にその湿度が空調室目標湿度となるように、第三空間24で加湿器16により加湿される。そして、加湿された空気は、搬送ファン3a~3dを介して各居室2a~2dに搬送される。
 この構成により、空調室目標温度の制御と空調室目標湿度の制御を独立した空間でそれぞれ別々に行うことができるため、効率の良い除湿・加湿を行うことができる。以下、除湿・加湿の具体的な手順と効果について説明する。
 例えば、夏季や梅雨時の高温高湿環境の場合に、空調室18の空気を除湿や冷却を行うとする。まず、空調室湿度制御部55は、空調室目標湿度と空調室18の湿度すなわち第三空間24の湿度との差を算出する。そして、第三空間24の湿度が空調室目標湿度よりも高い場合、第一空間22に備えた除湿器17で除湿を行う。第一空間22で除湿された空気は、第二空間23に送風される。第二空間23では、設定された空調室目標温度よりも第二空間23の空気の温度が高い場合、第二空間23に備えたエアコンディショナー9で冷却を行う。ここで、第一空間22で制御された湿度は、第二空間23で冷却されることにより、相対湿度が変わってしまう。これに対して、本構成においては、第一空間22の空気は、空調室湿度制御部55により、搬送ファン3を介して空調室18外に送風される搬送空気の湿度(この場合、相対湿度)よりも低い所定の除湿湿度以下に制御される。つまり、第一空間湿度算出部58は、エアコンディショナー9による冷却を見越して、第一空間22の到達すべき湿度を算出(逆算)する。
 具体的に、第一空間湿度算出部58は、設定された搬送空気の目標湿度(この場合、相対湿度)と、設定された搬送空気の目標温度と、第一空間22の温度に基づいて第一空間22の空気が到達すべき湿度(この場合、相対湿度)の算出を以下の手順で行う。
 まず、設定された搬送空気の目標湿度(この場合、相対湿度)と、設定された搬送空気の目標温度の条件により、搬送空気の水分量すなわち絶対湿度を算出する。夏季や梅雨時においては、空気は、上述のように第二空間23で冷却された後、第三空間24から各居室2a~2dに搬送される。つまり、第一空間22での絶対湿度を決定することで、各居室2a~2dに搬送される空気は目標の絶対湿度となる。第一空間湿度算出部58による搬送空気の絶対湿度算出後は、第一空間22の温度を検知する。これにより、到達すべき第一空間22の温度における湿度(この場合、相対湿度)が算出できる。夏季や梅雨時においては、必要に応じて第一空間22の温度に対して第二空間23の温度はエアコンディショナー9で冷却される。そのため、第一空間22の空気の湿度(この場合、相対湿度)は第二空間23の空気の湿度(この場合、相対湿度)よりも小さくなる。したがって、第一空間22の空気の湿度(この場合、相対湿度)は、搬送空気の湿度(この場合、相対湿度)よりも低い除湿湿度に制御されることとなる。
 以上のように、夏季や梅雨時においては、第一空間22には高温高湿の空気が送風される。空気は、高温であればあるほど飽和水蒸気量が多くなり、より多くの水分量を含むことができる。この場合に除湿を行うとすると、除湿器17に備えられた熱交換器での空気の温度を少し低下させるだけで多くの水分を空気から取り除くことができる。つまり、効率よく空気の除湿を行うことができる。
 また、梅雨時においては、エアコンディショナー9と除湿器17を空調室18の同じ空間に設けた場合、エアコンディショナー9は、屋外と空調室18の空気の温度差が小さく、サーモオフの状態となる。この場合、除湿器17のみが動作して、空気は、除湿器17の放熱により、屋外の温度よりも空調室18の温度は高くなり、その空気が各居室2a~2dに搬送されることとなる。しかし、第一空間22で先に除湿を行うことで、エアコンディショナー9には除湿器17の放熱により加熱された空気が送風されるので、エアコンディショナー9は冷房運転を行い、設定された空調室目標温度に調整することができる。また、空調室18は比較的狭い空間であることが予想される。このため、エアコンディショナー9と除湿器17を空調室18の同じ空間に設けた場合、エアコンディショナー9による空気の冷却と除湿器17からの放熱による空気の加熱が同時に行われることで、設定された目標温度への制御が困難となる。しかし、空調室18を区分化しているため、除湿器17の放熱をエアコンディショナー9のある第二空間23と分離することができるため、設定された空調室目標温度、空調室目標湿度への制御が容易となる。
 また、例えば、冬季の低温低湿環境の場合に、空調室18の空気を加熱及び加湿を行うとする。まず、空調室湿度制御部55は、第一空間22の空気の湿度を検知することで除湿の対象であるかどうかを判断するが、すでに十分に低い湿度である冬季の空気は除湿の対象とはならない。つまり、第一空間22では、第一給気開口26からの屋内の空気と第二給気開口27からの屋外の空気を混合するのみである。
 次に、第二空間23の空気は、設定された空調室目標温度よりも低い場合、エアコンディショナー9で設定された空調室目標温度まで加熱される。この場合、第二空間23の空気は加熱により湿度(この場合、相対湿度)が、非常に大きく低下する。第二空間23で加熱された空気は、空調室目標温度の条件を満たした状態で、第三空間24に搬送される。
 第三空間24では、空調室湿度制御部55は、設定された空調室目標湿度と第三空間24の湿度との差を算出する。そして、第三空間24の湿度が空調室目標湿度よりも低い場合、空調室湿度制御部55は、第三空間24に備えた加湿器16で加湿を行う。これにより、第三空間24の搬送ファン3a~3dから搬送される空気は、設定された空調室目標温度、空調室目標湿度となる。
 この構成では、第三空間24にはエアコンディショナー9で加熱された後の空気が送風される。そして、空気は温度が高ければ高いほどより多くの水分量を含むことができ、すなわち絶対湿度を大きくすることができる。これにより、第三空間24の空気は、加湿器16からの水分を効率よく吸収することができる。すなわち、第三空間24の空気は、より効率よく設定された空調室目標湿度へ加湿されて搬送ファン3a~3dから各居室2へ搬送することができる。
 以上、本発明に係る空調システムの空調室18の空間を3区分に分離した構造について説明を行ったが、上記実施の形態は、一例であり、これに限定されるものではない。
 例えば、図10に示すように、第二空間23が第三空間24を兼ねた空間とし、すなわち第二・第三空間30としてもよい。言い換えると、空気を冷却又は加熱する空間と加湿する空間を同一の空間としてもよい。
 夏季や梅雨時の高温高湿環境の場合は、上記の3区分化した場合と同様に、空気は、第一空間22で除湿され、第二・第三空間30で冷却される。また、冬季の低温低湿環境の場合は、第二・第三空間30で加熱と加湿を同時に行う。本構成では、第二・第三空間30に空調室よりも温度の低い空気が第一空間22から送風されることになり、上記の3区分化した場合よりも空気を加湿する効率が悪くなる。しかし、第二・第三空間30とすることで、第三空間24よりも加湿空間の容積を大きくすることができる。すなわち、加湿された湿度の大きい空気の量は、第二・第三空間30の方が第三空間24よりも多くなり、より効率よく設定された空調室目標湿度へ加湿することができる。さらに、仕切り板21を2枚から1枚に減らすことができ、空調室18にかかる費用を低減することができる。
 (実施の形態2)
 続いて、図12及び図13を参照して、本発明の第2実施形態に係る空調システム20bについて説明する。第2実施形態においては、主に第1実施形態との差異について説明する。なお、図12は、本第2実施形態に係る空調システム20bの接続概略図、図13は、第2実施形態に係るシステムコントローラ10bの概略機能ブロック図である。
 空調システム20bは、第1実施形態における搬送ファン3a,3b,3c,3dに代えて、搬送ファン3e、3fを備えている。また、チャンバー7(チャンバー7a、7b)を新たに備えている。
 さらにシステムコントローラ10bは、第1実施形態におけるファン風量制御部31に代えて、ダンパー風量制御部32を備える。
 搬送ファン3は、空調室18の例えば壁面に設けられ、それぞれ異なるチャンバー7に接続される。搬送ファン3e、3fは、システムコントローラ10bに通信可能に接続され、システムコントローラ10bを構成するダンパー風量制御部32によって、独立して風量の変更(調整)や送風のオン・オフが可能である。空調室18の空気は、搬送ファン3eによって搬送ダクトを介してチャンバー7aに搬送され、搬送ファン3fによって搬送ダクトを介してチャンバー7bに搬送される。
 チャンバー7は、中空箱状で複数の送風用開口を備えており、送風用開口毎にダンパー8を備えている。チャンバー7aは、二つの送風用開口を備えており、二つの送風用開口にはそれぞれダンパー8a、ダンパー8bが接続されている。ダンパー8aは搬送ダクトを介して居室2cに接続され、ダンパー8bは居室2dに接続される。
 同じく、チャンバー7bは、二つの送風用開口を備えており、二つの送風用開口にはそれぞれダンパー8c、ダンパー8dが接続されている。ダンパー8cは搬送ダクトを介して居室2bに接続され、ダンパー8dは居室2aに接続される。
 ダンパー8は、システムコントローラ10bに通信可能に接続され、ダンパー風量制御部32によって、独立して開度、言い換えると送風用開口を通過する風量の変更(調整)が可能である。
 搬送ファン3e、3f、ダンパー8a~8dによって、システムコントローラ10bは、各居室毎に、空調室18から送り込む空気の風量を調節可能である。
 具体的には、送風量決定部40は、居室湿度センサー12が取得した各居室の室内湿度と、空調室湿度センサー15が取得した空調室18の湿度とに基づいて、各居室毎に、送風すべき送風量を決定する。各居室毎に送風すべき送風量とは、第1実施形態における「搬送ファン3の送風量」と同意である。
 ダンパー風量制御部32は、複数の居室2a~2d毎に対応して設けられた複数のダンパー8a~8dの開度、言い換えると風量を調整し、送風量決定部40が決定した送風量で各居室への送風を実施する。また、ダンパー風量制御部32は、搬送ファン3e、3fの風量が不足している場合には風量を増加させ、これに連動させてダンパー8の開度も調節する。同様に、搬送ファン3e、3fの風量が過剰である場合には風量を減少させ、これに連動させてダンパー8の開度も調節する。
 なお、送風量決定部40の動作や処理は、第1の実施形態に示した送風量決定処理S200や送風量決定処理S300と同様である。
 なお、第2実施形態においては、チャンバー7を複数設けたが一つでもよい。また、チャンバー7に設けられるダンパー8の数も、搬送ファンの能力や接続される居室の数に応じて任意に変更可能である。なお、上記実施の形態では、居室として示しているが、居室は必ずしも人が居る必要は無く、一つの空間として捉えることができる。つまり、廊下やキッチンもある程度区切られているのであれば1つの空間として捉えることができ、1つの居室に該当する。
 また、本発明に係る空調システムは、戸建て住宅やマンション等の複合住宅に適用可能である。ただし、空調システムを複合住宅に適用する場合には、1つのシステムが世帯単位に対応するものであり、各世帯を1つの居室とするものではない。
 また、上記実施の形態では、加湿器及び除湿器の双方を備えたシステムとして説明している。しかしながら、住環境に合せて、加湿器のみを備えた空調システムとしてもよい。この場合、空調室湿度制御部は、加湿器を制御して空調室の湿度を所定の最低湿度以上で定義される所定の湿度範囲に維持することとなる。つまり、最低湿度を所定の値以上に制御する空調システムとなり、最大湿度については制御しないこととなる。また、除湿器のみを備えた空調システムとしてもよい。この場合、空調室湿度制御部は、除湿器を制御して空調室の湿度を所定の最大湿度以下で定義される所定の湿度範囲に維持することとなる。つまり、最大湿度を所定の値以下に制御する空調システムとなり、最低湿度については制御しないこととなる。
 また、複数の実施の形態それぞれに示した構成要素は矛盾しない範囲で組み合わせが可能であり、これらの任意の組合せもまた、本開示の態様として有効である。
 例えば、第1実施形態の搬送ファンのみを用いた送風と、第2実施形態の搬送ファン及びダンパーを用いた送風とを組み合わせてもよい。
 本発明に係る空調システム及び空調システムコントローラは、効率的な除加湿により空調室の小型化に寄与する空調システム、及び空調システムコントローラとして有用である。
 1  一般住宅
 2、2a、2b、2c、2d  居室
 3、3a、3b、3c、3d、3e、3f  搬送ファン
 4  外気導入ファン
 5、5a、5b、5c、5d  排気ファン
 6、6a、6b、6c、6d  循環ファン
 7、7a、7b  チャンバー
 8、8a、8b、8c、8d  ダンパー
 9  エアコンディショナー
 10、10b  システムコントローラ
 11、11a、11b、11c、11d  居室温度センサー
 12、12a、12b、12c、12d  居室湿度センサー
 14  空調室温度センサー
 15  空調室湿度センサー
 16  加湿器
 17  除湿器
 18  空調室
 19  入出力端末
 20、20b  空調システム
 21  仕切り板
 22  第一空間
 23  第二空間
 24  第三空間
 25  空間連接開口
 26  第一給気開口
 27  第二給気開口
 28  第一空間温度センサー
 29  第一空間湿度センサー
 30  第二・第三空間
 31  ファン風量制御部
 32  ダンパー風量制御部
 40  送風量決定部
 53  湿度判定部
 54  居室目標湿度取得部
 55  空調室湿度制御部
 56  湿度差比較部
 57  高低判断部
 58  第一空間湿度算出部

Claims (16)

  1. 空調室の空気を加湿する加湿器と、
    前記空調室の空気を除湿する除湿器と、
    前記空調室の空気を前記空調室とは独立した複数の居室に搬送するための搬送ファンと、前記複数の居室に対応して設けられ前記搬送ファンによって送風された空気の各居室への風量を独立して制御可能なダンパーと、
    前記加湿器と前記除湿器と前記ダンパーとを制御するシステムコントローラと、
    前記複数の居室それぞれの室内湿度を取得して前記システムコントローラに送信する居室湿度センサーと、
    前記空調室の湿度を取得して前記システムコントローラに送信する空調室湿度センサーと、を備え、
    前記システムコントローラは、
     前記加湿器及び/又は前記除湿器を制御して前記空調室の湿度を最低湿度と最高湿度とで定義される所定の湿度範囲内に維持する空調室湿度制御部と、
     前記居室湿度センサーが取得した各居室の室内湿度と、前記空調室湿度センサーが取得した前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システム。
  2. 空調室の空気を加湿する加湿器と、
    前記空調室の空気を前記空調室とは独立した複数の居室に搬送するための搬送ファンと、前記複数の居室に対応して設けられ前記搬送ファンによって送風された空気の各居室への風量を独立して制御可能なダンパーと、
    前記加湿器と前記除湿器と前記ダンパーとを制御するシステムコントローラと、
    前記複数の居室それぞれの室内湿度を取得して前記システムコントローラに送信する居室湿度センサーと、
    前記空調室の湿度を取得して前記システムコントローラに送信する空調室湿度センサーと、を備え、
    前記システムコントローラは、
     前記加湿器を制御して前記空調室の湿度を所定の最低湿度以上で定義される所定の湿度範囲に維持する空調室湿度制御部と、
     前記居室湿度センサーが取得した各居室の室内湿度と、前記空調室湿度センサーが取得した前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システム。
  3. 空調室の空気を除湿する除湿器と、
    前記空調室の空気を前記空調室とは独立した複数の居室に搬送するための搬送ファンと、前記複数の居室に対応して設けられ前記搬送ファンによって送風された空気の各居室への風量を独立して制御可能なダンパーと、
    前記加湿器と前記除湿器と前記ダンパーとを制御するシステムコントローラと、
    前記複数の居室それぞれの室内湿度を取得して前記システムコントローラに送信する居室湿度センサーと、
    前記空調室の湿度を取得して前記システムコントローラに送信する空調室湿度センサーと、を備え、
    前記システムコントローラは、
     前記加湿器を制御して前記空調室の湿度を所定の最高湿度以下で定義される所定の湿度
    範囲に維持する空調室湿度制御部と、
     前記居室湿度センサーが取得した各居室の室内湿度と、前記空調室湿度センサーが取得した前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システム。
  4. 前記送風量決定部は、
     前記居室湿度センサーが取得した各居室の室内湿度と前記所定の湿度範囲とに基づいて前記各居室の室内湿度が前記所定の湿度範囲内であるか否か判定する湿度判定部と、
     前記居室湿度センサーが取得した各居室の室内湿度と前記空調室湿度センサーが取得した前記空調室の湿度との差を算出する湿度差比較部と、を備え、
     前記湿度判定部の判定結果により前記各居室の室内湿度が前記所定の湿度範囲内にないと判定された場合には、前記湿度差比較部が算出した湿度差に基づいて前記ダンパーを介した送風量を決定する請求項1から3のいずれかに記載の空調システム。
  5. 前記送風量決定部は、
     前記湿度差比較部が算出した湿度差が大きい居室に対し、前記湿度差が小さい居室に対するよりも前記ダンパーを介した送風量を大きくする請求項4記載の空調システム。
  6. 前記送風量決定部は、
     前記居室湿度センサーが取得した各居室の室内湿度と前記所定の湿度範囲とに基づいて前記各居室の室内湿度が前記所定の湿度範囲内であるか否か判定する湿度判定部と、
     前記居室湿度センサーが取得した各居室の室内湿度の、前記空調室の湿度に対する高低を判断する高低判断部と、を備え、
     前記湿度判定部の判定結果により前記各居室の室内湿度が前記所定の湿度範囲内にないと判定された場合には、前記高低判断部が判定した前記空調室の湿度に対する高低に基づいて前記ダンパーを介した送風量を決定する請求項1記載の空調システム。
  7. 前記送風量決定部は、
     前記高低判断部により前記最高湿度より高い高湿度居室と前記最低湿度より低い低湿度居室とが存在すると判断された場合、前記高湿度居室に対応するダンパーを介した送風量と前記低湿度居室に対応するダンパーを介した送風量とを同一送風量に決定する請求項6記載の空調システム。
  8. 前記送風量決定部は、
     前記居室湿度センサーが取得した各居室の室内湿度と前記空調室湿度センサーが取得した前記空調室の湿度との差を算出する湿度差比較部を備え、
    前記送風量決定部は、
     前記高低判断部により前記最高湿度より高い高湿度居室と前記最低湿度より低い低湿度居室とが存在すると判断された場合、前記湿度差比較部による前記空調室の湿度との差に基づいて前記ダンパーを介した送風量を決定する請求項6記載の空調システム。
  9. 前記送風量決定部は、
     前記高低判断部により前記最高湿度より高い高湿度居室と前記最低湿度より低い低湿度居室とが存在すると判断された場合、さらに前記湿度差比較部により前記空調室の湿度との差が小さい居室に対応するダンパーを介した送風量を、前記空調室の湿度との差が大きい居室に対応するダンパーを介した送風量よりも大きく決定する請求項8記載の空調システム。
  10. 前記空調室は、
    給気開口を有する第一空間と、
    前記第一空間の空気を除湿する前記除湿器と、
    前記空調室における前記第一空間の下流に、前記第一空間と通風可能に独立して設けられた第二空間と、
    前記第二空間の空気を空調するエアコンディショナーと、
    前記エアコンディショナーにより空調された空気を前記空調室外に搬送する前記搬送ファンと、を備えた請求項1又は3記載の空調システム。
  11. 前記第一空間の下流に前記第一空間と通風可能に独立して設けられた第三空間と、
    前記第三空間の空気を加湿する加湿器と、を備える請求項10記載の空調システム。
  12. 前記第二空間は、前記第三空間を兼ねる請求項11記載の空調システム。
  13. 前記第二空間は、前記第一空間の下流かつ前記第三空間の上流に設けられた請求項11記載の空調システム。
  14. 空調室の空気を加湿する加湿器と、前記空調室の空気を除湿する除湿器と、搬送ファンによって送風された前記空調室の空気の、前記空調室とは独立した各居室への風量を独立して制御可能なダンパーと、を制御する空調システムコントローラであって、
     前記加湿器及び/又は前記除湿器を制御して前記空調室の湿度を最低湿度と最高湿度とで定義される所定の湿度範囲内に維持する空調室湿度制御部と、
     各居室の室内湿度と前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システムコントローラ。
  15. 空調室の空気を加湿する加湿器と、搬送ファンによって送風された前記空調室の空気の、前記空調室とは独立した各居室への風量を独立して制御可能なダンパーと、を制御する空調システムコントローラであって、
     前記加湿器を制御して前記空調室の湿度を所定の最低湿度以上で定義される所定の湿度範囲内に維持する空調室湿度制御部と、
     各居室の室内湿度と前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システムコントローラ。
  16. 空調室の空気を除湿する除湿器と、搬送ファンによって送風された前記空調室の空気の、前記空調室とは独立した各居室への風量を独立して制御可能なダンパーと、を制御する空調システムコントローラであって、
     前記除湿器を制御して前記空調室の湿度を所定の最高湿度以下で定義される所定の湿度範囲内に維持する空調室湿度制御部と、
     各居室の室内湿度と前記空調室の湿度とに基づいて前記ダンパーを介した送風量を決定する送風量決定部と、
     前記送風量決定部が決定した送風量で前記ダンパーを介したそれぞれの前記居室への送風量を制御するダンパー風量制御部と、を備えた空調システムコントローラ。
PCT/JP2020/047199 2020-02-20 2020-12-17 空調システム、空調システムコントローラ WO2021166405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3166904A CA3166904A1 (en) 2020-02-20 2020-12-17 Air-conditioning system and air-conditioning system controller
US17/797,752 US20230082958A1 (en) 2020-02-20 2020-12-17 Air-conditioning system and air-conditioning system controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026725A JP7411869B2 (ja) 2020-02-20 2020-02-20 空調システム、空調システムコントローラ
JP2020-026725 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166405A1 true WO2021166405A1 (ja) 2021-08-26

Family

ID=77391916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047199 WO2021166405A1 (ja) 2020-02-20 2020-12-17 空調システム、空調システムコントローラ

Country Status (4)

Country Link
US (1) US20230082958A1 (ja)
JP (1) JP7411869B2 (ja)
CA (1) CA3166904A1 (ja)
WO (1) WO2021166405A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028421A (ja) * 2002-06-25 2004-01-29 Shinwa Controls Co Ltd 産業用空調装置
JP2013217620A (ja) * 2012-04-12 2013-10-24 Toyota Home Kk 集合住宅の空調システム
JP2017101859A (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 空調制御システム、空調制御方法及び制御プログラム
JP2017101861A (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 空気制御システム、空気制御方法及び空気制御装置
WO2019107163A1 (ja) * 2017-11-28 2019-06-06 パナソニックIpマネジメント株式会社 空調システム、空調システムコントローラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028421A (ja) * 2002-06-25 2004-01-29 Shinwa Controls Co Ltd 産業用空調装置
JP2013217620A (ja) * 2012-04-12 2013-10-24 Toyota Home Kk 集合住宅の空調システム
JP2017101859A (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 空調制御システム、空調制御方法及び制御プログラム
JP2017101861A (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 空気制御システム、空気制御方法及び空気制御装置
WO2019107163A1 (ja) * 2017-11-28 2019-06-06 パナソニックIpマネジメント株式会社 空調システム、空調システムコントローラ

Also Published As

Publication number Publication date
US20230082958A1 (en) 2023-03-16
JP2021131188A (ja) 2021-09-09
JP7411869B2 (ja) 2024-01-12
CA3166904A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6941772B2 (ja) 空調システム、空調システムコントローラ
JP6681557B1 (ja) 空調システム、空調システムコントローラ
JP7411873B2 (ja) 換気空調システム
US11976833B2 (en) Air conditioning system controller
US20220146123A1 (en) Air treatment system
JP7485881B2 (ja) 空調システム
JP2020165632A (ja) 空調システム
JP7352780B2 (ja) 空調システム、空調システムコントローラ
WO2021166405A1 (ja) 空調システム、空調システムコントローラ
CN113551325B (zh) 空调系统、空调系统控制器
JPH06159780A (ja) アンダーフロア空調方法
JP2021188811A (ja) 空調システム、空調装置、及び、空調制御方法
JP7029612B2 (ja) 空調システム
WO2023276588A1 (ja) 空気調和システム
JPH08219491A (ja) 熱交換気空調ユニット
WO2020066801A1 (ja) 空調システム
JP2022136770A (ja) 空調システム、空調装置、及び、空調制御方法
JP2022022616A (ja) 空調システム
JP2020176779A (ja) コントローラ、結露抑制方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3166904

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920512

Country of ref document: EP

Kind code of ref document: A1