WO2013107392A1 - 一种通过电泳沉积制备二氧化钒薄膜的方法 - Google Patents

一种通过电泳沉积制备二氧化钒薄膜的方法 Download PDF

Info

Publication number
WO2013107392A1
WO2013107392A1 PCT/CN2013/070699 CN2013070699W WO2013107392A1 WO 2013107392 A1 WO2013107392 A1 WO 2013107392A1 CN 2013070699 W CN2013070699 W CN 2013070699W WO 2013107392 A1 WO2013107392 A1 WO 2013107392A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
film
preparing
dioxide film
electrode
Prior art date
Application number
PCT/CN2013/070699
Other languages
English (en)
French (fr)
Inventor
张建武
侯纪伟
阮奇峰
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Publication of WO2013107392A1 publication Critical patent/WO2013107392A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material

Definitions

  • the present invention relates to the field of electronic materials and devices, and more particularly to a method for preparing a vanadium dioxide film by electrophoretic deposition. Background technique
  • Vanadium dioxide is a typical thermal phase inversion material.
  • the phase transition temperature is closest to room temperature, and it undergoes a reversible structural phase transition at 68 ° C, from a low temperature monoclinic structure. High temperature rutile structure transformation. Below the phase transition temperature, the semiconductor phase is present, and the resistivity, magnetic susceptibility, and infrared light transmittance are both high. When the phase transition temperature is higher than the phase transition temperature, the metal phase, resistivity, magnetic susceptibility, and infrared light transmission are exhibited. The rate is abruptly changed to a very low level, with very obvious infrared switches, electrical switches and magnetic switching properties.
  • high-valent metal ion doping can achieve artificial regulation of its phase transition temperature, while its reversible electrical, magnetic and infrared switching properties are unchanged.
  • vanadium dioxide Based on the excellent optical, electrical and magnetic properties of vanadium dioxide, it has enormous potential applications in building smart window materials, thermistors, photoelectric switches, optical storage and more.
  • Vanadium dioxide has excellent optical, electrical and magnetic properties, which has led to continuous research. Many methods and processes for preparing vanadium dioxide have been developed.
  • Chinese patent (publication number CN101559981A) uses vanadium dioxide to prepare vanadium dioxide.
  • the Chinese patent (publication number CN101280413A), the Chinese patent (publication number CN101265036A) uses a magnetron sputtering coating method to deposit vanadium dioxide thin film on a glass substrate at a low temperature, but the method of forming a phase after film formation is very easy to generate.
  • the impurity phase, the glass substrate needs high temperature heating, resulting in excessive energy consumption, failing to achieve the purpose of energy saving and emission reduction, and inevitably using large magnetron sputtering equipment, which not only increases the production cost, but also needs Accurate parameter control is not conducive to large-scale preparation, and it also greatly limits the promotion of vanadium dioxide. Therefore, it is a technical difficulty to develop a simple and efficient method for preparing vanadium dioxide thin film.
  • Electrophoretic deposition refers to the action of a DC electric field to cause the charged particles in the colloid or suspension to move directionally and deposit on a shape-shaped electrode with opposite charges.
  • Granules (particle size not larger than 30 microns) or solid materials of sol can be electrophoretically deposited, and their applications include metals, polymers, carbides, oxides and inorganic salts.
  • Electrophoretic deposition as a simple and efficient method for preparing thin films has not yet been applied to the field of preparation of vanadium dioxide thin films. Summary of the invention
  • the invention is completed based on electrophoretic deposition technology.
  • the invention adopts a simple method, and directly prepares a vanadium dioxide film by electrophoretic deposition on different conductive substrates, and no electrochemical reaction occurs on the electrode, and the oxidation is not changed.
  • the structure and properties of the vanadium powder are first formed into a film after phase formation, which overcomes the existing phase in the prior preparation process and causes many phases in the film, which seriously affects the optical, electrical and magnetic switching properties.
  • the invention has simple process, does not require any large equipment, has mild reaction conditions, fast film formation speed, high stability, waste liquid can be recycled, and the economy is pollution-free, and is suitable for large-scale popularization and use.
  • the invention provides a method for preparing a vanadium dioxide film by electrophoretic deposition, which is formed into a film after phase formation, and solves the problem that the current preparation of the vanadium dioxide film needs to be formed into a film after the film formation, thereby causing many impurities in the film. Phase, which in turn seriously affects the optical, electrical, and magnetic switching properties.
  • the existing preparation technology also requires large-scale equipment with high price, control complex parameters, and has disadvantages such as low utilization rate of raw materials and inability to prepare in large quantities, which inevitably increases production costs and limits its promotion and use.
  • the invention overcomes many shortcomings of the prior preparation technology, and improves the preparation method of the vanadium dioxide film, and the specific technical scheme thereof is as follows:
  • the film obtained on the electrode in the step (3) is dried to obtain a vanadium dioxide film.
  • the present invention also provides a vanadium dioxide film which is produced by the above method.
  • the vanadium dioxide film prepared by the invention directly adopts the commercially available or pre-prepared vanadium dioxide powder, adds a solvent and a small amount of iodine element, stirs and mixes, and is uniformly dispersed after ultrasonication, as an electrophoretic deposition liquid, and then put into cleaning.
  • a good electrode starts electrophoretic deposition coating.
  • This method does not require large equipment and does not change the structure and properties of vanadium dioxide powder before and after deposition.
  • the process is simple, the operability is strong, the film formation speed is fast, easy to control, and the raw material utilization rate is high.
  • the waste liquid can be recycled many times, which is suitable for large-scale production.
  • Fig. 1 is an XRD chart of the vanadium dichloride powder before the deposition of Example 1.
  • Fig. 2 is an XRD chart of a vanadium divanide film deposited in Example 1.
  • Figure 3 is a SEM image of a vanadium oxide film after deposition in Example 1.
  • Figure 4 is a photograph of a vanadium oxide film prepared by the deposition of Example 1.
  • Figure 5 is a photograph of a vanadium oxide film prepared by the deposition of Example 2.
  • Figure 6 is a photograph of a vanadium oxide film prepared by depositing in Example 3. detailed description
  • the present invention provides a method of preparing a vanadium dioxide film by electrophoretic deposition, the method comprising the following steps:
  • the film obtained on the electrode in the step (3) is dried to obtain a vanadium dioxide film.
  • the present invention also provides a vanadium dioxide thin film prepared by the method of preparing a vanadium dioxide thin film by the electrophoretic deposition.
  • the vanadium dioxide suspension particles adsorb ruthenium and osmium, thereby charging.
  • the vanadium dioxide powder used in the present invention may be a general-purpose commercially available product, or may be prepared by the following steps: mixing 20 ml of formaldehyde and 0.0025 mol of V 2 0 5 , magnetically stirring for about 1 hour, and then adding 60 ml of deionized water to transfer. The mixture was kept at 100 ° C for 24 h in a 100 ml autoclave, naturally cooled to room temperature, and the precipitate was collected and washed 5 to 6 times with deionized water and absolute ethanol, respectively. Finally, it was dried in an oven at 60 ° C for 10 h to obtain a blue-gray V0 2 (B) powder. The obtained powder was placed in a tube muffle furnace, heat-treated at 500 ° C for 6 hours in an argon atmosphere, and then naturally cooled to room temperature to obtain a V0 2 (M) powder.
  • B blue-gray V0 2
  • the concentration of vanadium dioxide in the step (1) is preferably 0.05 to 16.00 mg/ml, more preferably 0.2 to 1.8 mg/mlo.
  • the solvent used in the step (1) is usually: an alcohol such as ethanol, isopropanol or the like; a ketone such as acetone, acetylacetone or the like; a cathodic electrophoretic paint such as an acrylic system; and any combination of the above solutions mixture.
  • the stirring time in the step (1) is preferably 5 to 90 minutes.
  • the concentration of the iodine element added is preferably more than 0.0 mmol/L and 4.0 mmol/L or less, more preferably 0.6 to 2.0 mmol/L; the stirring time is preferably 10 to 60 minutes, and the ultrasonic dispersion time is preferably 10 ⁇ 60 minutes.
  • the electrode placed in the step (3) is a conductive substrate/conductive substrate selected from the group consisting of a stainless steel sheet, an iron sheet, a copper sheet, a silver sheet, an aluminum sheet, a platinum sheet, a nickel sheet, and a zinc sheet. , conductive alloy, conductive glass, conductive polymer and conductive ceramic; deposition voltage is preferably 10 100V, more preferably 30-50V, deposition time is preferably 0.5 6.0 minutes, more preferably 1.5 2.5 minutes; electrodes are kept parallel, the spacing is preferably 0.5 ⁇ 4.0cm More preferably, it is 1.0 to 2.0 cm.
  • the film deposited on the electrode in the step (4) has the following relationship with the amount of iodine added in the step (2), BP: if the concentration of iodine is less than or equal to 0.30 mmol/L, there is a vanadium dioxide film on the anode. Deposition, if the concentration of iodine is greater than 0.30 mmol/L, a vanadium dioxide film is deposited on the cathode, and the drying temperature is preferably 20 to 80 ° C, and the drying time is preferably 20 to 100 minutes.
  • step (2) adding 0.021 mmol of iodine monone (Scientific Drug Group, analytical grade) to the suspension in step (1), and ultrasonically dispersing for 20 minutes; (3) Using cleaned FTO conductive glass as the electrode, the size is: 2.5cm in length and 2.0cm in width, placed in the ultrasonically dispersed suspension in step (2), and supplied with 50V voltage by DC power supply. On both electrodes, the two electrodes are placed in parallel with a spacing of 2.0 cm and a deposition time of two minutes;
  • the vanadium dioxide film deposited on the cathode in the step (3) is placed in an oven and dried at 40 ° C for 30 minutes to obtain a vanadium dioxide film on which FTO conductive glass is used as a substrate.
  • the XRD spectrum of the vanadium dioxide powder used in this embodiment is as shown in FIG. 1 of the specification, and the XRD spectrum of the vanadium dioxide film obtained by using the FTO conductive glass as a substrate is as shown in FIG. 2 of the specification, and is electrophoretically deposited.
  • the XRD spectrum of the film has no change in the characteristic peaks of (011), (-211), (-212), (220), (022), and the characteristic peaks of Sn0 2 are (110), (101), (200 ), (211), (310), (301), the main source is the FTO conductive glass substrate.
  • FTO conductive glass used in the present invention are manufactured by Nippon Sheet Glass Co., model TCO-15, plated with a conductive 350nm Sn0 2 film having a thickness on the fluorine-doped glass ordinary 2.2mm thick.
  • the XRD pattern of the vanadium dioxide film indicates that no electrochemical reaction occurs during the electrophoretic deposition process, and the structure of the powder and the substrate does not change, completely retaining the structure and properties of the powder, thereby avoiding the existing preparation of vanadium dioxide film.
  • the film is first formed into a phase, which causes a heterogeneous phase, which in turn affects the great disadvantages of its properties.
  • FTO conductive glass is the substrate SEM picture of vanadium dioxide film as shown in Figure 3 of the specification.
  • the thickness of the vanadium dioxide film is 6.4 microns, the film is not very dense, and the FTO conductive glass is the substrate of the vanadium dioxide film.
  • the whole is relatively uniform and dense, and the film is better combined with the FTO conductive glass substrate, and is not easy to fall off.
  • Example 2
  • step (1) Add 0.048 mmol of iodine monone (Scientific Drug Group, analytical grade) to the suspension in step (1), and ultrasonically disperse for 40 minutes;
  • the size is: 3.0cm in length and 2.5cm in width, placed in the ultrasonically dispersed suspension in the step (2), and supplied with a voltage of 30V from a DC power source. On both electrodes, the two electrodes are placed in parallel with a spacing of 1.0 cm and a deposition time of three minutes; (4) The vanadium dioxide film deposited on the cathode in the step (3) is placed in an oven and dried at 60 ° C for 20 minutes to obtain a vanadium dioxide film having a copper sheet as a substrate.
  • step (1) Add 0.09 mmol of iodine (scientific drug group, analytical grade) to the suspension in step (1), and ultrasonically disperse for 50 minutes;
  • the size is: 2.5cm in length and 2.0cm in width, placed in the ultrasonically dispersed suspension in step (2), and supplied with 70V voltage by DC power supply. On both electrodes, the two electrodes are placed in parallel with a spacing of 2.0 cm and a deposition time of three minutes;
  • the vanadium dioxide film deposited on the cathode in the step (3) is placed in an oven and dried at 80 ° C for 90 minutes to obtain a vanadium dioxide film having a FTO conductive glass as a substrate.
  • the picture of the vanadium dioxide film of the FTO conductive glass obtained in this embodiment is as shown in FIG. 6 of the specification. Generally, the film is relatively uniform and dense, and the surface is smooth and the FTO conductive glass substrate is better combined. Fall off.
  • Example 4
  • step (1) Add 0.006 mmol of iodine to the suspension in step (1) (Scientific Drug Group, analytical grade), and ultrasonically disperse for 30 minutes;
  • the size is: 2.5cm in length and 2.0cm in width, placed in the ultrasonically dispersed suspension in step (2), and supplied with 80V voltage by DC power supply.
  • the two electrodes are placed in parallel with a spacing of 3.5 cm and a deposition time of five. Minute
  • Example 5 Place the vanadium dioxide film deposited on the anode in step (3) in the air and dry it naturally to obtain a vanadium dioxide film with FTO conductive glass as the substrate.
  • Example 5
  • step (1) Add 0.06 mmol of iodine (Scientific Drug Group, analytical grade) to the suspension in step (1), and ultrasonically disperse for 30 minutes;
  • the size is: 2.5cm in length and 2.0cm in width, placed in the ultrasonically dispersed suspension in step (2), and supplied with 20V voltage by DC power supply.
  • the two electrodes are placed in parallel with a spacing of 0.8 cm and a deposition time of five minutes;
  • the vanadium dioxide film deposited on the cathode in the step (3) is placed in an oven at 50 ° C for 40 minutes to obtain a vanadium dioxide film having a FTO conductive glass as a substrate.
  • the results of the above examples were accurately tested to achieve the preparation of a vanadium dioxide film. That is, the manufacturing method of the present invention has a significant advantage in comparison with the conventional preparation method, such as simple operation, extremely low equipment requirements, high utilization rate of raw materials, recycling of waste liquid, and pollution-free green.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种制备二氧化钒薄膜的方法,其特征在于,先将二氧化钒粉体加入到溶剂中,然后加规定量碘单质、超声分散,制备出分散较好的悬浮液,作为电泳沉积液。使用导电衬底作电极,用直流电源来提供电压或电流,将电极放入到二氧化钒悬浮液中,通过调节电压、电流、沉积时间等在电极上直接得到二氧化钒沉积薄膜,自然晾干或烘干。该方法特点在于先成相后成膜,电极上不发生电化学反应,沉积前后粉体的相不发生变化、克服了现有制备技术先成膜后成相而导致薄膜不纯的缺点。

Description

一种通过电泳沉积制备二氧化钒薄膜的方法 技术领域
本发明涉及电子材料与器件领域,尤其涉及到一种通过电泳沉积制备 二氧化钒薄膜的方法。 背景技术
二氧化钒是一种典型的热致相转变材料,在已知的相变材料中相转变 温最接近室温的, 其在 68°C时发生可逆的结构相转变, 从低温的单斜结 构向高温的金红石结构转变。低于相转变温度时,呈现半导体相, 电阻率, 磁化率和红外光的透过率均很高, 而高于相转变温度时, 呈现金属相, 电 阻率, 磁化率和红外光的透过率均发生突变, 降到很低, 具有非常明显的 红外开关, 电学开关及磁学开关性质。 同时对其进行高价金属离子掺杂, 可以实现对其相转变温度的人为调控, 而其可逆的电学、磁学和红外开关 性质不变。基于二氧化钒优异的光学, 电学和磁学性质, 其在建筑物的智 能窗材料, 热敏电阻, 光电开关, 光存储等方面有巨大的潜在应用。
二氧化钒具有优异的光学, 电学和磁学性质, 促使着人们对其不停的 研究, 已经开发出很多制备二氧化钒的方法及工艺。 中国专利 (公开号 CN101559981A ) 采用燃烧法制备二氧化钒, 中国专利 (公开号 CN1522965A) 采用水热法制备二氧化钒等等, 但是二氧化钒的光学, 电 学和磁学开关性质的推广使用主要以二氧化钒薄膜的形式,而目前缺乏有 效的制备二氧化钒薄膜的方法, 使其推广使用受到了极大的限制。虽然中 国专利 (公开号 CN101280413A), 中国专利 (公开号 CN101265036A) 均采用磁控溅射镀膜的方法在玻璃衬底上低温沉积二氧化钒薄膜,但其先 成膜后成相的方法极易生成杂质相, 其玻璃衬底需要高温加热, 导致过高 的能耗, 达不到节能减排的目的, 还不可避免的使用到大型的磁控溅射设 备, 不仅增加了生产成本, 而且还需要精确的参数控制, 不利于大规模的 制备, 也很大程度上限制了二氧化钒的推广使用, 因此开发一种简易高效 的制备二氧化钒薄膜的方法是一个技术的难点。
电泳沉积是指依靠直流电场的作用,使胶体或悬浮液中的带电粒子定 向移动, 并沉积在具有相反电荷的一定形状电极上, 任何可以制成细小微 粒(粒径不大于 30微米)或溶胶的固体材料, 都可以进行电泳沉积, 其适 用范围包括金属、 聚合物、 碳化物、 氧化物和无机盐类等。 电泳沉积作为 一种简易高效制备薄膜的方法目前还没有人将其应用到二氧化钒薄膜的 制备领域。 发明内容
本发明正是基于电泳沉积技术而完成的, 本发明采用简单的方法, 在 不同的导电衬底上直接电泳沉积成功制备出二氧化钒薄膜,而且电极上不 发生电化学反应, 不改变二氧化钒粉体的结构和性质, 先成相后成膜, 克 服了现有制备技术中先成膜后成相而导致薄膜中有很多杂相,进而严重影 响其光学, 电学和磁学开关性质的缺点。本发明工艺简单, 不需要任何大 型设备, 反应条件温和, 成膜速度快, 稳定性高, 废液可以循环利用, 经 济无污染, 适合大规模的推广使用。
δ卩, 本发明提供一种通过电泳沉积制备二氧化钒薄膜的方法, 其先成 相后成膜, 解决了目前制备二氧化钒薄膜需要先成膜后成相, 从而导致薄 膜中存在很多杂相, 进而严重影响其光学、 电学和磁学开关性质的问题。 现有的制备技术还需要价格高昂的大型设备, 控制复杂的参数, 而且还有 原料利用率不高、 不能大量制备等缺点, 无形中增加了生产成本, 限制了 其推广使用。而本发明克服了现有制备技术的诸多不足之处, 完善了二氧 化钒薄膜的制备方法, 其具体技术方案如下:
( 1 ) 将二氧化钒粉体加入到溶剂中, 形成悬浮液或溶胶;
(2 ) 向歩骤 (1 ) 得到的悬浮液或溶胶中加入碘单质, 分散均匀;
( 3 ) 向歩骤 (2 ) 中得到的悬浮液中放入电极, 开始电泳沉积;
(4 ) 将歩骤 (3 ) 中在电极上得到的薄膜干燥, 得到二氧化钒薄膜。 本发明还提供一种二氧化钒薄膜, 其是通过上述方法制造得到的。 本发明制备的二氧化钒薄膜,直接采用市售的或者预先制备好的二氧 化钒粉体, 加入溶剂和少量的碘单质, 搅拌混合, 超声分散均匀后, 作为 电泳沉积液, 然后放入清洗好的电极开始电泳沉积镀膜, 该方法不需要大 型设备, 不改变沉积前后二氧化钒粉体的结构和性质, 其工艺简单, 可操 作性强,成膜速度快,容易控制, 原料利用率高,废液可以多次循环利用, 适合规模化生产。 附图说明
图 1为实施例 1沉积前的二 化钒粉体的 XRD谱图。
图 2为实施例 1沉积后的二 化钒薄膜的 XRD谱图。
图 3为实施例 1沉积制备后 氧化钒薄膜的 SEM图片。
图 4为实施例 1沉积制备的 氧化钒薄膜图片。
图 5为实施例 2沉积制备的 氧化钒薄膜图片。
图 6为实施例 3沉积制备的 氧化钒薄膜图片。 具体实施方式
本发明提供一种通过电泳沉积制备二氧化钒薄膜的方法,所述方法包 括以下歩骤:
(1) 将二氧化钒粉体加入到溶剂中, 形成悬浮液或溶胶;
(2) 向歩骤 (1) 得到的悬浮液或溶胶中加入碘单质, 分散均匀;
(3) 向歩骤 (2) 中得到的悬浮液中放入电极, 开始电泳沉积;
(4) 将歩骤 (3) 中在电极上得到的薄膜干燥, 得到二氧化钒薄膜。 本发明还提供一种通过所述电泳沉积制备二氧化钒薄膜的方法制备 的制备二氧化钒薄膜。
其中, 通过添加一定量的碘单质, 使悬浮液颗粒更容易带上电荷, 如 不添加少量的碘, 沉积的效率稍差一些, 加入碘, 有机物中(例如: 丙酮) 的邻近羰基官能团的碳原子发生碘化作用:
CH3-CO-CH3 + l2→ICH2-CO-CH2I + 2H" + 2Γ
二氧化钒悬浮液颗粒吸附 Η÷和 Γ, 从而带上电荷。
本发明中使用的二氧化钒粉体采用通用的市售产品即可,也可以采用 如下歩骤制备,将 20ml甲醛和 0.0025mol V205混合,磁力搅拌约 lh后加 入 60ml去离子水转移到 100ml高压釜中,在 180°C下保持 24h, 自然冷却 到室温, 收集沉淀物, 分别用去离子水和无水乙醇洗涤 5〜6次。 最后在 烘箱中 60°C下烘干 10h, 得到蓝灰色的 V02(B)粉体。 将得到的粉末置于 管式马弗炉中, 在氩气氛围中 500°C热处理 6h,然后自然冷却到室温, 即 得到 V02(M)粉体。
歩骤 ( 1 ) 中二氧化钒的浓度优选 0.05~16.00mg/ml, 更优选 0.2-1.8mg/mlo 歩骤 (1) 中使用的溶剂通常为: 醇类, 如乙醇, 异丙醇等; 酮类, 如丙酮, 乙酰丙酮等; 阴极电泳漆类, 如丙烯酸体系等; 及以上溶液的任 意组合的混合溶液。
歩骤 (1) 中的搅拌时间优选为 5~90分钟。
歩骤(2)中,加入的碘单质的浓度优选大于 0.0 mmol/L且 4.0mmol/L 以下, 更优选 0.6~2.0mmol/L; 搅拌时间优选为 10~60分钟, 超声分散时 间优选为 10~60分钟。
歩骤(3)中放入的电极为导电基体 /导电衬底, 该导电基体 /导电衬底 选自不锈钢片、 铁片、 铜片、 银片、 铝片、 铂片、 镍片、 锌片、 导电合金、 导电玻璃、 导电聚合物和导电陶瓷; 沉积电压优选 10 100V, 更优选 30-50V, 沉积时间优选 0.5 6.0分钟, 更优选 1.5 2.5分钟; 电极保持平 行, 其间距优选 0.5~4.0cm, 更优选 1.0~2.0cm。
歩骤(4) 中在电极上沉积出来的薄膜与歩骤(2) 中加入的碘的量有 如下关系, BP: 若碘的浓度小于或等于 0.30mmol/L, 阳极上有二氧化钒 薄膜沉积, 若碘的浓度大于 0.30mmol/L, 阴极上有二氧化钒薄膜沉积, 其烘干的温度优选为 20~80°C, 烘干时间优选为 20~100分钟。 下面通过下述实施例来详细说明本发明, 但并不限制本发明的内容: 仪器及型号:
场发射扫描电子显微镜, 型号: Sirion200。
TTR-III样品水平型大功率 X射线粉末衍射仪, 采用 Cu-Κα 射线 (入 =1.54184lA), 扫描速率 8°/min, 管电压 40KV, 管电流 200mA
直流稳压电源, 型号: IT6834 实施例 1:
(1) 称量 50mg 的二氧化钒粉体放入到 30ml丙酮中, 配置浓度为 1.67mg/ml的悬浮液, 搅拌 15分钟;
(2) 向歩骤( 1 )中的悬浮液中加入 0.021mmol的碘单质(国药集团, 分析纯), 超声分散 20分钟; (3 ) 用清洗好的 FTO导电玻璃作为电极, 尺寸大小为: 长 2.5cm, 宽 2.0cm, 放入到歩骤(2)中超声分散的悬浮液中, 用直流电源提供 50V 的电压, 加到两电极上, 两电极平行放置, 间距为 2.0cm, 沉积时间为两 分钟;
(4) 将歩骤 (3 ) 中阴极上沉积的二氧化钒薄膜放入烘箱中, 40°C, 30分钟烘干, 得到 FTO导电玻璃为衬底的二氧化钒薄膜。
本实施例所用的二氧化钒粉体的 XRD谱图如说明书附图 1所示, 得 到的 FTO导电玻璃为衬底的二氧化钒薄膜的 XRD谱图如说明书附图 2所 示, 电泳沉积成膜后的 XRD 谱图在 (011), (-211), (-212), (220), (022) 的特征峰没有变化, Sn02的特征峰为 (110), (101), (200), (211), (310), (301), 主要来源是 FTO导电玻璃基底。本发明所采用的 FTO导电玻璃是 由日本板硝子公司生产, 型号 TCO-15 , 在 2.2mm厚的普通玻璃上镀一层 350nm厚的掺氟 Sn02导电薄膜。
二氧化钒薄膜的 XRD谱图说明电泳沉积过程没有发生电化学反应, 粉体和衬底的结构没有发生变化, 完全保留了粉体的结构和性质, 从而避 免了目前现有制备二氧化钒薄膜技术中, 先成膜后成相, 从而产生杂相, 进而影响其性质的巨大缺点。
FTO导电玻璃为衬底二氧化钒薄膜 SEM图片如说明书附图 3所示, 二氧化钒薄膜的厚度为 6.4微米, 薄膜不是很致密, FTO导电玻璃为衬底 的二氧化钒薄膜图片如说明书附图 4所示, 总体上比较均匀致密, 薄膜与 FTO导电玻璃衬底结合比较好, 不易脱落。 实施例 2:
( 1 ) 称量 20mg的二氧化钒粉体放入到 30ml的乙酰丙酮溶液中, 配 置浓度为 0.67mg/ml的悬浮液, 搅拌 30分钟;
(2) 向歩骤(1 )中的悬浮液中加入 0.048mmol的碘单质(国药集团, 分析纯), 超声分散 40分钟;
(3 ) 用清洗好的铜片作为电极, 尺寸大小为: 长 3.0cm, 宽 2.5cm, 放入到歩骤 (2) 中超声分散的悬浮液中, 用直流电源提供 30V的电压, 加到两电极上, 两电极平行放置, 间距为 1.0cm, 沉积时间为三分钟; (4) 将歩骤(3 )中在阴极上沉积的二氧化钒薄膜放入烘箱中, 60°C, 20分钟烘干, 得到铜片为衬底的二氧化钒薄膜。
本实施例所得到的铜片为衬底的二氧化钒薄膜图片如说明书附图 5 所示, 总体上比较均匀致密, 而且和铜片衬底结合的比较好, 长时间放置 薄膜不易脱落。 实施例 3 :
( 1 ) 称量 30mg二氧化钒粉体加入到 30ml的阴极透明电泳漆和 水的混合溶液中, 其中阴极透明电泳漆和水的体积比为 6: 1, 配置浓度为 1.0mg/ml的悬浮液, 搅拌 80分钟;
(2) 向歩骤(1 )中的悬浮液中加入 0.09mmol的碘单质(国药集 团, 分析纯), 超声分散 50分钟;
(3 ) 用清洗好的 FTO导电玻璃作为电极,尺寸大小为:长 2.5cm, 宽 2.0cm, 放入到歩骤(2)中超声分散的悬浮液中, 用直流电源提供 70V 的电压, 加到两电极上, 两电极平行放置, 间距为 2.0cm, 沉积时间为三 分钟;
(4) 将歩骤(3 )中阴极上沉积的二氧化钒薄膜放入烘箱中, 80 °C, 90分钟烘干, 得到 FTO导电玻璃为衬底的二氧化钒薄膜。
本实施例所得到的 FTO导电玻璃为衬底的二氧化钒薄膜图片如说明 书附图 6所示, 总体上比较均匀致密, 表面光滑和 FTO导电玻璃衬底结 合的比较好, 长时间放置薄膜不脱落。 实施例 4:
( 1 ) 称量 5mg二氧化钒粉体加入到 60ml的无水乙醇溶液中, 配 置浓度为 0.08mg/ml的悬浮液, 搅拌 20分钟;
(2) 向歩骤 (1 ) 中的悬浮液中加入 0.006mmol的碘单质 (国药 集团, 分析纯), 超声分散 30分钟;
(3 ) 用清洗好的 FTO导电玻璃作为电极,尺寸大小为:长 2.5cm, 宽 2.0cm, 放入到歩骤(2)中超声分散的悬浮液中, 用直流电源提供 80V 的电压, 加到两电极上, 两电极平行放置, 间距为 3.5cm, 沉积时间为五 分钟;
(4) 将歩骤 (3 ) 中阳极上沉积的二氧化钒薄膜放置在空气中, 自然晾干, 得到 FTO导电玻璃为衬底的二氧化钒薄膜。 实施例 5:
( 1 ) 称量 150mg二氧化钒粉体加入到 20ml的丙酮溶液中, 配置 浓度为 7.5mg/ml的悬浮液, 搅拌 50分钟;
(2) 向歩骤(1 ) 中的悬浮液中加入 0.06mmol的碘单质(国药集团, 分析纯), 超声分散 30分钟;
(3 ) 用清洗好的 FTO导电玻璃作为电极, 尺寸大小为: 长 2.5cm, 宽 2.0cm, 放入到歩骤(2)中超声分散的悬浮液中, 用直流电源提供 20V 的电压, 加到两电极上, 两电极平行放置, 间距为 0.8 cm, 沉积时间为五 分钟;
(4) 将歩骤 (3 ) 中阴极上沉积的二氧化钒薄膜放入到烘箱中 50°C, 40分钟烘干, 得到 FTO导电玻璃为衬底的二氧化钒薄膜。 以上实施例的结果经过精确的测试, 均实现了二氧化钒薄膜的制备。 即, 本发明制造方法与现有的制备方法相比, 具有操作简单, 对设备要求 极低, 原料利用率高, 废液循环利用, 绿色无污染等显著的优点。
以上结合附图对本发明的具体实施方式作了详细的说明,但这些说明 不能被理解为限制本发明的范围,本发明的保护范围由随附的权利要求书 限定, 任何在本发明权利要求基础之上的改动都视为本发明的保护范围。

Claims

权 利 要 求
1. 一种通过电泳沉积制备二氧化钒薄膜的方法, 包括以下歩骤:
( 1 ) 将二氧化钒粉体加入到带极性基团的有机溶剂中, 形成悬浮 液或溶胶;
(2) 向歩骤 (1 ) 得到的悬浮液或溶胶中加入碘单质, 分散均匀;
(3 ) 向歩骤 (2) 中得到的悬浮液中放入电极, 开始电泳沉积;
(4)将歩骤(3 )中在电极上得到的薄膜干燥,得到二氧化钒薄膜。
2. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤(4) 中在电极上沉积出来的薄膜与歩骤(2 ) 中加入 的碘的量有如下关系, BP , 若碘的浓度小于或等于 0.30mmol/L, 在阳极 上有二氧化钒薄膜沉积, 若碘的浓度大于 0.30mmol/L, 在阴极上有二氧 化钒薄膜沉积。
3. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤 (1 ) 中加入的溶剂为: 醇类, 如乙醇、 异丙醇等; 酮类, 如丙酮、 乙酰丙酮等; 阴极电泳漆类, 如丙烯酸体系等; 及以上溶 剂的任意组合的混合溶剂, 或以上溶剂中的一种以上与水的混合溶剂。
4. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤 (1 ) 中得到的混合溶液中, 二氧化钒粉体的浓度为 0.05~16.00mg/ml, 优选 0.2~1.80mg/ml。
5. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于:所述歩骤(2)中加入的碘单质,其加入的浓度为大于 0.0mmol/L 且 4.0mmol/L以下, 优选 0.6~2.0mmol/L。
6. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤 (2 ) 中分散的时间为 10~60分钟。
7. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤 (3 ) 中放入的电极为导电基体 /导电衬底, 该导电基 体 /导电衬底选自不锈钢片、 铁片、 铜片、 银片、 铝片、 铂片、 镍片、 锌 片、 导电合金、 导电玻璃、 导电聚合物和导电陶瓷。
8. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤(3 )中沉积电压为 10 100V, 优选 40 60V,沉积时间 为 0.5-15.0分钟,优选 1.0-3.0分钟; 电极保持平行,其间距为 0.5~4.0cm, 优选为 1.0~2.0cm。
9. 如权利要求 1所述的通过电泳沉积制备二氧化钒薄膜的方法, 其 特征在于: 所述歩骤 (4) 中, 薄膜烘干的温度为 20~80°C, 烘干时间为 20-100分钟。
10. 一种二氧化钒薄膜, 其是利用权利要求 1〜9 中任一项所述方法 制造得到的。
PCT/CN2013/070699 2012-01-21 2013-01-18 一种通过电泳沉积制备二氧化钒薄膜的方法 WO2013107392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210020500.2A CN102534731B (zh) 2012-01-21 2012-01-21 一种通过电泳沉积制备二氧化钒薄膜的方法
CN201210020500.2 2012-01-21

Publications (1)

Publication Number Publication Date
WO2013107392A1 true WO2013107392A1 (zh) 2013-07-25

Family

ID=46342715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070699 WO2013107392A1 (zh) 2012-01-21 2013-01-18 一种通过电泳沉积制备二氧化钒薄膜的方法

Country Status (2)

Country Link
CN (1) CN102534731B (zh)
WO (1) WO2013107392A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534731B (zh) * 2012-01-21 2014-09-24 中国科学技术大学 一种通过电泳沉积制备二氧化钒薄膜的方法
CN102809584A (zh) * 2012-07-26 2012-12-05 华中科技大学 一种多孔氧化锡膜型室温气敏元件及其制备方法
CN103556201B (zh) * 2013-10-25 2016-09-07 上海师范大学 一种二氧化钒片状薄膜材料及其制备方法
CN103556198A (zh) * 2013-11-07 2014-02-05 中国科学院上海硅酸盐研究所 一种二氧化钒纳米棒状薄膜的制备方法
CN103924281B (zh) * 2014-04-26 2017-08-25 广州天极电子科技有限公司 一种以导电陶瓷为基底电泳制备功能薄膜的方法
CN107754782B (zh) * 2017-10-16 2020-06-26 华中科技大学 一种自支撑vo2类芬顿催化材料的制备方法及产品
CN108531954B (zh) * 2018-04-17 2020-06-02 陕西科技大学 聚苯胺/二维层状碳化钛复合材料的电化学制备方法
CN108796586B (zh) * 2018-06-25 2019-06-11 福州大学 一种基于光定向电泳沉积的镂空结构的3d打印方法
CN114592212A (zh) * 2022-03-09 2022-06-07 辽宁大学 一种异质结MoO3/ZnO光电极薄膜的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101265036A (zh) * 2008-04-07 2008-09-17 中国科学院广州能源研究所 一种二氧化钒薄膜在玻璃上的低温沉积方法
US20090114275A1 (en) * 2005-08-04 2009-05-07 Barilan University Method for production of nanoporous electrodes for photoelectrochemical applications
CN101626047A (zh) * 2009-04-17 2010-01-13 华中科技大学 一种高电阻温度系数二氧化钒薄膜的制备方法
CN101805134A (zh) * 2010-03-18 2010-08-18 中国科学院上海硅酸盐研究所 二氧化钒薄膜的镀膜液和薄膜的制备方法及应用
CN102249552A (zh) * 2011-04-22 2011-11-23 中国科学院上海硅酸盐研究所 一种二氧化钒智能控温薄膜及方法
CN102534731A (zh) * 2012-01-21 2012-07-04 中国科学技术大学 一种通过电泳沉积制备二氧化钒薄膜的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654231A (en) * 1985-05-21 1987-03-31 The United States Of America As Represented By The Secretary Of The Navy Vanadium dioxide film deposition
RU1832136C (ru) * 1991-04-11 1993-08-07 Институт Радиотехники И Электроники Ан Ссср Способ получени пленок двуокиси ванади на диэлектрической подложке
US7018673B2 (en) * 1998-12-02 2006-03-28 Georgia Tech Research Corporation Oxygen sensor and emission control system
CN101386550B (zh) * 2008-10-29 2012-07-25 陕西科技大学 带有碳化硅内涂层的碳/碳复合材料的纳米碳化硅外涂层的制备方法
CN101407433B (zh) * 2008-11-06 2011-08-10 陕西科技大学 一种碳/碳复合材料二硅化钼外涂层的制备方法
CN101844936A (zh) * 2010-05-25 2010-09-29 陕西科技大学 一种碳/碳复合材料纳米碳化硅-莫来石-二硅化钼复合外涂层的制备方法
CN101885622B (zh) * 2010-06-11 2012-05-23 陕西科技大学 一种C/C复合材料SiC被覆莫来石复合涂层的制备方法
CN101885623A (zh) * 2010-06-11 2010-11-17 陕西科技大学 脉冲水热电泳沉积法制备碳/碳复合材料莫来石外涂层的方法
CN102220621B (zh) * 2011-06-08 2013-04-17 太原西科纳米技术有限公司 一种连续在碳纤维表面进行碳化硅涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090114275A1 (en) * 2005-08-04 2009-05-07 Barilan University Method for production of nanoporous electrodes for photoelectrochemical applications
CN101265036A (zh) * 2008-04-07 2008-09-17 中国科学院广州能源研究所 一种二氧化钒薄膜在玻璃上的低温沉积方法
CN101626047A (zh) * 2009-04-17 2010-01-13 华中科技大学 一种高电阻温度系数二氧化钒薄膜的制备方法
CN101805134A (zh) * 2010-03-18 2010-08-18 中国科学院上海硅酸盐研究所 二氧化钒薄膜的镀膜液和薄膜的制备方法及应用
CN102249552A (zh) * 2011-04-22 2011-11-23 中国科学院上海硅酸盐研究所 一种二氧化钒智能控温薄膜及方法
CN102534731A (zh) * 2012-01-21 2012-07-04 中国科学技术大学 一种通过电泳沉积制备二氧化钒薄膜的方法

Also Published As

Publication number Publication date
CN102534731A (zh) 2012-07-04
CN102534731B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
WO2013107392A1 (zh) 一种通过电泳沉积制备二氧化钒薄膜的方法
Abrari et al. Fabrication of dye-sensitized solar cells based on SnO2/ZnO composite nanostructures: a new facile method using dual anodic dissolution
CN100417749C (zh) 一种氧化钛纳米材料薄膜的制备方法
Gamard et al. Conductive F-doped tin dioxide sol− gel materials from fluorinated β-diketonate tin (IV) complexes. Characterization and thermolytic behavior
CN104911629B (zh) 一种复合电极的合成方法
CN101354971B (zh) 掺杂金属的染料敏化TiO2纳晶薄膜光电极的制备方法
CN111763951B (zh) 一种纳米氢氧化铟的制备方法
CN102815748A (zh) 二氧化钛材料及其制备方法、染料敏化太阳能电池
Li et al. Preparation and electrochemical performance of TiO2-SnO2 doped RuO2 composite electrode for supercapacitors
CN104198560A (zh) 一种石墨烯修饰的多孔二氧化钛复合膜的制备方法
CN102477565A (zh) 高催化活性Ti基电极:Ti/nanoTiO2-RE2O3;Ti/nanoTiO2-ZrO2制备
CN112323084A (zh) 一种纳米氧化铟的制备方法
CN101396651B (zh) 一种纳米有序构造的光电转换复合薄膜及其制备方法
TW200823149A (en) The manufacturing method of titanium dioxide slurry and the application thereof
CN1142014C (zh) 金属表面负载二氧化钛光催化剂的方法
CN103898589A (zh) 一种纳米铋氧化物薄膜的制备方法
CN102222575A (zh) 染料敏化太阳能电池光阳极的制备方法
CN101608330B (zh) 一种二氧化钛镀膜的低温制备方法
CN102061460B (zh) 纳米Ag颗粒-(Ba0.65,Sr0.35)TiO3渗流型复合陶瓷薄膜及其制备方法
CN108390070A (zh) 锡锑氧化物阳极材料涂层及其制备方法、液流电池钛基锡锑氧化物电极
CN113185136A (zh) 一种高比表面积氧化钨薄膜及其制备方法和应用
CN112575340A (zh) 一种同时制备高纯氢氧化镁和高纯石墨烯的方法
CN105420779B (zh) 一种电化学制备非晶单质硒薄膜的方法
Manseki et al. Controlled microstructures of porous TiO 2 films with sintering process using multi-TiO 2 particles-based nanofluids
CN107686131B (zh) 一种Sm2(MoO4)3薄膜的直接制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13738125

Country of ref document: EP

Kind code of ref document: A1