WO2013105646A1 - 赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜 - Google Patents

赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜 Download PDF

Info

Publication number
WO2013105646A1
WO2013105646A1 PCT/JP2013/050427 JP2013050427W WO2013105646A1 WO 2013105646 A1 WO2013105646 A1 WO 2013105646A1 JP 2013050427 W JP2013050427 W JP 2013050427W WO 2013105646 A1 WO2013105646 A1 WO 2013105646A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared cut
cut material
film
mass
visible light
Prior art date
Application number
PCT/JP2013/050427
Other languages
English (en)
French (fr)
Inventor
素彦 吉住
中林 明
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201380000473.5A priority Critical patent/CN103298902B/zh
Priority to EP13733219.3A priority patent/EP2650341B1/en
Priority to US13/978,982 priority patent/US8927067B2/en
Publication of WO2013105646A1 publication Critical patent/WO2013105646A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to an infrared cut material and an infrared cut material that are used to form an infrared cut film having a high transmittance for visible light and a relatively low transmittance for light having a wavelength of near infrared or longer.
  • the present invention relates to a dispersion, a composition for forming an infrared cut film, and an infrared cut film.
  • ITO powder indium tin oxide powder
  • ATO powder antimony tin oxide powder
  • ITO powder indium tin oxide powder
  • ATO powder antimony tin oxide powder
  • ITO powder is excellent in transparency with respect to visible light and infrared ray cutting performance, but is expensive and has a problem of using rare metals as well as increasing the cost.
  • ATO powder is cheaper than ITO powder, but has low visible light transmittance and cannot meet the demand for high transparency, and is inferior to ITO powder in its ability to cut near-infrared rays (Patent Document) 1).
  • ATO powder (trade name: T-1) manufactured by Mitsubishi Materials Electronic Chemical Co., Ltd., which is well known as ATO powder, has an IR shielding rate (visible light transmittance (visible light transmittance ( % Tv) / sunlight transmittance (% Ts)) is about 1.2.
  • Fluorine-doped tin oxide powder (FTO powder) also absorbs near infrared rays, but has a low IR shielding rate of about 1.2.
  • infrared cut materials such as lanthanum boride and tungsten compounds have a problem that they absorb visible light and have poor near-infrared absorbing ability.
  • the wavelength of each light beam is defined as visible light (380 to 780 nm), near infrared (780 nm to 2.5 ⁇ m), and infrared (780 nm to 1000 ⁇ m).
  • the present invention provides an infrared cut film that is inexpensive and highly transparent to visible light, and that has an IR cut rate that is equivalent to a film using ITO powder, and has a higher IR shielding rate than conventional ATO powder, particularly for infrared rays having a wavelength of 2000 nm or more. It is an object to provide an infrared cut material that can be formed.
  • each aspect of the present invention has the following configuration.
  • An infrared cut material made of phosphorus-doped antimony tin oxide powder, wherein the content of antimony is 14 parts by mass or more and 30 parts per 100 parts by mass of the infrared cut material when converted to SbO 2
  • the content of phosphorus is 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the infrared cut material when converted to PO 2.5
  • the content of phosphorus is an antimony oxide and a phosphorus oxide.
  • the remaining portion is tin oxide.
  • an infrared cut film having a high transmittance for visible light and an excellent infrared cut performance can be formed at a low manufacturing cost.
  • An infrared cut film comprising the infrared cut material of [1] in a film formed of a resin.
  • This infrared cut film has a high visible light transmittance, an excellent infrared cut performance, and a low manufacturing cost.
  • the visible light transmittance (% Tv) of the infrared ray cut film is 90%
  • the IR shielding ratio [(% Tv) is the ratio of the visible light transmittance (% Tv) to the solar radiation transmittance (% Ts).
  • the infrared cut film according to [5], wherein Tv) / (% Ts)] is 1.30 or more. In this case, the transmittance with respect to visible light is further higher, and further excellent infrared cut performance can be obtained.
  • an infrared cut film having high visible light transmittance and excellent infrared cut performance can be formed at a low manufacturing cost.
  • the infrared cut material of this embodiment is an infrared cut material made of antimony tin oxide powder doped with phosphorus, and the content of antimony is 100 parts by mass of the infrared cut material when converted to SbO 2 . 14 parts by mass or more and 30 parts by mass or less, and the phosphorus content, when converted to PO 2.5 , is 1 part by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the infrared cut material.
  • the balance excluding the object and phosphorus oxide is tin oxide.
  • This infrared cut material is a material having a high transmittance for visible light and a relatively low transmittance for infrared rays, particularly infrared rays having a wavelength of 2000 nm or more.
  • the IR shielding rate when the visible light transmittance (% Tv) of the infrared cut film using the infrared cut material is 90% is larger than 1.30. It becomes difficult to do.
  • the IR shielding ratio is the ratio of visible light transmittance (% Tv) to solar radiation transmittance (% Ts) [(% Tv) / (% Ts)]. As shown in FIG. When (% Tv) is different, a different value is indicated accordingly. Therefore, a value standardized with a visible light transmittance (% Tv) of 90% is used for comparison.
  • Visible light transmittance is an index representing the transmission characteristics of visible light only (380 nm to 780 nm). JIS R3106 (established in 1998) This is the value obtained based on the “rate test method”.
  • the solar transmittance (% Ts) is an index representing the transmission characteristics of solar light (380 nm to 2500 nm) including visible light to near infrared light, and is a value obtained based on the JIS R3106 (established in 1998). is there. Further, the transmittance at 2000 nm is a value at a wavelength of 2000 nm based on this measurement method.
  • a plurality of infrared cut films having different thicknesses are formed using the same infrared cut material, and the measured values are connected to each other. The IR shielding rate at the point where the visible light transmittance is 90% on the straight line is obtained.
  • the resin constituting the infrared cut film also affects the measured value of each transmittance, but the influence is smaller than that of the infrared cut material and can be ignored.
  • the IR shielding rate is measured for both the infrared cut film and the two layers of the same infrared cut material. The measurement values may be connected to obtain a straight line as shown in FIG. 1, and the IR shielding rate at a point where the visible light transmittance is 90% on the straight line may be obtained. In this case, the influence of light reflection at the interface between the two films occurs, but the influence when the visible light transmittance is 90% is negligible.
  • the infrared cut material is usually a white or blueish white powder.
  • the particle diameter of the powder is not particularly limited, but is preferably 0.005 ⁇ m or more and 0.03 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.03 ⁇ m or less from the viewpoints of visible light transmittance, solar transmittance, and dispersibility during coating. 02 ⁇ m or less is more preferable. It is preferable that the particle diameters of the infrared cut material are as uniform as possible.
  • the particle diameter refers to the BET diameter calculated from the specific surface area as described below.
  • BET diameter ( ⁇ m) 6 / (true density (g / cm 3 ) ⁇ BET value (m 2 / g)) Specifically, N 2 gas is introduced into the infrared cut material placed in the cell (77 ° K), brought into contact and equilibration, the amount of adsorbed gas at that time is measured, and the BET value is obtained using the BET formula. Good. See page 22 of the Japan Powder Industry Technology Association Standard “SAP 05-98-1998” (established November 27, 1998, published by the Japan Powder Industry Technology Association).
  • the particle shape of the infrared ray cutting material is not particularly limited, but may be, for example, a spherical shape, an elliptical spherical shape, a flat shape, a polyhedral shape, an indefinite shape, or the like.
  • the particles may be non-porous or porous. In the visible light region, it is desirable that the transparency is high and, therefore, a film having a low haze is suitable. Therefore, the particle diameter is more preferably spherical or cubic, and the particles are more preferably nonporous. .
  • the infrared cut material of the present embodiment is manufactured by co-precipitating phosphorus, antimony and tin hydroxides from an aqueous solution containing phosphorus, antimony and tin, and then firing the co-precipitated hydroxides. can do.
  • Examples of the method for co-precipitating phosphorus, antimony and tin hydroxides from an aqueous solution containing phosphorus, antimony and tin include the following methods: (1) While stirring an alkali solution such as sodium hydroxide, a mixed solution of tin tetrachloride solution, hydrochloric acid, antimony chloride solution, and phosphoric acid is dropped into the alkali solution, and phosphorous hydroxide, antimony hydroxide and Coprecipitates tin hydroxide.
  • an alkali solution such as sodium hydroxide
  • a mixed solution of tin tetrachloride solution, hydrochloric acid, antimony chloride solution, and phosphoric acid is dropped into the alkali solution, and phosphorous hydroxide, antimony hydroxide and Coprecipitates tin hydroxide.
  • potassium hydroxide, calcium hydroxide, and ammonium hydroxide can also be used as the alkali.
  • tin tetrachloride tin dichloride and tin sulfate can also be used.
  • hydrochloric acid sulfuric acid and nitric acid can also be used.
  • antimony chloride antimony sulfate can also be used. Coprecipitation occurs through a hydrolysis reaction, but an alkaline solution or water may be heated to accelerate the hydrolysis reaction.
  • the primary particle size of the coprecipitate can be controlled by selecting which coprecipitation method and the dropping speed in each method, etc., but in order to obtain an infrared cut material with a uniform particle size and composition
  • the method using the coprecipitation method (3) is preferred.
  • the firing conditions for the hydroxides of phosphorus, antimony and tin are not limited, but the conditions for firing at 750 to 850 ° C. in the air or in an oxidizing atmosphere for 0.5 to 3 hours are infrared cut characteristics, It is preferable from the viewpoint of transparency to visible light.
  • a dispersion according to an embodiment of the present invention is obtained by dispersing the above-described infrared cut material in a solvent.
  • the solvent include water and organic solvents such as toluene, xylene, acetone, and ethanol.
  • the addition amount of the infrared cut material is not limited, but is preferably 5 to 60% by mass with respect to the total mass of the dispersion.
  • the infrared cut film composition according to an embodiment of the present invention is obtained by dispersing and dissolving the above-described infrared cut material and a resin in a solvent.
  • the kind of solvent is as above-mentioned. If the resin can be dissolved in the solvent to be used, the infrared cut material can be dispersed, and after the solvent is evaporated, the infrared cut material can be bonded to form an infrared cut film, it is generally a dispersion.
  • Any resin used in paints, pastes and the like can be used.
  • examples of the resin include acrylic resin, polyethylene terephthalate resin, and urethane resin.
  • an infrared cut material in the acrylic paint, polyester paint, urethane paint, etc. with which resin solid content and the solvent were mixed previously.
  • this type of paint include trade name “Acrylic” manufactured by Kansai Paint Co., Ltd., and trade name “Acrydic” manufactured by DIC Corporation.
  • the contents of the infrared cut material and the resin in the composition for forming an infrared cut film are not limited, but in the case of forming a film having a thickness of 0.1 ⁇ m to 10 ⁇ m from the viewpoint of ease of application and film formability.
  • the content of the infrared cut material is preferably 5 to 50% by mass with respect to the mass of the entire composition, and the content of the resin is preferably 5 to 40% by mass with respect to the mass of the entire composition.
  • An infrared cut film according to an embodiment of the present invention is obtained by uniformly dispersing the above-described infrared cut material in a film formed of the above-described resin. Other additives may be included in the film.
  • the infrared cut film may be a coating film formed on some base material, or may be a film that does not have a base material and is independent of itself. Moreover, in any case, it may be formed as a laminated film with multiple layers.
  • the visible light transmittance (% Tv) of the infrared cut film is 90%
  • the upper limit of the IR shielding rate is not limited, but in the present invention, the upper limit is considered to be about 1.40.
  • the content of the infrared cut material in the infrared cut film is not limited, but when a film with a film thickness of 0.1 ⁇ m to 10 ⁇ m is formed, the content of the infrared cut material is 65 mass relative to the weight of the entire infrared cut film. % To 80% by mass is preferable. When an additive other than the resin is added, the mass of the additive is included in the mass of the resin. When the content of the infrared cut material in the infrared cut film is less than 65% by mass or greater than 80% by mass, the IR shielding rate when the visible light transmittance (% Tv) is 90% is set to 1.30 or more.
  • the content of the infrared cut material is preferably 1 to 40% by mass with respect to the total mass of the composition. Furthermore, when a film having a film thickness of 0.1 mm to 1 mm is formed, the content of the infrared cut material is preferably 0.1 to 5% by mass with respect to the mass of the entire composition.
  • a commercially available acrylic paint (manufactured by DIC Corporation, trade name: Acrydic A-168) is dissolved in a toluene / xylene mixed solvent (volume ratio: 1: 1), and the infrared cut material is added thereto, followed by drying.
  • the content of infrared cut material in the coating film [mass of infrared cut material / (total weight of infrared cut material + resin)] is 70% by mass, and the total solid content [(infrared cut material + acrylic paint)
  • the total weight of the resin content in the resin / (the total weight of the infrared cut material + acrylic paint + solvent (toluene / xylene))] is adjusted to 10% by mass to prepare an infrared cut film forming composition.
  • the prepared infrared cut film forming composition was applied on a PET film with two kinds of film thicknesses and dried at 100 ° C. An infrared cut film having a thickness of 1 ⁇ m to 3 ⁇ m is manufactured.
  • the infrared cut film thus produced has an IR shielding rate ([(% Tv) / (% Ts)]): 1.30 or more at a visible light transmittance (% Tv) of 90%.
  • the level is generally as shown below.
  • the solar radiation transmittance (% Ts) is approximately 73%. Before and after. Accordingly, the IR shielding rate is about 1.2, which is higher than that containing tin oxide powder. The transmittance at 2000 nm is about 11%. In addition, when the film containing ATO powder containing 20% by mass of SbO 2 has transparency with a visible light transmittance (% Tv) of about 90%, the solar radiation transmittance (% Ts) is about 67%. The IR shielding rate is about 1.29.
  • the visible light transmittance (% Tv) is 99%. Before and after and excellent in transparency. In this case, the solar radiation transmittance (% Ts) is as low as 67%, and the IR shielding rate is as high as 1.4 or more.
  • the infrared cut film containing the infrared cut material of the above embodiment has a visible light transmittance (% Tv) of 90% without doping expensive indium by doping phosphorus into antimony tin oxide.
  • the solar radiation transmittance (% Ts) in the case of the above is as low as 69% or less, and the IR shielding rate is 1.30 or more.
  • the use of the infrared cut film formed using the infrared cut material of the present invention is not limited, for example, the following products can be exemplified.
  • Plastic plate kneaded with infrared cut material.
  • Infrared cut materials having the compositions shown in Table 1 and Table 2 were produced. 55% by mass tin tetrachloride aqueous solution: 92 g, 17% by mass hydrochloric acid: 14 g, 60% by mass antimony chloride aqueous solution: predetermined amount, 85% by mass phosphoric acid aqueous solution: predetermined amount were mixed, The solution was added dropwise with stirring to 1 dm 3 of water kept at 60 ° C. together with a 1% aqueous sodium hydroxide solution. The pH of the solution was kept at 5-6. After completion of the dropping, the residual salt was removed by decantation, and the mixture was further filtered. The solid matter collected by filtration was dried and then calcined at 800 ° C. for 2 hours in the air.
  • the obtained powder sample was subjected to ICP analysis, and Sb and P with respect to 100 parts by mass of the infrared cut material were calculated as parts by mass when converted to SbO 2 and PO 2.5 .
  • Tables 1 and 2 show the analysis results. It was confirmed that the balance excluding antimony oxide and phosphorus oxide was tin oxide (mainly SnO 2 ).
  • the total solid content [(infrared cut material + total mass of resin in acrylic paint) / (infrared cut material + acrylic paint + mass of solvent (toluene / xylene))] is 10% by mass. It was adjusted. The obtained mixture was put in a container containing beads in advance and stirred for 10 hours with a paint shaker to prepare an infrared cut film forming composition.
  • a spectrophotometer (trade name: U-4000) manufactured by Hitachi, Ltd. is used, and [% Tv] and [% Ts] of the uncoated PET film are used as a baseline to transmit visible light.
  • the rate (% Tv) and the solar radiation transmittance (% Ts) were measured, and the IR shielding rate was calculated.
  • the IR shielding rate varies depending on the visible light transmittance, and the visible light transmittance varies depending on the thickness of the infrared cut film. As shown in FIG. 1, the visible light transmittance is in the range of 84 to 96%.
  • the light transmittance and the IR shielding rate are in a substantially linear relationship.
  • Tables 1 and 2 show the measurement results of the IR shielding ratio at a mass part of SbO 2 and PO 2.5 in Examples 1 to 26 and Comparative Examples 1 to 25 and a visible light transmittance of 90%.
  • the vertical axis represents the mass part of SbO 2
  • the horizontal axis represents the mass part of PO 2.5
  • the IR shielding rate at a visible light transmittance of 90% is shown.
  • Examples 1 to 26 having an IR shielding rate of 1.30 or more are included inside the thick solid line in Table 3
  • Comparative Examples 1 to 25 having an IR shielding rate of less than 1.30 are included outside the thick solid line. I understood that.
  • the IR shielding rate [(% Tv) / (% Ts)] when the visible light transmittance (% Tv) is 90% is stably 1.30 or more, and good results are obtained. Obtained. Further, the transparency of Examples 1 to 26 was good. On the other hand, in Comparative Examples 1 to 25 outside the above range, the IR shielding rate was lower than 1.30.
  • FIG. 1 shows an infrared cut material (Example 16) according to an embodiment of the present invention, ITO powder (referred to as “ITO” in FIG. 1), phosphorus-free ATO powder (SbO 2 content: 20% by mass, FIG. 1 uses “Phosphorus-free ATO”) and a commercially available ATO powder (trade name: T-1 by FIG. 1; “T-1” in FIG. 1).
  • the graph which shows the IR shielding rate of the film
  • the IR shielding rate and the visible light transmittance are in a linear relationship. Further, from FIG. 1, it was found that the infrared ray cutting material of Example 16 had an IR shielding rate of 1.35 at a visible light transmittance of 90%.
  • an infrared cut material capable of forming an infrared cut film that is inexpensive and highly transparent, and thus has industrial applicability.

Abstract

 この赤外線カット材は、リンをドープしたアンチモン酸化錫の粉末からなり、アンチモンの含有量はSbOに換算した場合に前記赤外線カット材の100質量部に対して14質量部以上かつ30質量部以下であり、リンの含有量はPO2.5に換算した場合に前記赤外線カット材100質量部に対して1質量部以上かつ25質量部以下であり、アンチモン酸化物とリン酸化物を除いた残部は錫酸化物である。

Description

赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜
 本発明は、可視光線に対して透過率が高く、近赤外線以上の波長の光に対しては透過率が相対的に低い赤外線カット膜を形成するために用いられる赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜に関する。
 本願は、2012年1月11日に、日本に出願された特願2012-002946号に基づき優先権を主張し、その内容をここに援用する。
 従来、この種の赤外線カット材として、インジウム錫酸化物粉末(以下、ITO粉末という)や、アンチモン錫酸化物粉末(以下、ATO粉末という)が知られている。ITO粉末は、可視光線に対する透明性および赤外線カット性能に優れているが、高価であるためコスト高になるばかりか希少金属を使用する問題もある。一方、ATO粉末は、ITO粉末と比較して安価であるが、可視光線の透過率が低く、高透明度の要求に対応できないのみならず、近赤外線をカットする性能がITO粉末より劣る(特許文献1)。例えば、ATO粉末としてよく知られている三菱マテリアル電子化成株式会社製ATO粉末(商品名:T-1)は、可視光線の透過率を90%にした場合のIR遮蔽率(可視光線透過率(%Tv)/日射透過率(%Ts))は1.2程度である。フッ素ドープ酸化錫粉末(FTO粉末)も近赤外線を吸収するが、IR遮蔽率は低く、1.2程度である。また、ランタンボライド、タングステン系化合物等の赤外線カット材は、可視光線を吸収し、かつ近赤外線の吸収能力が劣るという問題がある。本明細書では各光線の波長を、可視光線(380~780nm)、近赤外線(780nm~2.5μm)、赤外線(780nm~1000μm)と定義する。
特開平7-69632号公報
  本発明は、安価で可視光線に対する透明性が高く、特に波長2000nm以上の赤外線に対するカット性能がITO粉末を用いた膜と同等であり、従来のATO粉末よりもIR遮蔽率が高い赤外線カット膜を形成することが可能な赤外線カット材等を提供することを課題とする。
 前記課題を解決するために、本発明の各態様は、それぞれ以下の構成を有する。
[1] リンをドープしたアンチモン酸化錫の粉末からなる赤外線カット材であって、アンチモンの含有量はSbOに換算した場合に前記赤外線カット材の100質量部に対して14質量部以上かつ30質量部以下であり、リンの含有量はPO2.5に換算した場合に前記赤外線カット材100質量部に対して1質量部以上かつ25質量部以下であり、アンチモン酸化物とリン酸化物を除いた残部は錫酸化物である。
 本態様によれば、可視光線に対する透過率が高く、優れた赤外線カット性能を有する赤外線カット膜を、安い製造コストで形成することができる。
[2] 前記[1]の赤外線カット材であって、比表面積より算出したBET径が0.005μm以上、0.03μm以下である赤外線カット材。
 この場合、溶媒または膜中における赤外線カット材の分散性が良く、可視光線の透過率および赤外線カット効果を安定して得ることができる。
[3] 前記[1]の赤外線カット材を、溶媒中に分散させた、赤外線カット材の分散液。
[4] 前記[1]の赤外線カット材と、樹脂とを、溶媒中に分散させた、赤外線カット膜形成用組成物。
 前記[3]の分散液または前記[4]の組成物によれば、赤外線カット材を含む膜を容易に製造することができる。
[5] [1]の赤外線カット材を、樹脂で成形された膜の中に含む、赤外線カット膜。
 この赤外線カット膜は、可視光線に対する透過率が高く、優れた赤外線カット性能を有し、製造コストも安い。
[6] 前記赤外線カット膜の可視光線透過率(%Tv)を90%にした場合に、可視光線透過率(%Tv)の日射透過率(%Ts)に対する比であるIR遮蔽率[(%Tv)/(%Ts)]が1.30以上である、[5]の赤外線カット膜。
 この場合、可視光線に対する透過率がさらに高く、さらに優れた赤外線カット性能を得ることができる。
 前記のとおり、本発明によれば、可視光線に対する透過率が高く、優れた赤外線カット性能を有する赤外線カット膜を、安い製造コストで形成できる。
本発明の一実施例の赤外線カット材、ITO粉末、リン無添加ATO粉末、および市販のATO粉末について、IR遮蔽率と、可視光線透過率の関係を示すグラフである。
 以下、本発明の実施形態を具体的に説明する。
〔赤外線カット材〕
 本実施形態の赤外線カット材は、リンをドープしたアンチモン酸化錫の粉末からなる赤外線カット材であって、アンチモンの含有量はSbOに換算した場合に前記赤外線カット材の100質量部に対して14質量部以上かつ30質量部以下であり、リンの含有量はPO2.5に換算した場合に前記赤外線カット材100質量部に対して1質量部以上かつ25質量部以下であり、アンチモン酸化物とリン酸化物を除いた残部は錫酸化物である。この赤外線カット材は、可視光線に対する透過率が高く、かつ赤外線、特に波長2000nm以上の波長の赤外線の透過率が相対的に低い材料である。
 アンチモン含有量およびリン含有量が前記範囲を外れると、この赤外線カット材を用いた赤外線カット膜の可視光線の透過率(%Tv)を90%にした場合のIR遮蔽率を1.30より大きくすることが困難になる。IR遮蔽率は、日射透過率(%Ts)に対する可視光線透過率(%Tv)の比[(%Tv)/(%Ts)]であり、後述する図1に示すように可視光線の透過率(%Tv)が異なるとそれに応じて異なる値を示すため、可視光線の透過率(%Tv)を90%にして規格化した値を比較に用いる。
 可視光線透過率(%Tv)は、可視光のみ(380nm~780nm)の透過特性を表す指標であり、JIS R3106(1998年制定)「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」に基づき、求めた値である。
 日射透過率(%Ts)は、可視光から近赤外光まで含めた日射光(380nm~2500nm)の透過特性を表す指標であり、前記JIS R3106(1998年制定)に基づき、求めた値である。また、2000nmの透過率は、この測定方法に基づく波長2000nmのときの値である。
 可視光線透過率90%にした場合のIR遮蔽率を測定するには、同一の赤外線カット材を用いて、厚さのみが異なる赤外線カット膜を複数形成し、それぞれの測定値を結んで図1のような直線を求め、その直線における可視光線透過率90%の点でのIR遮蔽率を求める。厳密に言えば赤外線カット膜を構成する樹脂も各透過率の測定値に影響を与えるが、その影響は赤外線カット材よりも小さいため、無視できる。また、可視光線透過率90%にした場合のIR遮蔽率の簡易的な測定方法としては、赤外線カット膜と、同じ赤外線カット材を2枚重ねたものとの両方について、IR遮蔽率を測定し、それぞれの測定値を結んで図1のような直線を求め、その直線における可視光線透過率90%の点でのIR遮蔽率を求めてもよい。この場合、2枚の膜の界面における光反射の影響が生じるが、可視光線透過率90%にした場合に与える影響は無視できる程度である。
 赤外線カット材は、通常、白色または青色がかった白色の粉末である。粉末の粒子径は、特に限定されないが、可視光線透過率、日射透過率、および塗膜時の分散性の観点から、0.005μm以上かつ0.03μm以下が好ましく、0.01μm以上かつ0.02μm以下がより好ましい。赤外線カット材の粒子径は可能な限り揃っていることが好ましい。前記粒子径は、下記のように比表面積より算出したBET径を指す。
 BET径(μm)=6/(真密度(g/cm)×BET値(m/g))
 具体的には、セル(77°K)内に入れた赤外線カット材にN2ガスを導入し、接触・平衡させ、そのときの吸着ガス量を測り、BET式を用いてBET値を求めればよい。日本粉体工業技術協会規格「SAP 05-98-1998」(制定1998年11月27日、社団法人日本粉体工業技術協会発行)の22頁を参照。
 赤外線カット材の粒子形状は特に限定されないが、例えば球形、楕円球形、偏平形状、多面体状、不定形状等であってもよい。また、粒子は無孔状であっても多孔状であってもよい。可視光線域では透明性が高いことが望ましく、そのため膜のヘーズが低いものが好適であるから、粒子径状は球形もしくは立方体等の形状がより好ましく、粒子は無孔状であることがより好ましい。
 本実施形態の赤外線カット材は、リン、アンチモンおよび錫を含有する水溶液から、リン、アンチモンおよび錫の各水酸化物を共沈させた後、共沈した水酸化物を焼成することにより、製造することができる。
 リン、アンチモンおよび錫を含有する水溶液から、リン、アンチモンおよび錫の水酸化物を共沈させる方法としては、例えば以下の方法が挙げられる:
(1)水酸化ナトリウム等のアルカリ溶液を撹拌しながら、四塩化錫溶液、塩酸、塩化アンチモン溶液、および燐酸の混合溶液を前記アルカリ溶液中に滴下し、リン水酸化物、アンチモン水酸化物および錫水酸化物を共沈させる。
(2)水酸化ナトリウム等のアルカリ溶液を撹拌しながら、四塩化錫溶液、塩化アンチモン溶液、燐酸溶液を、それぞれ同時に前記アルカリ溶液中に滴下し、リン水酸化物、アンチモン水酸化物および錫水酸化物を共沈させる。
(3)水を攪拌しながら、水酸化ナトリウム等のアルカリ溶液と、四塩化錫溶液、塩酸、塩化アンチモン溶液、燐酸の混合溶液を前記水中に滴下し、リン水酸化物、アンチモン水酸化物および錫水酸化物を共沈させる。
 いずれの場合も、前記アルカリとしては、水酸化カリウム、水酸化カルシウム、および水酸化アンモニウムも使用可能である。四塩化錫の代わりに、二塩化錫、および硫酸錫も使用可能である。塩酸の代わりに、硫酸、および硝酸も使用可能である。塩化アンチモンの代わりに、硫酸アンチモンも使用可能である。
 共沈は、加水分解反応により起こるが、加水分解反応を促進させるために、アルカリ溶液または水を加熱してもよい。いずれの共沈方法を選択するか、および各方法での滴下速度等により、共沈物の一次粒子径を制御することができるが、均一な粒径および組成の赤外線カット材を得るためには(3)の共沈法を用いる方法が好ましい。
 リン、アンチモンおよび錫の水酸化物の焼成条件は限定されないが、大気中または酸化雰囲気中にて、750~850℃で、0.5~3時間焼成を行う条件であると、赤外線カット特性、可視光線に対する透明性の観点から好ましい。
〔分散液〕
 本発明の一実施形態に係る分散液は、上述の赤外線カット材を、溶媒に分散させたものである。溶媒としては、水や、トルエン、キシレン、アセトン、エタノール等の有機溶媒が挙げられる。赤外線カット材の添加量は限定されないが、分散液全体の質量に対して5~60質量%であると好ましい。
〔赤外線カット膜形成用組成物〕
 本発明の一実施形態に係る赤外線カットフィルム用組成物は、上述の赤外線カット材と、樹脂とを、溶媒に分散および溶解したものである。溶媒の種類は上述のとおりである。樹脂は、使用する溶媒に溶解でき、赤外線カット材を分散することができ、溶媒を蒸発させた後に赤外線カット材を結合して赤外線カットフィルムを形成し得るものであれば、一般的に分散液、塗料、ペースト等で用いられている任意の樹脂を用いることができる。一例を挙げると、前記樹脂としては、アクリル樹脂、ポリエチレンテレフタレート樹脂、ウレタン樹脂等が挙げられる。また、樹脂固形分と溶媒が予め混合されたアクリル塗料、ポリエステル塗料、ウレタン塗料等に赤外線カット材を分散させてもよい。この種の塗料としては、関西ペイント株式会社製商標名「アクリリック」、DIC株式会社製商標名「アクリディック」等が挙げられる。赤外線カット膜形成用組成物中における赤外線カット材および樹脂の含有量は限定されないが、塗布のしやすさおよび成膜性の観点からは、膜厚が0.1μm~10μmの膜を形成する場合、赤外線カット材の含有量は組成物全体の質量に対して5~50質量%であると好ましく、樹脂の含有量は組成物全体の質量に対して5~40質量%であると好ましい。
〔赤外線カット膜〕
 本発明の一実施形態に係る赤外線カット膜は、上述の赤外線カット材を、上述の樹脂で形成された膜内に、均一に分散させたものである。膜内には他の添加剤を含めても良い。赤外線カット膜は、何らかの基材上に形成された塗膜であってもよいし、あるいは基材を有せず、それ自体が独立したフィルムであってもよい。また、いずれの場合も、多層重ねて積層膜として形成されていても良い。
 赤外線カット膜の可視光線透過率(%Tv)を90%にした場合の、可視光線透過率(%Tv)の日射透過率(%Ts)に対する比であるIR遮蔽率[(%Tv)/(%Ts)]は、1.30以上とされている。IR遮蔽率の上限は限定されないが、本発明においては1.40位が上限と思われる。
 赤外線カット膜中の赤外線カット材の含有量は限定されないが、膜厚が0.1μm~10μmの膜を形成する場合、赤外線カット膜全体の重量に対して、赤外線カット材の含有量は65質量%~80質量%であることが好ましい。樹脂以外の添加物が添加された場合には、その添加物の質量は樹脂の質量に含まれるものとする。赤外線カット膜中の赤外線カット材の含有率が65質量%未満または80質量%より大きい場合には、可視光線透過率(%Tv)を90%にした場合のIR遮蔽率を1.30以上にしつつ、赤外線カット材の分布および膜厚が均一な膜を形成することが難しくなるから、赤外線カット膜の使用方法が限定される傾向が生じる。
 また、膜厚が10μm~100μmの膜を形成する場合、赤外線カット材の含有量は組成物全体の質量に対して1~40質量%であると好ましい。
 さらに、膜厚が0.1mm~1mmの膜を形成する場合は、赤外線カット材の含有量は組成物全体の質量に対して0.1~5質量%であると好ましい。
 前記実施形態の赤外線カット膜の製造方法の具体例を示す。
 トルエン・キシレン混合溶媒(体積比:1:1)に、市販のアクリル塗料(DIC株式会社製、商品名:アクリディックA-168)を溶解し、これに前記赤外線カット材を加え、乾燥後の塗膜中の赤外線カット材の含有量〔赤外線カット材の質量/(赤外線カット材+樹脂の合計質量)〕が70質量%になるように、かつ、総固形分〔(赤外線カット材+アクリル塗料中の樹脂分の合計質量)/(赤外線カット材+アクリル塗料+溶媒(トルエン・キシレン)の合計質量)〕が10質量%になるように調整し、赤外線カット膜形成用組成物を作製する。次に、作製した赤外線カット膜形成用組成物を、可視光線透過率を変える為に、膜厚可変式アプリケーターを用いて、それぞれ二種の膜厚でPETフィルム上に塗布し、100℃で乾燥し、厚さ:1μm~3μmの赤外線カット膜を製造する。
 こうして製造された赤外線カット膜は、可視光線透過率(%Tv)90%において、IR遮蔽率([(%Tv)/(%Ts)]):1.30以上を有する。
 前記実施形態におけるIR遮蔽率を、標準的な態様において、従来の赤外線カット材と比較すると、概ね以下に示す水準である。
(a)酸化錫粉末を含有する膜は、可視光線透過率(%Tv)が94%前後の透明性を有する場合、日射透過率(%Ts)も91%前後と高い。従って、IR遮蔽率は1.0程度と低い。2000nmの透過率は約45%である。
(b)SbOを10質量%含有するATO粉末を含有する膜は、可視光線透過率(%Tv)が90%前後の透明性を有する場合に、日射透過率(%Ts)は概ね73%前後である。従って、IR遮蔽率は1.2程度であり、酸化錫粉末を含有するものよりもIR遮蔽率は高い。2000nmの透過率は11%程度である。なお、SbOを20質量%含有するATO粉末を含有する膜は、可視光線透過率(%Tv)が90%前後の透明性を有する場合に、日射透過率(%Ts)が約67%と低く、IR遮蔽率が約1.29になる。
(c)ITO粉末を含有する膜は、上記(a)の酸化錫粉末や、(b)のATO粉末の場合と同程度の含有量である場合、可視光線透過率(%Tv)は99%前後であり、透明性に優れる。また、この場合の日射透過率(%Ts)は67%と低く、IR遮蔽率は1.4以上と高い。
(d)前記実施形態の赤外線カット材を含有する赤外線カット膜は、アンチモン酸化錫にリンをドープすることにより、高価なインジウムを使用しなくても、可視光線透過率(%Tv)を90%にした場合での日射透過率(%Ts)が69%以下と低く、IR遮蔽率が1.30以上である。
 本発明の赤外線カット材を用いて形成された赤外線カット膜の用途は限定されないが、例えば、以下のような製品が例示できる。
・透明なガラス板またはプラスチック板からなる基体の表面および/または裏面に赤外線カット膜が成膜された建物や車両の窓ガラス。
・柔軟な布からなるカーテン本体の表面および/または裏面に赤外線カット膜が成膜されたカーテン。
・赤外線カット材を練りこんだプラスチック板。
・中間膜に赤外線カット材を練り込んだあわせガラス。
 以下に、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
〔赤外線カット材の製造〕
 表1および表2に示す組成の赤外線カット材をそれぞれ製造した。55質量%の四塩化錫水溶液:92g、17質量%の塩酸:14g、60質量%の塩化アンチモン水溶液:所定量、85質量%の燐酸水溶液:所定量を混合し、この混合液を、25質量%の水酸化ナトリウム水溶液と共に、60℃に保った水:1dm中に攪拌しながらそれぞれ滴下した。溶液のpHは5~6に保った。滴下終了後、デカンテーションにより残存塩を除き、さらに濾過し、濾取された固形分を乾燥した後、大気中、800℃で2時間焼成した。
 得られた粉末試料をICP分析にかけ、SbおよびPについて、赤外線カット材100質量部に対する、SbOおよびPO2.5に換算した場合の質量部を算出した。表1および表2に分析結果を示す。アンチモン酸化物とリン酸化物を除いた残部は錫酸化物(主としてSnO2)であることを確認した。
〔赤外線カット膜形成用組成物の調整〕
 得られた粉末試料を、市販のアクリル塗料(DIC株式会社製、商品名:アクリディックA-168)をトルエン・キシレン混合溶媒(体積比:1:1)に溶解した溶液中に加えた。添加量は、赤外線カット材の塗膜中含有量(塗膜乾燥時の〔赤外線カット材の質量/(赤外線カット材+アクリル塗料中の樹脂分の合計質量)〕)が70質量%となるように、かつ、総固形分〔(赤外線カット材+アクリル塗料中の樹脂分の合計質量)/(赤外線カット材+アクリル塗料+溶媒(トルエン・キシレン)の質量)〕が10質量%になるように調整した。得られた混合物を予めビーズを入れた容器に入れ、ペイントシェーカーで10時間撹拌し、赤外線カット膜形成用組成物を作成した。
〔赤外線カット膜の形成〕
 作成した赤外線カット膜形成用組成物を、アプリケーターでPETフィルム上に塗布し、100℃で乾燥し、厚さ1~3μmの赤外線カット膜をそれぞれ複数ずつ形成した。
〔IR遮蔽率の評価〕
 形成した赤外線カット膜のそれぞれについて、日立株式会社製分光光度計(商品名:U-4000)を用い、未塗布のPETフィルムの[%Tv]、[%Ts]をベースラインとして、可視光線透過率(%Tv)、日射透過率(%Ts)を測定し、IR遮蔽率を算出した。IR遮蔽率は可視光線透過率によって変化し、可視光線透過率は赤外線カット膜の厚さにより変化するが、図1に示すように、可視光線透過率が84~96%の範囲においては、可視光線透過率とIR遮蔽率は、ほぼ直線関係にある。また、実施例1~26および比較例1~25の可視光線透過率の実測値は84~96%であるから、上記範囲のほぼ中間値である可視光線透過率90%におけるIR遮蔽率に換算して評価した。
 可視光線透過率90%におけるIR遮蔽率を算出するために、厚さの異なる膜を複数成膜し、それぞれの測定値を結んで図1のような直線を求め、その直線上における可視光線透過率90%の時のIR遮蔽率を求めた。表1および表2に、実施例1~26、比較例1~25でのSbO、PO2.5の質量部と、可視光線透過率90%におけるIR遮蔽率の測定結果を示す。
 また、表3は、縦軸にSbOの質量部、横軸にPO2.5の質量部を示し、可視光線透過率90%におけるIR遮蔽率を記載した結果を示す。表3の太い実線の内側には、IR遮蔽率1.30以上の実施例1~26が含まれ、太い実線の外側には、IR遮蔽率1.30未満の比較例1~25が含まれることが分かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示すように、赤外線カット材のSbO含有量が14質量部以上30質量部以下であり、かつPO2.5含有量が1質量部以上25質量部以下である実施例1~26では、可視光線の透過率(%Tv)を90%にした場合のIR遮蔽率[(%Tv)/(%Ts)]が安定して1.30以上になり、良好な結果が得られた。また、実施例1~26の透明性は、良好であった。
 これに対して、上記範囲外の比較例1~25ではIR遮蔽率が1.30より低かった。
 図1は、本発明の一実施例である赤外線カット材(実施例16)、ITO粉末(図1には「ITO」と記す)、リン無添加ATO粉末(SbO含有量:20質量%、図1には「リン無添加ATO」と記す)、および市販の三菱マテリアル電子化成株式会社製ATO粉末(商品名:T-1、図1には「T-1」と記す)を用い、上述の条件で成膜した膜のIR遮蔽率と、可視光線透過率の関係を示すグラフを示す。それぞれの粉末について、異なる膜厚で成膜した場合の測定値をプロットした。図1に示した範囲では、IR遮蔽率と、可視光線透過率は、直線関係になっていた。また、図1から、実施例16の赤外線カット材は、可視光線透過率90%において、IR遮蔽率が1.35であることがわかった。
 本発明によれば、安価で透明性が高い赤外線カット膜を形成することが可能な赤外線カット材を提供することができるから、産業上の利用可能性を有する。

Claims (6)

  1.  リンをドープしたアンチモン酸化錫の粉末からなる赤外線カット材であって、アンチモンの含有量はSbOに換算した場合に前記赤外線カット材の100質量部に対して14質量部以上かつ30質量部以下であり、リンの含有量はPO2.5に換算した場合に前記赤外線カット材100質量部に対して1質量部以上かつ25質量部以下であり、アンチモン酸化物とリン酸化物を除いた残部は錫酸化物であることを特徴とする、赤外線カット材。
  2.  前記赤外線カット材は、比表面積より算出したBET径が0.005μm以上、0.03μm以下である、請求項1記載の赤外線カット材。
  3.  請求項1記載の赤外線カット材を、溶媒中に分散させた、赤外線カット材の分散液。
  4.  請求項1記載の赤外線カット材と、樹脂とを、溶媒中に分散させた、赤外線カット膜形成用組成物。
  5.  請求項1記載の赤外線カット材を、樹脂で成形された膜の中に含む、赤外線カット膜。
  6.  前記赤外線カット膜の可視光線透過率(%Tv)を90%にした場合に、可視光線透過率(%Tv)の日射透過率(%Ts)に対する比であるIR遮蔽率[(%Tv)/(%Ts)]が1.30以上である、請求項5記載の赤外線カット膜。
PCT/JP2013/050427 2012-01-11 2013-01-11 赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜 WO2013105646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380000473.5A CN103298902B (zh) 2012-01-11 2013-01-11 红外截止材料、红外截止材料的分散液、红外截止膜形成用组合物及红外截止膜
EP13733219.3A EP2650341B1 (en) 2012-01-11 2013-01-11 Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
US13/978,982 US8927067B2 (en) 2012-01-11 2013-01-11 Infrared ray cut-off material, dispersion of infrared ray cut-off material, infrared ray cut-off film-forming composition, and infrared ray cut-off film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-002946 2012-01-11
JP2012002946 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105646A1 true WO2013105646A1 (ja) 2013-07-18

Family

ID=48781588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050427 WO2013105646A1 (ja) 2012-01-11 2013-01-11 赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜

Country Status (5)

Country Link
US (1) US8927067B2 (ja)
EP (1) EP2650341B1 (ja)
JP (1) JP5326058B2 (ja)
CN (1) CN103298902B (ja)
WO (1) WO2013105646A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129856A (ja) * 2014-01-08 2015-07-16 三菱マテリアル株式会社 光学性能及び導電性能の調整用材料及びその塗布膜形成用液組成物
JP7063617B2 (ja) * 2017-12-28 2022-05-09 日揮触媒化成株式会社 複合金属酸化物粒子連結体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183733A (ja) * 1992-12-15 1994-07-05 Mitsubishi Materials Corp 導電性白色粉末とその製造方法
JPH0769632A (ja) 1993-06-30 1995-03-14 Mitsubishi Materials Corp 赤外線カットオフ粉末
JPH10255548A (ja) * 1997-03-12 1998-09-25 Ishihara Sangyo Kaisha Ltd 針状導電性アンチモン含有酸化錫粉末水性分散体及び導電性塗料
JP2004149329A (ja) * 2002-10-29 2004-05-27 Nissan Chem Ind Ltd 導電性酸化スズの製造方法
JP2007154152A (ja) * 2005-11-11 2007-06-21 Mitsubishi Materials Corp 熱線カット組成物およびその用途
WO2010143645A1 (ja) * 2009-06-12 2010-12-16 石原産業株式会社 常温硬化性近赤外線遮蔽コーティング剤及びそれを用いた近赤外線遮蔽膜並びにその製造方法
JP2011093754A (ja) * 2009-10-30 2011-05-12 Jgc Catalysts & Chemicals Ltd 五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231971B1 (en) * 1995-06-09 2001-05-15 Glaverbel Glazing panel having solar screening properties
US6596398B1 (en) * 1998-08-21 2003-07-22 Atofina Chemicals, Inc. Solar control coated glass
US6218018B1 (en) * 1998-08-21 2001-04-17 Atofina Chemicals, Inc. Solar control coated glass
EP1676890B1 (en) * 2003-10-20 2019-06-26 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP5060781B2 (ja) 2006-12-26 2012-10-31 三菱マテリアル電子化成株式会社 透明導電膜形成用組成物、透明導電膜及びディスプレイ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183733A (ja) * 1992-12-15 1994-07-05 Mitsubishi Materials Corp 導電性白色粉末とその製造方法
JPH0769632A (ja) 1993-06-30 1995-03-14 Mitsubishi Materials Corp 赤外線カットオフ粉末
JPH10255548A (ja) * 1997-03-12 1998-09-25 Ishihara Sangyo Kaisha Ltd 針状導電性アンチモン含有酸化錫粉末水性分散体及び導電性塗料
JP2004149329A (ja) * 2002-10-29 2004-05-27 Nissan Chem Ind Ltd 導電性酸化スズの製造方法
JP2007154152A (ja) * 2005-11-11 2007-06-21 Mitsubishi Materials Corp 熱線カット組成物およびその用途
WO2010143645A1 (ja) * 2009-06-12 2010-12-16 石原産業株式会社 常温硬化性近赤外線遮蔽コーティング剤及びそれを用いた近赤外線遮蔽膜並びにその製造方法
JP2011093754A (ja) * 2009-10-30 2011-05-12 Jgc Catalysts & Chemicals Ltd 五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"APPIE Standard", 27 November 1998, THE ASSOCIATION OF POWDER PROCESS INDUSTRY AND ENGINEERING, JAPAN, article "SAP 05-98-1998", pages: 22
See also references of EP2650341A4

Also Published As

Publication number Publication date
US20140320954A1 (en) 2014-10-30
EP2650341A4 (en) 2014-05-28
EP2650341B1 (en) 2015-09-23
CN103298902A (zh) 2013-09-11
US8927067B2 (en) 2015-01-06
CN103298902B (zh) 2014-12-10
JP5326058B2 (ja) 2013-10-30
JP2013163634A (ja) 2013-08-22
EP2650341A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
TWI402218B (zh) 透明隔熱材料、其製造方法以及透明隔熱結構
KR101568561B1 (ko) 인듐주석 산화물 분말, 그 제조 방법, 분산액, 도료 및 기능성 박막
CN104220376B (zh) 红外截止材料
CN104271510A (zh) 锑掺杂氧化锡粉末及其制造方法
EP3252115B1 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
JP5326058B2 (ja) 赤外線カット材、赤外線カット材の分散液、赤外線カット膜形成用組成物、および赤外線カット膜
JP5201405B2 (ja) 赤外線反射性黒色顔料、該赤外線反射性黒色顔料を用いた塗料及び樹脂組成物
WO2017057110A1 (ja) 赤外線吸収微粒子、およびそれを用いた分散液、分散体、合わせ透明基材、フィルム、ガラスと、その製造方法
JP2015160759A (ja) 透明導電性複合酸化物微粉末及びその製造方法並びに透明導電性膜
JP6171733B2 (ja) 熱線遮蔽分散体形成用塗布液および熱線遮蔽体
JP6605148B2 (ja) 希土類リン酸塩粒子、それを用いた散乱性向上方法
JP2015044922A (ja) 熱線遮蔽分散体、熱線遮蔽分散体形成用塗布液および熱線遮蔽体
JP6952051B2 (ja) 赤外線遮蔽材、及び酸化スズ粒子の製造方法
JP6575443B2 (ja) 熱線遮蔽フィルムおよび熱線遮蔽ガラス
JP6201841B2 (ja) 熱線遮蔽材の製造方法
JP2017222540A (ja) 熱線遮蔽微粒子および熱線遮蔽微粒子分散液
JP6164132B2 (ja) 熱線遮蔽用チタン酸リチウム粒子
JP2021075676A (ja) 複合タングステン酸化物微粒子分散体および複合タングステン酸化物微粒子分散液
JP2010159341A (ja) 透明赤外線カットフィルム形成用組成物
JP2015129856A (ja) 光学性能及び導電性能の調整用材料及びその塗布膜形成用液組成物
TW201418006A (zh) 由抗反射膜及擴散抑制膜所構成之複合膜、及具備此複合膜玻璃基材之製造方法
JP2009302020A (ja) 導電性微粒子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13978982

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013733219

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE