WO2013100734A1 - 합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법 - Google Patents

합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법 Download PDF

Info

Publication number
WO2013100734A1
WO2013100734A1 PCT/KR2012/011807 KR2012011807W WO2013100734A1 WO 2013100734 A1 WO2013100734 A1 WO 2013100734A1 KR 2012011807 W KR2012011807 W KR 2012011807W WO 2013100734 A1 WO2013100734 A1 WO 2013100734A1
Authority
WO
WIPO (PCT)
Prior art keywords
seed crystals
film
axis
substrate
porous substrate
Prior art date
Application number
PCT/KR2012/011807
Other languages
English (en)
French (fr)
Inventor
윤경병
탄 툼 팜카오
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Priority to US14/369,973 priority Critical patent/US9938637B2/en
Publication of WO2013100734A1 publication Critical patent/WO2013100734A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0025Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors starting from inorganic materials only, e.g. metal foam; Lanxide type products
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/249969Of silicon-containing material [e.g., glass, etc.]

Definitions

  • the present invention relates to a method for preparing a zeolite-based membrane using secondary growth in steam without a gel-type silicon source.
  • Zeolite is generically referred to as crystalline aluminosilicate. Since the site of aluminum in the skeleton of the aluminosilicate is negatively charged, positive ions exist in the pores and the remaining space in the pores is usually filled with water molecules. The structure, shape, and size of the three-dimensional pores of the zeolite depend on the type of zeolite, but the diameter of the pores usually corresponds to the molecular size. Therefore, zeolites are also called molecular sieves because they have the size selectivity or shape selectivity of the molecules to be taken into the pores depending on the kind.
  • zeotype molecular sieves are known in which a part or all of silicon or aluminum is replaced by various other elements instead of silicon (Si) and aluminum (Al), which constitute the skeletal structure of the zeolite.
  • porous silica sicalite
  • AlPO 4 alpo
  • Ti, Mn, Co, Fe in the skeleton of such zeolite and pseudomolecular sieves
  • pseudomolecules obtained by partially substituting various metal elements such as Zn.
  • zeolite in the present specification means a zeolite having a broad meaning including the above-described pseudomolecular body.
  • zeolites having an MFI structure are among the most actively used zeolites, and their kinds are as follows:
  • ZSM-5 A zeolite of MFI structure in which silicon and aluminum are formed in a constant ratio.
  • Silicalite-1 Zeolite having a structure composed only of silica.
  • TS-1 Zeolite of MFI structure with titanium (Ti) in some aluminum spots.
  • the MFI structure is shown in FIG.
  • a channel in which the elliptical (0.51 ⁇ 0.55 nm) pores are zigzag-shaped flows in the a-axis direction, and pores close to the circular (0.54 ⁇ 0.56 nm) form a straight line and extend in the b-axis direction to form a straight channel.
  • the channel is not open in the c-axis direction.
  • Powdered MFI zeolites are widely used in real life and industry as cracking catalysts, adsorbents, dehydrating agents, ion exchangers, and gas purifiers of crude oil, but MFI zeolite thin films formed on porous substrates such as porous alumina It is widely used as a molecular separation membrane that can be separated according to.
  • MFI zeolite thin films are secondary and tertiary nonlinear optical films, three-dimensional memory materials, solar collectors, electrode aids, semiconductor quantum dots and quantum wire carriers, molecular circuits, photosensitive devices, emitters, low dielectric films (low dielectric thin film or low k thin film) and antirust coatings.
  • the shape, size and channel structure of the pores differ depending on the crystal direction.
  • a method of producing a zeolite thin film of MFI structure on a substrate such as a glass plate is divided into primary growth method (primary growth method) and secondary growth method (secondary growth method).
  • first growth method the substrate is placed in an MFI zeolite synthesis gel without pretreatment, and the MFI zeolite membrane is spontaneously grown on the substrate.
  • the gel for synthesis is usually a structure added with a structure directing agent or an organic template (organic template) added to the tetrapropyl ammonium hydroxide (referred to as tetraproplyammonium hydroxide, TPAOH).
  • the MFI crystals grow on the glass plate placed at the initial stage of the reaction in a direction perpendicular to the glass plate.
  • crystals oriented in the a-axis begin to grow parasitically.
  • crystals grow in various directions, resulting in thin films in various orientations.
  • the resulting MFI zeolite thin films with random orientation have their own uses but poor applicability.
  • the permeability (molecular permeability) of one of the most important factors when applied as a molecular separation membrane is significantly reduced.
  • the MFI zeolite thin film does not grow on the substrate. To overcome this problem, the secondary growth method is used.
  • the substrate to which the MFI zeolite crystals are previously attached is immersed in the MFI synthetic gel and then reacted to form an MFI thin film.
  • already attached MFI crystals serve as seed crystals.
  • the orientation of the pre-attached MFI zeolite crystal plays a very important role in the orientation of the MFI zeolite thin film formed later.
  • the a-axis of the MFI zeolite seed crystals is oriented perpendicular to the substrate
  • the a-axis of the resulting MFI zeolite thin film tends to be oriented in a direction perpendicular to the substrate and later generated if the b-axis of the seed crystals is oriented perpendicular to the substrate.
  • the b-axis of the MFI zeolite thin film is oriented in the direction perpendicular to the substrate.
  • the orientation of the resulting zeolite thin film is sensitively dependent on the structure inducing agent added to the MFI synthetic gels put in to form the thin film, rather than the orientation of the seed crystals.
  • TPAOH has usually been added to MFI synthetic gels that have been used in secondary growth methods. In this case, even though the orientations of the attached MFI zeolite seed crystals are all attached so that the a-axis or the b-axis is perpendicular to the substrate, the orientation of the finally produced MFI zeolite thin film changes randomly.
  • Another object of the present invention is to provide a film in which the crystallographic orientation of seed crystals aligned on a substrate is maintained.
  • the present invention provides a membrane produced by the above production method.
  • the present invention is characterized by using a porous substrate capable of supplying silicon instead of using a synthetic gel as a silicon source in the secondary growth method.
  • the material that can supply silicon in the porous substrate is not particularly limited as long as it can supply silicon (Si), but it is preferable that it is porous as an amorphous material, and non-limiting examples include oxides containing silicon and having hydroxy groups on the surface thereof.
  • porous silica is more preferred.
  • a non-limiting example of a porous substrate capable of supplying silicon may be a molding in which silica particles, preferably amorphous silica particles are filled into a mold and then compressed. This is because the substrate, which is porous and formed of amorphous particles, has a low crystallinity and can readily dissolve silicon. For the same reason, the larger the porosity is, the more preferable the porous substrate is.
  • amorphous silica oxide film when an amorphous silica oxide film is formed on a surface, it is preferable as a porous base material which can supply silicon. In silicon wafers, amorphous silica oxide films are better formed in steam.
  • the seed crystals used by the present invention and the skeletal component of the formed film are not particularly limited as long as they contain silicon.
  • Seed crystals and the formed film may be zeolites or similar molecular sieves.
  • the seed crystals and the formed film may be MFI structure.
  • zeolite refers not only to (i) a generic term for minerals that are aluminum silicate hydrates of alkali or alkaline earth metals, but also to (ii) various elements in place of silicon (Si) and aluminum (Al), which are the elements that make up the zeolite skeleton structure. It also includes zeotype molecular sieves that have replaced some or all of silicon or aluminum as an element, and in the larger sense includes all porous oxides or sulfides having hydroxyl groups on the surface.
  • zeolite or pseudomolecular sieves of MFI structure examples include ZSM-5, silicalite, TS-1, AZ-1, Bor-C, Boralite C, encilite, FZ-1, LZ-105, monoclinic H-ZSM -5, mutinite, NU-4, NU-5, TSZ, TSZ-III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B and the like.
  • the material capable of supplying silicon in the seed crystals and the porous substrate is the same material, and it is preferable that both are SiO 2 .
  • Seed crystals are preferably ordered porous materials.
  • the size of the seed crystals is larger than the pores and pores of the porous substrate so that some or all of the seed crystals protrude above the surface of the porous substrate, so that the seed crystals can function as seed crystals in the manufacturing method of the present invention and thereafter grow secondary.
  • a film can be formed by the method (FIG. 12).
  • the size of the seed crystal is larger than the pores and pores of the porous substrate so that the seed crystal can be laid flat on the surface of the porous substrate so that at least one crystal axis of the seed crystal can be oriented in a specific direction, from which at least one crystal axis The secondary film oriented in this specific direction can be formed (FIG. 11).
  • the relationship between the crystal axis a, the b axis, and the c axis is that the crystal axis c axis does not exist on the plane formed by the crystal axis a axis and the b axis.
  • the crystal axes a, b, and c axes may be perpendicular to each other, or the crystal axes c axis may be inclined on a plane formed by the crystal axes a and b axes.
  • the present invention provides a template for secondary growth when forming and growing a film from seed crystals attached on a substrate by a secondary growth method, the crystal axis a-axis of each anisotropic seed crystal on the substrate, At least one or both of the b-axis and c-axis may be aligned to be oriented on the porous substrate according to certain rules.
  • seed crystals aligned on a substrate may be oriented according to whether all a axes of the seed crystals are parallel to each other, all b axes of the seed crystals are parallel to each other, all c axes of the seed crystals are parallel, or a combination thereof. It may be.
  • the seed crystals aligned on the substrate may be a axis, b axis or c axis oriented perpendicular to the substrate surface.
  • seed crystals on which one or more or all of the a-axis, the b-axis, and the c-axis are oriented in accordance with a certain rule form a monolayer.
  • seed crystals may form two dimensional interconnections with each other and / or seed crystals grow perpendicular to the substrate surface to form a single crystal film that is larger than a single seed crystal and all crystal axis orientations are identical.
  • the size of the seed crystals may be nm 3 ⁇ um 3 scale (scale)
  • the two-dimensional size of the film thus formed may be mm 2 ⁇ cm 2 and the thickness of the film can be continuously increased, so that the grown single crystal film Three-dimensional size is also available in ⁇ cm 3 scale.
  • the non-spherical seed crystals aligned on the substrate in the present invention are aligned so that all of the crystal axes a, b and c axes are aligned according to a certain rule, the non-spherical seed crystals may have the same or different shapes. .
  • Korean Patent Publication No. 2009-120846 discloses a method of vertically orienting all b-axis of MFI type seed crystals on a substrate, and is capable of adjusting the a-axis, b-axis and / or c-axis orientation of the crystals on the substrate.
  • the technique is described in PCT / KR2010 / 002180 and PCT / KR2010 / 002181.
  • seed crystals aligned on at least one or both of the a-axis, b-axis and c-axis orientations on the substrate may be prepared according to the methods described in Korean Patent Publication Nos. 2009-120846, PCT / KR2010 / 002180 and PCT / KR2010 / 002181 or We can prepare by application.
  • seed crystals in which the a-axis, b-axis, and c-axis orientations are all aligned on the substrate may be prepared by the following process:
  • the shape of the pore is preferably formed to correspond to the shape of a predetermined portion of the seed crystal inserted into the pore in order to adjust the crystal axis orientation of the seed crystal.
  • Physical pressure may be applied by rubbing or pressing against substrate.
  • the intaglio or embossment formed on the substrate or mold substrate surface may be directly imprinted on the substrate itself, formed by photoresist, formed by laser ablation after coating the sacrificial layer, or formed by inkjet printing.
  • the photoresist or ink may be removed after aligning the seed crystals on the substrate, but may continue to be a support for seed crystals, even during secondary growth, as long as they do not cause problems with the supply of silicon and structure inducing agents to the seed crystals. .
  • seed crystals inserted into the pores on the substrate or the mold substrate may gather to form a specific pattern or shape, and a film formed corresponding thereto may also form a specific pattern or shape.
  • a coupling agent capable of binding to the substrate and seed crystals may be applied on the substrate surface.
  • the term "linker” refers to any compound having a functional group at the terminus that enables binding between the substrate and seed crystals. Preferred linking agents and mechanisms of action and applications thereof are disclosed in Korean Patent Publication Nos. 2009-120846 and US 7,357,836.
  • the present invention uses a porous substrate containing a material capable of supplying silicon to a silicon source when producing a film by the secondary growth method, it does not require a silicon source in the form of a gel and provides a structure inducing agent as an aqueous solution rather than a gel. to be.
  • the structure inducing agent is a material that serves as a template of a specific crystalline structure, and the charge distribution, size, and geometric shape of the structure inducing agent provide structure directing properties.
  • the structure inducing agent used in the present invention is preferably a kind which induces only secondary growth from the surface of the seed crystals and does not induce crystal nucleation in the seed crystal growth solution or at the seed crystal surface. Unless only crystal nucleation is induced, the rate of crystal growth along each crystal axis is not critical.
  • Seed crystals used in the second step can also be formed using a seed structure directing agent. Since seed structure inducing agents induce crystal nucleation reactions, it is not preferable to use seed structure inducing agents as structure inducing agents for secondary growth methods. Therefore, the structure inducing agent (SDA) used in the third step is preferably different from the seed structure inducing agent.
  • SDA structure inducing agent
  • the structural inducer for secondary growth is tetrapropylammonium hydroxide (TPAOH), tetraethylammonium hydroxide (TEAOH), tetramethylammonium (TMA), tetrabutylammonium (TBA) ) Or mixtures thereof. Especially preferred are mixtures of TPAOH and TEAOH.
  • the non-limiting concentration range of the structural inducing agent in the aqueous solution is 0.01 mol to 1 mol, preferably 0.1 mol to 0.5 mol.
  • FIG. 8 is a graph of silicalite-1 seed crystals in which the b-axis is vertically oriented on a silica (SiO 2 ) porous substrate by steam heating reaction at 190 ° C. for 48 hours using various concentrations of aqueous TEAOH-containing solution.
  • SiO 2 silica
  • Non-limiting examples of the method of coating the structure inducing agent-containing aqueous solution on the porous substrate to which the seed crystals are applied include slip-coating spin coating, spray coating, and the slip coating method is preferable (FIG. 5).
  • the substrate is immersed in the aqueous solution containing the structure inducing agent for the surface to which the seed crystals are applied for slip-coating so that only the surface is impregnated, and then the substrate is taken out and the aqueous solution impregnated to the seed crystals is turned upward. May be directed towards the porous substrate.
  • Coating the aqueous solution containing the structure inducing agent on the porous substrate to which the seed crystals are applied may be repeated two or more times.
  • seed crystals are connected to each other two-dimensionally by the second growth from the seed crystal surface to form three-dimensional vertical growth to form a film.
  • the porous substrate impregnated with the coating solution containing the structure inducing agent When the porous substrate impregnated with the coating solution containing the structure inducing agent is heated in a high pressure reactor, the moisture in the porous substrate becomes vapor and transports the silicon and the structure inducing agent from the porous substrate to the seed crystals through the pores. This makes it possible to form a film.
  • the moisture in the porous substrate can also form steam sufficiently.
  • Membrane manufacturing method can be supplied from the porous substrate without the use of a synthetic gel and can provide a structure inducing agent for secondary growth in the form of a solution to reduce unnecessary raw material consumption and synthetic gel is not wasted There is no need to dry and wash the film formed from the seed crystals.
  • the reaction temperature for film formation and growth may vary from 50-250 ° C. depending on the composition of the structure inducing agent aqueous solution used or the material to be made.
  • the reaction temperature is 80-200 ⁇ , more preferably 180-190 ⁇ .
  • the reaction temperature is not always fixed, but can be reacted by changing the temperature in several steps.
  • the reaction time for film formation and growth can vary from 0.5 hours to 20 days.
  • the reaction time is preferably 2 hours-15 days, more preferably 40 to 50 hours.
  • the description of a single seed crystal is achieved by the seed crystals being connected two-dimensionally to each other by the secondary growth from the surface of the seed crystals in the same compartment with all the crystal axis orientations of adjacent seed crystals.
  • Single crystals larger than the maximum diameter parallel to the plane and all crystal axis orientations are identical;
  • the seed crystals grow perpendicular to the substrate surface and form a single crystal with all crystal axis orientations equal to greater than the maximum diameter perpendicular to the substrate surface of the single seed crystal;
  • a crystal can be formed that satisfies both conditions.
  • the film formed in the same crystal axis orientation of adjacent seed crystals may extend to the film in which the channel of the seed crystals is formed.
  • a film formed in a partition having the same crystal axis orientation of adjacent seed crystals may be expanded by continuously connecting channels in an axial direction parallel to the substrate surface; Channels are continuously connected and extended in an axial direction perpendicular to or inclined to the substrate surface; Or both conditions can be satisfied.
  • Membranes prepared according to the present invention are molecular separation membranes, low dielectric materials in the semiconductor industry, nonlinear optical materials, thin films for water decomposition devices, thin films for solar cells, optical components, interior or exterior components for aircrafts, cosmetic containers, living containers, mirrors And other zeolites may be used in a variety of applications, such as thin film using the nanopore characteristics, but is not limited thereto.
  • the film production method according to the present invention consists of a simple manufacturing process, which has high reproducibility and high throughput.
  • the membrane production method according to the present invention can produce a membrane in which the crystal axis orientation of the seed crystals aligned on the porous substrate is maintained.
  • the present invention can form a film in which the channel is formed in the horizontal direction as well as perpendicular to the substrate surface, the film containing a variety of functional molecules, polymers, metal nanoparticles, semiconductor quantum dots, quantum wires, etc. in the nanochannel in a constant orientation for various optical applications It can be used as advanced materials for electronics and electro-optics.
  • a channel is formed in a vertical direction in a membrane formed of porous alumina, porous silica, or mesoporous material, it functions as a separator that separates molecules.
  • FIG. 1 is a view schematically showing the determination of the MFI structure in which a structure inducing agent is inserted.
  • FIG. 2 shows SEM images of anisotropic Coffin type Silicalite-1 crystals and anisotropic Leaf type Silicalite-1 crystals and their crystal axes.
  • the left SEM image is a Coffin type Silicalite-1 crystal and the right SEM image is an anisotropic Leaf type Silicalite-1 crystal.
  • FIG. 3 is an electron micrograph of a glass plate with Silicalite-1 seed crystals attached using a rubbing method (Korean Patent No. 0789661) (image seen from above), wherein the seed seeds attached are oriented such that the b axis is perpendicular to the substrate. But the a and c axes are randomly oriented.
  • FIG. 4 is an SEM image of a silicon wafer in which fine pattern engraving is formed with photoresist (PR) so that seed crystals can be vertically inserted in each of the a-axis, b-axis, and c-axis directions while aligning all crystal axis orientations equally.
  • PR photoresist
  • FIG. 5 is a schematic diagram illustrating a process diagram of a film production method according to one embodiment of the present invention.
  • FIG. 6A is a SEM photograph of a crystal monolayer of silicalite-1 particles with the b-axis perpendicular to the substrate on a SiO 2 porous substrate and an XRD pattern thereof.
  • FIG. 6B is a SEM photograph of the thin film grown secondly according to one embodiment of the present invention using a porous substrate having a silicalite-1 crystal monolayer of FIG. 6A and an XRD pattern thereof.
  • FIG. 7 is a time at 190 ° C. using an aqueous solution containing TPAOH from silicalite-1 seed crystals with the b-axis vertically oriented on a silica (SiO 2 ) porous substrate according to one embodiment of the invention as in FIG. 6B. SEM picture of the film grown second by steam heating reaction.
  • FIG. 8 shows silica b-1 seed crystals vertically oriented on a silica (SiO 2 ) porous substrate by steam heating reaction at 190 ° C. for 48 hours using various concentrations of aqueous solution containing TEAOH. SEM photograph of the second grown film.
  • silicalite-1 seed crystals oriented vertically on the silica (SiO 2 ) porous substrate by steaming reaction over time at 190 ° C. using an aqueous solution containing TPAOH and TEAOH. SEM image of the tea grown film.
  • FIG. 10 is a steaming reaction for 48 hours at 190 ° C. using an aqueous solution containing TPAOH and TEAOH from silicalite-1 seed crystals with b-axis vertically oriented on glass substrate A and silicon wafer B.
  • FIG. 11 shows a silicalite membrane obtained by secondary growth of 800 nm-sized silicalite nanoparticles (A) on a silica (SiO 2 ) porous substrate (surface particle size 500-600 nm) by steam heating at 190 ° C. for various reaction times.
  • the structural inducing agent used at this time is an aqueous solution containing TPAOH and TEAOH.
  • the size of the seed crystals is similar in size to the surface particle size that forms the porous substrate surface, resulting in a secondary film with randomly oriented crystal axes. Therefore, the seed crystals can be laid flat on the porous substrate only when the average grain diameter of the seed crystals is 2 to 3 ⁇ m, so that at least one crystal axis of the seed crystals can be oriented in a direction perpendicular to the substrate, from which at least one A secondary film can be formed in which the crystal axis is oriented perpendicular to the substrate.
  • FIG. 12 (A) is a SEM photograph of a silica porous substrate (surface particle size 500 ⁇ 600nm), (B) is a SEM photograph after rubbing 70 nm size SiO 2 beads to make a smooth surface, (C) is SEM image of the membrane secondarily grown by steam heating at 190 ° C. and for 48 hours using TEAOH and TPAOH containing aqueous solution, (D) is the XRD pattern of the membrane of (C). It was confirmed from (D) that no new crystals were formed.
  • FIG. 13 is a reaction time when a zeolite-based membrane was prepared using a secondary growth method in a steam at 190 ° C. without using a source of gel in the form of a gel in accordance with the present invention using different structure inducing agents (TEAOH, TPAOH + TEAOH, TPAOH).
  • TEAOH, TPAOH + TEAOH, TPAOH different structure inducing agents
  • Void area% means the part where zeolite is not located on the substrate, and when the aqueous solution containing the TPAOH structure inducing agent is used, the zeolite membrane grows fastest, and the zeolite membrane grows in the order using the aqueous solution containing TPAOH + TEAOH and TEAOH structure inducing agent. .
  • the left picture of FIG. 14 is a randomly grown MFI zeolite thin film manufactured by a method of growing a zeolite membrane using an MFI synthetic gel, which is a conventional method, and a gap is generated in a firing step for removing TPAOH during the manufacturing process. It can be confirmed by observing the phosphor between the gaps.
  • the picture on the right is a film in which the crystal axis orientation is kept constant by the method without using the synthetic gel of the present invention. Apochromat 20x / 0.8 M27, Zoom: 1.0, Mater gain: 585, Laser: 488 nm, 2.6% observed).
  • FIG. 15 shows that a zeolite thin film in which all of its axial directions are vertically aligned can be grown to a thin film of 200 nm using steam under conditions without a synthetic gel prepared by the method of the present invention.
  • FIG. 16 is a porous substrate capable of supplying the silicon of the present invention, when zeolite seed crystals are applied to a molded product in which amorphous silica particles are packed into a mold and then compacted, and secondly grown using an aqueous solution containing a TPAOH structure inducing agent.
  • the SEM image shows the growth of the film from the side.
  • FIG. 17 is a porous substrate capable of supplying the silicon of the present invention, when the zeolite seed crystals are placed on a compacted product after filling the mold with 50 nm SiO 2 silica beads, and after the second growth by steam reaction, the silica beads are steamed. SEM photographs show that silicon crystals are supplied to seed crystals as they are etched during the reaction.
  • FIG. 18 is a SEM photograph showing the secondary growth of the SL film on the silica particle support by steam reaction using an aqueous solution containing a TPAOH + TEAOH structure inducing agent according to different reaction time and reaction temperature (a) 160 °C- 8 h (b) 175 ° C-8 h (c) 190 ° C-8 h (d) 190 ° C-18 h. Scale bar represents 5 ⁇ m.
  • 19 is a SEM photograph showing the secondary growth of the SL film on the silica particle support by steam reaction using an aqueous solution containing a TPAOH structure inducer according to different reaction time and reaction temperature (a) 160 °C-8 h (b) 175 ° C-8 h (c) 190 ° C-8 h (d) 190 ° C-18 h. Scale bar represents 5 ⁇ m.
  • FIG. 20 is steam at 190 ° C. for 48 h using various concentrations of aqueous solution containing TEAOH structure inducer (0.01 M (a), 0.02 M (b), 0.04 M (c), 0.05 M (d)) on silica particle supports. SEM pictures showing the secondary growth of the SL film through the reaction is shown.
  • FIG. 21 shows a 48 ° C steam reaction for 48 h using an aqueous solution containing TPAOH + TEAOH structure inducer on (a) a glass support (b) on a cleaned Silicon wafer and (c) a silicon wafer coated with an amorphous SiO 2 layer. SEM image showing the second grown SL film is shown. Scale bar represents 5 ⁇ m.
  • Platinum / palladium coating was performed on the resulting thin film with a thickness of about 15 nm and SEM images were obtained by using a scanning electron microscope (Hitachi S-4300 FE-SEM).
  • an X-ray powder diffraction pattern was prepared using an X-ray diffractometer (Rigaku diffractometer D / MAX-1C, Rigaku) using CuK ⁇ X-rays. Got it.
  • TEAOH 35% Alfa
  • TPAOH 1M Sigma-Aldrich
  • (NH 4 ) 2 SiF 6 98% Sigma-Aldrich
  • Tetraethylorthosilicate-TEOS 98% (Acros-Organic).
  • Example 1-1 Anisotropic, Coffin Type Silicalite-1 Crystals
  • a gel was prepared by adding 22.5 g of TEOS to a PP bottle containing 247.7 mL of DDW, 22.5 mL of TPAOH, and 37.2 g of ethylene glycol (EG). The mixture was stirred for 24 hours to form a clear gel, then 6.168 mL of TEAOH was added and stirred for 12 hours. The resulting transparent gel had a final molar composition of 1 TEOS / 0.15 TPAOH / 0.1 TEAOH / 4 EtOH / 100 H 2 O / 4 EG. After aging, the gel was filtered through No. 2, Whatman filter paper and transferred to a Teflon line autoclave with a clean stirring bar.
  • Example 1-2 Anisotropic Leaf Type Silicalite-1 Crystals
  • a transparent gel was prepared by adding 1.696 g of TEOS to a PP bottle containing Trimer-TPA 3 + -3I - 1.019 g, 0.295 g KOH and 34.2 g DDW.
  • Aged for 24 hours, the gel was filtered through No. 2, Whatman filter paper and transferred to a Teflon line autoclave. The hydrothermal reaction was carried out at 175 ° C. for 24 hours. The product was collected, washed with a large amount of DDW and dried at 100 ° C. for 24 hours to obtain leaf type Silicalite-1 powder (see FIG. 2).
  • Porous silica substrates were prepared using silica particles of 50 to 550 nm size synthesized according to the Stober method (W. Stober et al. J. Colloid Interface Sci. 26, 62 1968):
  • both sides of the porous silica disk were polished with SiC sandpaper (Presi, grit size P800). Both surfaces of the porous silica disk were repolished with SiC sandpaper (Presi, grit size P1200) to smooth the surface.
  • the diameter and thickness of the porous silica disks were 20 mm and 3 mm, respectively.
  • the porosity measured by mercury porosimetry was 45.5% with an average pore size of 250 nm.
  • One drop of DDW was added dropwise onto the porous silica disk.
  • 70 nm of silica car beads were prepared and sintered at 550 ° C. for 24 hours.
  • Sintered 70 nm silica beads were gently rubbed on the porous silica disk until the surface was glazed, filling large gaps in the porous silica substrate made at 350 nm.
  • the resultant smooth porous silica substrate was dried overnight at room temperature and sintered at 550 ° C. for 8 hours in a muffle furnace. The temperature was increased to 550 ° C. for 8 hours and cooled to room temperature for 4 hours.
  • An acetone solution of epoxy resin (10 wt%) was spincoated on a porous silica substrate at 3,000 rpm for 15 seconds and cured at 80 ° C. for 30 minutes.
  • the epoxy coating is intended to prevent the seed crystals from randomly tilting due to gaps in the porous substrate surface when later attempting to mount the seed crystals on the porous substrate surface in a particular orientation.
  • An ethanol solution of polyethyleneimine (PEI, 0.1 wt%) was spin-coated on an epoxy-coated porous silica substrate at a spin rate of 2,500 rpm for 15 seconds.
  • Silicalite crystals (1.0 ⁇ 0.5 ⁇ 1.4 ⁇ m 3 ) were placed on the porous silica substrate and rubbed with a finger so that the silicalite crystals were aligned in a monolayer on the porous substrate (FIG. 6A).
  • the silicalite crystal monolayer supported on the porous silica substrate is denoted SLM / p-SiO 2 .
  • the sintered SLM / p-SiO 2 plate was allowed to stand overnight in a constant humidity chamber to allow the substrate to absorb H 2 O. In order to ensure good vapor formation from the porous substrate later.
  • the hydrated SLM / p-SiO 2 plate was immersed in an aqueous NH 4 F solution (0.2 M) for 5 hours. In order to remove the fine powder from the seed crystals by the rubbing.
  • NH 4 F-treated SLM / p-SiO 2 plates were immersed in fresh DDW for 1 hour and dried at room temperature for 24 hours.
  • Example 4 Film formation and growth by secondary growth from perfectly b-axis aligned silicalite seed crystals
  • aqueous solution of TEAOH aqueous solution of TEAOH, a mixed aqueous solution of TPAOH and TEAOH, and an aqueous solution of TPAOH were used.
  • the SLM / p-SiO 2 plate was coated by the slip-coating process with the structure inducing agent as follows (see FIG. 5): The clean SLM / p-SiO 2 plate was lightly contacted with the structure inducing agent solution. At this time, only one half of the thickness of the porous silica substrate was immersed in the structure inducing agent solution with the silicalite monolayer face down. After soaking for 10-20 seconds, the SLM / p-SiO 2 plate was slowly lifted up. This process was repeated three times. After coating with the structural inducer, the SLM / p-SiO 2 plates were kept at room temperature for 5 seconds in a Petri dish to remove excess water.
  • the SLM / p-SiO 2 plate coated with the structural inducer was transferred to the autoclave of the Teflon line with the silicalite monolayer facing upwards. Secondary growth reactions were carried out without the addition of synthetic gels or water. The closed autoclave was placed in a preheated oven. The reaction was carried out at 160-190 ° C. temperature for 18-48 hours. After a predetermined reaction time, the high pressure reactor was placed in tap water and cooled.
  • the membrane was taken out and left at room temperature for 6-12 hours. Sintering at 440 ° C. for 8 hours in air removes the structure inducing agent. At this time, the heating rate was 60 °C / h and the cooling rate was 90 °C / h.
  • the zeolite thin film could be prepared as a 200 nm thin film by controlling the reaction time and temperature in the preparation step (FIG. 15).
  • a fluorescence microscope (Plan-Apochromat 20x / 0.8 M27, Zoom: 1.0, Mater gain: 585) was prepared by randomly growing MFI zeolite thin films prepared by growing zeolite using MFI synthetic gel. , Laser: 488 nm, observed at 2.6%). Fluorescence was observed between the gaps as a gap was generated in the firing step for removing TPAOH in the manufacturing process during the conventional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

실리콘을 공급할 수 있는 다공성 기재를 제공하는 제1단계; 상기 다공성 기재 표면 상에 제올라이트 종자 결정들(seed crystals)을 적용하는 제2단계; 종자 결정들이 적용된 다공성 기재를 구조 유도제(Structure directing agent) 함유 수용액으로 코팅하는 제3단계; 및 제3단계에서 준비된 종자 결정들이 적용된 다공성 기재 내 수분이 증기(steam)를 형성할 수 있는 온도 이상에서 2차 성장법을 이용하여 상기 종자 결정들로부터 막을 형성 및 성장시키는 제4단계를 포함하여, 박막 또는 후막을 제조하는 방법; 및 상기 방법에 의해 제조된 막을 제공한다. 본 발명에 따른 막 제조 방법은 간단한 제조공정으로 이루어져 있어서, 높은 재현성을 가지며 높은 생산성(throughput)을 갖는다. 합성 젤을 사용하지 않고 용액을 사용함으로써 불필요한 원료들 소모를 줄일 수 있고 환경오염을 줄이고 합성젤이 낭비되지 아니하며, 막을 건조 및 세척할 필요가 없다.

Description

합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법
본 발명은 겔(gel)형태의 실리콘 공급원 없이 스팀 내 2차 성장법을 이용한 제올라이트계 막 제조 방법에 관한 것이다.
제올라이트는 결정성 알루미노실리케이트(crystalline aluminosilicate) 를 총칭한다. 알루미노실리케이트의 골격에 있어서 알루미늄이 있는 자리는 음전하를 띄고 있기 때문에 전하 상쇄를 위한 양이온들이 세공(pore)속에 존재하며 세공내의 나머지 공간은 보통 물 분자들로 채워져 있다. 제올라이트가 갖는 3차원적인 세공의 구조, 모양 및 크기는 제올라이트의 종류에 따라 다르나 세공의 지름은 보통 분자 크기에 해당한다. 따라서 제올라이트는 종류에 따라 세공 속으로 받아들이는 분자의 크기 선택성(size selectivity) 또는 형상 선택성(shape selectivity)을 갖기 때문에 분자체(molecular sieve)라고도 불린다.
한편, 제올라이트의 골격 구조를 이루는 원소들인 실리콘(Si)과 알루미늄(Al) 대신에 여러 가지 다른 원소로 실리콘이나 알루미늄의 일부 또는 전체를 대체시킨 제올라이트 유사분자체(zeotype molecular sieves)들이 알려져 있다. 예를 들어, 알루미늄을 완전히 제거시킨 다공성 실리카(silicalite)와 실리콘을 인(P)으로 대체시킨 알포(AlPO4)계 분자체, 그리고 이러한 제올라이트 및 유사분자체의 골격에 Ti, Mn, Co, Fe 및 Zn 등 다양한 금속 원소를 일부 치환시켜 얻은 유사분자체들이 알려져 있다. 이들은 제올라이트에서 파생되어 나온 물질들로서 원래의 광물학적 분류에 의하면 제올라이트에 속하지 않지만, 당업계에서는 이들을 모두 제올라이트라 부른다.
따라서, 본 명세서에서 제올라이트라 함은 상술한 유사분자체를 포함하는 넓은 의미의 제올라이트를 의미한다.
한편, MFI 구조를 갖는 제올라이트는 제올라이트 중에서 가장 활발하게 사용되는 제올라이트 중의 하나이며 그 종류는 다음과 같다:
1) ZSM-5: 실리콘과 알루미늄이 일정비율로 형성된 MFI 구조의 제올라이트.
2) 실리카라이트-1: 실리카로만 이루어진 구조의 제올라이트.
3) TS-1: 알루미늄 자리 일부에 티타늄(Ti)이 있는 MFI 구조의 제올라이트.
MFI 구조는 도 1과 같다. 이 제올라이트의 경우 타원형(0.51 × 0.55 nm) 세공이 지그재그 형태로 연결된 채널이 a축 방향으로 흐르고, 원형에 가까운(0.54 × 0.56 nm) 세공이 직선을 이루며 b축 방향으로 뻗어있어서 직선형 채널을 형성한다. c축 방향으로는 채널이 열려 있지 않다.
분말 상태의 MFI 제올라이트는 원유의 크래킹 촉매, 흡착제, 탈수제, 이온 교환제 및 기체 정화제 등으로 실생활과 산업계에서 매우 광범위하게 사용되고 있지만, 다공성 알루미나 등 다공성 기질 위에 형성된 박막 구조의 MFI 제올라이트 박막은 분자들을 크기에 따라서 분리할 수 있는 분자분리 막으로서 널리 이용되고 있다. 뿐만 아니라 MFI 제올라이트 박막은 2차 및 3차 비선형광학 박막, 3차원적 메모리 소재, 태양에너지 집결장치, 전극 보조물질, 반도체 양자점 및 양자선 담체, 분자 회로, 감광장치, 발광체, 저유전체 박막 (low dielectric thin film 또는 low k thin film), 및 녹방지 코팅제 등 광범위하게 응용되고 있다.
상술한 바와 같이, MFI 형 제올라이트의 경우 결정 방향에 따라 세공의 모양, 크기 및 채널 구조가 다르다.
한편, 유리판과 같은 기재 위에 MFI 구조의 제올라이트 박막을 생성하는 방법은 크게 1차성장법(primary growth method)과 2차성장법(secondary growth method)으로 나눈다. 1차성장법의 경우 전처리 없이 기재를 MFI 제올라이트 합성용 젤 속에 넣은 후 MFI 제올라이트 막이 자발적으로 기질 위에 성장하도록 유도한다. 이때 합성용 젤은 보통 구조 유도제(Structure directing agent) 또는 유기 템플레이트(organic template)로서 테트라프로필암모니움 하이드록사이드 (tetraproplyammonium hydroxide, TPAOH로 칭함)를 첨가한 젤이 사용된다. 이 경우 반응 초기에는 넣어준 유리판 위에 MFI 결정들이 b축이 유리판에 수직인 배향으로 성장한다. 그러나, 유리판 위에 생성된 대부분의 결정들 중심부에 a축으로 배향한 결정들이 기생적으로 성장하기 시작한다. 뿐만 아니라 시간이 경과함에 따라 다양한 방향으로 결정들이 자라서 결국 생성된 박막은 다양한 배향으로 놓이게 된다. 따라서, 무작위의 배향을 갖는 생성된 MFI 제올라이트 박막은 나름대로 용도가 있기는 하나 응용성이 좋지 않다. 특히 분자분리막으로 응용할 시 가장 중요한 인자 중의 하나인 분자의 투과도(permeability)가 현격히 감소한다. 1차성장법의 경우 TPAOH 이외의 다른 구조 유도제를 사용할 경우 MFI 제올라이트 박막이 기재 상에 성장하지 않는다. 이러한 문제점을 극복하기 위해 2차성장법을 사용한다.
2차성장법의 경우 MFI 제올라이트 결정들을 미리 부착시킨 기재를 MFI 합성젤에 담근 후 반응을 진행시켜 MFI 박막을 형성한다. 여기서, 이미 부착된 MFI 결정들은 종자결정의 역할을 한다. 이때 기 부착된 MFI 제올라이트 결정의 배향이 추후에 생성되는 MFI 제올라이트 박막의 배향에 매우 중요한 역할을 한다. 이를테면 MFI 제올라이트 종자결정의 a축이 기재에 수직으로 배향되면 생성되는 MFI 제올라이트 박막의 a축이 기재에 수직인 방향으로 배향되는 경향이 있고 종자결정의 b축이 기재에 수직으로 배향되면 추후에 생성되는 MFI 제올라이트 박막의 b축이 기재에 수직인 방향으로 배향되는 경향이 있다.
그러나, 최종적으로 생성되는 제올라이트 박막의 배향은 종자결정의 배향보다는 박막을 형성하기 위해 넣어준 MFI 합성 젤에 첨가되는 구조 유도제에 따라 민감하게 변한다. 이를테면 2차성장법에 사용되어온 MFI 합성 젤 속에는 보통 TPAOH가 첨가되어 왔다. 이 경우 비록 부착된 MFI 제올라이트 종자결정의 배향이 모두 a축 또는 b축이 기재에 수직이 되도록 부착되어 있어도 최종적으로 생성되는 MFI 제올라이트 박막의 배향은 무작위하게 변한다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허 문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명의 목적은 합성 젤을 사용하지 않는 간단한 제조공정으로 이루어진 새로운 막 형성법을 제공하는 것이다.
본 발명의 다른 목적은 기재 상에 정렬된 종자 결정들의 결정축 배향이 유지된 막을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명은
실리콘을 공급할 수 있는 다공성 기재(기판)를 제공하는 제1단계; 상기 다공성 기재 표면 상에 제올라이트 종자 결정들(seed crystals)을 적용하는 제2단계; 종자 결정들이 적용된 다공성 기재를 구조 유도제(Structure directing agent) 함유 수용액으로 코팅하는 제3단계; 및 제3단계에서 준비된 종자 결정들이 적용된 다공성 기재 내 수분이 증기(steam)를 형성할 수 있는 온도 이상에서 2차 성장법을 이용하여 상기 종자 결정들로부터 막을 형성 및 성장시키는 제4단계를 포함하여, 박막 또는 후막을 제조하는 방법을 제공한다.
나아가, 본 발명은 상기 제조 방법에 의해 제조된 막을 제공한다.
이하 본 발명을 자세히 설명한다.
< 실리콘을 공급할 수 있는 다공성 기재를 제공하는 제1단계 >
본 발명은 2차 성장법에서 실리콘 공급원으로 합성 젤(gel)을 사용하는 대신에 실리콘을 공급할 수 있는 다공성 기재를 사용하는 것이 특징이다.
다공성 기재 중 실리콘을 공급할 수 있는 재료는 실리콘(Si)을 공급할 수 있는 한 특별히 제한되지 아니하나, 비결정질 물질로서 다공성인 것이 바람직하고, 비제한적인 예로는 실리콘을 함유하고 표면에 히드록시기를 갖는 산화물이 바람직하고, 다공성 실리카가 더욱 바람직하다.
실리콘을 공급할 수 있는 다공성 기재의 비제한적인 예로는 실리카 입자, 바람직하게는 무정형 실리카 입자를 주형에 충진 후 압착시킨 성형물일 수 있다. 다공성이면서 무정형 입자들로 형성된 기재는 결정성이 적어서 실리콘이 잘 녹아 나올 수 있기 때문이다. 같은 이유로, 다공성 기재는 기공율이 클수록 바람직하다.
한편, 도 10에 도시된 바와 같이 유리 기재를 사용한 경우(A)는 보론, 알루미늄이 녹아 나오기 때문에 2차 성장이 잘 이루어지지 아니한다.
실리콘 웨이퍼의 경우, 표면에 무정형 실리카 산화막이 형성되면 실리콘을 공급할 수 있는 다공성 기재로서 바람직하다. 실리콘 웨이퍼에서 무정형 실리카 산화막은 스팀 속에서 더 잘 형성된다.
한편, 다공성 기재는 물에 의해 팽윤시킨 것을 사용하는 것이 바람직하다.
<다공성 기재 표면 상에 제올라이트 종자 결정들(seed crystals)을 적용하는 제2단계 >
본 발명에 의해 사용되는 종자 결정 및 형성된 막의 골격 성분은 실리콘을 함유하는 한 특별하게 제한되지 않는다.
종자 결정들 및 형성된 막은 제올라이트 또는 유사 분자체일 수 있다. 또한, 종자 결정들 및 형성된 막은 MFI 구조일 수 있다.
본 명세서에서 “제올라이트”는 (i) 알칼리 또는 알칼리토금속의 규산 알루미늄 수화물인 광물의 총칭뿐만 아니라, (ii) 제올라이트의 골격 구조를 이루는 원소들인 실리콘(Si)과 알루미늄(Al)대신에 여러 가지 다른 원소로 실리콘이나 알루미늄의 일부 또는 전체를 대체시킨 제올라이트 유사 분자체(zeotype molecular sieve)도 포함하며, 큰 의미에서는 표면에 히드록실기를 가지는 모든 다공성 산화물 또는 황화물을 포함한다.
MFI 구조의 제올라이트 또는 유사 분자체의 예로는 ZSM-5, 실리카라이트, TS-1, AZ-1, Bor-C, 보라라이트 C, 엔시라이트, FZ-1, LZ-105, 모노클리닉 H-ZSM-5, 뮤티나이트, NU-4, NU-5, TSZ, TSZ-Ⅲ, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B 등이 있다.
그외 종자 결정의 예는 한국특허공개 2009-120846호 및 US 7,357,836에 개시되어 있다.
종자 결정들 및 다공성 기재 중 실리콘을 공급할 수 있는 재료는 동일한 재료인 것이 바람직하며, 모두 SiO2인 것이 바람직하다.
종자 결정들은 규칙적 다공성물질(ordered porous materials)인 것이 바람직하다.
한편, 종자결정의 크기는 다공성 기재의 공극 및 기공보다 커서 종자결정의 일부 또는 전부가 다공성 기재 표면 위로 돌출되어 있어야, 본 발명의 제조방법에서 종자결정으로서 제 역할을 할 수 있으며 이로부터 2차 성장법에 의해 막이 형성될 수 있다(도 12). 또한, 종자결정의 크기가 다공성 기재의 공극 및 기공보다 커서 종자결정이 다공성 기재 표면 위에 평평하게 놓일 수 있어야, 종자결정의 적어도 하나의 결정축이 특정 방향으로 배향시킬 수 있으며, 이로부터 적어도 하나의 결정축이 특정 방향으로 배향된 2차막을 성형할 수 있다(도 11).
본 명세서에서, 결정축 a축, b축 및 c축의 관계는, 결정축 a축와 b축이 형성하는 평면상에 결정축 c축이 존재하지 아니하는 것이다. 일례로, 결정축 a축, b축 및 c축은 서로 수직일 수 있거나, 결정축 a축와 b축이 형성하는 평면상에 결정축 c축은 경사를 이룰 수 있다.
본 발명은 기재상에 부착된 종자결정들로부터 2차 성장법에 의해 막을 형성 및 성장시킬 때, 2차 성장의 주형으로, 기재 상에 각 비구형 종자 결정(anisotropic seed crystal)의 결정축 a축, b축 및 c축 중 하나 이상 또는 모두가 일정한 규칙에 따라 다공성 기재 상에 배향되도록 정렬될 수 있다.
예컨대, 기재 상에 정렬된 종자 결정들은, 종자 결정들의 모든 a축이 서로 평행하거나, 종자 결정들의 모든 b축이 서로 평행하거나, 종자 결정들의 모든 c축이 평행하거나 또는 이들의 조합에 따라 배향된 것일 수 있다.
또한, 기재 상에 정렬된 종자 결정들은 a축, b축 또는 c축이 기재면에 대해 수직으로 배향된 것일 수 있다.
한편, 기재상에 a축, b축 및 c축 중 하나 이상 또는 모두가 일정한 규칙에 따라 배향된 종자 결정들은 단층(monolayer)을 형성하는 것이 바람직하다.
종자 결정들의 모든 결정축 배향이 동일한 경우, 종자 결정들이 2차원적으로 서로 연결되면서 및/또는 종자 결정들이 기재면에 대해 수직 성장하면서 단일의 종자 결정 보다 크면서 모든 결정축 배향이 동일한 단일 결정 막을 형성할 수 있다. 이때, 종자 결정들의 크기는 nm3 ~ um3 스케일(scale)일 수 있으며, 이렇게 형성된 막의 2차원적 크기는 mm2 ~ cm2도 가능하며 막의 두께도 계속 증가시킬 수 있으므로, 성장된 단일 결정 막의 3차원적 크기는 ~cm3 스케일도 가능하다.
한편, 본 발명에서 기재 상에 정렬된 비구형 종자 결정들은 결정축 a축, b축 및 c축 모두가 일정한 규칙에 따라 배향되도록 정렬되어 있는 한, 비구형 종자 결정들은 동일 또는 상이한 형상을 가질 수 있다.
한국특허공개 2009-120846호에는 기재 상에 MFI 형 종자결정들의 모든 b축을 수직으로 배향시키는 방법이 개시되어 있으며, 기재 상에 결정들의 a축, b축 및/또는 c축 배향을 조절시킬 수 있는 기술은 PCT/KR2010/002180 및 PCT/KR2010/002181에 기재되어 있다. 따라서, 기재 상에 a축, b축 및 c축 배향 중 적어도 하나 또는 모두 정렬된 종자 결정들은 한국특허공개 2009-120846호, PCT/KR2010/002180 및 PCT/KR2010/002181에 기재된 방법에 따라 또는 이를 응용하여 준비할 수 있다.
구체적으로 기재 상에 a축, b축 및 c축 배향이 모두 정렬된 종자 결정들은 하기와 같은 공정에 의해 준비될 수 있다:
[제1공정]
종자 결정들의 위치 및 배향을 고정시킬 수 있는 음각 또는 양각이 표면에 형성된 기재를 준비하는 제A 단계; 및
상기 기재 상에, 종자 결정들을 올린 후 물리적 압력에 의해 종자 결정 일부 또는 전부를 음각 또는 양각에 의해 형성된 공극(孔隙)에 삽입시키는 제B 단계를 포함하는 공정.
[제2공정]
종자 결정들의 위치 및 배향을 고정시킬 수 있는 음각 또는 양각이 표면에 형성된 주형 기재(template)를 준비하는 제A 단계;
상기 주형 기재 상에 종자 결정들을 올린 후 물리적 압력에 의해 종자 결정 일부 또는 전부를 음각 또는 양각에 의해 형성된 공극(孔隙)에 삽입시켜 종자 결정들을 주형 기재 상에 정렬시키는 제B 단계; 및
종자 결정들이 정렬되어 있는 주형 기재와 피인쇄체 기재를 접촉시켜 상기 종자 결정들을 피인쇄체 기재 상에 전사시키는 제C 단계를 포함하는 공정.
상기 공정에서, 상기 공극의 형상은 상기 종자 결정의 결정축 배향을 조절하기 위해 공극 내에 삽입되는 종자 결정의 소정 부분의 형상과 대응되도록 형성된 것이 바람직하다.
물리적 압력은 문지르기(rubbing) 또는 누르기(pressing against substrate)에 의해 가해질 수 있다.
기재 또는 주형 기재 표면에 형성된 음각 또는 양각은 기재 자체에 직접 각인되거나, 포토레지스트에 의해 형성되거나, 희생층을 코팅한 후 레이저 어블레이션에 의해 형성되거나, 잉크젯 인쇄법에 의해 형성될 수 있다.
포토레지스트나 잉크는 기재상에 종자 결정들을 정렬시킨 후 제거될 수도 있으나, 2차 성장시에도 종자결정으로의 실리콘 및 구조 유도제 공급에 문제를 야기시키지 아니하는 한 계속 종자결정의 지지체로 존재할 수 있다.
한편, 기재 또는 주형 기재 상의 공극에 삽입된 종자 결정들이 모여 특정 패턴 또는 모양을 형성할 수 있으며, 이에 대응하여 형성된 막도 특정 패턴 또는 모양을 형성할 수 있다.
제2단계 이전에, 기재와 종자 결정들에 결합할 수 있는 연결제(coupling agent)를 기재 표면 상에 적용할 수 있다. 본 명세서에서 용어 "연결제"는 기재와 종자 결정 사이의 결합을 가능하게 하는 말단에 작용기를 가지는 모든 화합물을 의미한다. 바람직한 연결제 및 이의 작용기작 및 적용예는 한국특허공개 2009-120846호 및 US 7,357,836에 개시되어 있다.
< 종자 결정들이 적용된 다공성 기재를 구조 유도제 함유 수용액으로 코팅하는 제3단계 >
본 발명은 2차 성장법으로 막 제조시 실리콘 공급원으로 실리콘을 공급할 수 있는 재료를 함유하는 다공성 기재를 사용하기 때문에, 젤 형태의 실리콘 공급원이 필요없고 구조 유도제를 젤이 아닌 수용액으로 제공하는 것이 특징이다.
구조 유도제는 특정 결정구조(crystalline structure)의 주형(template) 역할을 하는 물질로서, 구조 유도제의 charge distribution, size 및 geometric shape가 구조 유도 특성(structure directing properties)를 제공한다. 본 발명에서 사용되는 구조 유도제는 종자 결정들의 표면으로부터 2차 성장만을 유도하고, 종자 결정 성장 용액 중 또는 종자 결정 표면에서 결정 핵 생성반응(crystal nucleation)을 유도하지는 못하는 종류인 것이 바람직하다. 결정 핵 생성반응(crystal nucleation)만 유도하지 아니하는 한, 각 결정축에 따른 결정 성장 속도는 중요하지 않다.
제2단계에서 사용되는 종자 결정들도 종자 구조 유도제(seed structure directing agent)를 사용하여 형성시킬 수 있다. 종자 구조 유도제를 사용하면 결정 핵 생성반응을 유도하기 때문에, 종자 구조 유도제를 2차 성장법을 위한 구조 유도제로 사용하는 것은 바람직하지 않다. 따라서, 제3단계에서 사용되는 구조 유도제(SDA)는 종자 구조 유도제와 상이한 것이 바람직하다.
종자 결정들 및 형성된 막이 제올라이트 또는 유사 분자체인 경우 2차 성장을 위한 구조 유도제는 테트라프로필암모니움 하이드록사이드 (TPAOH), 테트라에틸암모니움 하이드록사이드 (TEAOH), tetramethylammonium (TMA), tetrabutylammonium (TBA) 또는 이의 혼합물인 것이 바람직하다. 특히 TPAOH와 TEAOH의 혼합물이 바람직하다.
수용액 내 구조 유도제의 비제한적인 농도 범위는 0.01몰 내지 1몰이며, 0.1몰~0.5몰이 바람직하다.
도 8은 실리카(SiO2) 다공성 기재 상에 b축이 수직 배향된 실리카라이트-1 종자결정들로부터, 다양한 농도의 TEAOH 함유 수용액을 사용하여 190 ℃ 에서 48시간 동안 스팀 가열(steaming reaction)에 의해 2차 성장시킨 막의 SEM 사진으로, TEAOH 농도가 높을수록 스팀 가열(steaming reaction)에 의해 2차 성장이 유리함을 확인할 수 있다.
종자 결정들이 적용된 다공성 기재에 구조 유도제 함유 수용액을 코팅하는 방법의 비제한적인 예로, 슬립코팅(slip-coating) 스핀코팅, 스프레이 코팅이 있으며, 슬립코팅 방식이 바람직하다(도 5). 슬립코팅(slip-coating)을 위해 종자 결정들이 적용된 표면쪽으로 기재를 구조 유도제 함유 수용액에 담가 표면만 함침되도록 하고, 이어서 기재를 꺼내어 종자 결정들이 적용된 표면쪽을 위로 하여 종자 결정들 쪽에 함침된 수용액을 다공성 기재쪽으로 이동하게 할 수 있다.
종자 결정들이 적용된 다공성 기재에 구조 유도제 함유 수용액을 코팅하는 공정은 2회 이상 반복할 수 있다.
< 다공성 기재 내 수분이 증기(steam)를 형성할 수 있는 온도 이상에서 2차 성장법을 이용하여 상기 종자 결정들로부터 막을 형성 및 성장시키는 제4단계 >
제4단계에서 종자 결정 표면으로부터 2차 성장에 의해 종자 결정들이 2차원적으로 서로 연결되면서 3차원적으로 수직 성장을 하여 막을 형성한다.
구조 유도제 함유 수용액이 코팅에 의해 함침된 다공성 기재를 고압반응기에서 가열하면, 다공성 기재 내 수분이 증기가 되면서 기공을 통해 다공성 기재로부터 실리콘 및 구조 유도제를 종자 결정들이 있는 쪽으로 운반하여 2차 성장법에 의해 막을 형성할 수 있게 된다.
이때, 종자 결정 표면을 위쪽으로 하게 하여 제4단계를 수행하는 것이 바람직하다.
다공성 기재 내 수분으로도 충분히 증기(steam)를 형성할 수 있다.
본 발명에 따른 막 제조 방법은 합성 젤을 사용하지 않고 다공성 기재로부터 실리콘을 공급받고 2차 성장을 위한 구조 유도제를 용액의 형태로 제공할 수 있으므로 불필요한 원료 소모를 줄일 수 있고 합성젤이 낭비되지 아니하며, 종자결정들로부터 형성된 막을 건조 및 세척할 필요가 없다.
본 방법에서, 막 형성 및 성장을 위한 반응온도는 사용되는 구조 유도제 수용액의 조성 또는 만들고자 하는 물질에 따라 50-250 ℃까지 다양하게 변화할 수 있다. 바람직하게는 그 반응온도는 80-200 ℃이고, 보다 바람직하게는 180 내지 190 ℃이다. 또한 반응 온도는 항상 고정된 것이 아니라 여러 단계로 온도를 변화시키면서 반응할 수 있다.
본 방법에서, 막 형성 및 성장을 위한 반응 시간은 0.5 시간에서 20일까지 다양하게 변화할 수 있다. 반응 시간은 바람직하게는 2시간-15일, 보다 바람직하게는 40 내지 50 시간이다.
본 발명에 따른 막 제조 방법을 사용하면, 인접한 종자 결정들의 모든 결정축 배향이 동일한 구획 내에서 종자 결정들 표면으로부터 2차 성장에 의해, 종자 결정들이 2차원적으로 서로 연결되면서 단일의 종자 결정의 기재면에 평행인 최대 직경 보다 크면서 모든 결정축 배향이 동일한 단일 결정을 형성하거나; 종자 결정들이 기재면에 대해 수직 성장하면서 단일의 종자 결정의 기재면에 수직인 최대 직경 보다 크면서 모든 결정축 배향이 동일한 단일 결정을 형성하거나; 또는 두 조건을 모두 만족하는 결정을 형성할 수 있다. 이를 위해서는 제2단계에서는 결정 핵 생성반응(crystal nucleation)이 종자 결정 표면에서 일어나지 않는 것이 바람직하다.
한편, 종자 결정들이 규칙적 다공성물질로서 결정 내에 채널(나노파이프)을 형성하고 있는 경우, 인접한 종자 결정들의 결정축 배향이 동일한 구획 내에서 형성된 막은 상기 종자 결정의 채널이 형성된 막으로까지 확장될 수 있다.
예컨대, 인접한 종자 결정들의 결정축 배향이 동일한 구획 내에서 형성된 막은, 기재면에 평행한 축방향으로 채널(channel)이 연속적으로 연결되어 확장되거나; 기재면에 수직 또는 경사를 이룬 축 방향으로 채널(channel)이 연속적으로 연결되어 확장되거나; 또는 두 조건을 모두 만족할 수 있다.
본 발명에 따라 제조된 막은 분자 분리막, 반도체 산업에서의 저유전체 물질, 비선형광학 물질, 물 분해 장치용 박막, 태양전지용 박막, 광학용 부품, 항공기용 내부 또는 외부 부품, 화장품 용기, 생활용기, 거울 및 기타 제올라이트의 나노세공의 특성을 이용하는 박막 등에 다양하게 응용될 수 있으나 이에 한정되는 것은 아니다.
본 발명에 따른 막 제조 방법은 간단한 제조공정으로 이루어져 있어서, 높은 재현성을 가지며 높은 생산성(throughput)을 갖는다. 합성 젤을 사용하지 않고 용액을 사용함으로써 불필요한 원료들 소모를 줄일 수 있고 환경오염을 줄이고 합성젤이 낭비되지 아니하며, 막을 건조 및 세척할 필요가 없다.
또한, 본 발명에 따른 막 제조 방법은 다공성 기재 상에 정렬된 종자 결정들의 결정축 배향이 유지된 막을 제조할 수 있다.
본 발명은 기재면에 수직뿐만아니라 수평방향으로 채널이 형성된 막을 형성할 수 있으며, 나노채널 속에 다양한 기능성 분자, 고분자, 금속 나노입자, 반도체 양자점, 양자선 등을 일정한 배향으로 내포시킨 막은 다양한 광학용, 전자용 및 전자광학용 첨단 소재로 사용될 수 있다. 특히 다공성 알루미나, 다공성 실리카, 메조세공 물질로 형성된 막에서 수직방향으로 채널이 형성되는 경우 분자들을 분리하는 분리막으로서의 기능이 매우 우수하다.
도 1은 구조 유도제가 삽입된 MFI 구조의 결정을 개략적으로 도시한 도면이다.
도 2는 이방성 Coffin 형 Silicalite-1 결정 및 이방성 Leaf 형 Silicalite-1 결정의 SEM 이미지 및 이들의 결정축을 도시한 것이다. 좌측 SEM 이미지는 Coffin 형 Silicalite-1 결정이고, 우측 SEM 이미지는 이방성 Leaf 형 Silicalite-1 결정이다.
도 3은 문지르기 방법(대한민국 특허 제0789661호)을 이용하여 Silicalite-1 종자결정들을 부착시킨 유리판의 전자현미경 사진으로서(위에서 본 이미지), 부착된 종자결정들은 b 축이 기재와 수직이 되게 배향되어 있으나 a축 및 c축은 무작위로 배향되어 있다.
도 4는 종자 결정들을 모든 결정축 배향을 동일하게 정렬시키면서 a축, b축, c축의 각 축방향으로 수직 삽입할 수 있도록, 포토레지스트(PR)로 미세 패턴 음각이 형성된 실리콘 웨이퍼의 SEM 이미지이다.
도 5는 본 발명의 일구체 예에 따른 막 제조 방법의 공정도를 예시한 개략도이다.
도 6a는 SiO2 다공성 기재 상에 b축이 기재에 수직 배향된 실리카라이트-1(silicalite-1) 입자들의 결정 단층(crystal monolayer)의 SEM 사진 및 이의 XRD 패턴이다.
도 6b는 도 6a의 실리카라이트-1(silicalite-1) 결정 단층(crystal monolayer)을 갖는 다공성 기재를 이용하여 본 발명의 일구체예에 따라 2차 성장시킨 박막의 SEM 사진 및 이의 XRD 패턴이다.
도 7은 도 6b와 동일한 본 발명의 일구체 예에 따라 실리카(SiO2) 다공성 기재 상에 b축이 수직 배향된 실리카라이트-1 종자결정들로부터, TPAOH 함유 수용액을 사용하여 190 ℃에서 시간에 따른 스팀 가열(steaming reaction)에 의해 2차 성장시킨 막의 SEM 사진이다.
도 8은 실리카(SiO2) 다공성 기재 상에 b축이 수직 배향된 실리카라이트-1 종자결정들로부터, 다양한 농도의 TEAOH 함유 수용액을 사용하여 190 ℃에서 48시간 동안 스팀 가열(steaming reaction)에 의해 2차 성장시킨 막의 SEM 사진이다.
도 9는 실리카(SiO2) 다공성 기재 상에 b축이 수직 배향된 실리카라이트-1 종자결정들로부터, TPAOH 및 TEAOH 함유 수용액을 사용하여 190 ℃에서 시간에 따른 스팀 가열(steaming reaction)에 의해 2차 성장시킨 막의 SEM 사진이다.
도 10는 유리 기재(A) 및 실리콘 웨이퍼(B) 상에 b축이 수직 배향된 실리카라이트-1 종자결정들로부터, TPAOH 및 TEAOH 함유 수용액을 사용하여 190 ℃에서 48시간 동안 스팀 가열(steaming reaction)에 의해 2차 성장시킨 막의 SEM 사진이다. 유리 기재를 사용한 A의 경우 2차 성장이 잘 이루어지지 않았다.
도 11은 실리카(SiO2) 다공성 기재(표면 입자 크기 500~600nm) 상 800nm 크기의 실리카라이트 나노 입자들(A)을, 190 ℃에서 다양한 반응 시간 동안에 스팀 가열에 의해 2차 성장시킨 실리카라이트 막의 SEM 사진(B 내지 D)이다. 이때 사용된 구조 유도제는 TPAOH 및 TEAOH 함유 수용액이다.
종자 결정들의 크기가 다공성 기재 표면을 형성하는 표면 입자 크기와 그 수준(scale)이 비슷하여 결정축이 무작위로 배향된 2차막이 형성된다. 따라서, 종자 결정의 평균 입경이 2~3㎛ 되어야만 다공성 기재 상에 종자 결정을 평평하게 놓을 수 있어서, 종자결정의 적어도 하나의 결정축이 기재에 수직인 방향으로 배향시킬 수 있으며, 이로부터 적어도 하나의 결정축이 기재에 수직으로 배향된 2차막을 성형할 수 있다.
도 12에서 (A)는 실리카 다공성 기재(표면 입자 크기 500~600nm)의 SEM 사진이고, (B)는 70nm 크기의 SiO2 비드들을 문지르기 하여 매끄러운 표면으로 만든 후 SEM 사진이고, (C)는 TEAOH 및 TPAOH 함유 수용액을 사용하여 190 ℃에서 및 48시간동안 스팀 가열에 의해 2차 성장시킨 막의 SEM 사진이고, (D)는 (C)의 막의 XRD 패턴이다. (D)로부터 새로운 결정(crystals)이 형성되지 아니한 것을 확인할 수 있었다.
도 13은 상이한 구조 유도제(TEAOH, TPAOH+TEAOH, TPAOH)를 사용하여 본 발명에 따라 겔(gel)형태의 실리콘 공급원 없이 190 ℃ 스팀 내 2차 성장법을 이용한 제올라이트계 막을 제조하였을 때, 반응 시간에 따른 제올라이트 막(SL membrane) 표면 상의 Void area %를 나타낸 그래프이다. Void area %는 기재상에 제올라이트가 위치하지 않는 부분을 의미하며, TPAOH 구조 유도제 함유 수용액을 사용한 경우 제올라이트 막이 가장 빠르게 성장하였고, TPAOH + TEAOH, TEAOH 구조 유도제 함유 수용액을 사용한 순으로 제올라이트 막이 빠르게 성장하였다.
도 14의 왼쪽 사진은 기존에 사용되던 방식인 MFI 합성젤을 이용하여 제올라이트 막을 성장시키는 방법으로 제조된 배향이 무작위로 성장한 MFI 제올라이트 박막이며, 제조공정 시 TPAOH 제거를 위한 소성단계에서 틈이 발생되는 것을 틈 사이의 형광체의 관찰을 통해서 확인할 수 있다. 반면, 오른쪽 사진은 본 발명의 합성젤을 사용하지 않는 방법에 의해서 제조된 결정축 배향이 일정하게 유지된 막이며, 이 경우 틈이 발생하지 않고 균일하게 막이 성장하기 때문에 형광체가 관찰되지 않는다 (Plan-Apochromat 20x/0.8 M27, Zoom : 1. 0, Mater gain: 585, Laser: 488 nm, 2.6%으로 관찰).
도 15는 본 발명의 방법에 의해서 제조한 합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 박막이 200nm의 얇은 막으로 성장될 수 있다는 것을 나타낸 것이다.
도 16은 본 발명의 실리콘을 공급할 수 있는 다공성 기재로서 무정형 실리카 입자를 주형에 충진 후 압축시킨 성형물 상에 제올라이트 종자 결정들을 적용하고 TPAOH 구조 유도제 함유 수용액을 사용하여 2차 성장시킨 경우, 시간에 따라 막이 성장한 형태를 측면에서 관측한 SEM 사진을 나타낸 것이다.
도 17은 본 발명의 실리콘을 공급할 수 있는 다공성 기재로서 50nm SiO2 실리카 비드들을 주형에 충진 후 압축시킨 성형물 상에 제올라이트 종자결정들을 위치시킨 후 스팀 반응에 의해 2차 성장시킨 경우, 실리카 비드들이 스팀 반응 동안 에칭되면서 종자결정들이 성장하는데 실리콘을 공급하는 것을 보여주는 SEM 사진을 나타낸 것이다.
도 18은 TPAOH + TEAOH 구조 유도제 함유 수용액을 사용하여, 다른 반응시간 및 반응온도에 따라서 스팀 반응에 의해서 실리카 입자 지지체 상에 SL 막이 2차 성장하는 것을 나타낸 SEM 사진을 나타낸 것이다 (a) 160 ℃ - 8 h (b) 175 ℃ - 8 h (c) 190 ℃ - 8 h (d) 190 ℃ - 18 h. 스케일바는 5 ㎛를 나타낸다.
도 19는 TPAOH 구조 유도제 함유 수용액을 사용하여, 다른 반응시간 및 반응온도에 따라서 스팀 반응에 의해서 실리카 입자 지지체 상에 SL 막이 2차 성장하는 것을 나타낸 SEM 사진을 나타낸 것이다 (a) 160 ℃ - 8 h (b) 175 ℃ - 8 h (c) 190 ℃ - 8 h (d) 190 ℃ - 18 h. 스케일바는 5 ㎛를 나타낸다.
도 20은 실리카 입자 지지체 상에 다양한 농도의 TEAOH 구조 유도제 함유 수용액(0.01M (a), 0.02M (b), 0.04M (c), 0.05M (d))을 사용하여 48 h 동안 190 ℃ 스팀 반응을 통해 SL 막을 2차 성장시킨 것을 나타낸 SEM 사진을 나타낸 것이다.
도 21은 (a) 유리 지지체 상에서 (b) 세정된 Silicon wafer 상에서 그리고 (c) 무정형의 SiO2 층으로 코팅된 Silicon wafer 상에서 TPAOH + TEAOH 구조 유도제 함유 수용액을 사용하여 190 ℃ 스팀 반응을 48 h 수행하여 2차 성장된 SL 막을 나타낸 SEM 사진을 나타낸 것이다. 스케일바는 5 ㎛를 나타낸다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
주사전자 현미경 (scanning electron microscope, SEM) 분석
생성된 박막 위에 약 15 nm 두께로 백금/팔라듐 코팅을 하고 주사형 전자 현미경(Hitachi S-4300 FE-SEM)을 이용하여 SEM 이미지를 얻었다.
X-선 분말 회절 (XRD) 분석
하기 실시예에 따라 제조된 박막의 결정 방향을 규명하기 위해, CuKα X-선을 사용하는 X-선 회절기(Rigaku 회절기 D/MAX-1C, Rigaku)를 이용하여 X-선 분말 회절 패턴을 얻었다.
실시예 1: 종자 결정 합성
<실험재료>
TEAOH 35% (Alfa), TPAOH 1M (Sigma-Aldrich), (NH4)2SiF6 98% (Sigma-Aldrich), Tetraethylorthosilicate - TEOS 98% (Acros-Organic).
실시예 1-1 : 이방성, Coffin 형 Silicalite-1 결정
DDW 247.7 mL, TPAOH 22.5 mL, 및 에틸렌 글리콜 (EG) 37.2 g을 담은 PP 병에 TEOS 22.5 g을 첨가하여 젤(gel)을 준비하였다. 이 혼합물을 24시간 동안 교반하여 투명 젤(clear gel)을 형성한 후 TEAOH 6.168 mL을 첨가하고 12시간 동안 교반하였다. 수득한 투명 젤은 최종 몰 조성(molar composition)이 1 TEOS / 0.15 TPAOH / 0.1 TEAOH / 4 EtOH / 100 H2O / 4 EG이었다. 숙성 후, 젤을 No.2, Whatman 필터 종이로 여과하고, 교반 막대기(clean stirring bar)를 구비한 Teflon line 고압반응기로 옮겼다. 고압반응기를 밀봉하고 150℃에서 jacket heater로 가열하고, 자석 교반기로 500 rpm에서 교반하였다. 12시간 동안 수열 반응(hydrothermal reaction)한 후, 수도물에 넣어 냉각시켰다. 상층에 있는 투명 용액을 따라내어 제거함으로써 고체 생성물을 수득하였고, 대량의 DDW로 세척하고 100℃에서 24시간 건조하여, (a x b x c = 2.6um x 1.2um x 5.0um)크기의 coffin 형 Silicalite-1 종자를 수득하였다(도 2 참조).
실시예 1-2 : 이방성 Leaf 형 Silicalite-1 결정
논문 (Angew. Chem. Int. Ed., 2006, 45, 1154-1158)에 따른 반응 조건을 사용하였다. Trimer-TPA3+ -3I- 1.019 g, KOH 0.295 g 및 DDW 34.2 g을 담은 PP 병에 TEOS 1.696 g 을 첨가하여 투명 젤을 준비하였다. 수득한 젤은 최종 몰 조성(molar composition)이 8 TEOS / 1 (Trimer-TPA3+ -3I-) / 5 KOH / 1900 H2O 이었다. 24시간 동안 숙성하고, 젤을 No.2, Whatman 필터 종이로 여과하고, Teflon line 고압반응기로 옮겼다. 24시간동안 175℃에서 수열 반응을 수행하였다. 생성물을 수집하고 대량의 DDW로 세척하고 100℃에서 24시간 건조하여, leaf 형 Silicalite-1 분말을 수득하였다(도 2 참조).
실시예 2: 다공성 실리카 기재의 준비
Stober 방법(W. Stober et al. J. Colloid Interface Sci. 26, 62 1968)에 따라 합성된 50 내지 550 nm 크기의 실리카 입자들을 이용하여 다공성 실리카 기재를 제조하였다:
350 nm SiO2 비드 10 g 과 550 nm SiO2 비드 10 g을 식품 혼합기(food mixer)로 혼합하였다. 혼합된 실리카 비드들에, 0.5 wt% Na2SiO3 수용액(DDW)을 점적하고 실라카 비드 혼합물을 식품 혼합기에서 10분 동안 분쇄하였다. 가정용 스테인리스 몰드에 상기 혼합물 1.8 g 을 넣고 150 kgf/cm2의 압력으로 눌러서 다공성 실리카 지지체를 제조하였다. 상기 실리카 지지체를 100 ℃/h 의 가열 속도로 2시간 동안 1,025℃에서 소결시켰다. 실온으로 냉각한 후에, 다공성 실리카 디스크의 양면을 SiC 사포(Presi, grit size P800)로 폴리싱하였다. 표면을 평활하게 하기 위해 다공성 실리카 디스크의 양면을 SiC 사포(Presi, grit size P1200)로 재폴리싱하였다. 다공성 실리카 디스크의 지름과 두께는 각각 20 mm 및 3 mm였다. 수은 다공도계로 측정된 다공성은 250 nm의 평균 기공 크기로 45.5 %이었다.
DDW 한 방울을 다공성 실리카 디스크 상에 적가하였다. 독립적으로, 70 nm의 실라카 비드를 제조하고 24시간 동안 550℃ 에서 소결시켰다. 소결된 70 nm 실리카 비드들을 상기 다공성 실리카 디스크 상에서 표면에 윤이 날때까지 부드럽게 문질러서, 350 nm로 제조된 다공성 실리카 기재의 큰 틈을 채웠다. 결과물인 표면이 매끈한 다공성 실리카 기재를 실온에서 밤새 건조하였고 머플 가마(muffle furnace)에서 550℃에서 8시간 동안 소결시켰다. 온도는 8시간 동안 550℃까지 증가시켰고, 4시간 동안 실온까지 냉각하였다. 에폭시 수지(10 wt%)의 아세톤 용액을 다공성 실리카 기재상에 3,000 rpm에서 15초 동안 스핀코팅 하였고 30분 동안 80℃에서 경화시켰다. 에폭시 코팅은 추후 다공성 기재 표면 상에 종자 결정들을 특정 배향으로 탑재하고자 할 때 다공성 기재 표면의 틈에 의해 종자 결정이 무작위적으로 기울어지는 것을 방지하기 위해서이다.
실시예 3: 다공성 실리카 기재에서의 문지르기를 이용한 실리카라이트 단일막의 제조
에폭시-코팅된 다공성 실리카 기재에 폴리에틸렌이민(PEI, 0.1 wt%)의 에탄올 용액을 15초 동안 2,500 rpm의 스핀속도로 스핀-코팅하였다. 실리카 라이트 결정(1.0 × 0.5 × 1.4 ㎛3)을 상기 다공성 실리카 기재 상에 놓고 손가락으로 문질러서 b축이 완벽하게 정렬되도록 실리카라이트 결정들을 다공성 기재에 단층으로 정렬시켰다(도 6a). 다공성 실리카(porous silica) 기재 상에 지지된 실리카라이트 결정 단층은 SLM/p-SiO2로 표시한다. 관형 가마(tubular furnace)에서 공기 중 550 ℃에서 24 시간 동안 SLM/p-SiO2 판을 소결하여, 유기 폴리머층을 제거하고 다공성 실리카 기재 상에 실리카라이트 단층을 Si-O-Si 결합 형성을 통해 고정시켰다. 온도의 증가속도는 65 ℃/h이었고 온도의 감소속도는 100 ℃/h이었다.
소결된 SLM/p-SiO2판은 일정한 습도 챔버내에서 밤새 정치하여 기재가 H2O를 흡수하도록 하였다. 추후 다공성 기재로부터 증기 형성이 잘 되도록 하기 위해서다. 수화된 SLM/p-SiO2판은 수용성 NH4F 용액(0.2 M) 에 5시간 동안 침지시켰다. 상기 문지르기에 의해 종자 결정으로부터 나온 미세분말을 제거하기 위해서다. NH4F-처리된 SLM/p-SiO2 판은 새로운 DDW에서 1 시간 동안 침지시켰고 실온에서 24시간 동안 건조시켰다.
실시예 4: 완벽하게 b축이 정렬된 실리카라이트 종자 결정으로부터 2차 성장에 의해 막 형성 및 성장
구조 유도제(template)인 TEAOH (0.00 내지 0.05 M)와 TPAOH (0.00 내지 0.05 M)의 혼합 수용액을 플라스틱 비커에 넣었다.
구체적으로 TEAOH의 수용액, TPAOH 및 TEAOH 혼합 수용액, TPAOH의 수용액을 사용하였다.
하기와 같이 SLM/p-SiO2판을 상기 구조 유도제로 slip-코팅 공정에 의해 코팅하였다(도 5 참조): 깨끗한 SLM/p-SiO2판을 상기 구조 유도제 용액과 살짝 접촉시켰다. 이때, 실리카라이트 단층 면을 아래쪽으로 하여 다공성 실리카 기재의 두께의 절반 높이만큼만 구조 유도제 용액에 담궜다. 10-20초 동안 적신 후, SLM/p-SiO2 판을 천천히 들어올렸다. 이러한 과정을 세 번 반복하였다. 구조 유도제로 코팅한 후, SLM/p-SiO2판을 페트리 디쉬(Petri dish)에서 수평이 되게 5초 동안 실온에서 유지하여 과량의 물을 제거하였다.
마지막으로 구조유도제가 코팅된 SLM/p-SiO2판을 실리카라이트 단층이 위쪽으로 하게 하여 테플론 라인의 고압반응기(autoclave)로 옮겼다. 합성 겔(gel) 또는 물 첨가 없이 2차 성장 반응을 수행시켰다. 밀폐된 고압반응기를 미리 예열된 오븐에 넣었다. 18 내지 48시간 동안 160 내지 190℃ 온도에서 반응을 수행하였다. 소정의 반응 시간 후, 고압반응기를 수도물에 넣어 냉각시켰다.
막을 꺼내어 실온에서 6 내지 12시간 동안 정치하였다. 공기 중에서 8시간 동안 440℃에서 소결시켜, 구조 유도제를 제거하였다. 이때, 가열 속도는 60 ℃/h이고 냉각 속도는 90 ℃/h이었다.
이와 같이, 실리카라이트 결정 단층을 갖는 SiO2 다공성 기재를 이용하여 2차 성장시킨 박막의 SEM 사진 및 이의 XRD 패턴은 도 6b에 도시되어 있다.
또한, 상기 제조 단계에 있어서 반응 시간 및 온도의 조절을 통해서 제올라이트 박막을 200 nm의 얇은 막으로 제조 할 수 있었다 (도 15).
실험예 1: 2차 성장에 의해 형성된 막의 균일성 테스트
기존에 사용되던 방식인 MFI 합성젤을 이용하여 제올라이트를 성장시키는 방법으로 제조된 배향이 무작위로 성장한 MFI 제올라이트 박막을 형광 현미경 (Plan-Apochromat 20x/0.8 M27, Zoom : 1. 0, Mater gain: 585, Laser: 488 nm, 2.6%으로 관찰)을 사용하여 관찰하였다. 기존의 방법으로 제조시 제조공정에 있어서 TPAOH 제거를 위한 소성단계에서 틈이 발생되기 때문에 틈 사이로 형광이 관측되었다.
반면, 본 발명의 합성젤을 사용하지 않는 방법에 의해서 제조된 결정축 배향이 일정하게 유지된 막은 틈이 발생하지 않고 균일하게 막이 성장하기 때문에 형광이 관찰되지 않는다 (도 14).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (20)

  1. 실리콘을 공급할 수 있는 다공성 기재를 제공하는 제1단계;
    상기 다공성 기재 표면 상에 제올라이트 종자 결정들(seed crystals)을 적용하는 제2단계;
    종자 결정들이 적용된 다공성 기재를 구조 유도제(Structure directing agent) 함유 수용액으로 코팅하는 제3단계; 및
    제3단계에서 준비된 종자 결정들이 적용된 다공성 기재 내 수분이 증기(steam)를 형성할 수 있는 온도 이상에서 2차 성장법을 이용하여 상기 종자 결정들로부터 막을 형성 및 성장시키는 제4단계
    를 포함하여, 박막 또는 후막을 제조하는 방법.
  2. 제1항에 있어서, 다공성 기재 중 실리콘을 공급할 수 있는 재료는 비결정질 물질로서 다공성인 것을 특징으로 하는 막 제조 방법.
  3. 제1항에 있어서, 다공성 기재 중 실리콘을 공급할 수 있는 재료는 다공성 실리카인 것이 특징인 막 제조 방법.
  4. 제1항에 있어서, 제1단계의 다공성 기재는 물에 의해 팽윤되어 있는 것이 특징인 막 제조 방법.
  5. 제1항에 있어서, 종자 결정들 및 형성된 막은 제올라이트 또는 유사 분자체인 것이 특징인 막 제조 방법.
  6. 제5항에 있어서, 제올라이트 또는 유사 분자체는 MFI 구조인 것이 특징인 막 제조 방법.
  7. 제5항에 있어서, 상기 제올라이트 또는 유사 분자체는 ZSM-5, 실리카라이트, TS-1, AZ-1, Bor-C, 보라라이트 C, 엔시라이트, FZ-1, LZ-105, 모노클리닉 H-ZSM-5, 뮤티나이트, NU-4, NU-5, TSZ, TSZ-Ⅲ, TZ-01, USC-4, USI-108, ZBH 및 ZKQ-1B로 구성된 군에서 선택된 것이 특징인 막 제조 방법.
  8. 제1항에 있어서, 종자결정의 크기는 종자결정이 다공성 기재 표면 위에 평평하게 놓일 수 있을 정도로 다공성 기재의 공극 및 기공보다 큰 것이 특징인 막 제조 방법.
  9. 제1항에 있어서, 제2단계에서 실리콘 함유 종자 결정들은 결정축 a축, b축 및 c축 중 하나 이상 또는 모두가 일정한 규칙에 따라 다공성 기재 상에 배향되도록 정렬되는 것이 특징인 막 제조 방법.
  10. 제9항에 있어서, 제2단계에서 정렬된 종자 결정들은, 종자 결정들의 모든 a축이 서로 평행하거나, 종자 결정들의 모든 b축이 서로 평행하거나, 종자 결정들의 모든 c축이 평행하거나 또는 이들의 조합에 따라 배향된 것이 특징인 막 제조 방법.
  11. 제10항에 있어서, 제2단계에서 종자 결정들은 a축, b축 또는 c축이 기재면에 대해 수직으로 배향된 것이 특징인 막 제조 방법.
  12. 제9항에 있어서, 제2단계에서 기재상에 a축, b축 및 c축 중 하나 이상 또는 모두가 일정한 규칙에 따라 배향된 종자 결정들은 단층(monolayer)을 형성하는 것이 특징인 막 제조 방법.
  13. 제1항에 있어서, 제4단계에서 종자 결정 표면으로부터 2차 성장에 의해 종자 결정들이 2차원적으로 서로 연결되면서 3차원적으로 수직 성장을 하여 막을 형성하는 것이 특징인 막 제조 방법.
  14. 제1항에 있어서, 상기 형성된 막은 100 nm 내지 500 nm의 두께로 성장하는 것이 특징인 막 제조 방법.
  15. 제1항에 있어서, 제3단계에서 사용되는 구조 유도제는 테트라프로필암모니움 하이드록사이드 (TPAOH), 테트라에틸암모니움 하이드록사이드 (TEAOH), 테트라메틸암모니움 (TMA), 테트라부틸암모늄 (TBA) 또는 이의 혼합물인 것이 특징인 막 제조 방법.
  16. 제1항에 있어서, 제3단계에서 사용되는 구조 유도제는 종자 결정들의 표면으로부터 2차 성장만을 유도하고, 종자 결정 표면에서 결정 핵 생성반응(crystal nucleation)을 유도하지는 못하는 종류인 것이 특징인 막 제조 방법.
  17. 제1항에 있어서, 종자 결정들은 규칙적 다공성물질(ordered porous materials)인 것이 특징인 막 제조 방법.
  18. 제9항에 있어서, 다공성 기재 상에 적어도 b축이 일정한 규칙에 따라 배향되도록 종자 결정들을 적용한 경우,
    인접한 종자 결정들의 b축 결정축 배향이 동일한 구획 내에서 형성된 막은,
    기재면에 평행한 축방향으로 채널(channel)이 연속적으로 연결되어 확장되거나;
    기재면에 수직 또는 경사를 이룬 축 방향으로 채널(channel)이 연속적으로 연결되어 확장된 것이 특징인 막 제조 방법.
  19. 제1항에 있어서, 제3단계와 제4단계를 2회 이상 반복하는 것이 특징인 막 제조 방법.
  20. 제1항 내지 제19항 중 어느 한 항에 기재된 방법에 의해 제조된 막.
PCT/KR2012/011807 2011-12-30 2012-12-28 합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법 WO2013100734A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/369,973 US9938637B2 (en) 2011-12-30 2012-12-28 Production method of zeolite film in which one axis is completely vertically oriented, using steam under synthetic gel-free condition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0147688 2011-12-30
KR20110147688 2011-12-30

Publications (1)

Publication Number Publication Date
WO2013100734A1 true WO2013100734A1 (ko) 2013-07-04

Family

ID=48698058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011807 WO2013100734A1 (ko) 2011-12-30 2012-12-28 합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법

Country Status (3)

Country Link
US (1) US9938637B2 (ko)
KR (1) KR101421357B1 (ko)
WO (1) WO2013100734A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882715A (zh) * 2018-09-07 2020-03-17 中国科学院大连化学物理研究所 一种分子筛催化剂的制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963499B (zh) * 2019-12-12 2023-03-21 西安近代化学研究所 一种c轴取向生长的TS-1沸石单晶的合成方法
CN113368894A (zh) * 2021-06-09 2021-09-10 中国石油大学(华东) 一种膜厚可调控的核壳型ts-1钛硅分子筛膜制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316026A (ja) * 2001-02-07 2002-10-29 Inst Fr Petrole 温度調節された結晶化による担持ゼオライト膜の調製方法
KR100789661B1 (ko) * 2007-01-05 2007-12-28 서강대학교산학협력단 기질-분자체 복합체의 제조방법
JP2008188564A (ja) * 2007-02-07 2008-08-21 National Institute Of Advanced Industrial & Technology 有機混合溶液の分離膜及びその製造方法
KR20090120846A (ko) * 2008-05-21 2009-11-25 서강대학교산학협력단 다양한 두께를 갖는 모든 b-축이 기질에 대해서 수직으로배향된 MFI형 제올라이트 박막 및 그의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357836B2 (en) * 2003-03-06 2008-04-15 University Of Massachusetts Crystalline membranes
US20090000475A1 (en) * 2007-06-29 2009-01-01 Curtis Robert Fekety Zeolite membrane structures and methods of making zeolite membrane structures
US20100109201A1 (en) * 2008-10-31 2010-05-06 Molecular Imprints, Inc. Nano-Imprint Lithography Template with Ordered Pore Structure
KR101695496B1 (ko) * 2010-09-08 2017-01-11 서강대학교산학협력단 기재상에 3개의 결정축 배향이 모두 정렬된 종자 결정들을 2차 성장시켜 형성된 막

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316026A (ja) * 2001-02-07 2002-10-29 Inst Fr Petrole 温度調節された結晶化による担持ゼオライト膜の調製方法
KR100789661B1 (ko) * 2007-01-05 2007-12-28 서강대학교산학협력단 기질-분자체 복합체의 제조방법
JP2008188564A (ja) * 2007-02-07 2008-08-21 National Institute Of Advanced Industrial & Technology 有機混合溶液の分離膜及びその製造方法
KR20090120846A (ko) * 2008-05-21 2009-11-25 서강대학교산학협력단 다양한 두께를 갖는 모든 b-축이 기질에 대해서 수직으로배향된 MFI형 제올라이트 박막 및 그의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882715A (zh) * 2018-09-07 2020-03-17 中国科学院大连化学物理研究所 一种分子筛催化剂的制备方法及应用
CN110882715B (zh) * 2018-09-07 2021-03-26 中国科学院大连化学物理研究所 一种乙醇与苯气相烷基化制备乙苯催化剂及其制备和应用

Also Published As

Publication number Publication date
US9938637B2 (en) 2018-04-10
KR20130079288A (ko) 2013-07-10
US20150064440A1 (en) 2015-03-05
KR101421357B1 (ko) 2014-07-18

Similar Documents

Publication Publication Date Title
WO2016085177A1 (ko) 화학기상증착법을 이용하여 기공 크기가 제어된 카바자이트 제올라이트 분리막 및 그 제조방법
US11554348B2 (en) Method of preparing hierarchical porous channel molecular sieve membrane and application thereof
WO2012033347A2 (ko) 기재상에 3개의 결정축 배향이 모두 정렬된 종자 결정들을 2차 성장시켜 형성된 막
KR20070086085A (ko) 실리콘 베타 제올라이트를 함유하는 층간 유전체막의 제조방법
JP2004504716A (ja) シリカゼオライト低誘電率薄膜
WO2018110998A2 (ko) 마이크로다공성 및 메조다공성 계층적 구조의 mfi 제올라이트, 이의 제조방법 및 이의 촉매 용도
KR101451322B1 (ko) 실리콘 카바이드계 비-접착 코팅을 형성하기 위한 공정
WO2013100734A1 (ko) 합성젤 없는 조건에서 스팀을 이용하여 한 축 방향이 모두 수직으로 정렬된 제올라이트 필름 생성법
CA2108719A1 (en) Mixed zeolites and method for producing same
CN107029561B (zh) 一种h0h取向的MFI型分子筛膜的制备方法
CN104906964B (zh) 一种晶种自组装负载支撑体合成高性能NaA型分子筛膜的制备方法
WO2018110860A1 (ko) 벤질기를 포함하는 구조유도물질을 이용한 제올라이트 제조방법 및 이로부터 제조된 제올라이트
CN101967230A (zh) 一种基于笼型倍半硅氧烷结构的有机/无机微孔硅及制备方法
JP2012016688A (ja) 熱亀裂が防止されたゼオライト分離膜及びその製造方法
WO2013187541A1 (ko) 적어도 하나의 표면의 일부 또는 전부가 편평한 기재 및 이의 용도
CN111760467A (zh) 一种t型沸石分子筛膜的制备方法
CN1879952B (zh) 一种研磨涂覆晶种层生长制备沸石膜方法
KR20000005219A (ko) 개량된 막_
JP2001031416A (ja) ゼオライト膜の製造方法、mfi型ゼオライト膜および分子を分離する方法
KR101637934B1 (ko) 다공성 알루미노 실리카의 제조방법 및 이에 따라 제조되는 다공성 알루미노 실리카
CN112705053B (zh) 一种耐酸性沸石分子筛膜的制备方法及应用
US8343880B2 (en) Process for preparing a dielectric interlayer film containing silicon beta zeolite
CN107602105B (zh) 一种含莫来石相支撑体表面沸石分子筛膜的制备方法
KR101128358B1 (ko) Lta 제올라이트 분리막 및 그 제조 방법
KR20010062256A (ko) 실리카 수트의 제조공정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369973

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12861191

Country of ref document: EP

Kind code of ref document: A1