WO2013100698A1 - 무방향성 전기강판 및 그 제조방법 - Google Patents

무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
WO2013100698A1
WO2013100698A1 PCT/KR2012/011732 KR2012011732W WO2013100698A1 WO 2013100698 A1 WO2013100698 A1 WO 2013100698A1 KR 2012011732 W KR2012011732 W KR 2012011732W WO 2013100698 A1 WO2013100698 A1 WO 2013100698A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
electrical steel
inclusions
oriented electrical
Prior art date
Application number
PCT/KR2012/011732
Other languages
English (en)
French (fr)
Inventor
박준수
배병근
김용수
신수용
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110145175A external-priority patent/KR101353463B1/ko
Priority claimed from KR1020110145305A external-priority patent/KR101353461B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US14/368,651 priority Critical patent/US10096414B2/en
Priority to EP12863098.5A priority patent/EP2799573B1/en
Priority to JP2014550022A priority patent/JP6043808B2/ja
Priority to CN201280065207.6A priority patent/CN104039998B/zh
Publication of WO2013100698A1 publication Critical patent/WO2013100698A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a non-oriented electrical steel sheet, and more particularly to a non-oriented electrical steel sheet to improve the magnetism by optimizing the content of Mn, S, Al, P.
  • Non-oriented electrical steel is used as a material for iron cores in rotating equipment such as motors and generators, and in stationary equipment such as small transformers, and plays an important role in determining the energy efficiency of electrical equipment.
  • the characteristics of the steel sheet include iron loss and magnetic flux density.
  • the iron loss is small and the magnetic flux density is high.
  • the higher the iron loss the higher the iron loss when inducing a magnetic field.
  • the higher the magnetic flux density the greater the magnetic field can be induced with the same energy.
  • representative methods for improving iron loss include a method of thinning a large thickness and adding a large resistivity element such as Si and Al.
  • the thinner the thickness has the problem of lower productivity and increased cost.
  • Si, Al, and Mn which are alloy elements with high resistivity, which is a method of reducing iron loss by increasing the electrical resistivity of general materials, also decreases the iron loss when alloy elements are added, but also decreases the magnetic flux density due to the decrease of the saturation magnetic flux density. There is a contradiction that it cannot be avoided.
  • impurity elements C, S, N, Ti, and the like which are inevitably added to steel, combine with Mn, Cu, Ti, etc. to form fine inclusions of about 0.05 ⁇ m, thereby inhibiting grain growth and preventing magnetic domains from moving. Deteriorates enemy properties.
  • the addition of a trace alloy element increases the ⁇ 100 ⁇ texture, which is advantageous to magnetic properties, and reduces the ⁇ 111 ⁇ texture, which is harmful to the magnetic structure, or minimizes the amount of impurities. Techniques for producing clean steel are used.
  • the present invention has been made to solve the above problems, by optimally managing the components of Mn, S, Al, P of the alloy elements of the steel while reducing the addition amount of Mn and Al while suppressing the formation of fine inclusions and coarse It is an object of the present invention to provide a non-oriented electrical steel sheet and a method of manufacturing the same by improving the grain density and the mobility of magnetic walls by increasing the distribution density of inclusions.
  • the non-oriented electrical steel sheet may be in weight percent (%), Mn: 0.01 ⁇ 0.05%.
  • the non-oriented electrical steel sheet is a weight percent (%), Al: 0.3 ⁇ 0.8%, [Mn] ⁇ [P] (where [Mn], [P] are Mn, P, respectively, weight percent (%) ) Can be satisfied.
  • the inevitable impurity may include at least one of Cu, Ni, Cr, Zr, Mo, and V, and the content of Cu, Ni, and Cr may be added at 0.05 weight percent or less, respectively, and the Zr, Mo The content of V may be added in amounts of 0.01% by weight or less, respectively.
  • the non-oriented electrical steel sheet has a ratio of the number of MnS, CuS, and (Mn, Cu) S composite sulfides (N S ⁇ 0.1 ⁇ m) of 0.1 ⁇ m or more with respect to the total number of inclusions (N Tot ) having a size of 0.01 to 1 ⁇ m or less (N S ⁇ 0.1 ⁇ m / N Tot ) may be at least 0.5.
  • the non-oriented electrical steel sheet has a size of 0.01 ⁇ 1 ⁇ m in the steel sheet and the average size of the total inclusion including the sulfide may be 0.11 ⁇ m or more.
  • the size of the crystal grains in the microstructure of the electrical steel sheet may be 50 ⁇ 180 ⁇ m.
  • Method for producing a non-oriented electrical steel sheet according to another embodiment of the present invention is a weight percent (%), C: 0.005% or less, Si: 1.0 ⁇ 4.0%, Al: 0.1 ⁇ 0.8%, Mn: 0.01 ⁇ 0.1%, P: 0.02 to 0.3%, N: 0.005% or less, S: 0.001 to 0.005%, Ti: 0.005% or less, 0.01 to 0.2% of at least one of Sn and Sb, the balance includes Fe and other inevitable impurities
  • the slab may be a weight percent (%), Mn: 0.01 ⁇ 0.05%.
  • the slab is a weight percent (%), Al: 0.3 ⁇ 0.8%, [Mn] ⁇ [P] (where [Mn], [P] are each Mn , Meaning a weight percent (%) of P).
  • the present invention by optimally managing the components of Mn, S, Al, P in the alloy elements of the steel, while reducing the amount of Mn and Al added, while suppressing the formation of fine inclusions and increasing the distribution density of coarse inclusions, It is possible to provide a non-oriented electrical steel sheet having excellent magnetic properties by improving the mobility of the magnetic wall.
  • Mn combines with S in steel to form fine inclusions to decrease magnetism, and the formation of fine inclusions is suppressed to facilitate grain growth and movement of the magnetic domain walls, thereby improving the magnetism of the non-oriented electrical steel sheet.
  • the saturation magnetic flux density increases as the content of additional elements such as Mn and Al decreases, thereby providing a non-oriented electrical steel sheet having excellent high-frequency magnetism showing high magnetic flux density.
  • Non-oriented electrical steel sheet is a weight percent (%), C: 0.005% or less, Si: 1.0 ⁇ 4.0%, Al: 0.1 ⁇ 0.8%, Mn: 0.01 ⁇ 0.1%, P: 0.02 0.3%, N: 0.005% or less, S: 0.001% to 0.005%, Ti: 0.005% or less, 0.01 to 0.2% of at least one of Sn and Sb, the balance includes Fe and other unavoidable impurities,
  • Mn is added at least 0.1% in the production of non-oriented electrical steel sheet together with Al and Si to reduce the iron loss by increasing the resistivity of the steel.
  • Mn combines with S to form a precipitate of MnS.
  • the impurity element S combines with Cu to form CuS or Cu 2 S. That is, S combines with Mn and Cu to form a sulfide, and the sulfide is formed of MnS or CuS alone or a composite inclusion of (Mn, Cu) S.
  • Inclusions of non-oriented electrical steel sheets are generally about 0.05 ⁇ m in size, which has a large effect on magnetism by inhibiting grain growth and hindering the movement of the magnetic domain walls, thus increasing the frequency of formation of coarse inclusions to minimize magnetic deterioration. There is a need.
  • Al added as a resistivity element also causes fine nitrides to deteriorate magnetic properties.
  • inclusions become finer when the amount of Mn and Al is decreased.
  • N Tot total number of inclusions compared 0.1 ⁇ m than MnS, Cus alone or in combination of sulfide 0.01 ⁇ m 1 ⁇ m less than the number of ((Mn, Cu) S, etc.)
  • N S ⁇ 0.1 ⁇ m ratio N S ⁇ 0.1 ⁇ m / N Tot ) becomes coarse to 0.5 or more.
  • the reason for limiting the amount of Mn, Al, P, and S added as in the above formula is that the ratio of Mn / S is important for determining the distribution and size of inclusions, especially sulfides, and Al. Also, the addition amount is important as an element to form fine inclusions, especially nitrides, and since P is also an element segregating at grain boundaries, an appropriate ratio of addition amount of Mn, Al, and S to affect inclusion formation is appropriate. This is because it can have a very important effect on eliminating grain growth inhibition and enhancing magnetism through coarsening.
  • the inclusions are not coarsened and the distribution density of the fine inclusions is increased, thereby inhibiting magnetic growth, such as inhibiting grain growth and preventing magnetic domain movement.
  • N Tot total number of inclusions compared with a size less than 1 ⁇ m MnS, CuS and the ratio of (Mn, Cu) S sulfide complex number (N S ⁇ 0.1 ⁇ m) (N S ⁇ 0.1 ⁇ m / N Tot ) is 0.5 or more.
  • the average size of the total inclusions having a size of 0.01 to 1 ⁇ m and including sulfides in the electrical steel sheet is 0.11 ⁇ m or more.
  • the size of ferrite grains in the microstructure of the electrical steel sheet is 50 ⁇ 180 ⁇ m. Increasing the size of the ferrite grains is advantageous because the hysteresis loss during iron loss is reduced, but the vortex loss during iron loss increases, so the size of the crystal grains desirable to minimize such iron loss is limited as described above.
  • the reason for limiting the content of the components of the non-oriented electrical steel sheet according to the present invention is as follows.
  • the Si is a main element added because it increases the specific resistance of the steel to lower the vortex loss in the iron loss, it is difficult to obtain low iron loss characteristics below 1.0%, and when added in excess of 4.0% breakage of the sheet during cold rolling It is preferable to limit it to 1.0 to 4.0 weight%.
  • Mn has an effect of lowering iron loss by increasing specific resistance of steel together with Si and Al, in the conventional non-oriented electrical steel sheet, Mn is added for the purpose of improving iron loss by adding at least 0.1%.
  • the amount of Mn added is limited to 0.01 to 0.1%.
  • a preferred embodiment of the present invention can maintain the content of Mn to 0.05% as much as 0.01% or more.
  • Al is an element that is inevitably added for deoxidation of steel in the steelmaking process, and is mainly added to reduce iron loss, but also serves to reduce saturation magnetic flux density.
  • the amount of Al added is excessively less than 0.1%, fine AlN is formed to suppress grain growth and the magnetism is lowered. If the amount of Al added is more than 0.8%, the magnetic flux density is reduced, so the amount of addition is 0.1 to 0.8. It is desirable to limit to%.
  • P is added to increase the resistivity, lower the iron loss and segregate at grain boundaries, thereby inhibiting formation of ⁇ 111 ⁇ aggregates that are harmful to magnetism and forming ⁇ 100 ⁇ , which is an advantageous texture. Since the improvement effect is reduced, it is preferable to add at 0.02-0.3 weight%.
  • Mn is an element that suppresses the formation of ferrite
  • P is an element that expands the ferrite phase
  • hot rolling and annealing are performed by containing more P content than Mn to satisfy the formula of [Mn] ⁇ [P]. It is possible to work on stable ferrite at the time to improve the high frequency magnetism which is desirable for the magnetism.
  • S is an element which forms sulfides such as MnS, CuS, and (Cu, Mn) S, which are detrimental to magnetic properties. Therefore, it is preferable to add S as low as possible. However, if it is added below 0.001%, it is rather disadvantageous to form tissue, and the content of magnetism is lowered. Therefore, if it is added more than 0.005%, the magnetic content is deteriorated due to the increase of fine sulfide. Limit to content.
  • N is an element harmful to magnetism, such as forming a nitride by strongly bonding with Al, Ti, etc. to suppress grain growth, it is preferable to contain N less than 0.005% by weight or less.
  • Ti inhibits grain growth by forming fine carbides and nitrides, and as the amount of Ti increases, the carbides and nitrides increase inferior texture and deteriorate magnetic properties. Therefore, the Ti content is limited to 0.005% or less.
  • Sn and Sb are added to improve magnetic properties by inhibiting diffusion of nitrogen through grain boundaries as segregates at grain boundaries, inhibiting ⁇ 111 ⁇ textures that are harmful to magnetism, and increasing advantageous ⁇ 100 ⁇ textures.
  • the inevitably added impurities include Cu, Ni, Cr, Zr, Mo, and V, and the content of Cu, Ni, and Cr is added in 0.05 weight percent or less, respectively, and the Zr, Mo, and V of The content is added up to 0.01 weight percent (%) each.
  • the impurities may be inevitably added in the steel manufacturing process in the steelmaking process, and, in the case of Cu, Ni, and Cr, react with the impurity elements to form fine sulfides, carbides, and nitrides, which have a detrimental effect on the magnetic properties, respectively. It is limited to 0.05% by weight or less.
  • Zr, Mo, and V is also a strong carbonitride-forming element, so it is preferable not to be added as much as possible.
  • the remainder contains Fe and other unavoidable impurities that may be added in the steelmaking process.
  • the heating temperature is 1,200 ° C. or more, precipitates such as AlN, MnS, etc. present in the slab are re-used and finely precipitated during hot rolling to inhibit grain growth and lower magnetism, so the reheating temperature is limited to 1,200 ° C. or less.
  • the finish rolling in filamentary rolling during hot rolling is finished in the ferrite phase and the final rolling rate is 20% or less for the correction of plate shape.
  • the hot-heated steel sheet manufactured as described above is wound at 700 ° C. or lower and cooled in air.
  • the wound cooled hot rolled sheet is subjected to hot rolled sheet annealing, pickling, cold rolling, and finally cold rolled sheet annealing if necessary.
  • Hot-rolled sheet annealing is to anneal the hot-rolled sheet when necessary to improve the magnetic properties
  • hot-rolled sheet annealing temperature is to be 850 ⁇ 1,150 °C.
  • the hot-rolled sheet annealing temperature is lower than 850 ° C, grain growth is insufficient.
  • the hot-rolled sheet annealing temperature is lower than 1,150 ° C, the grains grow excessively and the surface defects of the plate become excessive, so the annealing temperature is 850-1150 ° C.
  • Hot rolled steel sheets pickled in the usual manner or annealed hot rolled steel sheets are cold rolled.
  • Cold rolling is finally rolled to a thickness of 0.10mm to 0.70mm. If necessary, the first cold rolling and the second annealing after the intermediate annealing can be carried out, and the final rolling rate is in the range of 50 ⁇ 95%.
  • the final cold rolled steel sheet is cold rolled (annealed).
  • the cold rolled sheet annealing (finishing annealing) temperature during the annealing is 850 to 1,100 ° C.
  • Cold rolling plate annealing temperature is less than 850 °C, grain growth is insufficient, and ⁇ 111 ⁇ texture, which is harmful to magnetism, increases, and grains grow excessively above 1,100 °C, which adversely affects magnetism.
  • the cold annealing temperature of the finish annealing temperature is 850 ⁇ 1,100 °C.
  • the annealing plate may be insulated coating.
  • the steel ingot was prepared as shown in Table 1 through vacuum melting to change the amount of Mn, Al, P, S to see the effect.
  • Each ingot was heated at 1180 ° C., hot rolled to a thickness of 2.1 mm, and wound up.
  • the hot rolled steel sheet wound and cooled in air was annealed at 1080 ° C. for 3 minutes, pickled and cold rolled to a thickness of 0.35 mm, and the cold rolled sheet annealed at 1050 ° C. for 90 seconds.
  • N S ⁇ 0.1 ⁇ m / N Tot means the number ratio of MnS, CuS or complex sulfides having a size of 0.1 ⁇ m or more among the total inclusions of 0.01 to 1 ⁇ m or less.
  • Iron loss means the average loss (W / kg) in the rolling direction and the vertical direction when the magnetic flux density of 1.5 Tesla is induced at 50 Hz.
  • Magnetic flux density (B 50 ) means the magnitude of magnetic flux density (Tesla) induced when a magnetic field of 5000 A / m is added.
  • TEM transmission electron microscope
  • the TEM observation was a randomly selected area without bias and was set at a magnification where the inclusions of 0.01 ⁇ m or more were clearly observed, and then the size and distribution of all inclusions that were taken by taking at least 100 images were measured, and the carbonitride was measured through the EDS spectrum. Types of inclusions, emulsions, etc. were analyzed.
  • the inclusions of 0.01 ⁇ m or less have difficulty in observation and measurement, and also have a small effect on magnetism, and also oxides such as SiO 2 and Al 2 O 3 of 1 ⁇ m or more. Although observed, the effect on magnetism was small and was not included in the analysis target of the present invention.
  • a steel ingot prepared as shown in Table 3 was prepared through vacuum dissolution. At this time, the effects of hot-rolled sheet annealing and cold-rolled sheet annealing temperature on the inclusion size, distribution and magnetic properties.
  • Each ingot was heated at 1,180 ° C, hot rolled to a thickness of 2.5 mm, and wound up.
  • the hot rolled steel sheet wound and cooled in air was annealed at 800-1,200 ° C. for 2 minutes, pickled, and cold rolled to a thickness of 0.35 mm, and the cold rolled sheet annealed at 800-1,200 ° C. for 50 seconds.
  • the number of inclusions of 0.01 ° C. or more and 1 ° C. or less, the number of iron sulfides having a size of 0.1 ° C. or more, iron loss, and magnetic flux density were measured, and the results are shown in Table 4 below.
  • the number ratio of MnS, CuS or composite sulfides (N S ⁇ 0.1 ⁇ m / N Tot ) having a size of 0.1 ⁇ m or more among the inclusions of 0.01 ⁇ m or more and 1 ⁇ m or less also appeared to be 0.5 or more, resulting in low iron loss and magnetic flux density. High.
  • the hot-rolled sheet annealing temperature is beyond the scope of the present invention, the fraction of fine inclusions increases, so that the average size of inclusions of 1 ⁇ m or less is less than 0.11 ⁇ m and has a size of 0.1 ⁇ m or more of the number of inclusions of 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the number ratio of MnS, CuS or complex sulfides was also less than 0.5, resulting in inferior iron loss and magnetic flux density.
  • the cold rolled sheet annealing temperature is outside the scope of the present invention, the average size of inclusions of less than or equal to 1 ⁇ m is less than 0.11 ⁇ m, and the number ratio of MnS, CuS or complex sulfides having a size of more than 0.1 ⁇ m among the number of inclusions of more than 0.01 ⁇ m and less than 1 ⁇ m ( N S ⁇ 0.1 ⁇ m / N Tot ) was also less than 0.5 and the grains were too coarse or fine, resulting in inferior iron loss and magnetic flux density.
  • the ferrite phase expansion elements are increased in the component system to which Si, Al, Mn, and P are added, that is, 0.3 to 0.8% of Al is added, and at least P amount is added.
  • the Mn content is controlled to be 0.01 to 0.2%, more preferably 0.01 to 0.05%, thereby suppressing the formation of fine AlN inclusions and increasing the distribution density of coarse inclusions to increase the high frequency magnetic properties. Can be improved.
  • the fine precipitates are suppressed even when the Mn content is increased, thereby improving the magnetic properties. Therefore, in the non-oriented electrical steel sheet having 0.3 to 0.8% of Al and 0.001 to 0.005% of S, Mn is contained 0.01 to 0.05% and P is contained 0.02 to 0.3%, but satisfies [Mn] ⁇ [P]. By adding P higher than Mn, the high frequency magnetism of the electrical steel sheet can be improved.
  • the Mn is an element that suppresses the formation of ferrite
  • Al and P are elements that expand the ferrite phase, so that Al and P, which are ferrite forming elements, are increased to work on a stable ferrite phase during hot rolling and annealing. Segregation at grain boundaries can improve magnetic properties by well-developing ⁇ 100 ⁇ texture, which is advantageous for magnetism.
  • N S ⁇ 0.1 ⁇ m / N Tot means the number ratio of MnS, CuS or complex sulfide having a size of 0.1 ⁇ m or more among the total inclusions of 0.01 to 1 ⁇ m.
  • Iron loss means the average loss (W / kg) in the rolling direction and the vertical direction when the magnetic flux density of 1.0 Tesla is induced at 400 Hz.
  • Magnetic flux density (B 50 ) means the magnitude of magnetic flux density (Tesla) induced when a magnetic field of 5000 A / m is added.
  • the average size of the inclusions of 0.01 ⁇ 1 ⁇ m was less than 0.11 ⁇ m.
  • Comparative Example C4 the content of Mn and Al was outside the scope of the invention, C5 and C6 contained excessive amounts of Al, and C6 contained less M than the amount of P.
  • the amount of Mn is excessive in C7 and C8, and the amount of Mn is larger than the amount of P.
  • the amount of Mn in C14 to C16 is higher than the amount of P, in particular, the amount of S is excessively low in C15, and the amount of Al is less than 0.3% in C16.
  • the average size of inclusions of 0.01 ⁇ 1 ⁇ m is also less than 0.11 ⁇ m and the number ratio of MnS, CuS or complex sulfide having a size of 0.1 ⁇ m or more of the number of inclusions of 0.01 ⁇ 1 ⁇ m (N S ⁇ 0.1 ⁇ m / N Tot ) It can be seen that the iron loss and the magnetic flux density are inferior in FIG.
  • the number of inclusions in the range of 0.01 to 1 ⁇ m, the number of iron sulfides having a size of 0.1 ⁇ m or more, iron loss, and magnetic flux density were measured, and the iron loss and magnetic flux density were measured using a magnetic meter. Shown in
  • Comparative Example 1 has a low hot rolled sheet annealing temperature
  • Comparative Example 2 is low cold rolled sheet annealing temperature .
  • the inclusion size of 0.01-1 ⁇ m may be changed.
  • the number ratio of MnS, CuS, or complex sulfide having a size of 0.1 ⁇ m or more among the inclusions of 0.01 to 1 ⁇ m may also vary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

무방향성 전기강판 및 그 제조방법이 개시된다. 본 발명에 의한 무방향성 전기강판은 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, 상기 Mn, Al, P, S는 다음식, 0.8={[Mn]/(100*[S])+[Al]}/[P]=40, (여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족한다.

Description

무방향성 전기강판 및 그 제조방법
본 발명은 무방향성 전기강판에 관한 것으로, 보다 상세하게는 Mn, S, Al, P의 함량을 최적화하여 자성을 향상시킨 무방향성 전기강판에 관한 것이다.
무방향성 전기강판은 모터, 발전기 등의 회전 기기와 소형 변압기 등의 정지 기기에서 철심용 재료로 사용되며 전기기기의 에너지 효율을 결정하는데 중요한 역할을 한다.
전기강판의 특성으로는 대표적으로 철손과 자속밀도를 들 수 있는데 철손은 작고, 자속밀도는 높을수록 좋은데 이는 철심에 전기를 부가하여 자기장을 유도할 때, 철손이 낮을 수록 열로 손실되는 에너지를 줄일 수 있으며, 자속밀도가 높을수록 똑같은 에너지로 더 큰 자기장을 유도할 수 있기 때문이다.
따라서 에너지의 절감, 친환경 제품의 수요 증가에 대응하기 위해서는 철손은 낮고 자속밀도는 높은 무방향성 전기강판 제조 기술의 개발이 필요하다.
무방향성 전기강판의 자기적 성질 중, 철손을 개선하기 위한 대표적인 방법으로는 크게 두께를 얇게 하는 방법과 Si, Al등의 비저항이 큰 원소를 첨가시키는 방법이 있다.
그러나, 두께의 경우 사용되는 제품의 특성에 따라 결정되며 두께가 얇을수록 생산성 저하 및 원가 증가라는 문제를 안고 있다.
일반적인 소재의 전기 비저항 증가를 통한 철손 감소 방법인 비저항이 큰 합금 원소인 Si, Al, Mn등을 첨가하는 방법 역시 합금 원소를 첨가하게 되면 철손은 감소하지만 포화 자속밀도 감소로 인해 자속밀도의 감소 역시 피할 수 없다는 모순을 안고 있다.
또한, Si 첨가량이 4%이상이 되면 가공성이 저하되어 냉간압연이 곤란해져 생산성이 떨어지게 되며 Al, Mn등도 많이 첨가될수록 압연성도 저하되며 경도가 증가하며 가공성도 떨어지게 된다.
한편, 강 중에 필연적으로 첨가되는 불순물 원소인 C, S, N, Ti 등은 Mn, Cu, Ti등과 결합하여 0.05㎛ 정도의 미세한 개재물을 형성하여 결정립의 성장을 억제시키고 자구의 이동을 방해하여 자기적 성질을 저하시킨다.
이러한 불순물들은 통상의 제조공정에서는 극저로 관리하기가 어려우며 또한 각 제조 공정에 따라 개재물들이 재용해 및 석출 과정을 거치기 때문에 개재물 자체를 제어하기도 쉽지 않다.
따라서 철손은 낮추면서 자속밀도도 향상시키기 위하여 미량 합금 원소의 첨가를 통해 자기적 성질에 유리한 집합 조직인 {100} texture를 증가시키고 유해한 집합 조직인 {111} texture를 감소시키거나 불순물의 양을 극저화시켜 청정강을 제조하는 기술 등이 사용되고 있다.
그러나 이러한 기술들은 모두 제조 원가의 상승을 야기하고 대량 생산의 어려움이 따르기 때문에 제조 원가는 크게 상승시키지 않으면서 자성 개선 효과가 우수한 기술이 매우 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 강의 합금 원소 중 Mn, S, Al, P의 성분을 최적으로 관리하여 Mn과 Al의 첨가량을 감소시키면서도 미세한 개재물의 생성을 억제하고 조대한 개재물의 분포밀도를 높임으로써 결정립 성장과 자벽의 이동성을 향상시킨 무방향성 전기강판 및 그 제조방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 의한 무방향성 전기강판은 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, 상기 Mn, Al, P, S는 아래식, 0.8={[Mn]/(100*[S])+[Al]}/[P]=40, (여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족할 수 있다.
상기 무방향성 전기강판은 중량 퍼센트(%)로, Mn: 0.01~0.05% 일 수 있다.
상기 무방향성 전기강판은 중량 퍼센트(%)로, Al:0.3~0.8%을 포함하며, [Mn]<[P] (여기서, [Mn], [P]는 각각 Mn, P의 중량 퍼센트(%)를 의미함)을 만족할 수 있다.
상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 중 하나 이상을 포함하며, 상기 Cu, Ni, Cr 의 함량은 각각 0.05 중량 퍼센트(%) 이하로 첨가되며, 상기 Zr, Mo, V 의 함량은 각각 0.01 중량 퍼센트(%) 이하로 첨가될 수 있다.
상기 무방향성 전기강판은 0.01~1㎛ 이하 크기를 갖는 전체 개재물 개수 (NTot) 대비 0.1㎛ 이상의 MnS, CuS 및 (Mn, Cu)S 복합 황화물 개수 (NS ≥0.1㎛)의 비율 (NS ≥0.1㎛/NTot)이 0.5 이상일 수 있다.
상기 무방향성 전기강판은 강판 내에 0.01~1㎛ 크기를 가지며 황화물을 포함하는 전체 개재물의 평균 크기가 0.11㎛ 이상일 수 있다.
상기 전기강판의 미세조직 내에 결정립의 크기는 50~180㎛ 일 수 있다.
본 발명의 다른 실시예에 의한 무방향성 전기강판의 제조방법은 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며, 상기 Mn, Al, P, S는 다음식, 0.8={[Mn]/(100*[S])+[Al]}/[P]=40, (여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족하는 슬라브를 제공하는 단계; 상기 슬라브를 1,200℃ 이하로 가열한 후 압연하여 열연강판을 제조하는 단계; 상기 열연강판을 산세한 후 0.10~0.70mm로 압연하여 냉연강판을제조하는 단계; 및 상기 냉연강판을 850~1,100℃ 에서 마무리 소둔하는 단계를 포함할 수 있다.
상기 무방향성 전기강판의 제조방법에서, 상기 슬라브는 중량 퍼센트(%)로, Mn: 0.01~0.05% 일 수 있다.
상기 무방향성 전기강판의 제조방법에서, 상기 슬라브는 중량 퍼센트(%)로, Al:0.3~0.8%을 포함하며, [Mn]<[P] (여기서, [Mn], [P]는 각각 Mn, P의 중량 퍼센트(%)를 의미함)을 만족할 수 있다.
본 발명에 의하면, 강의 합금 원소 중 Mn, S, Al, P의 성분을 최적으로 관리하여 Mn과 Al의 첨가량을 감소시키면서도 미세한 개재물의 생성을 억제하고 조대한 개재물의 분포밀도를 높임으로써 결정립 성장과 자벽의 이동성을 향상시켜 자성이 우수한 무방향성 전기강판을 제공할 수 있다.
또한, 본 발명에 의하면, Mn은 강 중 S등과 결합하여 미세한 개재물을 형성하여 자성을 저하시키고, 미세한 개재물들의 생성이 억제되어 결정립 성장과 자구벽의 이동이 원활해져 무방향성 전기강판의 자성을 향상시킬 수 있다.
또한, Mn, Al등 첨가 원소의 함량이 감소함에 따라 포화자속밀도가 증가하여 높은 자속밀도를 나타내는 고주파 자성이 우수한 무방향성 전기강판을 제공할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하, 본 발명의 바람직한 실시예에 의한 무방향성 전기강판에 대하여 설명하기로 한다.
본 발명의 바람직한 실시예에 의한 무방향성 전기강판은 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며,
상기 Mn, Al, P, S는 아래 조성식,
<조성식>
0.8={[Mn]/(100*[S])+[Al]}/[P]=40,
(여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족한다.
일반적으로 Mn은 Al, Si과 더불어 강의 비저항(resistivity)을 증가시켜 철손을 감소시키기 때문에 무방향성 전기강판 제조에 있어서 적어도 0.1%이상 첨가된다.
그러나 Mn은 S와 결합하여 MnS의 석출물을 형성한다. 또한 불순물 원소인 S는 Cu와 결합하여 CuS 또는 Cu2S를 형성한다. 즉 S는 Mn, Cu와 결합하여 황화물을 형성하며, 이러한 황화물은 MnS 또는 CuS의 단독, 또는 (Mn,Cu)S의 복합 개재물로 형성하게 된다.
무방향성 전기강판의 개재물은 일반적으로 그 크기가 0.05㎛ 정도로 미세하여 결정립 성장을 억제하고 자구벽의 이동을 방해함으로써 자성에 큰 영향을 미치게 되므로 자성의 열화가 최소화되도록 조대한 개재물의 형성 빈도를 높일 필요성이 있다.
비저항 원소로 첨가되는 Al 역시 미세한 질화물을 형성하여 자성을 열위하게 만드는 원인이 된다. 종래의 기술에서는 Mn과 Al은 그 첨가량이 감소하면 개재물이 미세해진다고 알려져 있다.
본 발명에 따르면, Mn, Al, P, S가 0.8={[Mn]/(100*[S])+[Al]}/[P]=40의 조성식 (상기 [Mn], [S], [Al], [P]는 각각 Mn, S, Al, P의 중량 퍼센트(%))을 만족하도록 성분함량을 제어할 경우, Mn, Al 첨가량이 감소하면 개재물들이 미세해질 것이라는 기존의 예상과는 달리, 0.01㎛ 이상 1㎛ 이하의 개재물들의 평균 크기가 조대해지게 된다.
또한, 0.01㎛ 이상 1㎛ 이하의 전체 개재물 개수 (NTot) 대비 0.1㎛ 이상의 MnS, Cus 단독 또는 복합 황화물((Mn,Cu)S 등)의 개수(NS ≥0.1㎛) 비율 (NS ≥0.1㎛/NTot)이 0.5이상으로 조대해지게 된다.
즉, 강판내의 개재물의 분포밀도를 조정함으로써 합금원소를 최소량으로 첨가시킴에도 불구하고 철손이 낮고 자속밀도가 높은 자성이 우수한 무방향성 전기강판을 얻을 수 있다.
보다 구체적으로, 본 발명에서 Mn, Al, P, S의 첨가량을 상기식과 같이 한정한 이유는 Mn/S의 비율은 개재물(inclusions), 특히 황화물(sulfides)의 분포와 크기를 결정하는데 중요하고 Al 역시 미세한 개재물 특히 질화물(nitrides)을 형성하는 원소로서 그 첨가량이 중요하며, P 역시 결정립계에 편석하는 원소이기 때문에 개재물 형성에 영향을 미치는 Mn, Al, S의 첨가량 비율과 P함량의 적정한 비율은 개재물 조대화를 통한 결정립 성장 억제력 제거 및 자성 향상에 매우 중요한 영향을 미칠 수 있기 때문이다.
즉, 상기 조성식의 값이 0.8보다 작거나 40보다 큰 경우는 개재물이 조대화되지 않고 미세한 개재물들의 분포밀도가 증가하여 결정립 성장을 억제하고 자구 이동을 방해하는 등 자성을 열위시키기 된다.
또한, 0.01~1㎛이하 크기를 갖는 전체 개재물 개수 (NTot) 대비 0.1㎛ 이상의 MnS, CuS 및 (Mn, Cu)S 복합 황화물 개수 (NS ≥0.1㎛)의 비율 (NS ≥0.1㎛/NTot)이 0.5 이상이다.
또한, 상기 전기강판 내에 0.01~1㎛ 크기를 가지며 황화물을 포함하는 전체 개재물의 평균 크기가 0.11㎛ 이상인 것이 바람직하다.
또한, 상기 전기강판의 미세조직 내에 페라이트(ferrite) 결정립의 크기는 50~180㎛ 이다. 페라이트 결정립의 크기가 증가하는 경우 철손 중 이력손실이 감소하므로 유리하나 철손 중 와류손실은 증가하므로, 이러한 철손을 가장 적게하는데 바람직한 결정립의 크기는 상기와 같이 제한된다.
본 발명에 의한 무방향성 전기강판의 성분의 함량을 제한한 이유는 다음과 같다.
Si:1.0~4.0중량%
상기 Si는 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분이기 때문에 첨가되는 주요 원소로서, 1.0% 이하에서는 저철손 특성을 얻기 어렵고, 4.0%를 초과하여 첨가되면 냉간 압연시 판재의 파단이 일어나기 때문에 1.0~4.0중량%로 제한하는 것이 바람직하다.
Mn:0.01~0.1중량%
상기 Mn은 Si, Al 등과 함께 강의 비저항을 증가시켜 철손을 낮추는 효과가 있기 때문에 종래의 무방향성 전기강판에서는 Mn을 적어도 0.1%이상 첨가함으로써 철손을 개선하려는 목적으로 첨가된다.
그러나 Mn 첨가량이 증가할수록 포화자속밀도가 감소하기 때문에 자속밀도가 감소하며 또한 S와 결합하여 미세한 MnS 개재물을 형성하여 결정립 성장을 억제하며 자벽 이동을 방해하여 철손 중 특히 이력 손실을 증가시키는 단점이 있다.
따라서 자속밀도 향상 및 개재물에 의한 철손 증가 방지를 위하여 Mn 첨가량을 0.01~0.1%로 제한한다.
한편, 본 발명의 바람직한 실시예에서는 Mn의 함량을 0.01%이상 최대한 0.05% 로 유지시킬 수 있다.
Al:0.1~0.8중량%
상기 Al은 제강공정에서 강의 탈산을 위하여 불가피하게 첨가되는 원소로서 비저항을 증가시키는 주요 원소이기 때문에 철손을 낮추기 위하여 많이 첨가되지만 첨가시 포화 자속밀도를 감소시키는 역할도 한다.
또한, Al 첨가량이 0.1%이하로 과도하게 적으면 미세한 AlN을 형성시켜 결정립 성장을 억제하여 자성을 저하시키며, 0.8%이상을 초과하여 첨가되면 자속밀도가 감소되는 원인이 되므로 그 첨가량을 0.1~0.8%로 제한하는 것이 바람직하다.
한편, 본 발명의 다른 실시예에서는 Al의 함량을 0.3%이상 최대한 0.8% 로 증가시키고 [Mn]<[P] 의 수식을 만족하도록, P함량을 적어도 Mn 함량보다 많이 함유시키면, Mn 함량이 증가되어도 미세한 석출물의 형성은 억제되면서 자성이 향상될 수 있다.
P:0.02~0.3중량%
상기 P는 비저항을 증가시켜 철손을 낮추며 결정립계에 편석함으로써 자성에 유해한 {111} 집합 조직의 형성을 억제하고 유리한 집합조직인 {100}을 형성함으로 첨가하며, 0.3%이상 첨가되면 압연성을 저하 및 자성향상 효과가 감소됨으로 0.02~0.3중량%로 첨가되는 것이 바람직하다.
또한, Mn이 페라이트 형성을 억제하는 원소이며, 반면에 P는 페라이트상을 확장하는 원소인데, [Mn]<[P]의 수식을 만족하도록 Mn량 보다 P함량을 보다 많이 함유시킴으로써 열간압연 및 소둔시 안정된 페라이트상에서 작업이 가능하여 자성에 바람직한 집합조직을 향상시켜 고주파 자성을 향상시키도록 한다.
C:0.005중량% 이하
C은 많이 첨가될 경우 오스테나이트(austenite) 영역을 확대하며 상변태 구간을 증가시키고 소둔 시 페라이트의 결정립 성장을 억제하여 철손을 높이는 효과를 나타내며, 또한 Ti등과 결합하여 탄화물을 형성하여 자성을 열위시키며 최종제품에서 전기 제품으로 가공 후 사용 시 자기시효에 의하여 철손을 높이기 때문에 0.005%이하로 제한한다.
S:0.001~0.005중량% 이하
S는 자기적 특성에 유해한 MnS, CuS 및 (Cu,Mn)S 등의 황화물을 형성하는 원소이므로 가능한 한 낮게 첨가하는 것이 바람직하다. 그러나 0.001%이하로 첨가될 경우 오히려 집합조직 형성에 불리하여 자성이 저하되기 때문에 0.001%이상 함유토록 하며 또한 0.005%이상 첨가될 경우는 미세한 황화물의 증가로 인해 자성이 열위해지므로 0.001~0.005%로 함유토록 제한한다.
N:0.005중량% 이하
N는 Al, Ti등과 강하게 결합함으로써 질화물을 형성하여 결정립 성장(grain growth)을 억제하는 등 자성에 해로운 원소이므로 적게 함유시키는 것이 바람직하며, 본 발명에서는 0.005중량% 이하로 제한한다.
Ti:0.005중량% 이하
Ti는 미세한 탄화물과 질화물을 형성하여 결정립 성장을 억제하며 많이 첨가될 수록 증가된 탄화물과 질화물로 인해 집합조직도 열위하게 되어 자성이 나빠지게 되므로 본 발명에서는 0.005%이하로 제한한다.
Sn 또는 Sb:0.01~0.2중량%
상기 Sn과 Sb는 결정립계에 편석원소(segregates)로써 결정립계를 통한 질소의 확산을 억제하며 자성에 해로운 {111} texture를 억제하고 유리한 {100} texture를 증가시켜 자기적 특성을 향상시키기 위하여 첨가한다.
상기 Sn과 Sb 단독 또는 그 합이 0.2%이상 첨가하면 결정립 성장을 억제하여 자성을 떨어뜨리고 압연성상이 나빠지기 때문에 Sn, Sb 단독 또는 그 합이 0.01~0.2%로 첨가한다.
상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 을 포함하며, 상기 Cu, Ni, Cr 의 함량은 각각 0.05 중량 퍼센트(%) 이하로 첨가되며, 상기 Zr, Mo, V 의 함량은 각각 0.01 중량 퍼센트(%) 이하로 첨가된다.
상기 불순물은 제강 공정 등에서 철강제조 공정에서 불가피하게 첨가될 수 있으며, Cu, Ni, Cr의 경우 불순물 원소들과 반응하여 미세한 황화물, 탄화물 및 질화물을 형성하여 자성에 유해한 영향을 미치므로 이들 함유량을 각각 0.05중량%이하로 제한한다.
또한 Zr, Mo, V등도 강력한 탄질화물 형성 원소이기 때문에 가능한 첨가되지 않는 것이 바람직하며 각각 0.01중량%이하로 함유되도록 한다.
상기한 조성 이외에 나머지는 Fe 및 철강제조 공정에서 첨가될 수있는 기타 불가피한 불순물을 포함한다.
이하에서는 본 발명의 다른 실시예에 의한 무방향성 전기강판의 제조방법에 대하여 기술한다.
중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며,
상기 Mn, Al, P, S는 아래식,
10.8={[Mn]/(100*[S])+[Al]}/[P]=40,
(여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족하는 슬라브를 1,200℃ 이하로 가열한 후 압연하여 열연강판을 제조한다.
상기 가열 온도가 1,200℃ 이상일 경우 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간압연시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시키므로 재가열 온도는 1,200℃ 이하로 제한한다.
열간압연시 사상압연에서의 마무리압연은 페라이트상(ferrite phase)에서 종료하며 판형상 교정을 위하여 최종 압하율은 20%이하로 실시한다.
상기와 같이 제조된 열열강판을 700℃ 이하에서 권취하고, 공기중에서 냉각한다. 권취 냉각된 열연강판은 필요시 열연판 소둔을 하고 산세하고 냉간압연하고 마지막으로 냉연판 소둔을 한다.
열연판 소둔은 자성 개선을 위하여 필요할 경우에 열연판을 소둔하는 것이며, 열연판 소둔온도는 850~1,150℃로 한다. 열연판 소둔온도가 850℃보다 낮으면 결정립 성장이 불충분하며, 1,150℃초과하는 경우에는 결정립이 과도하게 성장하고 판의 표면 결함이 과다해지므로 소둔온도는 850~1150℃한다.
통상의 방법으로 산세 한 열연강판 또는 소둔한 열연강판은 냉간압연한다.
냉간압연은 0.10mm에서 0.70mm의 두께로 최종 압연한다. 필요시 1차 냉간압연과 중간소둔 후 2차 냉간압연 할 수 있으며, 최종 압하율은 50~95%의 범위로 한다.
최종 냉간압연된 강판은 냉연판 소둔(마무리 소둔)한다. 냉연강판을 소둔하는 공정에서 소둔시 냉연판 소둔(마무리 소둔) 온도는 850~1,100℃로 한다.
냉연판 소둔온도(마무리 소둔)가 850℃이하에서는 결정립의 성장이 미흡하여 자성에 해로운 집합 조직인 {111} 집합조직(texture)이 증가하며, 1,100℃이상에서는 결정립이 과도하게 성장하여 자성에 나쁜 영향을 미칠 수 있기 때문에 냉연강판의 마무리 소둔온도는 850~1,100℃로 한다.
이후에 상기 소둔판은 절연피막처리 될 수 있다.
이하, 실시예를 통해 본 발명의 바람직한 일 실시예에 따른 무방향성 전기강판의 제조방법에 대하여 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
< 실시예 1>
진공 용해를 통하여 하기 표 1과 같이 조성되는 강괴를 제조하여 Mn, Al, P, S의 양을 변화시켜 그 영향을 보고자 하였다. 각 강괴는 1180℃에서 가열하고, 2.1mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 1080℃에서 3분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 1050℃에서 90초간 최종 소둔을 하였다. 각각의 시편에 대하여 0.01㎛이상 1㎛이하의 개재물의 수 및, 0.1㎛이상의 크기를 가지는 황화물의 수, 철손 및 자속밀도를 측정하였고 그 결과를 하기 표 2에 나타내었다.
표 1
강종 C Si Mn P S Al N Ti Sn Sb 비고
A1 0.0022 1.5 0.04 0.15 0.0044 0.2 0.0025 0.0014 0.025 0 발명예
A2 0.0027 2.4 0.05 0.12 0.0037 0.22 0.0021 0.0016 0.035 0.023 발명예
A3 0.0013 2.6 0.01 0.06 0.0031 0.19 0.0014 0.001 0.013 0.026 발명예
A4 0.0022 2.0 0.004 0.23 0.0048 0.005 0.0026 0.001 0.044 0 비교예
A5 0.0025 2.6 0.03 0.07 0.0034 0.42 0.0021 0.0009 0.013 0.026 비교예
A6 0.0022 2.8 0.04 0.02 0.0028 0.16 0.0017 0.002 0 0.015 발명예
A7 0.0019 2.9 0.07 0.03 0.0012 0.29 0.0019 0.0009 0.026 0.022 발명예
A8 0.0024 2.8 0.08 0.007 0.0021 0.13 0.0019 0.0016 0.029 0.05 비교예
A9 0.0029 2.8 0.06 0.02 0.0011 0.29 0.0016 0.0017 0 0.028 비교예
A10 0.0033 3.2 0.11 0.02 0.0029 0.5 0.0015 0.0025 0 0.048 비교예
A11 0.0029 3.1 0.06 0.07 0.0038 0.3 0.0026 0.0016 0.019 0 발명예
A12 0.0025 3.3 0.04 0.04 0.0025 0.27 0.0016 0.0012 0 0.025 발명예
A13 0.0035 3.5 0.03 0.03 0.0013 0.15 0.0039 0.0015 0.025 0.016 발명예
A14 0.0025 3.3 0.12 0.06 0.0064 0.29 0.0015 0.0019 0 0.021 비교예
A15 0.0024 3.5 0.1 0.05 0.0007 0.18 0.0041 0.0016 0 0.036 비교예
표 2
강종 {[Mn]/(100x[S])+[Al]}/[P] 0.01~1㎛개재물평균크기 (㎛) NS ≥0.1㎛/NTot 1) 철손W15 /50 2) 자속밀도B50 3) 비고
A1 1.9 0.155 0.57 2.30 1.77 발명예
A2 3.0 0.137 0.62 2.23 1.76 발명예
A3 3.7 0.133 0.58 1.92 1.75 발명예
A4 0.1 0.088 0.39 2.91 1.69 비교예
A5 7.3 0.095 0.43 2.77 1.70 비교예
A6 15.1 0.156 0.68 1.87 1.76 발명예
A7 29.1 0.128 0.61 2.02 1.74 발명예
A8 73.0 0.098 0.45 2.79 1.67 비교예
A9 41.8 0.103 0.48 2.67 1.67 비교예
A10 44.0 0.091 0.41 2.53 1.65 비교예
A11 6.5 0.135 0.66 2.04 1.73 발명예
A12 10.8 0.151 0.7 1.97 1.73 발명예
A13 12.7 0.163 0.67 1.85 1.71 발명예
A14 8.0 0.093 0.33 2.55 1.65 비교예
A15 32.2 0.102 0.41 2.51 1.64 비교예
1) (NS ≥0.1㎛/NTot)은 0.01이상 1㎛이하의 전체 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비를 의미함.
2) 철손(W15/50)은 50Hz주파수에서 1.5Tesla의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실(W/kg)을 의미함.
3) 자속밀도(B50)은 5000A/m의 자기장을 부가하였을 때 유도되는 자속밀도의 크기(Tesla)를 의미함.
본 발명에서 개재물의 크기, 종류 및 분포를 분석하기 위한 방법으로는 시편으로부터 추출된 carbon replica를 투과전자현미경(Transmission Electron Microscope; TEM)으로 관찰하며 EDS로 분석하는 방법이 사용되었다.
TEM 관찰은 치우침이 없이 무작위로 선택된 영역으로 0.01㎛크기 이상의 개재물이 명확히 관찰되는 배율로 설정 후 적어도 100장 이상의 Image로 촬영하여 나타나는 모든 개재물의 크기 및 분포를 측정하였고, 또한 EDS spectrum을 통하여 탄질화물, 유화물등 개재물의 종류를 분석하였다.
본 발명에서 개재물의 크기 및 분포를 분석함에 있어서 0.01㎛이하의 개재물의 경우 관찰 및 측정에 어려움이 있을뿐더러 자성에 미치는 영향이 작고, 또한 1㎛이상의 SiO2, Al2O3와 같은 산화물들도 관찰되었으나 자성에 미치는 영향이 작아서 본 발명의 분석 대상에는 포함시키지 않았다.
상기 표 2에 나타난 바와 같이, 본 발명의 [Mn], [Al], [P], [S] 및 0.8={[Mn]/(100*[S])+[Al]}/[P]=40의 조성식을 만족하는 강종 A1, A2, A3, A6, A7, A11, A12, A13은 0.01㎛이상 1㎛이하의 개재물 평균 크기도 0.11㎛이상이었으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5이상으로 나타났고 그 결과 철손이 낮고 자속밀도도 높게 나타났다.
반면, A4, A8, A10은 Mn, P, Al등이 관리 범위를 벗어나 상기 조성식을 만족하지 못하였고 0.01㎛이상 1㎛이하의 개재물 평균 크기도 0.11㎛이하로 미세하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 NS ≥0.1㎛/NTot 도 0.5 이하로 나타나 그 결과 철손과 자속밀도가 열위하게 나타났다.
A5와 A14, A15는 각각 Al과 Mn, P가 관리범위를 벗어났고 그 결과 0.01㎛이상 1㎛이하의 개재물 평균 크기도 0.11㎛이하로 미세하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5 이하로 나타나 철손과 자속밀도가 열위하게 나타났다.
A9의 경우는 Mn, P, S, Al의 경우는 성분 관리범위는 만족하였으나 상기 조성식을 만족하지 못하였고 그 결과 0.01㎛이상 1㎛이하의 개재물 평균 크기도 0.11㎛이하로 미세하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5 이하로 나타나 철손과 자속밀도가 열위하게 나타났다.
< 실시예 2>
진공 용해를 통하여 하기 표 3과 같이 조성되는 강괴를 제조하였다. 이 때, 열연판 소둔 및 냉연판 소둔 온도가 개재물 크기 및 분포와 자성에 미치는 영향을 보고자 하였다. 각 강괴는 1,180℃에서 가열하고, 2.5mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 800~1,200℃에서 2분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 800~1,200℃에서 50초간 최종 소둔을 하였다. 각각의 시편에 대하여 0.01℃이상 1℃이하의 개재물의 수 및, 0.1℃이상의 크기를 가지는 황화물의 수, 철손 및 자속밀도를 측정하였고 그 결과를 하기 표 4에 나타내었다.
표 3
강종 C Si Mn P S Al N Ti Sn Sb 비고
B1 0.0012 1.3 0.03 0.14 0.0012 0.1 0.0029 0.0009 0.046 0.021 발명예
B2 0.0022 2.1 0.06 0.05 0.0019 0.18 0.0016 0.0025 0.021 0.025 발명예
B3 0.0035 2.5 0.05 0.11 0.0038 0.15 0.0035 0.0015 0.039 0 발명예
B4 0.0027 2.8 0.05 0.07 0.0021 0.21 0.0019 0.0016 0 0.041 발명예
B5 0.0021 1.7 0.07 0.11 0.0012 0.12 0.0022 0.0008 0.011 0.031 비교예
B6 0.0016 2.3 0.05 0.02 0.0019 0.29 0.0019 0.0023 0.035 0 비교예
B7 0.0025 2.4 0.07 0.08 0.0022 0.26 0.0022 0.0012 0 0.025 비교예
B8 0.0031 2.8 0.03 0.05 0.0017 0.22 0.0016 0.0019 0.029 0.011 발명예
B9 0.0019 3.0 0.05 0.08 0.0035 0.24 0.0023 0.0021 0.029 0.022 발명예
B10 0.0029 3.5 0.06 0.06 0.0037 0.29 0.0029 0.0015 0.045 0 발명예
B11 0.0023 3.5 0.04 0.03 0.003 0.13 0.0021 0.0011 0 0.036 발명예
B12 0.0033 2.8 0.07 0.05 0.0023 0.18 0.0025 0.0019 0.030 0 비교예
B13 0.0027 3.1 0.06 0.07 0.0016 0.3 0.0013 0.0016 0.032 0.03 비교예
B14 0.0016 3.3 0.05 0.04 0.0027 0.19 0.0026 0.0017 0 0.024 비교예
표 4
강종 {Mn/(100x[S])+[Al]}/[P] 열연판소둔온도(℃) 냉연판소둔온도(℃) 0.01~1㎛개재물평균크기 (㎛) NS ≥0.1㎛/NTot 철손W15 /50 자속밀도B50 비고
B1 2.5 1080 970 0.136 0.62 2.39 1.77 발명예
B2 9.9 1020 1010 0.145 0.55 2.25 1.75 발명예
B3 2.6 1040 1050 0.125 0.51 2.21 1.74 발명예
B4 6.4 990 1040 0.141 0.59 2.16 1.74 발명예
B5 6.4 830 1040 0.096 0.42 2.92 1.71 비교예
B6 27.7 1020 1120 0.100 0.46 2.85 1.68 비교예
B7 7.2 1170 990 0.107 0.31 2.65 1.67 비교예
B8 7.9 1040 1050 0.166 0.53 1.89 1.76 발명예
B9 4.8 1080 1030 0.148 0.55 1.96 1.76 발명예
B10 7.5 1100 990 0.114 0.58 2.03 1.72 발명예
B11 8.8 1050 1040 0.138 0.61 1.94 1.71 발명예
B12 9.7 800 1050 0.098 0.35 2.61 1.66 비교예
B13 9.6 1180 1130 0.093 0.49 2.62 1.64 비교예
B14 9.4 1020 820 0.101 0.37 2.54 1.64 비교예
상기 표 3에 나타난 바와 같이, 본 발명의 [Mn], [Al], [P], [S] 및 0.8={[Mn]/(100x[S])+[Al]}/[P]=40의 조성식을 만족하며 열연판 소둔온도와 냉연판 소둔 온도를 만족하는 강종 B1, B2, B3, B4, B8, B9, B10, B11은 0.01㎛이상 1㎛이하의 개재물 평균 크기도 0.11㎛이상이었으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛ 이상의 크기를 가지는 MnS, CuS 도는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5이상으로 나타났고 그 결과 철손이 낮고 자속밀도는 높게 나타났다.
반면, B5, B7과 B12는 [Mn], [Al], [P], [S] 및 0.8={[Mn]/(100x[S])+[Al]}/[P]=40의 조성식을 만족하였지만 열연판 소둔 온도가 본 발명의 범위를 벗어나 미세한 개재물의 분율이 증가하여 1㎛이하의 개재물 평균 크기도 0.11㎛이하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비 (NS ≥0.1㎛/NTot)도 0.5 이하로 나타나 그 결과 철손과 자속밀도가 열위하게 나타났다.
또한 B6과 B14는 [Mn], [Al], [P], [S] 및 0.8={[Mn]/(100x[S])+[Al]}/[P]=40의 조성식을 만족하였으나 냉연판 소둔 온도가 본 발명의 범위를 벗어나 1㎛이하의 개재물 평균 크기도 0.11㎛이하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비 (NS ≥0.1㎛/NTot)도 0.5 이하로 나타났고 또한 결정립이 너무 조대하거나 미세하여 그 결과 역시 철손과 자속밀도가 열위하게 나타났다.
B13은 [Mn], [Al], [P], [S] 및 0.8={[Mn]/(100x[S])+[Al]}/[P]=40의 조성식을 만족하였으나 열연판 소둔 온도와 냉연판 소둔 온도가 모두 본 발명의 범위를 벗어나 1㎛이하의 개재물 평균 크기도 0.11㎛이하였으며 0.01㎛이상 1㎛이하의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비 (NS≥0.1㎛/NTot)도 0.5 이하로 나타났고 그 결과 자성이 열위하게 나타났다.
이하는 본 발명의 바람직한 다른 실시예에 의한 무방향성 전기강판의 제조방법에 대하여 상세히 설명한다. 단 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
본 발명의 바람직한 다른 실시예에 의한 무방향성 전기강판 제조방법은 Si, Al, Mn 및 P를 첨가한 성분계에서 페라이트상 확장 원소들을 증가, 즉 Al을 0.3~0.8% 첨가하고, 또한 P량을 적어도 Mn량 보다 많이 첨가하면, Mn함량을 0.01~0.2%로, 보다 바람직하게는 0.01~0.05%의 범위로 제어함으로써 미세한 AlN 등의 개재물의 생성을 억제하면서 조대한 개재물의 분포밀도를 높임으로써 고주파 자성을 개선할 수 있다.
또한, Al함량을 0.3~0.8%로 증가시키고 [Mn]<[P]의 수식을 만족하도록 P함량을 적어도 Mn량 보다 많이 함유시키면, Mn함량이 증가되어도 미세한 석출물은 억제되면서 자성이 향상된다. 따라서 Al이 0.3~0.8%이고, S가 0.001~0.005%인 무방향성 전기강판에서, Mn을 0.01~0.05%로 함유시키고, P를 0.02~0.3%로 함유시키되 [Mn]<[P]를 만족하도록 Mn 보다 P를 높게 첨가함으로써 전기강판의 고주파 자성을 향상시킬 수 있다.
상기 Mn은 페라이트의 형성을 억제하는 원소인 반면, Al과 P는 페라이트상을 확장하는 원소이어서 페라이트 형성원소인 Al과 P를 증가시킴으로써 열간압연 및 소둔시 안정된 페라이트상에서 작업이 가능해지며, 상기 P는 결정립계에 편석하여 자성에 유리한 {100} 집합조직을 잘 발달시켜서 자성을 향상시킬 수 있다.
< 실시예 3>
하기 표 5과 같이 조성되는 강괴를 제조하여 Mn, Al, P, S의 양을 변화시켜 그 영향을 조사하였다. 각 강괴는 1160℃에서 가열하고, 2.5mm의 두께로 열간압연한 후 권취하였다. 공기 중에서 권취하고 냉각한 열연강판은 1050℃에서 3분간 소둔하고, 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판 소둔은 1050℃에서 60초간 최종소둔을 하였다. 각각의 시편에 대하여 0.01 ~ 1㎛의 개재물의 수 및, 0.1㎛이상의 크기를 가지는 황화물의 수, 철손 및 자속밀도를 측정하였고 그 결과를 하기 표 6에 나타내었다.
표 5
강종 C Si Mn P S Al N Ti Sn Sb 비고
C1 0.0025 1.4 0.04 0.25 0.004 0.31 0.0024 0.0015 0.025 발명예
C2 0.0026 2.5 0.05 0.2 0.004 0.35 0.0022 0.0017 0.025 발명예
C3 0.0019 2.5 0.01 0.06 0.003 0.4 0.0019 0.0021 0.011 0.01 발명예
C4 0.0023 2.4 0.001 0.23 0.005 0.007 0.0023 0.0018 0.025 비교예
C5 0.0026 2.6 0.03 0.04 0.003 1.2 0.0013 0.0021 0.025 0.01 비교예
C6 0.0023 2.7 0.07 0.03 0.002 1.5 0.002 0.0025 0.029 비교예
C7 0.0026 2.6 1.2 0.03 0.001 0.35 0.0019 0.0024 비교예
C8 0.0035 3.5 0.45 0.07 0.003 0.56 0.0025 0.0021 비교예
C9 0.0021 3.1 0.04 0.14 0.003 0.55 0.0017 0.0022   발명예
C10 0.0022 3.0 0.02 0.12 0.001 0.45 0.0018 0.0019 0.026   발명예
C11 0.0025 3.4 0.05 0.25 0.004 0.8 0.0016 0.0025 0.019   발명예
C12 0.0025 3.5 0.07 0.15 0.003 0.45 0.0016 0.0024   발명예
C13 0.0025 3.6 0.05 0.15 0.001 0.35 0.0019 0.0023 0.025   발명예
C14 0.0025 3.4 0.07 0.04 0.006 0.45 0.0018 0.0022 0.025 비교예
C15 0.0026 3.4 0.06 0.03 0.0004 0.35 0.0023 0.0023 0.03 비교예
C16 0.0024 3.3 0.12 0.05 0.002 0.25 0.0019 0.002 0.025 비교예
표 6
강종  [Mn]<[P]  [{Mn/(100xS)}+Al]/P 0.01~1㎛개재물평균크기(㎛) NS ≥0.1㎛/NTot 철손(W10 /400)  자속밀도(B50)  비고
C1 O 1.6 0.14 0.58 17.4 1.78 발명예
C2 O 2.4 0.13 0.55 16.5 1.79 발명예
C3 O 7.2 0.13 0.59 15.3 1.76 발명예
C4 O 0.04 0.08 0.35 19.3 1.69 비교예
C5 O 32.2 0.09 0.41 20.4 1.70 비교예
C6 X 61.1 0.10 0.35 21.5 1.69 비교예
C7 X 375.3 0.09 0.45 20.4 1.68 비교예
C8 X 30.2 0.06 0.46 22.0 1.69 비교예
C9 O 4.9 0.15 0.65 14.5 1.75 발명예
C10 O 5.1 0.14 0.66 15.1 1.78 발명예
C11 O 3.7 0.15 0.66 13.8 1.74 발명예
C12 O 4.9 0.13 0.71 14.3 1.76 발명예
C13 O 4.9 0.13 0.65 15.5 1.75 발명예
C14 X 14.0 0.08 0.43 21.1 1.66 비교예
C15 X 61.67 0.06 0.41 20.5 1.67 비교예
C16 X 17.0 0.07 0.42 20.9 1.68 비교예
1) (NS ≥0.1㎛/NTot)은 0.01 ~ 1㎛의 전체 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비를 의미한다.
2) 철손(W10/400)은 400Hz주파수에서 1.0Tesla의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실(W/kg)을 의미한다.
3) 자속밀도(B50)은 5000A/m의 자기장을 부가하였을 때 유도되는 자속밀도의 크기(Tesla)를 의미한다.
상기 표 6에 나타난 바와 같이, 본 발명의 [Mn], [Al], [P], [S]의 성분범위에서, [Mn]<[P]와 0.8=[{[Mn]/(100*[S])}+[Al]]/[P]=40의 조성식을 만족하는 강종인 C1~C3, C9~C13은 0.01 ~ 1㎛의 개재물 평균 크기도 0.11㎛이상이었으며 0.01 ~ 1㎛의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5이상으로 나타나 고주파 철손이 철손이 낮고 자속밀도도 높게 나타난 것을 알 수 있다.
반면, 비교예인 C4~C8, C14~C16은 Mn, P, Al 등이 관리 범위를 벗어나거나 상기 조성 관계식(1)을 만족하지 못하고, 0.01 ~ 1㎛의 개재물 평균 크기도 0.11㎛이하로 미세하였으며 0.01 ~ 1㎛의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 NS ≥0.1㎛/NTot 도 0.5 이하로 나타남으로써 고주파에서의 철손과 자속밀도가 열위하게 나타났다.
또한, 비교예 C4는 Mn과 Al 함량이 발명의 범위를 벗어났으며, C5, C6는 Al량이 과도하며, C6는 Mn량이 P량 보다 적다. C7, C8은 Mn량이 과도하며, Mn량이 P량 보다 많다. C14~C16은 Mn량이 P량 보다 많으며, 특히 C15는 S량이 과도하게 낮으며, C16은 Al함량이 0.3% 미만 수준이다. 따라서 0.01 ~ 1㎛의 개재물 평균 크기도 0.11㎛이하로 미세하였으며 0.01 ~ 1㎛의 개재물의 개수 중 0.1㎛이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 0.5 이하로 나타나 철손과 자속밀도가 열위하게 나타남을 알 수 있다.
< 실시예 4>
중량%로, C: 0.0025%, Si: 2.89%, Mn:0.03%, P: 0.15%, S: 0.002%, Al: 0.35%, N: 0.0017%, Ti: 0.0011%, 나머지는 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1150℃로 재가열한 다음 2.0mm 두께의 열연강판으로 제조하고, 650℃로 권취하고 공기중에서 냉각하였다. 열연판은 표 7과 같이 3분간 연속소둔하고 산세하고, 0.2mm의 두께로 냉간압연하고, 냉연판 소둔은 질소 70%, 수소 30%에서 1분간 소둔하였다. 각각의 시편에 대하여 0.01 ~ 1㎛의 개재물의 수 및, 0.1㎛이상의 크기를 가지는 황화물의 수, 철손 및 자속밀도를 측정하였고 자성측정기를 이용하여 철손 및 자속밀도를 측정하여 그 결과를 하기 표 7에 나타내었다.
표 7
구분 열연판온도(℃) 냉연판 소둔온도(℃) 0.01~1㎛개재물평균크기(㎛) 철손(W10 /400)(W/kg) 자속밀도(B50) NS ≥0.1㎛/NTot
발명예1 1050 950 0.135 10.9 1.71 0.65
발명예2 1050 1000 0.126 9.5 1.71 0.55
발명예3 1050 1050 0.137 10.1 1.72 0.58
비교예1 800 1050 0.073 13.5 1.62 0.45
비교예2 1200 800 0.102 12.9 1.63 0.35
상기 표 7에서 발명예1~3은 열연판 소둔온도 및 냉연판 소둔온도가 발명의 범위를 만족하고 있으나, 비교예1은 열연판 소둔온도가 낮으며, 비교예2는 냉연판 소둔온도가 낮다.
본 발명에 따른 실시예에서는 성분계가 [Mn]<[P]이고, 상기 조성 관계식(1)을 만족하며 열연판 소둔온도와 냉연판 소둔 온도를 만족하더라도 0.01 ~ 1㎛의 개재물 평균 크기가 바뀔 수 있으며, 0.01~1㎛의 개재물의 개수 중 0.1㎛ 이상의 크기를 가지는 MnS, CuS 또는 복합 황화물의 개수 비인 (NS ≥0.1㎛/NTot)도 변할 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예 들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며,
    상기 Mn, Al, P, S는 아래식,
    0.8={[Mn]/(100*[S])+[Al]}/[P]=40,
    (여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족하는 무방향성 전기강판.
  2. 제 1 항에 있어서,
    중량 퍼센트(%)로, Mn: 0.01~0.05%인 무방향성 전기강판.
  3. 제 1 항 또는 제 2 항에 있어서,
    중량 퍼센트(%)로, Al:0.3~0.8%을 포함하며,
    [Mn]<[P] (여기서, [Mn], [P]는 각각 Mn, P의 중량 퍼센트(%)를 의미함)을 만족하는 무방향성 전기강판.
  4. 제 3 항에 있어서,
    상기 불가피하게 첨가되는 불순물은 Cu, Ni, Cr, Zr, Mo, V 중 하나 이상을 포함하며, 상기 Cu, Ni, Cr 의 함량은 각각 0.05 중량 퍼센트(%) 이하로 첨가되며, 상기 Zr, Mo, V 의 함량은 각각 0.01 중량 퍼센트(%) 이하로 첨가되는 무방향성 전기강판.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    0.01~1㎛이하 크기를 갖는 전체 개재물 개수 (NTot) 대비 0.1㎛ 이상의 MnS, CuS 및 (Mn, Cu)S 복합 황화물 개수 (NS ≥0.1㎛)의 비율 (NS ≥0.1㎛/NTot)이 0.5 이상인 것을 특징으로 하는 무방향성 전기강판.
  6. 제 5 항에 있어서,
    상기 전기강판 내에 0.01~1㎛ 크기를 가지며 황화물을 포함하는 전체 개재물의 평균 크기가 0.11㎛ 이상인 것을 특징으로 하는 무방향성 전기강판.
  7. 제 6 항에 있어서,
    상기 전기강판의 미세조직 내에 결정립의 크기는 50~180㎛ 인 것을 특징으로 하는 무방향성 전기강판.
  8. 중량 퍼센트(%)로, C:0.005%이하, Si:1.0~4.0%, Al:0.1~0.8%, Mn:0.01~0.1%, P:0.02~0.3%, N:0.005%이하, S:0.001~0.005%, Ti:0.005%이하, Sn 및 Sb 중 적어도 하나가 0.01~0.2%, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물을 포함하며,
    상기 Mn, Al, P, S는 아래식,
    0.8={[Mn]/(100*[S])+[Al]}/[P]=40,
    (여기서, [Mn], [Al], [P], [S]는 각각 Mn, Al, P, S의 중량 퍼센트(%)를 의미함)을 만족하는 슬라브를 제공하는 단계;
    상기 슬라브를 1,200℃ 이하로 가열한 후 압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 산세한 후 0.10~0.70mm로 압연하여 냉연강판을제조하는 단계; 및
    상기 냉연강판을 850~1,100℃ 에서 마무리 소둔하는 단계를 포함하는 무방향성 전기강판의 제조방법.
  9. 제 8 항에 있어서,
    상기 슬라브는 중량 퍼센트(%)로, Mn: 0.01~0.05%인 무방향성 전기강판의 제조방법.
  10. 제 8 항 또는 제 9 항에 있어서,
    상기 슬라브는 중량 퍼센트(%)로, Al:0.3~0.8%을 포함하며,
    [Mn]<[P] (여기서, [Mn], [P]는 각각 Mn, P의 중량 퍼센트(%)를 의미함)을 만족하는 무방향성 전기강판의 제조방법.
PCT/KR2012/011732 2011-12-28 2012-12-28 무방향성 전기강판 및 그 제조방법 WO2013100698A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/368,651 US10096414B2 (en) 2011-12-28 2012-12-28 Non-oriented electrical steel sheet and method of manufacturing the same
EP12863098.5A EP2799573B1 (en) 2011-12-28 2012-12-28 Non-oriented magnetic steel sheet and method for manufacturing same
JP2014550022A JP6043808B2 (ja) 2011-12-28 2012-12-28 無方向性電磁鋼板およびその製造方法
CN201280065207.6A CN104039998B (zh) 2011-12-28 2012-12-28 无取向电工钢板及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0145175 2011-12-28
KR10-2011-0145305 2011-12-28
KR1020110145175A KR101353463B1 (ko) 2011-12-28 2011-12-28 무방향성 전기강판 및 그 제조방법
KR1020110145305A KR101353461B1 (ko) 2011-12-28 2011-12-28 무방향성 전기강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2013100698A1 true WO2013100698A1 (ko) 2013-07-04

Family

ID=48698032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011732 WO2013100698A1 (ko) 2011-12-28 2012-12-28 무방향성 전기강판 및 그 제조방법

Country Status (5)

Country Link
US (1) US10096414B2 (ko)
EP (1) EP2799573B1 (ko)
JP (1) JP6043808B2 (ko)
CN (1) CN104039998B (ko)
WO (1) WO2013100698A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037565A1 (en) * 2013-08-20 2016-06-29 JFE Steel Corporation Non-oriented magnetic steel sheet having high magnetic flux density, and motor
TWI557241B (zh) * 2014-06-26 2016-11-11 Nippon Steel & Sumitomo Metal Corp Electromagnetic steel plate
JP2017106059A (ja) * 2015-12-08 2017-06-15 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120267015A1 (en) * 2009-12-28 2012-10-25 Posco Non-Oriented Electrical Steel Sheet Having Superior Magnetic Properties and a Production Method Therefor
WO2016063098A1 (en) 2014-10-20 2016-04-28 Arcelormittal Method of production of tin containing non grain-oriented silicon steel sheet, steel sheet obtained and use thereof
KR101918720B1 (ko) * 2016-12-19 2018-11-14 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6969219B2 (ja) * 2017-08-16 2021-11-24 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
US11111567B2 (en) * 2018-03-26 2021-09-07 Nippon Steel Corporation Non-oriented electrical steel sheet
BR112021016820A2 (pt) * 2019-03-20 2021-11-16 Nippon Steel Corp Chapa de aço elétrico não orientado
CN112143963A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143961A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种磁性能优良的无取向电工钢板及其连续退火方法
CN112143964A (zh) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 一种极低铁损的无取向电工钢板及其连续退火工艺
KR102361872B1 (ko) * 2019-12-19 2022-02-10 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080378A (ko) * 1997-03-18 1998-11-25 시모가이치 요오이치 무방향성 전자강판 및 그 제조방법
KR100742420B1 (ko) * 2003-05-06 2007-07-24 신닛뽄세이테쯔 카부시키카이샤 철손에 우수한 무방향성 전자 강판 및 그 제조 방법
KR20080062269A (ko) * 2006-12-29 2008-07-03 주식회사 포스코 박물 무방향성 전기 강판 및 그 제조 방법
KR100848022B1 (ko) * 2002-12-24 2008-07-23 제이에프이 스틸 가부시키가이샤 Fe-Cr-Si 계 무방향성 전자강판 및 그 제조방법
JP4681689B2 (ja) * 2009-06-03 2011-05-11 新日本製鐵株式会社 無方向性電磁鋼板及びその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583027B2 (ja) 1979-05-30 1983-01-19 川崎製鉄株式会社 鉄損の低い冷間圧延無方向性電磁鋼板
JPS59100217A (ja) 1982-12-01 1984-06-09 Kawasaki Steel Corp 著しく高い透磁率を有するセミプロセス電気鋼帯の製造方法
JPS62180014A (ja) 1986-02-04 1987-08-07 Nippon Steel Corp 鉄損が低くかつ磁束密度の優れた無方向性電磁鋼板およびその製造方法
JP3379058B2 (ja) 1995-10-30 2003-02-17 新日本製鐵株式会社 磁束密度が高く、鉄損の低い無方向性電磁鋼板の製造方法
KR100268848B1 (ko) 1996-10-08 2000-10-16 이구택 응력제거소둔후에 철손이 낮은 무방향성 전기강판
JP2888227B2 (ja) * 1997-04-23 1999-05-10 日本鋼管株式会社 高周波モータ用電磁鋼板
JPH1161359A (ja) * 1997-08-18 1999-03-05 Nkk Corp 鉄損の低い無方向性電磁鋼板
JP3424178B2 (ja) * 1997-12-05 2003-07-07 Jfeエンジニアリング株式会社 鉄損の低い無方向性電磁鋼板
JPH11189850A (ja) * 1997-12-24 1999-07-13 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2000104144A (ja) * 1998-07-29 2000-04-11 Kawasaki Steel Corp L方向及びc方向の磁気特性に優れた電磁鋼板及びその製造方法
JP2000160306A (ja) 1998-11-30 2000-06-13 Sumitomo Metal Ind Ltd 加工性に優れた無方向性電磁鋼板およびその製造方法
US6436199B1 (en) 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP4240736B2 (ja) * 2000-03-03 2009-03-18 Jfeスチール株式会社 鉄損が低くかつ磁束密度が高い無方向性電磁鋼板およびその製造方法
JP4258949B2 (ja) * 2000-04-19 2009-04-30 Jfeスチール株式会社 Dcモータ用電磁鋼板
KR100956530B1 (ko) 2001-06-28 2010-05-07 제이에프이 스틸 가부시키가이샤 무방향성 전자강판 및 그 제조방법
JP4306445B2 (ja) * 2002-12-24 2009-08-05 Jfeスチール株式会社 高周波磁気特性に優れたFe−Cr−Si系無方向性電磁鋼板およびその製造方法
JP4280197B2 (ja) * 2003-05-06 2009-06-17 新日本製鐵株式会社 無方向性電磁鋼板およびその製造方法
JP4546713B2 (ja) 2003-10-06 2010-09-15 新日本製鐵株式会社 磁気特性に優れた高強度電磁鋼板の最終製品とその使用方法および製造方法
JP4276611B2 (ja) 2004-10-29 2009-06-10 新日本製鐵株式会社 歪取焼鈍後の鉄損の優れた無方向性電磁鋼板とその製造方法
KR100973627B1 (ko) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 무방향성 전자 강판 및 그 제조 방법
KR101010627B1 (ko) 2008-05-23 2011-01-24 주식회사 포스코 무방향성 전기강판
JP5609003B2 (ja) * 2009-04-14 2014-10-22 新日鐵住金株式会社 無方向性電磁鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080378A (ko) * 1997-03-18 1998-11-25 시모가이치 요오이치 무방향성 전자강판 및 그 제조방법
KR100848022B1 (ko) * 2002-12-24 2008-07-23 제이에프이 스틸 가부시키가이샤 Fe-Cr-Si 계 무방향성 전자강판 및 그 제조방법
KR100742420B1 (ko) * 2003-05-06 2007-07-24 신닛뽄세이테쯔 카부시키카이샤 철손에 우수한 무방향성 전자 강판 및 그 제조 방법
KR20080062269A (ko) * 2006-12-29 2008-07-03 주식회사 포스코 박물 무방향성 전기 강판 및 그 제조 방법
JP4681689B2 (ja) * 2009-06-03 2011-05-11 新日本製鐵株式会社 無方向性電磁鋼板及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2799573A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037565A1 (en) * 2013-08-20 2016-06-29 JFE Steel Corporation Non-oriented magnetic steel sheet having high magnetic flux density, and motor
EP3037565A4 (en) * 2013-08-20 2016-08-10 Jfe Steel Corp NON-CORRECTED MAGNETIC STEEL PLATE WITH HIGH MAGNETIC FLOW DENSITY AND MOTOR
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor
TWI557241B (zh) * 2014-06-26 2016-11-11 Nippon Steel & Sumitomo Metal Corp Electromagnetic steel plate
US10541071B2 (en) 2014-06-26 2020-01-21 Nippon Steel Corporation Electrical steel sheet
JP2017106059A (ja) * 2015-12-08 2017-06-15 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
CN104039998A (zh) 2014-09-10
EP2799573A1 (en) 2014-11-05
JP6043808B2 (ja) 2016-12-14
EP2799573A4 (en) 2015-08-19
US10096414B2 (en) 2018-10-09
JP2015508454A (ja) 2015-03-19
EP2799573B1 (en) 2020-06-24
CN104039998B (zh) 2017-10-24
US20150000793A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2013100698A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2011081386A2 (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2013147407A1 (ko) 자성특성이 우수한 (100)〔0vw〕 무방향성 전기강판 및 그 제조방법
WO2021125855A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2012087045A2 (ko) 저철손 고강도 무방향성 전기강판 및 그 제조방법
WO2020111640A1 (ko) 낮은 철손 및 우수한 표면품질을 갖는 무방향성 전기강판 및 그 제조방법
WO2021125685A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2015099217A1 (ko) 연질 고규소 강판 및 그 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2016105058A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020130328A1 (ko) 방향성의 전기강판 및 그 제조 방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2019132317A1 (ko) 자기적 특성이 우수하고, 두께 편차가 작은 무방향성 전기강판 및 그 제조방법
WO2019132420A1 (ko) 자기적 특성 및 형상이 우수한 박물 무방향성 전기강판 및 그 제조방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111783A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139359A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022234902A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2022234901A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111781A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14368651

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014550022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012863098

Country of ref document: EP