WO2013100558A1 - 폴리아믹산 용액 - Google Patents

폴리아믹산 용액 Download PDF

Info

Publication number
WO2013100558A1
WO2013100558A1 PCT/KR2012/011460 KR2012011460W WO2013100558A1 WO 2013100558 A1 WO2013100558 A1 WO 2013100558A1 KR 2012011460 W KR2012011460 W KR 2012011460W WO 2013100558 A1 WO2013100558 A1 WO 2013100558A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid solution
polyamic acid
reaction product
display device
protective layer
Prior art date
Application number
PCT/KR2012/011460
Other languages
English (en)
French (fr)
Inventor
홍기일
민웅기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2014549989A priority Critical patent/JP5976839B2/ja
Priority to CN201280070024.3A priority patent/CN104114644A/zh
Priority to EP12862118.2A priority patent/EP2799494A4/en
Priority to US14/369,084 priority patent/US20140364564A1/en
Publication of WO2013100558A1 publication Critical patent/WO2013100558A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to a polyamic acid solution and a method of manufacturing the same, and to a polyamic acid solution that can be used as a base layer or a protective layer of various display elements.
  • the type of flexible display currently developed is being developed in the same manner as LCD, OLED, and EPD based on passive or active driving elements. These are methods in which a display is driven by mounting a passive or active driving element on a flexible polymer substrate as a structure, and attention is gradually shifting to active type with precise pixel implementation rather than passive type.
  • the active flexible display constitutes a unit device of a display by structuring a gate, an insulating film, a source, and a drain on a polymer material substrate and finally mounting an electrode and a display element.
  • the active display device since most of the manufacturing processes are often performed at high temperature, if a polymer substrate material having no heat resistance is used, the dimensions of the polymer substrate are easily deformed and thermally deformed during device fabrication. There is a problem in that the alignment of the pattern does not match or changes in the surface properties of the polymer substrate, so that the pattern may be used as a display substrate.
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PC polycarbonate
  • Tg glass transition temperature
  • Tg coefficient of thermal expansion
  • the plastic film of the material when used, there is no supporting force, so that the display device is manufactured by adhering on the metal foil or the glass plate.
  • the adhesive and the peeling process of the plastic film and the metal foil or the glass plate using the adhesive are additionally generated. If you do not have a smooth adhesion, you may have problems with smoothness.
  • the present invention is to provide a polymer material which can be used as a substrate material or a protective layer of a display device having excellent thermal resistance and low thermal expansion rate as a polymer material for flexible display having excellent dimensional stability even at a high temperature of 500 ° C. or higher.
  • the polyamic acid to be provided in the present invention is provided in the liquid form, which is provided in the form of a film, since the film itself does not have a supporting force to maintain its shape, the display element must be manufactured by adhering on a metal foil or a glass plate and in this case an adhesive
  • an adhesive This is because there is a disadvantage in that the adhesion and peeling process of the polymer film and the metal foil or glass plate is additionally used, and if the adhesion is not smooth, problems may occur in the smoothness.
  • the process temperature is 450 ° C., which is a high temperature process.
  • the adhesive is not suitable for the actual process because the adhesive does not exist at the high temperature.
  • the polyamic acid to be provided in the present invention is provided in a liquid form, not in a film form, and is applied to a pretreated ceramic support or a glass plate (of course, other supports may be used), and then dried to form an imidized film. This is to maintain a shape on a pretreated ceramic support or a glass plate (of course, other supports may be used) and to facilitate a process for manufacturing a display element.
  • the present invention is to provide a manufacturing method for the commercialization of the material to be provided from a plastic material having a high thermal decomposition temperature and low thermal expansion coefficient.
  • the manufacturing method for commercialization refers to a manufacturing method on a scale applicable to an actual display device manufacturing process, not a manufacturing on a laboratory scale.
  • a scale of 50L solution standard
  • the present invention is a reaction product of aromatic dianhydrides and aromatic diamines as a preferred first embodiment, and the thermal expansion coefficient (thermal expansion coefficient) in the temperature range of 50 ⁇ 450 °C when the imidization film is formed 5ppm / °C or less
  • the present invention provides a polyamic acid solution for forming a base layer or a protective layer of a display device having a pyrolysis temperature of 500 ° C. or more, which is defined as a temperature at which a weight loss ratio reaches 1% when pyrolysis is measured by a thermogravimetric analyzer.
  • the polyamic acid solution according to the embodiment may have a viscosity of 50 to 5,000 poise.
  • the reaction product is -O-, -CO-, -NHCO-, -S-, -SO 2- , -CO-O-, -CH 2 -and -C (CH 3 ) between the aromatic rings. It is preferable that it is a reaction product of hard aromatic dianhydrides and hard aromatic diamines which do not contain a 2 -chain.
  • the reaction product is a reaction product of para-phenylenediamine as aromatic diamines and pyromellitic anhydride with biphenyltetracarboxylic acid anhydride as aromatic dianhydrides, and in one preferred embodiment, the reaction product.
  • the reaction product Is biphenyltetracarboxylic acid anhydride containing at most 40 mol% in aromatic dianhydrides.
  • the reaction product involves commercial consideration that the production scale is at least 5 L in one polymerization.
  • the reaction product is divided into the required amount of the reaction solvent, the cosmetic residue remaining in the reactor wall and the stirrer, etc. after the addition of the raw material of the aromatic dianhydrides and aromatic diamines in powder form It may be obtained by including a showering step of washing off the raw material in the form of a sea salt and dissolved in a solution.
  • reaction product may be obtained by including a step of heating and stirring the temperature of the reactor to about 40 ⁇ 80 °C after the showering process.
  • reaction product may be obtained by adding a bubbling process by blowing an inert gas at the bottom of the reactor during the dissolution process after input of raw materials.
  • In one embodiment of the present invention provides a polyimide coating layer formed from the polyamic acid solution obtained from the above embodiments.
  • An exemplary embodiment of the present invention provides a display device including the polyimide coating layer as a protective layer or a display device including the polyimide coating layer as a base layer.
  • the present invention is a reaction product of an aromatic dianhydride and an aromatic diamine as a preferred embodiment, the thermal expansion coefficient is 5ppm / °C or less in the temperature range of 50 ⁇ 450 °C after forming the imidization film, the pyrolysis temperature is It provides a polyamic acid solution that is at least 500 °C.
  • the pyrolysis temperature is defined as the temperature at which the weight loss ratio reaches 1% in the pyrolysis measurement by the thermogravimetric analyzer, that is, Td 1%.
  • Thermal expansion coefficient and thermal decomposition temperature within the temperature range is a thermal environmental change that occurs during the manufacturing process of the display device when applying the imidized film after applying the polyamic acid solution as a base layer or a protective layer of the display device
  • This model simulates dimensional stability and pyrolysis stability at high temperature.
  • the substrate layer is repeatedly exposed to a high temperature environment during the manufacturing process of the display device.
  • the smaller the thermal expansion the more favorable the manufacturing of the display device, and in order to easily design the manufacturing process, volatile decomposition material within the process temperature range. Should not cause
  • the polyamic acid solution has a thermal expansion coefficient of 5 ppm / ° C. or lower measured at 50 to 450 ° C. when an imidized film is formed.
  • the polymer material generates volatile organic substances by pyrolysis while undergoing a high temperature process, the manufacturing process itself may become impossible because it contaminates manufacturing facilities. Therefore, the device can be manufactured at a high temperature only by using a polymer material having a high pyrolysis temperature on the premise of reducing the pyrolysis temperature, especially a small amount of weight.
  • the circuit work may not be possible during the manufacturing process of the display device, and even if the work is possible, the foreign material may act as a defect, resulting in a defect of the final display.
  • the polymer material itself must be accompanied by special compositions, conditions and processes that can reduce or eliminate foreign matter during the manufacturing process.
  • the polyamic acid solution may be obtained from polymerization of dianhydride and diamine monomers (hereinafter hard monomers) in which no flexible chain exists between aromatic rings.
  • hard monomers dianhydride and diamine monomers
  • the hard monomer is specifically -O-, -CO-, -NHCO-, -S-, -SO 2- , -CO-O-, -CH 2- , -C (CH) between the aromatic rings. 3
  • It can be defined as a monomer having no two -chains, ie soft chains.
  • biphenyltetracarboxylic dianhydride (3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride, BPDA
  • pyromellitic dianhydride (1,2,4,5) -benzenetetracarboxylic dianhydride (PMDA)
  • diamines include p-phenylenediamine (pPDA) and aminophenylaminobenzoxazole (2- (4-aminophenyl) -5-aminobenzoxazole (APAB)).
  • p-phenylenediamine is preferable.
  • diamine and dianhydride may be used in a molar ratio of 1: 0.9 to 0.9: 1, and one or more dianhydrides and diamines may be used as long as they are within the monomer molar ratio to satisfy the above-described purpose, or dianhydrides may be 2
  • One or more diamines may be used, or two or more diamines and one or more dianhydrides may be used.
  • biphenyltetracarboxylic dianhydride in an amount of up to 40 mol% in aromatic dianhydrides.
  • the polyamic acid solution which is a precursor of the polyimide
  • the polyamic acid solution can be prepared by dissolving and reacting the dianhydride component and the diamine component in an organic solvent in an almost equimolar amount.
  • the reaction temperature is preferably -20 to 80 ° C, and the reaction time is preferably 2 to 48 hours. Moreover, it is more preferable that it is inert atmosphere, such as argon and nitrogen, at the time of reaction.
  • the organic solvent for the polymerization reaction of the polyamic acid solution is not particularly limited as long as it is a solvent in which the polyamic acid is dissolved.
  • Known reaction solvents selected from m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, diethyl acetate
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetone diethyl acetate
  • low boiling point solutions such as tetrahydrofuran (THF), chloroform or low absorbing solvents such as gamma-butyrolactone may be used.
  • the organic solvent in order to obtain the molecular weight and viscosity of the appropriate polyamic acid solution, is preferably 50 to 95% by weight of the total polyamic acid solution, more preferably 70 to 90% by weight It is more preferable.
  • the polyimide resin prepared by imidating the polyamic acid solution prepared as described above preferably has a glass transition temperature of 300 ° C. or higher in consideration of thermal stability.
  • polyimide-based polymer is a well-known high heat-resistant material, and has high Tg and low thermal expansion rate, so that TFTs can be manufactured at a temperature of 400 ° C. or higher, and is advantageous for pattern formation if the polyamic acid solution is applied and cured. Since it can be fixed on the support without having to do it, the smoothness can be easily maintained, which can be a very advantageous material for implementing a flexible display.
  • the filler is added to the polyamic acid solution for the purpose of improving various properties such as surface properties and thermal conductivity of the polyimide coating layer.
  • the present invention is limited to not adding any filler because it may act as a serious defect and finally bring about a defect or a decrease in yield of a display.
  • the solution of the foreign matters may be a filtering process.
  • the filtering process can be used as a conventional process and is not particularly limited.
  • the pore size of the filter must be less than 10 ⁇ m, preferably it is advantageous to use less than 1 ⁇ m.
  • the method which simulates the flexible display manufacturing process can be used,
  • coating a polyamic acid solution uniformly to a support body is mentioned. That is, the display device manufacturing process generally proceeds in the order of sequentially stacking electrodes and display parts on the upper surface of the base layer.
  • the polyamic acid solution is coated on a separate support.
  • the method of imidizing and manufacturing an imidation film, performing a display element lamination process according to a conventional method on an imidation film, and finally peeling a support body is mentioned.
  • the plastic material in the form of a film may be advantageous in terms of improving the flatness of the substrate layer compared with the substrate.
  • the method of applying the polyamic acid solution to the support according to the present invention will be the only method.
  • the polyimide coating layer imidized by applying the polyamic acid solution on a component laminated on the display device may be applied as a protective layer.
  • the viscosity of the polyamic acid solution may be preferably 50 to 5,000 poise.
  • This viscosity can be determined by the application method and the required imidization film thickness.
  • the present invention provides a method for producing a scale capable of polymerizing at least 5L (solution standard) at a time in a batch type as a method for producing a commercially available scale.
  • all of the required amount of the reaction solvent is not initially added, but only an amount except a certain amount is initially added.
  • the raw materials in the undissolved powder form remaining in the reactor wall and agitator are washed and dissolved in the solution.
  • This process is called a showering process.
  • the temperature of the said reactor is heated and stirred by about 40-80 degreeC by the further method.
  • undissolved water may exist at the lowest part of the reactor. It is added as a bubble to the solution inside the reactor to add the lowest stirring performance of the reactor, which is a blind spot of the stirring performance. This is called a bubbling process.
  • the amount of inert gas at this time can be used in various ways depending on the type of the inlet valve and the viscosity of the solution.
  • Dissolution methods such as the reactor heating, showering process and inert gas bubbling process as described above may all proceed according to the dissolved state of the solution, only one or more methods may be used, or both may be used.
  • the polyamic acid solution thus obtained had 30 or less foreign substances of 0.5 ⁇ m or more, based on 40 g of the solution, with almost no foreign substances.
  • foreign matters are foreign matters measured with the naked eye through an optical microscope (magnification of 50 to 500 times).
  • the polyimide coating layer may be formed by coating and imidating such a polyamic acid solution.
  • the imidization method applicable to the imidization layer may be a thermal imidization method, a chemical imidization method, or a thermal imidization method and a chemical imide. It can be applied in combination.
  • the chemical imidization method is a method of imidizing a polyamic acid solution by imidizing a dehydrating agent represented by an acid anhydride such as acetic anhydride and an imidization catalyst represented by tertiary amines such as isoquinoline, beta-picolin and pyridine.
  • the heating conditions of the polyamic acid solution may vary depending on the kind of the polyamic acid solution, the required imidization film thickness, and the like.
  • the imidization film formation method After the dehydrating agent and the imidization catalyst are added to the polyamic acid solution and cast on a separate support, 80 to 200
  • the imidized film can be obtained by heating at 100 ° C, preferably 100-180 ° C, activating the dehydrating agent and the imidization catalyst, partially curing and drying, and then heating at 200-400 ° C for 1-120 minutes.
  • the display device components and the like may be sequentially stacked on the imidization film as described above, and a solution in which a dehydrating agent and an imidization catalyst is added to the polyamic acid solution is applied onto the display device components, and then an imidization film is formed. It can be applied as a protective layer.
  • the polyamic acid solution As described above, by applying the polyamic acid solution to the display device, a display device having excellent thermal stability and appropriate flexibility and mechanical strength can be provided.
  • N, N-dimethylacetamide (DMAc) As the reactor was charged with 39,000 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 50L reactor equipped with a stirrer, a nitrogen injection device, a differential injection device, a temperature controller, a cooler, and a filtering system, the temperature of the reactor was 25 ° C.
  • P-PDA para-Phenylene Diamine] 2,013.55g (18.62mol) is added using a differential injector. Thereafter, stirring was performed to dissolve and the solution was kept at 25 ° C. Then, 1,000 g of N, N-dimethylacetamide (DMAc) was used to wash away undissolved p-PDA remaining in the reactor wall and agitator and dissolved in the solution.
  • the temperature of the reactor is raised to about 40 ⁇ 80 °C stirred for smooth and sure dissolution of the solution.
  • inert gas such as argon or nitrogen is blown at the bottom of the reactor. It is added as a bubble to the solution inside the reactor to add the lowest stirring performance of the reactor, which is a blind spot of the stirring performance.
  • the temperature of the reactor was adjusted to 25 ° C. again, and 2,814.52 g (12.90 mol) of PMDA [Pyromellitic Dianhydride] was added using a fine powder injector.
  • PMDA Polyromellitic Dianhydride
  • the above amount may be introduced at a time, or may be divided into 2 to 5 times at regular time intervals (10 minutes to 3 hours).
  • the reaction progress or polymerization degree is indirectly tested through the viscosity, etc., and surplus amount is added step by step by 0.5wt%.
  • the method is advantageous.
  • N, N-dimethylacetamide (DMAc) is used to wash out undissolved PMDA remaining in the reactor wall and agitator and dissolve in solution.
  • the total amount of N, N-dimethylacetamide (DMAc) required during each showering step is 1,500 g.
  • the temperature of the reactor is raised to about 40 ⁇ 80 °C stirred.
  • an inert gas such as argon or nitrogen is blown to the bottom of the reactor so that the solution inside the reactor is bubbled.
  • the polymerized solution is subjected to a filtering process, which is a foreign matter removing process, through a filter having a pore size of 1 ⁇ m.
  • a filtering process which is a foreign matter removing process, through a filter having a pore size of 1 ⁇ m.
  • the filter type, material and shape of the present filtering process are not particularly limited.
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 10 to 15 ⁇ m.
  • Example 1 As in Example 1, the composition was changed to 3,288.28 g (15.07 mol) of PMDA [Pyromellitic Dianhydride] and 1,108.88 g (3.77 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride].
  • Example 2 As in Example 1, the composition was changed to 3,783.63 g (17.35 mol) of PMDA [Pyromellitic Dianhydride] and 567.08 g (1.93 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride].
  • the filter size was changed to a filter having a 0.5 ⁇ m specification.
  • Example 2 As in Example 1, the composition was changed to 2,360.98 g (10.82 mol) of PMDA [Pyromellitic Dianhydride] and 2,123.14 g (7.22 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride].
  • N, N-dimethylacetamide As the reactor was charged with 39,000 g of N, N-dimethylacetamide (DMAc) while passing nitrogen through a 50L reactor equipped with a stirrer, a nitrogen injection device, a differential injection device, a temperature controller, a cooler, and a filtering system, the temperature of the reactor was 25 ° C.
  • P-PDA para-Phenylene Diamine] 2,013.55g (18.62mol) is added using a differential injector. Thereafter, stirring was performed to dissolve and the solution was kept at 25 ° C. Then, 1,000 g of N, N-dimethylacetamide (DMAc) is used to wash away the undissolved p-PDA remaining in the reactor wall and the stirrer and dissolve in the solution.
  • the temperature of the reactor is raised to about 40 ⁇ 80 °C stirred for smooth and sure dissolution of the solution.
  • inert gas such as argon or nitrogen is blown at the bottom of the reactor. It is added as a bubble to the solution inside the reactor to add the lowest stirring performance of the reactor, which is a blind spot of the stirring performance.
  • the temperature of the reactor was adjusted to 25 ° C., and 1,926.38 g (8.83 mol) of PMDA [Pyromellitic Dianhydride] was added using a fine powder injector.
  • PMDA Polyromellitic Dianhydride
  • the above amount may be introduced at a time, or may be divided into 2 to 5 times at regular time intervals (10 minutes to 3 hours).
  • the reaction progress or polymerization degree is indirectly tested through the viscosity, etc., and surplus amount is added step by step by 0.5wt%.
  • the method is advantageous.
  • N, N-dimethylacetamide (DMAc) is used to wash away the undissolved PMDA remaining in the reactor wall and agitator and dissolve in solution.
  • the total amount of N, N-dimethylacetamide (DMAc) required during each showering step is 1,500 g.
  • the temperature of the reactor is raised to about 40 ⁇ 80 °C stirred.
  • an inert gas such as argon or nitrogen is blown to the bottom of the reactor so that the solution inside the reactor is bubbled.
  • the polymerized solution is subjected to a filtering process, which is a foreign matter removing process, through a filter having a pore size of 1 ⁇ m.
  • the filter type, material and shape of the present filtering process are not particularly limited.
  • the obtained polyamic acid solution was vacuum degassed, cooled to room temperature, cast to a thickness of 60-100 ⁇ m on a stainless plate and dried for 10 minutes with hot air at 150 ° C. Then, the mixture was heated up to 450 ° C., heated for 30 minutes, and slowly cooled to separate from the support to obtain a polyimide membrane having a thickness of 10 to 15 ⁇ m.
  • the composition was changed to 725.11 g (3.32 mol) of PMDA [Pyromellitic Dianhydride] and 3,912.39 g (13.30 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride].
  • the composition was changed to 355.57 g (1.63 mol) of PMDA [Pyromellitic Dianhydride] and 4,316.59 g (14.67 mol) of BPDA [3,3 ', 4,4'-Biphenyltetracarboxylic Dianhydride].
  • the filter size was changed to a filter having a 3 ⁇ m specification.
  • Example 1 Same as Example 1 above, but the inert gas bubble process was not performed during the dissolution process after the raw material input.
  • the sample Prior to measuring the thermal expansion rate, the sample was annealed at 450 ° C. for 10 minutes.
  • the method of measuring the coefficient of thermal expansion was performed by cutting a portion of the polyimide coating layer sample into a width of 4mm ⁇ length 24mm and measuring the coefficient of thermal expansion (Coefficient of thermal expansion) using a Thermo Mechanical Apparatus of TA.
  • the sample was placed on a support and subjected to a force of 50 mN, and then heated at a temperature increase rate of 5 ° C./min from 50 ° C. to 450 ° C. in a nitrogen atmosphere to measure thermal expansion rate.
  • the coefficient of thermal expansion was calculated to the first decimal place within the range of 50 ° C to 450 ° C and the unit is expressed as [ppm / ° C].
  • Pyrolysis temperature was measured by using a TGA measuring device of Perkin Elmer. After cutting the imide membrane into the size of 3mm ⁇ 3mm and placing it on the pre-treated and weighed fan, it was insulated for 30 minutes at 110 ° C, cooled to room temperature, and again heated to 600 ° C at a rate of 5 ° C per minute to measure the weight loss . The pyrolysis temperature was calculated by setting the weight reduction ratio to 1% of the weight of the first loaded imide membrane.
  • the diluted 400 g solution was added with vacuum and filtered through a 0.5 ⁇ m filter.
  • the filter is dried at about 80 ° C. oven. However, at this time, the sealing should be carried out as much as possible so that no foreign matter is introduced.
  • the dried filter is counted by using an optical microscope.
  • Example 1 70 30 100 0 0 1, 1 time 0.98 525 12 21
  • Example 2 80 20 100 0 0 1, 1 time 1.58 533 12 24
  • Example 3 90 10 100 0 0 1, 1 time -2.50 535 10 17
  • Example 4 70 30 100 0 0 1, 2 times 0.98 525 11 9
  • Example 5 70 30 100 0 0 0.5, once 0.98 525 12 5
  • Example 6 60 40 100 0 0 1, 1 time 2.54 522 11 20
  • Reference Example 1 50 100 0 0 1, 1 time 6.35 520 11 18
  • Reference Example 2 40 60 100 0 0 1, 1 time 13.6 515 10 21
  • Reference Example 3 30 70 100 0 0 1, 1 time 16.69 513 11 10 Reference Example 4 20 80 100 0 0 1, 1 time 17.68 505
  • the polyamic acid solution according to the embodiment of the present invention had no problem in imidization and coating.
  • the polyimide coating layer obtained from the polyamic acid solution according to Examples 1 to 6 has a thermal expansion coefficient measurement value of 5 ppm / ° C. or lower and a pyrolysis temperature of 500 ° C. or higher in a temperature range of 50 to 450 ° C., thus ensuring volatilization while maintaining excellent dimensional stability in a high temperature process. It can be expected not to cause a substance.
  • the polyimide coating layer formed of the polyamic acid solution according to Reference Examples 1 to 5 to Reference Examples 8 to 9 has a satisfactory thermal decomposition temperature, but the thermal expansion rate exceeds 5 ppm / ° C. It can be seen that it will be less optimal when used in the formation of the base layer or the protective layer.
  • the polyimide coating layer according to Reference Examples 6 to 7 has more than 30 foreign matters, which is very likely to cause deterioration of display properties or defects during display manufacturing. It will be appreciated that it will be less optimal in use.
  • the polyamic acid solution can be applied to the substrate layer or the protective layer for a display device that requires flexibility, in particular, it can be seen that the polyamic acid solution according to the embodiments is optimal.
  • the polyimide coating layer formed of the polyamic acid solution does not need to use an adhesive on a support plate (metal foil, glass plate, etc.) used for fixing, it can be seen that an additional process for adhesion does not occur, thereby simplifying the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 폴리아믹산 용액 및 표시소자에 관한 것으로, 표시소자의 기재층 또는 보호층으로 사용할 수 있는 폴리아믹산 용액과 이의 이미드화막을 포함하는 표시소자에 관한 것으로, 낮은 열팽창율과 높은 열분해온도로 열적 특성이 우수하여 표시소자의 기재층 또는 보호층으로 적용될 수 있는 폴리아믹산 용액에 관한 것이다.

Description

폴리아믹산 용액
본 발명은 폴리아믹산 용액 및 그 제조 방법에 관한 것으로, 각종 표시소자의 기재층 또는 보호층으로 사용할 수 있는 폴리아믹산 용액에 관한 것이다.
언제 어디서나 정보를 접할 수 있는 유비쿼터스(ubiquitous) 시대로 접어들고 있고, 컴퓨터, 통신, 정보가전기기가 융합 또는 복합되고 있는 디지털 컨버전스(digital convergence)가 급속히 진행되고 있다. 이에 따라 전자 정보 기기와 인간의 인터페이스 역할을 하는 디스플레이(display)의 중요성이 더욱 커지고 있다. 이와 아울러 고해상도를 가지면서도 고휘도, 고선명한 화상정보에 대한 요구가 더욱 강해지고 있고 이에 부합되는 대화면의 액정디스플레이(Liquid crystal display), 플라즈마 디스플레이(plasma display), 유기발광다이오드(OLED) 등이 경쟁하고 있다.
최근에는 휴대를 목적으로 하는 차세대 디스플레이 중 하나로 휘거나 구부릴 수 있는 디스플레이(Flexible Display)가 주목을 받고 있다. 이러한 구부리거나 휘는 타입의 디스플레이가 가능하기 위해서는 기존의 유리 기판을 대신하여 유연성을 지닌 새로운 소재의 기판이 요구되고 있다.
현재 개발된 플렉서블 디스플레이의 형태는 수동형 또는 능동형 구동소자를 기반으로 하여 LCD, OLED, EPD와 같은 방식으로 발전되고 있다. 이들은 플렉서블(flexible)한 고분자 소재 기판 상에 수동형 또는 능동형 구동소자를 구조물로 얹어서 디스플레이가 구동되는 방식이며 점차 수동형 보다는 화소구현이 정밀한 능동형으로 관심이 옮겨가고 있는 중이다. 특히 능동형 플렉서블 디스플레이는 고분자 소재 기판 상에 게이트, 절연막, 소스, 드레인을 구조화시키고 최종적으로 전극과 표시소자를 장착함으로써 디스플레이의 단위 소자를 구성한다. 그러나 상기의 능동형 디스플레이 소자를 제작하기 위해서는 대부분의 제조 공정이 고온에서 수행되는 경우가 많으므로 내열성이 없는 고분자 기판 소재를 사용한다면 소자 제작시 고분자 소재 기판의 치수가 변형되기 쉽고 열적 변성을 일으키므로 회로 패턴의 얼라인먼트가 맞지 않는다거나, 고분자 기판의 표면 특성에 변화를 일으키므로 디스플레이용 기판으로 사용하기에 문제가 있었다.
따라서, 플렉서블 디스플레이용으로 여러 가지 고내열 플라스틱 소재의 개발이 시도되고 있고, 대표적인 내열성 플라스틱 소재로서 폴리에틸렌나프탈레이트(PEN), 폴리에테르술폰(PES) 폴리카보네이트(PC)등이 있으나, 이들 플라스틱 소재도 역시 유리전이온도(Tg)가 300℃ 미만 수준이며 Tg까지 열팽창율(Coefficient of Thermal Expansion)이 20~60ppm/℃이므로 300℃이상의 고온에서 치수 안정성이 좋지 않고, 이를 바탕으로 소자를 제작할 시에는 디스플레이 품질에 좋지 않은 영향을 끼칠 가능성이 있다 (John Scheirs and Timothy E. Long, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, 2004); 및 Sumilite FS-1300, Sumitomo Bakelite Catalogue).
또한 상기 소재의 플라스틱 필름을 사용할 경우 자체에 지지력이 없으므로 금속박 또는 유리판 위에 접착시켜서 디스플레이 소자를 제작하여야 하며 이 경우 접착제를 이용하여 플라스틱 필름과 금속박 또는 유리판과의 접착 및 박리공정이 추가로 발생하는 단점이 있고 접착이 원만하게 되지 않을 경우 평활도에 문제가 생길 수도 있다.
이러한 점을 고려하여 본 출원인은 낮은 열팽창율을 가지며 강성도와 탄성률이 우수하여 표시소자의 기재층 또는 보호층으로 적용될 수 있는 폴리아믹산 용액에 대하여 기 특허출원한바 있다(국내특허공개 10-2010-0080301호). 그런데 여기서는 충분히 낮은 정도의 열팽창율과 고온에서의 치수안정성을 충족하지는 못하였다.
본 발명은 500℃ 이상의 고온에서도 치수안정성이 우수한 플렉서블 디스플레이용 고분자 소재로서, 내열성이 우수하고 낮은 열팽창율을 가지는 표시소자의 기재층 또는 보호층에 사용될 수 있는 고분자 소재를 제공하고자 한다.
또한 본 발명에서 제공하고자 하는 폴리아믹산은 액상형태로 제공되는데, 이것은 필름 형태로 제공 될 경우 필름 자체에는 형태를 유지할 수 있는 지지력이 없으므로 금속박 또는 유리판 위에 접착시켜서 디스플레이 소자를 제작하여야 하며 이 경우 접착제를 이용하여 고분자 필름과 금속박 또는 유리판과의 접착 및 박리 공정이 추가로 발생하는 단점이 있고 접착이 원만치 않을 경우 평활도에 문제가 생길 수 있기 때문이다. 그리고 현재의 디스플레이 소자 제작 공정은 그 공정 온도가 450℃ 수준으로 고온 공정으로 이뤄진다. 그런데 이때 상기와 같은 금속박 또는 유리판과 접착하는 방식을 할 경우 그 접착제가 상기의 고온에 접합한 접착제가 존재 하지 않으므로 상기와 같은 방식은 실공정에 적합하지 않다.
따라서 본 발명에서 제공하고자 하는 폴리아믹산은 필름형태가 아닌 액상 형태로 제공되어 전처리된 세라믹 지지체상 혹은 유리판 등(기타 다른 지지체라도 상관 없음은 물론이다.)에 도포되어 건조된 후 이미드화 막을 형성하게 되고, 이것은 전처리된 세라믹 지지체상 혹은 유리판 등(기타 다른 지지체라도 상관 없음은 물론이다.)에서 형태를 유지하고 표시소자를 제조하기 위한 공정을 용이하게 하기 위해서이다.
또한 본 발명은 높은 열분해 온도와 낮은 열팽창율을 갖는 플라스틱 소재로부터 제공되기 위해 그 소재의 상용화를 위한 제조 방법을 제공하고자 한다.
상용화를 위한 제조 방법이라 함은 실험실 스케일에서의 제조가 아닌 실제 디스플레이 소자 제작 공정에 적용가능한 스케일에서의 제조 방법을 말하며, 본 발명에서는 50L(용액 기준)의 스케일을 사용하였으나, 그 스케일의 기준은 5L(용액 기준)이상이면 특별히 한정되지는 않는다.
상용화를 위해서는 폴리아믹산 제조 공정 등에서 발생할 수 있는 이물 등 역시 특화 되어야 한다. 그 이유로는 디스플레이 소자 제작 공정상 이물의 존재는 제작 실패 또는 불량의 발생 원인으로 작용하여 그 제작 수율 등에 막대한 영향을 미치기 때문이다.
이에 본 발명은 바람직한 제1구현예로서 방향족 디안하이드라이드류와 방향족 디아민류의 반응 생성물이고, 이미드화막 형성시 50~450℃의 온도범위에서의 열팽창율(Thermal Expansion Coefficient)이 5ppm/℃ 이하이고, 열중량분석기에 의해 열분해 측정시 중량감소비율이 1%에 도달되는 시점의 온도로 정의되는 열분해온도가 500℃ 이상인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액을 제공한다.
상기 구현예에 의한 폴리아믹산 용액은 점도가 50∼5,000 poise인 것일 수 있다.
상기 구현예에서, 반응 생성물은 방향족 환 사이에 -O-, -CO-, -NHCO-, -S-, -SO2-, -CO-O-, -CH2- 및 -C(CH3)2- 사슬을 포함하지 않는 경성 방향족 디안하이드라이드류와 경성 방향족 디아민류의 반응 생성물인 것이 바람지하다.
구체적인 일 구현예에서, 반응 생성물은 방향족 디아민류로 파라-페닐렌디아민, 방향족 디안하이드라이드류로 피로멜리트산무수물과 비페닐테트라카르복실산무수물과의 반응 생성물이며, 바람직한 일 구현예에서 반응 생성물은 비페닐테트라카르복실산무수물을 방향족 디안하이드라이드류 중 최대 40몰%로 포함하는 것이다.
본 발명의 일 구현예에서 반응 생성물은 제조 스케일이 한번 중합 시 5L 이상인 상업적인 고려를 수반한다.
제조방법적 고려에 있어서 본 발명의 일 구현예에서, 반응 생성물은 반응 용매의 필요량을 분할 투입하여, 분말형태의 방향족 디안하이드라이드류 및 방향족 디아민류 원료 투입 후에 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 분말형태의 원료를 씻어 내리며 용액에 용해시키는 샤워링 공정을 포함하여 얻어진 것일 수 있다.
추가적으로, 반응 생성물은 샤워링 공정 이후로 반응기의 온도를 40~80℃가량으로 승온하여 교반하는 공정을 포함하여 얻어진 것인일 수 있다.
또한 별도로 또는 추가적으로, 반응 생성물은 원료 투입 후 용해과정 중에 반응기 최하단에 불활성 가스를 불어 넣어 버블링하는 공정을 포함하여 얻어진 것일 수 있다.
본 발명의 일 구현예에서는 상기한 일 구현예들로부터 얻어진 폴리아믹산 용액으로부터 형성된 폴리이미드 코팅층을 제공한다.
본 발명의 예시적인 일 구현예에서는 이러한 폴리이미드 코팅층을 보호층으로 포함하는 표시소자 또는 이러한 폴리이미드 코팅층을 기재층으로 포함하는 표시소자를 제공한다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 바람직한 일구현예로서 방향족 디안하이드라이드와 방향족 디아민의 반응생성물이며, 이미드화막 형성후 50~450℃의 온도범위에서 열팽창율(Thermal Expansion Coefficient)이 5ppm/℃ 이하이며, 열분해 온도가 500℃이상인 폴리아믹산 용액을 제공한다. 여기서, 열분해 온도는 열중량분석기에 의해 열분해 측정시 중량감소비율이 1%에 도달되는 시점의 온도, 즉 Td 1%로 정의된다.
상기 온도범위 내에서의 열팽창율 및 열분해온도는 폴리아믹산 용액을 도포한 후 이미드화한 이미드화막을 표시소자의 기재층이나 보호층으로 적용할 때 표시소자의 제조 공정을 거치면서 겪게 되는 열적 환경변화를 모사한 것으로 고온에서의 치수안정성 및 열분해 안정성을 고려한 것이다.
표시소자에 있어서 기재층은 표시소자 제조공정 과정상 고온 환경에 반복 노출되는데, 이 때 열팽창이 작을수록 표시소자를 제조하는데 유리하고 또한 제조공정을 용이하게 설계하기 위해서는 공정온도 범위 내에서 휘발성 분해 물질을 유발하지 않아야 한다.
즉, 전극 및 구동소자 등을 제조하는 공정에 있어서 고분자 소재의 열팽창이 세라믹 지지체 및 구동소자의 열팽창에 비해 클 경우 회로 작업이 불가능하게 되고, 표시 장치가 휘게 되며 구동 소자 등과 미스얼라인먼트(Misalignment)가 발생 되는 점을 고려할 때, 폴리아믹산 용액은 이미드화 막을 형성하였을 때 50∼450℃에서 측정된 열팽창율이 5ppm/℃ 이하인 것이 바람직하다. 또한 고온 공정을 겪으면서 고분자 소재가 열분해에 의한 휘발성 유기물을 생성시킨다면 제조 설비 등을 오염시키게 되므로 제조 공정 자체가 실시 불가능하게 될 수 있다. 따라서 열분해 온도, 특히 소량의 중량감소를 전제로하는 열분해온도가 높은 고분자 소재를 사용해야만 고온에서 소자 제작이 가능하다.
그리고 고분자 소재 자체에 이물이 다량 존재한다면 표시 소자 제조 공정 중 회로 작업이 불가능해 질 수도 있고, 작업이 가능하더라도 그 이물 부위가 불량으로 작용하여 최종 디스플레이의 불량으로 발생될 수 있다.
따라서 고분자 소재 자체에 제조 공정 중에 이물을 줄이거나 없앨 수 있는 특별한 조성, 조건 및 공정이 반드시 수반되어야 한다.
이러한 폴리아믹산 용액을 제공하기 위하여, 폴리아믹산 용액은 방향족 환 사이에 연성 사슬(flexible chain)이 존재하지 않는 디안하이드라이드 및 디아민 단량체(이하 경성 단량체)의 중합으로부터 얻어진 것일 수 있다. 여기서, 경성 단량체라 함은 구체적으로는 방향족 환의 사이에 -O-, -CO-, -NHCO-, -S-, -SO2-, -CO-O-, -CH2-, -C(CH3)2- 사슬, 즉 연성 사슬이 존재하지 않은 단량체로서 정의되어질 수 있다.
예를 들면, 디안하이드라이드로서 비페닐테트라카르복실산 이무수물(3,3',4,4'-Biphenyltetracarboxylic Dianhydride, BPDA), 파이로멜리트산 이무수물(Pyromellitic dianhydride; 1,2,4,5-benzenetetracarboxylic dianhydride, PMDA) 등이 있고, 디아민으로는 p-페닐렌디아민(para-Phenylene Diamine, pPDA), 아미노페닐아미노벤족사졸(2-(4-aminophenyl)-5-aminobenzoxazole, APAB) 등이 있는데, 이중 바람직하기로는 p-페닐렌디아민이다.
통상 디아민과 디안하이드라이드는 1:0.9 내지 0.9:1 몰비로 사용될 수 있으며, 이상 설명한 목적을 충족시키기 위한 단량체 몰비 범위 내에서라면 디안하이드라이드와 디아민을 각각 1종 사용하거나, 디안하이드라이드를 2종 이상 사용하고 디아민을 1종 이상 사용하거나, 디아민을 2종 이상 사용하고 디안하이드라이드를 1종 이상 사용하여도 무방하다. 특히 열팽창계수를 낮추고 열분해온도를 높이는 측면에서 좋기로는 비페닐테트라카르복실산 이무수물을 방향족 디안하이드라이드류 중 최대 40몰%로 포함하는 것이 바람직하다.
폴리이미드의 전구체인 폴리아믹산 용액을 중합할 때 유기용매 중에 디안하이드라이드 성분과 디아민 성분을 거의 등몰량이 되도록 하여 용해하여 반응시켜 폴리아믹산 용액을 제조할 수 있다.
반응시의 조건은 특별히 한정되지 않지만 반응 온도는 -20~80℃가 바람직하고, 반응시간은 2~48시간이 바람직하다. 또한 반응시 아르곤이나 질소 등의 불활성 분위기인 것이 보다 바람직하다.
상기 폴리아믹산 용액의 중합반응을 위한 유기용매는 폴리아믹산을 용해하는 용매이면 특별히 한정되지 않는다. 공지된 반응용매로서 m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트 중에서 선택된 하나 이상의 극성용매를 사용한다. 이외에도 테트라하이드로퓨란(THF), 클로로포름과 같은 저비점 용액 또는 감마-부티로락톤과 같은 저흡수성 용매를 사용할 수 있다.
상기 유기용매의 함량에 대하여 특별히 한정되지는 않으나, 적절한 폴리아믹산 용액의 분자량과 점도를 얻기 위하여 유기용매는 전체 폴리아믹산 용액 중 50~95중량%가 바람직하고, 더욱 좋게는 70~90중량%인 것이 보다 바람직하다.
이와 같이 제조된 폴리아믹산 용액을 이미드화하여 제조된 폴리이미드 수지는 열안정성을 고려하여 유리전이온도가 300℃이상인 것이 바람직하다.
즉, 폴리이미드계 고분자는 잘 알려진 고내열 소재로써 높은 Tg와 낮은 열팽창율을 보이므로 400℃ 이상의 온도에서 TFT등을 제작할 수 있으므로 폴리아믹산 용액을 도포 및 경화한다면 패턴형성에 유리하고, 접착제를 사용하지 않고도 지지체 상에 고정시킬 수 있으므로 쉽게 평활도를 유지할 수 있으며 결국 플렉서블 디스플레이 구현에 매우 유리한 소재일 수 있다.
아울러 폴리아믹산 용액을 이용하여 폴리이미드 코팅층으로 제조시, 폴리이미드 코팅층의 표면특성, 열전도성과 같은 여러 가지 특성을 개선시킬 목적으로 폴리아믹산 용액에 충전제를 첨가하는 기존 발명의 경우 이런 충전제가 디스플레이소자 공정 중 불량으로 작용할 수 있고, 최종적으로 디스플레이의 불량 혹은 수율 저하를 불러 올 수 있으므로 본 발명에서는 그 어떤 충전제도 첨가하지 않는 것으로 한정한다.
그리고 상기와 같이 충전제를 첨가하지 않더라도 폴리아믹산 제조 공정 중 등에서 이물 등이 발생 혹은 침입할 수 있으므로, 그 이물의 해결 방안으로는 필터링 공정을 거치는 것 등이 될 수 있다.
그 필터링 공정은 통상의 공정으로 사용가능해 지고 특별히 한정되어지지 않는다. 단, 그 필터의 포어 크기는 반드시 10㎛이하의 것을 사용하여야 하며 좋기로는 1㎛이하를 사용하는 것이 유리 할 것이다.
폴리아믹산 용액으로부터 이미드화막을 제조하는 방법은 플렉시블 디스플레이 제조공정을 모사한 방법을 사용할 수 있는데, 폴리아믹산 용액을 지지체에 균일하게 도포한 후 이미드화하는 방법을 들 수 있다. 즉, 디스플레이 소자 제조공정은 일반적으로 기재층 윗면에 전극 및 표시부 등이 순차적으로 적층되는 순서로 진행되는바 폴리아믹산 용액을 기재층으로 적용하는 일 방법으로는 별도의 지지체 위에 폴리아믹산 용액을 코팅하고 이미드화하여 이미드화막을 제조하고 이미드화막 상에 통상의 방법에 따른 표시소자 적층 공정을 수행한 후 최종적으로 지지체를 박리해내는 방법을 들 수 있다. 이러한 경우라면 필름형태의 플라스틱 소재를 기판을 적용한 것에 비해 기재층의 평탄성을 높일 수 있는 측면에서 유리할 수 있다.
거기에 필름형태라면 지지체와 추가의 접착층이 존재하여야 하는데 현 디스플레이 소자 공정의 고온에서 사용가능한 접착층은 현재까지는 존재하지 않으므로 본 발명에서 제시하는 지지체에 폴리아믹산 용액을 도포하는 방식이 유일한 방법일 것이다.
또한 상기 폴리아믹산 용액을 표시소자에 적층된 부품상에 도포하여 이미드화한 폴리이미드 코팅층을 보호층으로 적용할 수도 있다.
이때 도포작업성과 코팅균일성을 고려하여 폴리아믹산 용액의 점도는 50~5,000 poise인 것이 바람직할 수 있다.
이 점도의 경우 도포방식 및 요구되는 이미드화막 두께 등에 의해 결정되어 질 수 있다.
또한 본 발명은 상용화가 가능한 스케일의 제조 방법으로 Batch Type으로 5L(용액 기준)이상을 한번에 중합할 수 있는 스케일의 제조 방법을 제시한다.
이와 같은 큰 스케일(5L 이상)의 경우 그 이하의 실험실 스케일일 때와 다르게 반응기 및 반응 방법에서 특별한 방식이 요구된다. 가장 차이가 큰 부분이 바로 분말형태의 원료용해이다. 큰 스케일의 반응기에서는 통상 그 교반 능력의 한계로 인해 원료의 용해가 원할지 않다. 따라서 본 발명에서는 이와 같은 부분에 대한 해결책 역시 제시한다.
본 발명에서는 반응 용매의 필요량을 초기 투입시 모두 투입하지 않고 일정양을 제외한 량만 초기에 투입한다. 그리고 모든 분말형태의 원료 투입 후에 용액의 원활하고 확실한 용해를 위해 각 분말형태의 원료 투입 후 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 분말형태의 원료를 씻어 내리며 용액에 용해 시킨다. 이 과정을 샤워링 공정이라고 칭한다. 그리고 각 샤워링 공정 후에 추가의 방법으로 상기의 반응기의 온도를 40~80℃가량으로 승온하여 교반한다. 또 본 발명과 같은 상용화를 위한 큰 스케일의 반응기의 경우 그 교반 성능의 한계로 인해 반응기 최저 부위에 미용해물이 존재할 가능성이 많으므로 부가적인 방법으로 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 하여 교반 성능의 사각지대인 반응기의 최하단의 교반 성능을 추가한다. 이를 버블링 공정이라 한다.
이때의 불활성 가스의 투입량은 그 투입 밸브 형태 및 용액의 점도에 따라 다양하게 사용될 수 있다.
상기와 같은 반응기 승온, 샤워링 공정 및 불활성 가스 버블링 공정 등의 용해 방법은 용액의 용해 상태에 따라 모두 진행 될 수도 있고, 1개 이상의 방법만 사용될 수도 있고, 모두 사용될 수도 있다.
그러나 좋기로는 반응기 승온, 샤워링 과정 및 불활성 가스 버블 투입 등의 용해 방법을 모두 사용하는 것이 유리하다.
이와 같이 얻어진 폴리아믹산 용액은 용액 40g을 기준할 때 0.5㎛ 이상의 이물이 30개 이하로, 이물이 거의 없다. 여기서 이물이라 함은 광학현미경(배율 약 50~500배)을 통해 육안으로 측정된 이물들이다.
이러한 폴리아믹산 용액을 코팅하여 이미드화함으로써 폴리이미드 코팅층을 형성할 수 있는데, 이미드화막 형성시 적용가능한 이미드화법으로는 열이미드화법, 화학이미드화법, 또는 열이미드화법과 화학이미드화법을 병용하여 적용할 수 있다. 화학이미드화법은 폴리아믹산 용액에 아세트산무수물 등의 산무수물로 대표되는 탈수제와 이소퀴놀린, 베타-피콜린, 피리딘 등의 3급 아민류 등으로 대표되는 이미드화 촉매를 투입하여 이미드화하는 방법이다. 열이미드화법 또는 열이미드화법과 화학이미드화법을 병용하는 경우 폴리아믹산 용액의 가열 조건은 폴리아믹산 용액의 종류, 요구되는 이미드화막 두께 등에 의하여 변동될 수 있다.
열이미드화법과 화학이미드화법을 병용하는 경우 이미드화막 형성방법의 예를 보다 구체적으로 설명하면, 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입하여 별도의 지지체상에 캐스팅한 후 80~200℃, 바람직하게는 100~180℃에서 가열하여 탈수제 및 이미드화 촉매를 활성화함으로써 부분적으로 경화 및 건조한 후 200∼400℃에서 1∼120분간 가열함으로써 이미드화막을 얻을 수 있다.
이와 같은 이미드화막 상에 전술한 방법으로 표시소자 부품 등을 순차적으로 적층할 수도 있고, 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입한 용액을 표시소자 부품상에 도포한 다음 이미드화막을 형성하여 보호층으로 적용할 수 있다.
이상 설명한 바와 같이 폴리아믹산 용액을 표시소자에 적용함으로써 열적 안정성이 우수하며 적절한 유연성과 기계적 강도를 지닌 표시소자를 제공할 수 있다.
이하, 본 발명을 실시예를 통하여 보다 상세히 설명하나, 본 발명의 범위가 하기 실시예로 한정되는 것은 아니다.
<실시예 1>
반응기로써 교반기, 질소주입장치, 미분 주입 장치, 온도조절기, 냉각기 및 필터링 시스템를 부착한 50L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 39,000g을 채운 후, 반응기의 온도를 25℃로 맞추고 p-PDA [para-Phenylene Diamine] 2,013.55g (18.62mol)을 미분 주입장치를 이용해 투입한다. 이 후 교반을 실시하며 용해하여 이 용액을 25℃로 유지하였다. 그리고 N,N-디메틸아세트아미드(DMAc) 1,000g을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 p-PDA를 씻어 내리며 용액에 용해시켰다. 이때 용액의 원활하고 확실한 용해를 위해 반응기의 온도를 40~80℃가량으로 승온하여 교반한다. 또 부가적인 방법으로 본 발명과 같은 상용화를 위한 큰 스케일의 반응기의 경우 그 교반 성능의 한계로 인해 반응기 최저 부위에 미용해물이 존재할 가능성이 많으므로 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 하여 교반 성능의 사각지대인 반응기의 최하단의 교반 성능을 추가한다.
이후 상기의 p-PDA 완전 용해를 확인 한 후 다시 반응기의 온도를 25℃로 맞추고 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 1,627.06g(5.53mol)을 미분 주입장치를 이용해 투입한다. 이 후 교반을 실시하며 용해하여 이 용액을 25℃로 유지하였다. 그리고 N,N-디메틸아세트아미드(DMAc) 2,000g을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 BPDA를 씻어 내리며 용액에 용해시킨다. 반응기의 온도는 40~80℃가량으로 승온하여 교반한다. 또 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 한다.
이후 상기의 BPDA 완전 용해를 확인 한 후 다시 반응기의 온도를 25℃로 맞추고 PMDA [Pyromellitic Dianhydride] 2,814.52g(12.90mol)을 미분 주입장치를 이용해 투입한다. 이때 PMDA의 경우 상기의 량을 한번에 투입하여도 되고 일정 시간 간격(10분~3시간)을 두고 2~5번에 나눠서 투입하여도 된다.
좋기로는 최종 투입량의 약 99wt%를 먼저 투입하고 일정 시간(30분에서 1시간) 반응 후 그 점도등을 통해 반응진행 정도 혹은 중합도를 간접적으로 테스트 후 잉여량을 0.5wt%씩 단계별로 투입하는 방법이 유리하다.
각 투입 단계 별로 N,N-디메틸아세트아미드(DMAc)을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 PMDA를 씻어내리며 용액에 용해시킨다. 이 샤워링 과정의 경우 PMDA의 단계가 2~5번에 해당하므로 매 단계의 샤워링 과정 시에 소요 N,N-디메틸아세트아미드(DMAc) 량의 총량은 1,500g으로 한다.
반응기의 온도는 40~80℃가량으로 승온하여 교반한다. 또 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 한다.
마지막으로 상기와 같은 방법으로 중합된 용액을 포어 크기가 1㎛인 필터를 통해 이물제거 공정인 필터링 공정을 거친다. 본 필터링 공정의 필터 타입, 재질 및 형태는 특별히 한정받지 않는다.
이후 24시간동안 교반하여 점도 100 poise의 폴리아믹산 용액(Mw = 110,000)을 얻었다. 이때 폴리아믹산 용액의 점도측정은 브룩필드 비스코미터를 이용하여 측정한 값이다.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 10~15㎛의 폴리이미드 막을 수득하였다.
<실시예 2>
상기의 실시예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 3,288.28g(15.07mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 1,108.88g(3.77mol)로 조성을 변경하여 실시하였다.
<실시예 3>
상기의 실시예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 3,783.63g(17.35mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 567.08g(1.93mol)로 조성을 변경하여 실시하였다.
<실시예 4>
상기의 실시예 1과 동일하되 동일 스펙의 필터로 필터링을 2회 변경 실시하였다.
<실시예 5>
상기의 실시예 1과 동일하되 필터 사이즈를 0.5㎛ 스펙의 필터로 필터링을 변경 실시하였다.
<실시예 6>
상기의 실시예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 2,360.98g(10.82mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 2,123.14g(7.22mol)로 조성을 변경하여 실시하였다.
<참고예 1>
반응기로써 교반기, 질소주입장치, 미분 주입 장치, 온도조절기, 냉각기 및 필터링 시스템를 부착한 50L 반응기에 질소를 통과시키면서 N,N-디메틸아세트아미드(DMAc) 39,000g을 채운 후, 반응기의 온도를 25℃로 맞추고 p-PDA [para-Phenylene Diamine] 2,013.55g (18.62mol)을 미분 주입장치를 이용해 투입한다. 이 후 교반을 실시하며 용해하여 이 용액을 25℃로 유지하였다. 그리고 N,N-디메틸아세트아미드(DMAc) 1,000g을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 p-PDA를 씻어 내리며 용액에 용해시킨다. 이때 용액의 원활하고 확실한 용해를 위해 반응기의 온도를 40~80℃가량으로 승온하여 교반한다. 또 부가적인 방법으로 본 발명과 같은 상용화를 위한 큰 스케일의 반응기의 경우 그 교반 성능의 한계로 인해 반응기 최저 부위에 미용해물이 존재할 가능성이 많으므로 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 하여 교반 성능의 사각지대인 반응기의 최하단의 교반 성능을 추가한다.
이후 상기의 p-PDA 완전 용해를 확인 한 후 다시 반응기의 온도를 25℃로 맞추고 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 2,598.48g(8.83mol)을 미분 주입장치를 이용해 투입한다. 이 후 교반을 실시하며 용해하여 이 용액을 25℃로 유지하였다. 그리고 N,N-디메틸아세트아미드(DMAc) 2,000g을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 BPDA를 씻어내리며 용액에 용해 시킨다. 반응기의 온도는 40~80℃가량으로 승온하여 교반한다. 또 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 한다.
이후 상기의 BPDA 완전 용해를 확인 한 수 다시 반응기의 온도를 25℃로 맞추고 PMDA [Pyromellitic Dianhydride] 1,926.38g(8.83mol)을 미분 주입장치를 이용해 투입한다. 이때 PMDA의 경우 상기의 량을 한번에 투입하여도 되고 일정 시간 간격(10분~3시간)을 두고 2~5번에 나눠서 투입하여도 된다.
좋기로는 최종 투입량의 약 99wt%를 먼저 투입하고 일정 시간(30분에서 1시간) 반응 후 그 점도등을 통해 반응진행 정도 혹은 중합도를 간접적으로 테스트 후 잉여량을 0.5wt%씩 단계별로 투입하는 방법이 유리하다.
각 투입 단계 별로 N,N-디메틸아세트아미드(DMAc)을 이용하여 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 PMDA를 씻어내리며 용액에 용해 시킨다. 이 샤워링 과정의 경우 PMDA의 단계가 2~5번에 해당하므로 매 단계의 샤워링 과정 시에 소요 N,N-디메틸아세트아미드(DMAc) 량의 총량은 1,500g으로 한다.
반응기의 온도는 40~80℃가량으로 승온하여 교반한다. 또 반응기 최하단에 아르곤이나 질소 등의 불활성 가스를 불어 넣어 반응기 내부의 용액에 버블과 같이 투입되게 한다.
마지막으로 상기와 같은 방법으로 중합된 용액을 포어 크기가 1㎛인 필터를 통해 이물제거 공정인 필터링 공정을 거친다.
본 필터링 공정의 필터 타입, 재질 및 형태는 특별히 한정받지 않는다.
이후 24시간동안 교반하여 점도 100 poise의 폴리아믹산 용액(Mw=110,000)을 얻었다. 이때 폴리아믹산 용액의 점도측정은 브룩필드 비스코미터를 이용하여 측정한 값이다.
플렉시블 디스플레이용 기재층 또는 보호층으로 사용됨을 모사하고 평가하기 위하여, 얻어진 폴리아믹산 용액을 진공 탈포한 후 상온으로 냉각하고 스테인레스판에 60~100㎛의 두께로 캐스팅하여 150℃의 열풍으로 10분간 건조한 후, 450℃까지 승온하여 30분간 가열한 다음 서서히 냉각해 지지체로부터 분리하여 두께 10~15㎛의 폴리이미드 막을 수득하였다.
<참고예 2>
상기의 참고예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 1,509.57g(6.92mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 3,054.38g(10.38mol)로 조성을 변경하여 실시하였다.
<참고예 3>
상기의 참고예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 1,109.48g(5.09mol)와 BPDA [3,3' ,4,4' -Biphenyltetracarboxylic Dianhydride] 3,491.99g(11.87mol)로 조성을 변경하여 실시하였다.
<참고예 4>
상기의 참고예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 725.11g(3.32mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 3,912.39g(13.30mol)로 조성을 변경하여 실시하였다.
<참고예 5>
상기의 참고예 1과 동일하되 PMDA [Pyromellitic Dianhydride] 355.57g(1.63mol)와 BPDA [3,3',4,4' -Biphenyltetracarboxylic Dianhydride] 4,316.59g(14.67mol)로 조성을 변경하여 실시하였다.
<참고예 6>
상기의 실시예 1과 동일하되 필터링을 실시하지 않았다.
<참고예 7>
상기의 실시예 1과 동일하되 필터 사이즈를 3㎛ 스펙의 필터로 필터링을 변경 실시하였다.
<참고예 8>
상기의 실시예 1과 동일하되 p-PDA [para-Phenylene Diamine] 대신에, APAB [2-(4-aminophenyl)-5-aminobenzoxazole] 4,194.12g(18.62mol)로 투입 조성을 변경하여 실시하였다.
<참고예 9>
상기의 실시예 1과 동일하되 p-PDA [para-Phenylene Diamine] 대신에, ODA [3,3-Oxydianilne] 2,013.55g(18.62mol)로 투입 조성을 변경하여 실시하였다
<참고예 10>
상기의 실시예 1과 동일하되 원료 투입 후 샤워링 공정을 실시하지 않았다.
<참고예 11>
상기의 실시예 1과 동일하되 원료 투입 후 용해 과정 중 불활성 가스 버블 과정을 실시하지 않았다.
(1) 열팽창율(Coefficient of Thermal Expansion)
열팽창율의 측정에 앞서서 해당샘플은 450℃에서 10분간 어닐링을 실시하였다. 열팽창율의 측정방법은 폴리이미드 코팅층 샘플의 일부를 폭 4mm ㅧ 길 24mm로 잘라 TA사의 열기계 분석장치(Thermal Mechanical Apparatus)를 이용해 열팽창계수값(Coefficient of thermal expansion)을 측정함으로써 실시하였다. 샘플을 지지대에 걸고 50mN의 힘을 가한 뒤에 질소분위기에서 50℃에서 450℃까지 승온속도 5℃/min으로 가열하여 열팽창율을 측정하였다. 열팽창율은 50℃에서 450℃ 범위 내에서 소수점 첫째자리까지 구하였으며 단위는 [ppm/℃] 으로 표현된다.
(2) 열분해온도
열분해온도는 퍼킨엘머사의 TGA 측정장치를 사용하여 열분해온도를 측정하였다. 3mmㅧ3mm의 크기로 이미드막을 잘게 자르고 전처리 및 칭량된 Fan에 얹은 후 110℃에서 30분간 단열처리하고 상온으로 냉각한 뒤, 다시 600도까지 분당 5℃의 속도로 가열하여 중량감소를 측정하였다. 열분해온도는 중량감소비율이 최초 로딩한 이미드막의 무게대비 1%로 정하여 계산하였다.
(3) 이물
이물 분석은 제작된 제품 40g(370mm * 470mm 크기의 디스플레이 제조시 사용되는 량)을 NMP[N-메틸-2-피롤리돈] 희석시킨다(제품 40g + 용매 360g = 총 400g).
희석된 400g의 용액을 진공을 더하여 0.5㎛ 필터로 필터링을 실시한다. 상기의 필터를 약 80℃오븐에서 건조시킨다. 단, 이때 이물이 추가 유입되지 않도록 밀봉을 최대한 실시한다. 건조된 필터를 광학 현미경등을 사용하여 그 이물의 개수를 센다.
표 1
구분 조성(몰비%) 필터링 열팽창율[ppm/℃] 열분해온도[℃] 두께[㎛] 이물[ea]
디안하이드라이드 디아민
PMDA BPDA p-PDA APAB ODA
실시예 1 70 30 100 0 0 1, 1회 0.98 525 12 21
실시예 2 80 20 100 0 0 1, 1회 1.58 533 12 24
실시예 3 90 10 100 0 0 1, 1회 -2.50 535 10 17
실시예 4 70 30 100 0 0 1, 2회 0.98 525 11 9
실시예 5 70 30 100 0 0 0.5, 1회 0.98 525 12 5
실시예 6 60 40 100 0 0 1, 1회 2.54 522 11 20
참고예 1 50 50 100 0 0 1, 1회 6.35 520 11 18
참고예 2 40 60 100 0 0 1, 1회 13.6 515 10 21
참고예 3 30 70 100 0 0 1, 1회 16.69 513 11 10
참고예 4 20 80 100 0 0 1, 1회 17.68 505 11 27
참고예 5 10 90 100 0 0 1, 1회 17.73 495 11 13
참고예 6 70 30 100 0 0 X 0.98 525 12 50개 이상
참고예 7 70 30 100 0 0 3, 1회 0.98 525 12 50개이상
참고예 8 70 30 0 100 0 1, 1회 9.88 540 11 25
참고예 9 70 30 0 0 100 1, 1회 50.33 525 12 19
참고예 10 70 30 100 0 0 샤워링 과정 X 중합 X (50 poise 이하)
참고예 11 70 30 100 0 0 불활성 가스 버블 과정 X 중합 X (50 poise 이하)
상기 물성 평가 결과, 본 발명의 실시예에 의한 폴리아믹산 용액은 이미드화 및 코팅하는 데는 문제가 없었다. 실시예 1 ~ 6에 의한 폴리아믹산 용액으로부터 얻어지는 폴리이미드 코팅층은 50~450℃ 온도범위에서 열팽창율 측정 결과가 5ppm/℃이하이면서 열분해온도가 500℃이상이므로 고온공정에서 우수한 치수안정성을 확보하면서도 휘발 물질을 유발하지 않음을 기대할 수 있다.
거기에 실시예 1 ~ 6에 의한 폴리이미드 코팅층은 그 이물의 개수 역시 30개 이하로 디스플레이 제조시 그 디스플레이 물성저하나 불량 발생 등을 야기 하지 않음을 기대할 수 있다.
이에 비하여 참고예1 ~ 5 내지는 참고예 8~9에 의한 폴리아믹산 용액으로 형성된 폴리이미드 코팅층은 열분해온도는 만족스러우나 열팽창율이 5ppm/℃을 초과하므로 실시예들에 의한 폴리아믹산 용액에 비해 표시소자의 기재층이나 보호층 형성에 사용시 덜 최적할 것임을 알 수 있다.
그리고 참고예 6~7에 의한 폴리이미드 코팅층은 그 이물의 개수가 30개 초과로 디스플레이 제조시 그 디스플레이 물성 저하나 불량 발생등을 야기 시킬 가능성이 매우 커 디스플레이 표시 소자의 기재층이나 보호층 형성에 사용시 덜 최적할 것임을 알 수 있다.
따라서 폴리아믹산 용액은 유연성이 요구되는 표시소자용 기재층 또는 보호층에도 적용이 가능하며, 특히 실시예들에 의한 폴리아믹산 용액이 최적한 것임을 알 수 있다.
또한, 폴리아믹산 용액으로 형성된 폴리이미드 코팅층은 고정을 위하여 사용되는 지지판(금속박, 유리판 등)에 접착제를 사용할 필요가 없으므로 접착을 위한 추가공정이 발생하지 않아 공정이 간소화될 수 있음을 알 수 있다.
또한, 실시예에 의한 폴리아믹산 용액을 적용하여 표시소자를 제조하는 경우 온도에 크게 구애받지 않으므로, 표시소자 제조공정 설계가 용이함을 알 수 있다.

Claims (12)

  1. 방향족 디안하이드라이드류와 방향족 디아민류의 반응 생성물이고,
    이미드화막 형성시 50~450℃의 온도범위에서의 열팽창율(Thermal Expansion Coefficient)이 5ppm/℃ 이하이고, 열중량분석기에 의해 열분해 측정시 중량감소비율이 1%에 도달되는 시점의 온도로 정의되는 열분해온도가 500℃ 이상인,
    표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  2. 제1항에 있어서, 반응 생성물은 방향족 환 사이에 -O-, -CO-, -NHCO-, -S-, -SO2-, -CO-O-, -CH2- 및 -C(CH3)2- 사슬을 포함하지 않는 경성 방향족 디안하이드라이드류와 경성 방향족 디아민류의 반응 생성물인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  3. 제1항 또는 제2항에 있어서, 반응 생성물은 방향족 디아민류로 파라-페닐렌디아민, 방향족 디안하이드라이드류로 파이로멜리트산 이무수물과 비페닐테트라카르복실산 이무수물과의 반응 생성물인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  4. 제3항에 있어서, 반응 생성물은 비페닐테트라카르복실산 이무수물을 방향족 디안하이드라이드류 중 최대 40몰%로 포함하는 것인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  5. 제1항에 있어서, 점도가 50~5,000 poise인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  6. 제1항에 있어서, 반응 생성물은 제조 스케일이 한번 중합 시 5L 이상인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  7. 제6항에 있어서, 반응 생성물은 반응 용매의 필요량을 분할 투입하여, 분말형태의 방향족 디안하이드라이드류 또는 방향족 디아민류 원료 투입 후에 반응기 벽면 및 교반기 등에 잔존해 있는 미용해 분말형태의 원료를 씻어 내리며 용액에 용해시키는 샤워링 공정을 포함하여 얻어진 것인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  8. 제6항에 있어서, 반응 생성물은 샤워링 공정 이후로 반응기의 온도를 40~80℃가량으로 승온하여 교반하는 공정을 포함하여 얻어진 것인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서, 반응 생성물은 원료 투입 후 용해과정 중에 반응기 최하단에 불활성 가스를 불어 넣어 버블링하는 버블링 공정을 포함하여 얻어진 것인, 표시소자의 기재층 또는 보호층 형성용 폴리아믹산 용액.
  10. 제1항의 폴리아믹산 용액으로부터 형성된 폴리이미드 코팅층.
  11. 제10항의 폴리이미드 코팅층을 보호층으로 포함하는 표시소자.
  12. 제10항의 폴리이미드 코팅층을 기재층으로 포함하는 표시소자.
PCT/KR2012/011460 2011-12-27 2012-12-26 폴리아믹산 용액 WO2013100558A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014549989A JP5976839B2 (ja) 2011-12-27 2012-12-26 ポリアミド酸溶液
CN201280070024.3A CN104114644A (zh) 2011-12-27 2012-12-26 聚酰胺酸溶液
EP12862118.2A EP2799494A4 (en) 2011-12-27 2012-12-26 SOLUTION OF POLYAMIC ACID
US14/369,084 US20140364564A1 (en) 2011-12-27 2012-12-26 Polyamic acid solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110143786A KR101646283B1 (ko) 2011-12-27 2011-12-27 폴리아믹산 용액
KR10-2011-0143786 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013100558A1 true WO2013100558A1 (ko) 2013-07-04

Family

ID=48697925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011460 WO2013100558A1 (ko) 2011-12-27 2012-12-26 폴리아믹산 용액

Country Status (7)

Country Link
US (1) US20140364564A1 (ko)
EP (1) EP2799494A4 (ko)
JP (1) JP5976839B2 (ko)
KR (1) KR101646283B1 (ko)
CN (1) CN104114644A (ko)
TW (1) TW201331267A (ko)
WO (1) WO2013100558A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506611A (ja) * 2014-12-30 2018-03-08 コーロン インダストリーズ インク ポリアミド−イミド前駆体、ポリアミド−イミドフィルム及びこれを含む表示素子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101845148B1 (ko) 2016-03-16 2018-04-03 삼성에스디아이 주식회사 폴리아믹산의 제조방법, 이로부터 제조된 폴리이미드 및 이를 포함하는 디스플레이용 소자
KR20180093203A (ko) 2017-02-10 2018-08-21 삼성디스플레이 주식회사 폴리아믹산, 폴리이미드 필름 및 폴리이미드 필름의 제조 방법
KR101912737B1 (ko) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 레이저 박리 용이성 및 고내열성을 갖는 폴리아믹산 수지의 제조방법 및 이를 이용하여 제조한 폴리이미드 필름
CN109423047A (zh) * 2017-08-28 2019-03-05 苏州聚萃材料科技有限公司 耐热聚酰亚胺薄膜及其制备的显示器基板
KR102264420B1 (ko) 2017-11-03 2021-06-11 주식회사 엘지화학 디스플레이 기판용 폴리이미드 필름
JPWO2019189483A1 (ja) * 2018-03-28 2021-05-13 住友化学株式会社 透明ポリイミド系高分子と溶媒とを含むワニス
JP7361479B2 (ja) * 2018-03-28 2023-10-16 住友化学株式会社 透明ポリイミド系高分子を含む光学フィルム
CN111218584B (zh) * 2018-11-23 2021-08-17 中国科学院金属研究所 一种dz40m合金零件大间隙钎焊修复方法
CN109796761A (zh) * 2018-12-25 2019-05-24 努比亚技术有限公司 显示屏组件、其制备方法和显示终端
KR102013535B1 (ko) * 2018-12-31 2019-08-22 에스케이씨코오롱피아이 주식회사 저장 안정성 및 점도 안정성이 향상된 폴리이미드 전구체 조성물의 제조방법, 이를 이용하여 제조된 폴리이미드 전구체 조성물
CN111363151A (zh) * 2020-04-22 2020-07-03 江苏奥神新材料股份有限公司 一种工业化聚酰胺酸聚合粘度的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124091A (ja) * 2002-09-13 2004-04-22 Kanegafuchi Chem Ind Co Ltd ポリイミドフィルム及びその製造方法並びにその利用
JP2008159896A (ja) * 2006-12-25 2008-07-10 Nippon Steel Chem Co Ltd 配線基板用積層体
KR20100080301A (ko) 2008-12-30 2010-07-08 주식회사 코오롱 폴리아믹산 용액 및 폴리이미드 코팅층
KR20110105659A (ko) * 2010-03-19 2011-09-27 코오롱인더스트리 주식회사 폴리아믹산 용액 및 표시소자

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206639A (ja) * 1984-03-31 1985-10-18 日東電工株式会社 ポリイミド−金属箔複合フイルムの製造方法
JPS61111359A (ja) * 1984-11-06 1986-05-29 Ube Ind Ltd ポリイミド膜
JPS6277921A (ja) * 1985-10-02 1987-04-10 Agency Of Ind Science & Technol 全芳香族コポリイミド一軸配向品
JPS6465132A (en) * 1987-09-07 1989-03-10 Sumitomo Bakelite Co Production of highly viscous polyamic acid
US5166292A (en) * 1991-10-29 1992-11-24 E. I. Du Pont De Nemours And Company Process for preparing a polyimide film with a preselected value for CTE
KR100710099B1 (ko) * 2002-09-13 2007-04-20 카네카 코포레이션 폴리이미드 필름 및 그의 제조 방법 및 그의 이용
WO2006010067A1 (en) * 2004-07-09 2006-01-26 E.I. Dupont De Nemours And Company Polyamic acid cross-linked polymers and formable compositions made therefrom
US7550194B2 (en) * 2005-08-03 2009-06-23 E. I. Du Pont De Nemours And Company Low color polyimide compositions useful in optical type applications and methods and compositions relating thereto
JP5338469B2 (ja) * 2008-05-14 2013-11-13 三菱瓦斯化学株式会社 ポリイミドおよびポリアミック酸
JP2013100379A (ja) * 2010-03-03 2013-05-23 Ube Industries Ltd ポリイミドフィルム及びそれを用いた積層体、並びにフレキシブル薄膜系太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124091A (ja) * 2002-09-13 2004-04-22 Kanegafuchi Chem Ind Co Ltd ポリイミドフィルム及びその製造方法並びにその利用
JP2008159896A (ja) * 2006-12-25 2008-07-10 Nippon Steel Chem Co Ltd 配線基板用積層体
KR20100080301A (ko) 2008-12-30 2010-07-08 주식회사 코오롱 폴리아믹산 용액 및 폴리이미드 코팅층
KR20110105659A (ko) * 2010-03-19 2011-09-27 코오롱인더스트리 주식회사 폴리아믹산 용액 및 표시소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN SCHEIRS; TIMOTHY E., LONG, MODERN POLYESTERS: CHEMISTRY AND TECHNOLOGY OF POLYESTERS AND COPOLYESTERS, 2004
See also references of EP2799494A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506611A (ja) * 2014-12-30 2018-03-08 コーロン インダストリーズ インク ポリアミド−イミド前駆体、ポリアミド−イミドフィルム及びこれを含む表示素子

Also Published As

Publication number Publication date
EP2799494A4 (en) 2015-08-12
KR101646283B1 (ko) 2016-08-08
EP2799494A1 (en) 2014-11-05
CN104114644A (zh) 2014-10-22
JP5976839B2 (ja) 2016-08-24
JP2015503652A (ja) 2015-02-02
US20140364564A1 (en) 2014-12-11
KR20130075423A (ko) 2013-07-05
TW201331267A (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2013100558A1 (ko) 폴리아믹산 용액
WO2018038309A1 (ko) 수지안정성, 내열성이 향상되고 투명성을 갖는 폴리이미드 전구체 수지 조성물, 이를 이용한 폴리이미드 필름 제조방법, 및 이에 의해 제조된 폴리이미드 필름
WO2017176000A1 (ko) 내열성이 개선된 폴리이미드 필름 및 그 제조방법
WO2014168423A1 (en) Polyimide cover substrate
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
EP2342266A2 (en) Polyimide film
WO2017116171A1 (ko) 유연기판용 폴리실세스퀴녹산 수지 조성물
TWI785224B (zh) 聚醯胺酸及其製造方法、聚醯胺酸溶液、聚醯亞胺、聚醯亞胺膜、積層體及其製造方法、與可撓性裝置及其製造方法
CN110621721B (zh) 聚酰胺酸、聚酰亚胺、聚酰亚胺膜、层叠体及挠性器件、以及聚酰亚胺膜的制造方法
WO2017204462A1 (ko) 폴리아미드이미드, 이의 제조방법 및 이를 이용한 폴리아미드이미드 필름
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2018216853A1 (ko) 레이저 박리 용이성 및 고내열성을 갖는 폴리아믹산 수지의 제조방법 및 이를 이용하여 제조한 폴리이미드 필름
WO2013002614A2 (ko) 폴리아믹산, 폴리아믹산 용액, 폴리이미드 보호층 및 폴리이미드 필름
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2016108631A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2019045376A1 (ko) 플렉서블 디스플레이 소자 기판용 폴리이미드 필름
WO2019088441A1 (ko) 디스플레이 기판용 폴리이미드 필름
WO2016108675A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
KR20150108812A (ko) 폴리아믹산 용액
WO2020055182A1 (ko) 플렉서블 디스플레이 제조용 적층체 및 이를 이용한 플렉서블 디스플레이 제조 방법
WO2014104636A1 (en) Polyamic acid solution, imidization film, and display device
WO2019132515A1 (ko) 폴리아믹산의 제조방법, 이로부터 제조된 폴리아믹산, 폴리이미드 수지 및 폴리이미드 필름
WO2019112311A1 (ko) 폴리이미드계 필름의 제조방법 및 이로부터 제조된 폴리이미드계 필름
WO2021117960A1 (ko) 우수한 항복변형 및 굴곡 특성을 갖는 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369084

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012862118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862118

Country of ref document: EP