WO2013099724A1 - ミスト含有ガス分析装置 - Google Patents

ミスト含有ガス分析装置 Download PDF

Info

Publication number
WO2013099724A1
WO2013099724A1 PCT/JP2012/082883 JP2012082883W WO2013099724A1 WO 2013099724 A1 WO2013099724 A1 WO 2013099724A1 JP 2012082883 W JP2012082883 W JP 2012082883W WO 2013099724 A1 WO2013099724 A1 WO 2013099724A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
measured
liquid
mist
measuring
Prior art date
Application number
PCT/JP2012/082883
Other languages
English (en)
French (fr)
Inventor
岡本 真一
長安 弘貢
琢也 平田
勝 千代丸
田中 裕士
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12862677.7A priority Critical patent/EP2799836B1/en
Priority to US14/353,298 priority patent/US9395342B2/en
Publication of WO2013099724A1 publication Critical patent/WO2013099724A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/0054Specially adapted to detect a particular component for ammonia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0013Sample conditioning by a chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • G01N33/004Specially adapted to detect a particular component for CO, CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • G01N2001/2261Sampling from a flowing stream of gas in a stack or chimney preventing condensation (heating lines)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2267Sampling from a flowing stream of gas separating gas from liquid, e.g. bubbles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • G01N2001/4066Concentrating samples by solubility techniques using difference of solubility between liquid and gas, e.g. bubbling, scrubbing or sparging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0026Investigating dispersion of liquids in gas, e.g. fog
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • amines etc. concentrations of amines and ammonia contained in the combustion exhaust gas are measured.
  • the present invention has been made to solve the above-described problem, and it is possible to easily and accurately measure the concentration of the substance to be measured in the target gas containing the mist of the substance to be measured. It aims at providing the mist containing gas analyzer which can be performed.
  • a mist-containing gas analyzer that solves the above-described problems is a mist-containing gas analyzer that measures the concentration of a substance to be measured in a target gas containing the mist of the substance to be measured that circulates in a duct.
  • Pressure measuring means for measuring the pressure of the target gas flowing through the duct
  • temperature measuring means for measuring the temperature of the target gas flowing through the duct
  • target gas flowing through the duct is a mist-containing gas analyzer that measures the concentration of a substance to be measured in a target gas containing the mist of the substance to be measured that circulates in a duct.
  • a flow rate measuring means for measuring the flow rate by radio waves or ultrasonic waves, a moisture content measuring means for measuring the moisture content in the target gas flowing in the duct by infrared light, and a collection liquid for dissolving the substance to be measured
  • a target container sampling means for sampling by sampling the target gas by suction means, and a sample by the target gas sampling means
  • the target gas feeding means for feeding the target gas thus collected into the collection liquid inside the collection container, and the suction speed of the target gas by the suction means were measured by the pressure measurement means.
  • a suction amount control means for controlling the suction means so as to be within a predetermined ratio with respect to the gas flow velocity of the target gas calculated based on the above, and a liquid sorting means for sorting the liquid in the collection container And measuring means for measuring the concentration of the substance to be measured in the liquid sorted by the liquid sorting means.
  • a mist-containing gas analyzer according to the present invention that solves the above-described problems is the mist-containing gas analyzer according to the above-described invention, wherein the substance to be measured is an amine and ammonia.
  • the mist-containing gas analyzer according to the present invention that solves the above-described problem is the mist-containing gas analyzer according to the invention described above, wherein the target gas is absorbed and removed of carbon dioxide by an absorbing solution containing amines. It is characterized by being a combustion exhaust gas.
  • the collection container 116 is connected to one end side of a delivery pipe 118 having a valve 103 and a feed pump 119 in the middle thereof.
  • the other end of the delivery pipe 118 is connected to the bottom of the liquid storage tank 120.
  • a collection liquid 2 for dissolving and collecting the amines and the like.
  • the bottom of the collection container 116 is connected to one end of a liquid feeding pipe 127 having a valve 105 in the middle.
  • the other end side of the liquid feeding pipe 127 is connected to a receiving port of the feeding pump 128.
  • the delivery port of the feed pump 128 communicates with a reception port of a constant volume / dilution device 129 that performs constant volume and dilution.
  • the outlet of the constant volume / dilution device 129 communicates with an inlet of a measuring device 130 which is a measuring means such as an ion exchange chromatography or an electric conductivity measuring device for measuring the concentration of the amines.
  • a drain pipe 131 having a valve 106 in the middle is connected between the valve 105 of the liquid feed pipe 127 and the feed pump 128, one end side of a drain pipe 131 having a valve 106 in the middle is connected.
  • the other end side of the drainage pipe 131 communicates outside the system.
  • the nitrogen gas introduction pipe 133 is The axial direction is inclined and oriented so that one end side is positioned below the other end side.
  • the other end side of the nitrogen gas introduction pipe 133 communicates with a nitrogen gas cylinder (not shown) that feeds nitrogen gas 4 that is an inert gas.
  • the guide pipe 112 is connected to one end of a leak pipe 135 having a valve 110a in the middle.
  • the other end of the leak pipe 135 communicates outside the system.
  • One end of a leak pipe 136 having a valve 110b in the middle is connected to the upper portion of the collection container 116.
  • the other end of the leak pipe 136 communicates outside the system.
  • a temperature sensor 144, a pressure gauge 145, a flow rate measuring device 146, and a gas composition measuring device 147 are attached to the circumferential surface of the duct 10 on the upstream side in the flow direction of the combustion exhaust gas 1 from the attachment location of the sampling pipe 111. ing.
  • the temperature sensor 144 is, for example, a thermocouple, and is a device that measures the temperature of the combustion exhaust gas 1 flowing through the duct 10.
  • the pressure gauge 145 is, for example, a pressure gauge, and is a device that measures the pressure of the combustion exhaust gas 1 flowing through the duct 10.
  • the flow rate measuring device 146 is, for example, a radio wave flow meter or an ultrasonic flow meter using the Doppler effect.
  • the flue gas 1 flowing through the duct 10 is irradiated with radio waves or ultrasonic waves at a predetermined angle and reflected waves thereof.
  • This is a device that measures the flow rate of the flue gas 1 without disturbing the flow of the flue gas 1 from the frequency change.
  • the gas composition measuring instrument 147 is a device that measures the gas composition (water content) of the combustion exhaust gas 1 by using infrared light, for example, without disturbing the flow of the combustion exhaust gas 1.
  • the gas flow meter 123, the cooler 124, the gas-liquid separator 125, the buffer tank 126 and the like constitute a target gas sampling means
  • the suction blower 122 and the like constitute a suction means
  • the valves 102 and 104 The inlet pipe 114, the supply pipe 115, the exhaust pipe 121, the suction blower 122, the gas flow meter 123, the cooler 124, the gas-liquid separator 125, the buffer tank 126, etc.
  • a liquid separating means is constituted by the valve 105, the liquid feeding pipe 127, the feeding pump 128, the constant volume / dilution device 129, etc., and the valve 103, the feeding pipe 118, the feeding pipe.
  • the supply pump 119, the liquid storage tank 120, etc. constitute collected liquid supply means, and the valve 106, the drainage pipe 131, etc.
  • the arithmetic and control unit 140 opens and closes the valves 103 and 110b based on the information from the liquid amount detector 142 so as to store a predetermined amount of the collected liquid 2 in the collection container 116.
  • the collection liquid 2 in the storage tank 120 is discharged from the leak pipe 136 while the gas in the collection container 116 is discharged out of the system by controlling the operation and the operation of the feed pump 119. It is fed from 118 into the collection container 116.
  • the arithmetic and control unit 140 When a specified amount of the collected liquid 2 is stored in the collection container 116, the arithmetic and control unit 140, based on information from the liquid amount detector 142, the combustion that circulates in the duct 10.
  • the valves 101 and 109 are controlled to be opened so that the inside of the sampling pipe 111 and the guide pipe 112 is purged with the exhaust gas 1, and the suction blower 122 is controlled to operate so that the combustion exhaust gas 1 in the duct 10 is removed.
  • the sample is taken into the sampling pipe 111 and discharged from the guide pipe 112 through the bypass pipe 134 and the exhaust pipe 121 to the outside of the system.
  • the flue gas 1 from the feed pipe 115 is fed into the collected liquid 2 via the filter 117, the flue gas 1 is made into fine bubbles and the collected liquid 2 is mixed with the collected liquid 2.
  • the contact area can be increased, and the amines and the like in the combustion exhaust gas 1 can be efficiently collected.
  • the arithmetic control unit 140 determines that the current operation value, that is, the suction speed of the combustion exhaust gas 1 by the suction blower 122 is within a predetermined ratio with respect to the gas flow rate of the combustion exhaust gas 1 calculated based on the data. For example, it is determined whether it is within plus or minus 10% (third step S3). If the current operation value is within plus or minus 10% of the gas flow rate of the flue gas 1, the process proceeds to the fourth step S4, and the current operation value exceeds plus or minus 10% of the gas flow rate of the flue gas 1. If so, the process proceeds to a fifth step S5.
  • step S4 the operation of the suction blower 122 is continued as it is, and the control flow of the suction blower 122 is ended. Further, in the fifth step S5, the suction blower 122 is adjusted so that the suction amount of the combustion exhaust gas 1 by the suction blower 122 is within ⁇ 10% of the gas flow rate of the combustion exhaust gas 1. The process proceeds to step S6. In the sixth step S6, the suction amount of the combustion exhaust gas 1 by the suction blower 122 becomes the same as the gas flow rate of the combustion exhaust gas 1, so that suction is performed at a constant speed, and the control flow of the suction blower 122 ends. It becomes.
  • the arithmetic and control unit 140 controls the operation of the constant volume / dilution unit 129 so as to send the mixed specified amount of the liquids 2 and 3 to the measuring unit 130.
  • the arithmetic control device 140 can calibrate the measurement result based on information from the measurement device 130. It is determined whether or not it is within the range, and if it is within the range that can be calibrated, the concentration of the amines and the like in the combustion exhaust gas 1 is calculated, and the result is displayed on the monitor 143.
  • the arithmetic and control unit 140 may determine the amines and the like in the liquids 2 and 3 fed to the measurement device 130.
  • the dilution rate is calculated so that the concentration is within the calibratable range, and the constant volume / dilution device 129 is controlled to dilute the liquids 2 and 3 with a diluted solution such as pure water at the calculated magnification.
  • the arithmetic and control unit 140 again sends the diluted liquids 2 and 3 to the measuring device 130 in a specified amount.
  • the arithmetic and control unit 140 removes the liquids 2 and 3 in the collection container 116 based on information from the measuring unit 130.
  • the valves 102, 105, 106, and 108 are controlled so as to be discharged out of the system, and the nitrogen gas 4 is captured from the nitrogen gas introduction pipe 133 through the introduction pipe 114 and the supply pipe 115. All the liquids 2 and 3 in the collection container 116 are discharged out of the system through the liquid supply pipe 127 and the drainage pipe 131 while being fed into the collection container 116.
  • the arithmetic and control unit 140 based on the information from the timer, the valves 107 and 110b are controlled to be closed (the valve 102 is kept open) and the valves 105, 106 and 108 are controlled to be opened so that the cleaning liquid 3 is discharged out of the system. Is fed from the nitrogen gas introduction pipe 133 to the inside of the collection container 116 through the introduction pipe 114 and the supply pipe 115, and all the cleaning liquid 3 in the collection container 116 is fed to the liquid. The liquid is discharged from the pipe 127 through the drain pipe 131.
  • the arithmetic and control unit 140 cleans the filter 117 based on the information from the timer.
  • the valve 108 is controlled to be closed (the valves 102, 105, and 106 are kept open), the valve 107 is controlled to be opened, and the cleaning liquid 3 is supplied from the cleaning liquid introduction pipe 132 to the feeding pipe 115.
  • the filter 117 is supplied to the filter 117 for a specified time to clean the filter 117, and the cleaning liquid 3 is discharged from the liquid supply pipe 127 to the outside of the system through the drainage pipe 131.
  • the gas flow rate, pressure, temperature, and moisture content of the combustion exhaust gas 1 in the duct 10 are not disturbed in the gas flow of the combustion exhaust gas 1.
  • the suction blower 122 By controlling the suction blower 122 so as to be within the range, the combustion exhaust gas 1 in the duct 10 can be sucked appropriately at a constant speed without causing clogging due to a change in gas properties of the combustion exhaust gas 1. Therefore, even if the combustion exhaust gas 1 contains not only gaseous amines but also mist, the combustion exhaust gas 1 It is possible to measure the concentration of the substance to be measured easily and accurately.
  • the mist-containing gas analyzer according to the present invention not only contains the substance to be measured in a gaseous state, but also the concentration of the substance to be measured in the target gas, even if it is a target gas that also contains the mist. Can be measured easily and accurately, and can be used extremely beneficially in various industries.

Abstract

 被測定物質のミストを含有する対象ガス中の被測定物質の濃度を簡単かつ正確に計測することができるミスト含有ガス分析装置を提供することにある。燃焼排ガス(1)の圧力、温度、流量、水分量を計測する計測器(145,144,146,147)と、捕集液(2)が入れられる捕集容器(116)と、燃焼排ガスを吸引ブロア(122)により吸引してサンプリングし捕集容器内の捕集液中に送給するサンプリング管(111)および案内管(112)と、吸引ブロアによる燃焼排ガスの吸引速度が前記計測値に基づき算出された燃焼排ガスのガス流速に対し所定の割合以内となるように吸引ブロアを制御する演算制御装置(140)と、捕集容器内の前記液を分取する液分取手段と、液分取手段で分取された前記液中の前記被測定物質の濃度を計測する計測装置(130)とを備えるようにした。

Description

ミスト含有ガス分析装置
 本発明は、被測定物質のミストを含有する対象ガス中の当該被測定物質の濃度を計測するミスト含有ガス分析装置に関する。
 例えば、ボイラ等からの燃焼排ガスをアミン類含有の吸収液に接触させて当該燃焼排ガス中の二酸化炭素を吸収液中に吸収して回収する二酸化炭素回収装置を備えた排ガス処理装置においては、二酸化炭素回収装置で二酸化炭素を吸収除去された燃焼排ガスに微量のアミン類やアンモニアが随伴して当該燃焼排ガスと共に外部に排出されてしまうことから、二酸化炭素回収装置で二酸化炭素を吸収除去されて排出される上記燃焼排ガスを作業員がサンプリングして当該燃焼排ガス中に含有されているアミン類及びアンモニア(以下「アミン類等」という。)の濃度を計測するようにしている。
特開昭58-90144号公報
 しかしながら、前述したように作業員が燃焼排ガスをサンプリングしてアミン類等の濃度を計測するようにすると、計測を行うごとに作業員がサンプリングして分析しなければならず、非常に手間がかかってしまっていた。
 そこで、例えば、ダクトにピトー管を設置し、ピトー管によりダクト内燃焼排ガスの圧力を計測し、この計測値に応じて予測したダクト内燃焼排ガスのガス流速に基づきガス採取管に接続される吸引ブロアのガス吸引速度を調整し、等速吸引することで、燃焼排ガス中の被測定物質を正確に計測することが考えられている。
 ところが、このようにして燃焼排ガス中の被測定物質を計測すると、ピトー管によりダクト内のガス流れに乱れが生じて、ダクト内燃焼排ガスのガス流速を正確に予測することができないため、吸引ブロアのガス吸引速度を適切に調整することができず、燃焼排ガス中の被測定物質を正確に求めることができない。
 また、ダクト内燃焼排ガスのガス性状が変化し、例えば、ダスト濃度、ミスト濃度、水分濃度等が増加すると、それらがピトー管内部で凝縮して詰まりが生じるため、吸引ブロアのガス吸引速度を適切に調整することができず、燃焼排ガス中の被測定物質を正確に求めることができない。
 このような問題は、ボイラ等からの燃焼排ガスをアミン類含有の吸収液に接触させて当該燃焼排ガス中の二酸化炭素を吸収液中に吸収して回収する二酸化炭素回収装置を備えた排ガス処理装置における当該燃焼排ガス中のアミン類等の濃度を計測する場合に限らず、例えば、気液接触装置の出口ガス(例えば水分飽和ガス)中の液体成分濃度を計測する場合等のように、被測定物質のミストを含有する対象ガス中の当該被測定物質の濃度を計測するような場合であれば、上述した場合と同様にして生じ得ることである。
 以上のことから、本発明は前述した課題を解決するために為されたものであって、被測定物質のミストを含有する対象ガス中の被測定物質の濃度を簡単かつ正確に計測することができるミスト含有ガス分析装置を提供することを目的としている。
 上述した課題を解決する本発明に係るミスト含有ガス分析装置は、ダクト内を流通する被測定物質のミストを含有する対象ガス中の当該被測定物質の濃度を計測するミスト含有ガス分析装置であって、前記ダクト内を流通する前記対象ガスの圧力を計測する圧力計測手段と、前記ダクト内を流通する前記対象ガスの温度を計測する温度計測手段と、前記ダクト内を流通する前記対象ガスの流量を電波または超音波により計測する流量計測手段と、前記ダクト内を流通する前記対象ガス中の水分量を赤外光により計測する水分量計測手段と、前記被測定物質を溶解させる捕集液を内部に入れられる捕集容器と、前記対象ガスを吸引手段により吸引してサンプリングする対象ガスサンプリング手段と、前記対象ガスサンプリング手段でサンプリングされた前記対象ガスを前記捕集容器の内部の前記捕集液中に送給する対象ガス送給手段と、前記吸引手段による前記対象ガスの吸引速度が、前記圧力計測手段で計測された前記対象ガスの圧力、前記温度計測手段で計測された前記対象ガスの温度、前記流量計測手段で計測された前記対象ガスの流量、前記水分量計測手段で計測された前記対象ガス中の水分量に基づき算出された前記対象ガスのガス流速に対して所定の割合以内となるように前記吸引手段を制御する吸引量制御手段と、前記捕集容器内の前記液を分取する液分取手段と、前記液分取手段で分取された前記液中の前記被測定物質の濃度を計測する計測手段とを備えていることを特徴とする。
 上述した課題を解決する本発明に係るミスト含有ガス分析装置は、前述した発明に係るミスト含有ガス分析装置であって、前記被測定物質が、アミン類及びアンモニアであることを特徴とする。
 上述した課題を解決する本発明に係るミスト含有ガス分析装置は、前述した発明に係るミスト含有ガス分析装置であって、前記対象ガスが、アミン類を含有する吸収液により二酸化炭素を吸収除去された燃焼排ガスであることを特徴とする。
 本発明に係るミスト含有ガス分析装置によれば、ダクト内の対象ガスのガス流量、圧力、温度、水分量を当該対象ガスのガス流れに乱れが生じることなく計測し、これら計測結果に基づき前記ダクト内の前記対象ガスのガス流速を算出し、吸引手段による前記対象ガスの吸引速度が前記対象ガスのガス流速に対して所定の割合以内になるように前記吸引手段を制御するようにしたことで、前記対象ガスのガス性状変化による詰まりを生じることなく前記ダクト内の対象ガスを適切に等速吸引することができるので、被測定物質をガス状に含有しているだけでなく、ミスト状で含有している対象ガスであっても、当該対象ガス中の被測定物質の濃度を簡単かつ正確に計測することができる。
本発明に係るミスト含有ガス分析装置の主な実施形態の全体概略構成図である。 図1のミスト含有ガス分析装置の制御系のブロック図である。 図1のミスト含有ガス分析装置が備える吸引ブロアによるガス吸引量の制御フロー図である。
 本発明に係るミスト含有ガス分析装置の実施形態を図面に基づいて説明する。
 [主な実施形態]
 本発明に係るミスト含有ガス分析装置の主な実施形態を図1~3に基づいて説明する。
 図1に示すように、ダクト10の内部には、アミン類を含有する吸収液と接触して二酸化炭素を吸収除去された対象ガスである燃焼排ガス1が流通しており、当該燃焼排ガス1は、被測定物質であるアミン類及びアンモニア(以下「アミン類等」という。)をガス状に含有しているだけでなく、ミスト状でも含有している。
 前記ダクト10の周面には、サンプリング管111が当該ダクト10の内部に先端側を位置させるようにして取り付けられている。前記サンプリング管111の基端側には、案内管112の一端側がバルブ101を介して接続されている。前記案内管112の他端側には、上下方向に軸方向を向けるように配向された導入管114の一端側(上端側)が接続されている。前記サンプリング管111及び前記案内管112並びに前記導入管114には、加熱手段である電熱ヒータ113が設けられており、当該電熱ヒータ113は、当該管111,112,114の内部を、前記アミン類等を気化させる温度(約150~200℃)で加熱することができるようになっている。
 前記導入管114の他端側(下端側)には、送給管115の一端側がバルブ102を介して接続している。前記送給管115は、他端側を捕集容器116の内部下方に位置させるように当該捕集容器116に取り付けられている。前記送給管115の他端側には、ガラスを焼結させた微細気泡化手段であるフィルタ(最大細孔:5~120μm、特に100~120μmが好適)117が取り付けられている。
 前記捕集容器116には、バルブ103及び送給ポンプ119を途中に有する送出管118の一端側が接続されている。前記送出管118の他端側は、貯液タンク120の底部に接続している。前記貯液タンク120の内部には、前記アミン類等を溶解させて捕集する捕集液2が貯留されている。
 つまり、前記バルブ103を開放して前記送給ポンプ119を作動させると、前記貯液タンク120内の捕集液2を前記送出管118から前記捕集容器116の内部に供給することができるようになっているのである。
 前記捕集容器116の上部には、バルブ104及び吸引ブロア122を途中に有する排気管121の基端側が接続されている。前記排気管121の前記バルブ104と前記吸引ブロア122との間には、当該排気管121内を流通するガス流量を検出するガス流量検出手段であるガス流量計123が設けられている。前記排気管121の前記バルブ104と前記ガス流量計123との間には、冷却器124及び気液分離器125が介在している。前記排気管121の前記ガス流量計123と前記吸引ブロア122との間には、バッファタンク126が介在している。
 前記捕集容器116の底部には、バルブ105を途中に有する送液管127の一端側が連結されている。前記送液管127の他端側は、送給ポンプ128の受入口に接続している。前記送給ポンプ128の送出口は、定容及び希釈を行う定容・希釈装置129の受入口に連絡している。前記定容・希釈装置129の送出口は、前記アミン類等の濃度を計測するイオン交換クロマトグラフィや電気伝導度測定装置等のような計測手段である計測装置130の受入口に連絡している。
 前記送液管127の前記バルブ105と前記送給ポンプ128との間には、バルブ106を途中に有する排液管131の一端側が接続されている。前記排液管131の他端側は、系外へ連絡している。
 前記導入管114の他端側(下端側)の前記バルブ102の近傍には、バルブ107を途中に有する清浄液導入管132の一端側が接続されており、当該清浄液導入管132は、一端側が他端側よりも下方へ位置するように軸方向が傾斜配向されている。上記清浄液導入管132の他端側は、純水等の清浄液3を送給する図示しない清浄液タンクへ連絡している。
 前記導入管114の一端側(上端側)の前記案内管112との接続部分近傍には、バルブ108を途中に有する窒素ガス導入管133の一端側が接続されており、当該窒素ガス導入管133は、一端側が他端側よりも下方へ位置するように軸方向が傾斜配向されている。上記窒素ガス導入管133の他端側は、不活性ガスである窒素ガス4を送給する図示しない窒素ガスボンベへ連絡している。
 前記導入管114の前記清浄液導入管132との接続部分と前記窒素ガス導入管133との接続部分との間には、バルブ109を途中に有するバイパス管134の一端側が接続されている。前記排気管121の前記バルブ104と前記冷却器124との間には、上記バイパス管134の他端側が接続されている。
 前記案内管112には、バルブ110aを途中に有するリーク管135の一端側が接続されている。前記リーク管135の他端側は、系外へ連絡している。前記捕集容器116の上部には、バルブ110bを途中に有するリーク管136の一端側が接続されている。前記リーク管136の他端側は、系外へ連絡している。
 前記サンプリング管111の先端側には、温度検出手段である温度センサ141が設けられている。前記捕集容器116の内部には、当該捕集容器116内の前記捕集液2の量を検知する液量検出手段であるフロート形式の液量検出器142が設けられている。
 前記ダクト10の周面には、前記サンプリング管111の取付箇所よりも燃焼排ガス1の流通方向上流側に、温度センサ144、圧力計145、流量計測器146、ガス組成計測器147がそれぞれ取付けられている。前記温度センサ144は、例えば熱電対であり、前記ダクト10内を流通する前記燃焼排ガス1の温度を計測する機器である。前記圧力計145は、例えば圧力ゲージであり、前記ダクト10内を流通する前記燃焼排ガス1の圧力を計測する機器である。前記流量計測器146は、例えば、ドップラー効果を利用した電波流量計や超音波流量計であり、前記ダクト10内を流通する燃焼排ガス1に所定の角度で電波または超音波を照射しその反射波の周波数変化から燃焼排ガス1の流量を当該燃焼排ガス1の流れを乱すことなく計測する機器である。前記ガス組成計測器147は、例えば、赤外光により前記燃焼排ガス1のガス組成(水分量)を当該燃焼排ガス1の流れを乱すことなく計測する機器である。
 図2に示すように、前記ガス流量計123、前記温度センサ141、前記液量検出器142、前記温度センサ144、前記圧力計145、前記流量計測器146、前記ガス組成計測器147は、タイマを内蔵した演算制御手段である演算制御装置140の入力部に電気的に接続している。前記演算制御装置140の入力部には、さらに、前記計測装置130が電気的に接続されている。前記演算制御装置140の出力部は、前記バルブ101~109,110a,110b、前記電熱ヒータ113、前記送給ポンプ119,128、前記吸引ブロア122、前記定容・希釈装置129、前記計測装置130に電気的に接続すると共に、表示手段であるモニタ143に電気的に接続しており、当該演算制御装置140は、前記ガス流量計123、前記温度センサ141、前記液量検出器142、前記温度センサ144、前記圧力計145、前記流量計測器146、前記ガス組成計測器147、前記タイマからの情報に基づいて、前記バルブ101~109,110a,110b、前記電熱ヒータ113、前記送給ポンプ119,128、前記吸引ブロア122、前記定容・希釈装置129、前記計測装置130の作動を制御すると共に、前記計測装置130からの情報に基づいて、前記定容・希釈装置129の作動制御及び前記モニタ143に各種情報を表示することができるようになっている(詳細は後述する)。
 このような本実施形態においては、前記バルブ101,102,104、前記サンプリング管111、前記案内管112、前記導入管114、前記送給管115、前記捕集容器116、前記排気管121、前記ガス流量計123、前記冷却器124、前記気液分離器125、前記バッファタンク126等により、対象ガスサンプリング手段を構成し、前記吸引ブロア122等により、吸引手段を構成し、前記バルブ102,104、前記導入管114、前記送給管115、前記排気管121、前記吸引ブロア122、前記ガス流量計123、前記冷却器124、前記気液分離器125、前記バッファタンク126等により、対象ガス送給手段を構成し、前記バルブ107、前記清浄液導入管132、前記清浄液タンク等により、清浄液供給手段を構成し、前記バルブ105、前記送液管127、前記送給ポンプ128、前記定容・希釈装置129等により、液分取手段を構成し、前記バルブ103、前記送出管118、前記送給ポンプ119、前記貯液タンク120等により、捕集液供給手段を構成し、前記バルブ106、前記排液管131等により、液排出手段を構成し、前記バルブ108、前記窒素ガス導入管、前記窒素ガスボンベ等により、不活性ガス供給手段を構成し、前記バルブ109、前記バイパス管134等により、バイパス手段を構成し、前記温度センサ144等により温度計測手段を構成し、前記圧力計145等により圧力計測手段を構成し、前記流量計測器146等により流量計測手段を構成し、前記ガス組成計測器147等により水分量計測手段を構成している。
 このようにして構成された本実施形態に係るミスト含有ガス分析装置100の作動を次に説明する。
 当初、前記バルブ101~109は、すべて閉鎖した状態となっており、前記演算制御装置140を作動させると、当該演算制御装置140は、まず、前記温度センサ141からの情報に基づいて、前記アミン類等を気化させる温度(約150~200℃)で前記管111,112,114を加熱するように、前記電熱ヒータ113の作動を制御する。
 続いて、前記演算制御装置140は、前記液量検出器142からの情報に基づいて、前記捕集容器116の内部に規定量の捕集液2を溜めるように、前記バルブ103,110bの開閉制御及び前記送給ポンプ119の作動制御を行って、前記捕集容器116内のガスを前記リーク管136から系外へ排出しながら前記貯液タンク120内の前記捕集液2を前記送出管118から当該捕集容器116内へ送給する。
 前記捕集容器116の内部に規定量の捕集液2が貯留されると、前記演算制御装置140は、前記液量検出器142からの情報に基づいて、前記ダクト10内を流通する前記燃焼排ガス1で前記サンプリング管111及び前記案内管112の内部をパージするように、前記バルブ101,109を開放制御すると共に、前記吸引ブロア122を作動制御し、前記ダクト10内の前記燃焼排ガス1を前記サンプリング管111内に取り込んで、前記案内管112から前記バイパス管134及び前記排気管121を経由させて系外へ排出する。
 このようにして前記サンプリング管111及び前記案内管112の内部を前記燃焼排ガス1で所定時間パージすると、前記演算制御装置140は、前記タイマからの情報に基づいて、前記燃焼排ガス1を前記捕集容器116内の前記捕集液2と接触させるように、前記バルブ109を閉鎖制御(前記バルブ101は開放状態を維持)すると共に、前記バルブ102,104を開放制御することにより、前記送給管115から前記フィルタ117を介して前記燃焼排ガス1を前記捕集容器116内の前記捕集液2中に送給して当該燃焼排ガス1中の前記アミン類等を当該捕集液2に溶解させて捕集する一方、当該アミン類等を捕集された上記燃焼排ガス1を前記排気管121から前記冷却器124に送給して冷却し、当該燃焼排ガス1中の水分を凝縮させて気液分離器125で分離し、水分を除去された当該燃焼排ガス1を前記ガス流量計123で流量計測しながら前記バッファタンク126を介して前記吸引ブロア122から系外へ排出する。
 このとき、前記管111,112,114は、前記電熱ヒータ113で前記アミン類等を気化させる温度(約150~200℃)にまで加熱保持されているので、前記ダクト10から取り込んだ前記燃焼排ガス1中に含有されるガス状及びミスト状の上記アミン類等を内壁面に凝縮付着させることなく前記送給管115にまで気化させた状態で送給することができる。
 また、前記送給管115からの前記燃焼排ガス1を前記捕集液2中に前記フィルタ117を介して送給しているので、当該燃焼排ガス1を微細気泡化して当該捕集液2との接触面積を大きくすることができ、当該燃焼排ガス1中の前記アミン類等を効率よく捕集することができる。
 さらに、前記演算制御装置140は、図3に示すように、前記温度センサ144、前記圧力計145、前記流量計測器146、前記ガス組成計測器147により計測した前記燃焼排ガス1の温度、圧力、流量の計測値、および前記燃焼排ガス1中の水分量の計測値を取得する(第1のステップS1)。続いて、前記演算制御装置140は、前記燃焼排ガス1の温度、圧力、流量、ガス組成の計測値に基づき、所定の演算式、例えば下記の数式(1)から前記燃焼排ガス1のガス流速を算出する(第2のステップS2)。続いて、前記演算制御装置140は、現在の運転値、つまり、吸引ブロア122による前記燃焼排ガス1の吸引速度が、前記データに基づき算出された前記燃焼排ガス1のガス流速に対し所定の割合以内か、例えば、プラスマイナス10%以内か判定する(第3のステップS3)。現在の運転値が前記燃焼排ガス1のガス流速のプラスマイナス10%以内であれば、第4のステップS4へ進み、現在の運転値が前記燃焼排ガス1のガス流速のプラスマイナス10%を超えていれば、第5のステップS5へ進む。第4のステップS4において、前記吸引ブロア122の運転がそのまま継続して行われることになり、前記吸引ブロア122の制御フローが終了となる。また、第5のステップS5においては、前記吸引ブロア122による前記燃焼排ガス1の吸引量が前記燃焼排ガス1のガス流速のプラスマイナス10%以内となるように前記吸引ブロア122が調整され、第6のステップS6へ進む。第6のステップS6において、前記吸引ブロア122による前記燃焼排ガス1の吸引量が前記燃焼排ガス1のガス流速と同じになって、等速吸引することになり、前記吸引ブロア122の制御フローが終了となる。
Figure JPOXMLDOC01-appb-M000001
 このようにして前記捕集容器116内の前記捕集液2中に規定の積算流量の前記燃焼排ガス1を流通させると、前記演算制御装置140は、前記ガス流量計123からの情報に基づいて、当該捕集液2中への当該燃焼排ガス1の供給を停止するように、前記バルブ101,102,104を閉鎖制御すると共に、前記吸引ブロア122を作動停止制御した後、前記タイマからの情報に基づいて、前記清浄液3を前記清浄液導入管132から前記導入管114内に規定時間(規定量)送給して当該導入管114内を当該清浄液3で満たすように前記バルブ107,110aを開閉制御する。
 次に、前記演算制御装置140は、前記送給管115の内壁面に付着している前記アミン類等を前記捕集容器116内に送り込むように、前記タイマからの情報に基づいて、前記バルブ102,108,110bの開閉制御を規定のタイミングで行って、前記導入管114内の前記清浄液3を前記窒素ガス導入管133からの前記窒素ガス4で押し出して、前記送給管115の内壁面に付着してしまっているすべての前記アミン類等に当該清浄液3を接触させるように当該送給管115の内壁面に接触させながら流下させて、前記捕集容器116内に存在する前記燃焼排ガス1を前記リーク管136から系外へ排出しながら当該捕集容器116内の当該捕集液2中に流入させる。
 これにより、前記送給管115の内壁面に付着したすべての前記アミン類等を前記捕集容器116内に捕集することができる。
 続いて、前記演算制御装置140は、前記捕集容器116内の前記液2,3の一部を前記定容・希釈装置129に分取するように、前記タイマからの情報に基づいて、前記バルブ102,105,108の開閉制御及び前記送給ポンプ128の作動制御を規定のタイミングで行い、前記窒素ガス4を前記窒素ガス導入管133から前記導入管114及び前記送給管115を介して前記捕集容器116内に供給しながら当該捕集容器116内の前記液2,3を前記送液管127から前記送給ポンプ128を介して前記定容・希釈装置129に混合送給する。
 そして、前記演算制御装置140は、混合された規定量の前記液2,3を前記計測装置130に送給するように前記定容・希釈装置129の作動を制御する。前記計測装置130が、定容された前記液2,3中の前記アミン類等の濃度を計測すると、前記演算制御装置140は、当該計測装置130からの情報に基づき、計測結果が検量可能な範囲内であるか否か判断し、検量可能な範囲内である場合には、前記燃焼排ガス1中の前記アミン類等の濃度を算出し、その結果を前記モニタ143に表示する。
 他方、前記計測装置130での計測結果が検量可能な範囲外である場合には、前記演算制御装置140は、前記計測装置130に送給される前記液2,3中の前記アミン類等の濃度が検量可能な範囲内となる希釈倍率を算出し、算出された倍率で前記液2,3を純水等の希釈液で希釈するように前記定容・希釈装置129を作動制御する。前記定容・希釈装置129が前記液2,3を算出倍率で希釈すると、前記演算制御装置140は、希釈された上記液2,3を前記計測装置130に規定量で改めて送給するように前記定容・希釈装置129の作動を制御し、前記計測装置130が、当該液2,3中の前記アミン類等の濃度を改めて計測する。そして、前記演算制御装置140は、前記計測装置130からの情報に基づき、上記燃焼排ガス1中の前記アミン類等の濃度を算出して、その結果を前記モニタ143に表示する。
 このようにして前記燃焼排ガス1中のアミン類等の濃度を求めたら、前記演算制御装置140は、前記計測装置130からの情報に基づいて、前記捕集容器116内の前記液2,3を系外へ排出するように、前記バルブ102,105,106,108を開放制御して、前記窒素ガス4を前記窒素ガス導入管133から前記導入管114及び前記送給管115を介して前記捕集容器116の内部に送給しながら当該捕集容器116内のすべての前記液2,3を前記送液管127から前記排液管131を介して系外へ排出する。
 このようにして前記捕集容器116内から系外への前記液2,3の排出を規定時間行うと、前記演算制御装置140は、前記タイマからの情報に基づいて、前記捕集容器116内を前記清浄液3で満たすように、前記バルブ105,106,108を閉鎖制御(前記バルブ102は開放状態を維持)すると共に、前記バルブ107,110bを開放制御して、前記清浄液3を前記清浄液導入管132から前記送給管115を介して前記捕集容器116の内部に規定時間供給し、当該捕集容器116内のガスを前記リーク管136から系外へ追い出しつつ上記清浄液3を当該リーク管136からオーバフローさせる程度にまで当該捕集容器116の内部に供給する。
 このようにして前記捕集容器116の内部に前記清浄液3を規定時間(規定量)供給すると、前記演算制御装置140は、前記タイマからの情報に基づいて、前記捕集容器116内の前記清浄液3を系外へ排出するように、前記バルブ107,110bを閉鎖制御(前記バルブ102は開放状態を維持)すると共に、前記バルブ105,106,108を開放制御して、前記窒素ガス4を前記窒素ガス導入管133から前記導入管114及び前記送給管115を介して前記捕集容器116の内部に送給しながら当該捕集容器116内のすべての前記清浄液3を前記送液管127から前記排液管131を介して系外へ排出する。
 このようにして前記捕集容器116内から系外への前記清浄液3の排出を規定時間行うと、前記演算制御装置140は、前記タイマからの情報に基づいて、前記フィルタ117を洗浄するように、前記バルブ108を閉鎖制御(前記バルブ102,105,106は開放状態を維持)すると共に、前記バルブ107を開放制御し、前記清浄液3を前記清浄液導入管132から前記送給管115を介して前記フィルタ117に規定時間送給して当該フィルタ117を洗浄し、当該清浄液3を前記送液管127から前記排液管131を介して系外へ排出する。
 このような上記清浄液3による清浄化を規定時間行うと、前記演算制御装置140は、前記タイマからの情報に基づいて、前記バルブ102,105,106,107を閉鎖制御して、初期状態に戻す。
 以下、上述した作動を繰り返すことにより、前記ダクト10内を流通する前記燃焼排ガス1中の前記アミン類等の濃度を自動で継続的に計測することができる。
 したがって、本実施形態に係るミスト含有ガス分析装置100によれば、前記ダクト10内の前記燃焼排ガス1のガス流量、圧力、温度、水分量を当該燃焼排ガス1のガス流れに乱れが生じることなく計測し、これら計測結果に基づき前記ダクト10内の前記燃焼排ガス1のガス流速を算出し、前記吸引ブロア122による前記燃焼排ガス1の吸引速度が前記燃焼排ガス1のガス流速に対して所定の割合以内になるように前記吸引ブロア122を制御するようにしたことで、前記燃焼排ガス1のガス性状変化による詰まりを生じることなく前記ダクト10内の燃焼排ガス1を適切に等速吸引することができるので、アミン類等をガス状に含有しているだけでなく、ミスト状でも含有している前記燃焼排ガス1であっても、当該燃焼排ガス1中の被測定物質の濃度を簡単かつ正確に計測することができる。
 [他の実施形態]
 なお、前述した実施形態においては、ボイラ等からの燃焼排ガスをアミン類含有の吸収液に接触させて当該燃焼排ガス中の二酸化炭素を吸収液中に吸収して回収する二酸化炭素回収装置を備えた排ガス処理装置における当該燃焼排ガス1中の上記アミン類等の濃度を計測する場合について説明したが、本発明はこれに限らず、例えば、気液接触装置の出口ガス(例えば水分飽和ガス)中の液体成分濃度を計測する場合等のように、被測定物質のミストを含有する対象ガス中の当該被測定物質の濃度を計測するような場合であれば、前述した実施形態の場合と同様にして適用することができる。
 本発明に係るミスト含有ガス分析装置は、被測定物質をガス状に含有しているだけでなく、ミスト状でも含有している対象ガスであっても、当該対象ガス中の被測定物質の濃度を簡単かつ正確に計測することができるので、各種産業において、極めて有益に利用することができる。
1 燃焼排ガス
2 捕集液
3 清浄液
4 窒素ガス
10 ダクト
100 ミスト含有ガス分析装置
101~109,110a,110b バルブ
111 サンプリング管
112 案内管
113 電熱ヒータ
114 導入管
115 送給管
116 捕集容器
117 フィルタ
118 送出管
119 送給ポンプ
120 貯液タンク
121 排気管
122 吸引ブロア
123 ガス流量計
124 冷却器
125 気液分離器
126 バッファタンク
127 送液管
128 送給ポンプ
129 定容・希釈装置
130 計測装置
131 排液管
132 清浄液導入管
133 窒素ガス導入管
134 バイパス管
135,136 リーク管
140 演算制御装置
141 温度センサ
142 液量検出器
143 モニタ
144 温度センサ
145 圧力計
146 流量計測器
147 ガス組成計測器

Claims (3)

  1.  ダクト内を流通する被測定物質のミストを含有する対象ガス中の当該被測定物質の濃度を計測するミスト含有ガス分析装置であって、
     前記ダクト内を流通する前記対象ガスの圧力を計測する圧力計測手段と、
     前記ダクト内を流通する前記対象ガスの温度を計測する温度計測手段と、
     前記ダクト内を流通する前記対象ガスの流量を電波または超音波により計測する流量計測手段と、
     前記ダクト内を流通する前記対象ガス中の水分量を赤外光により計測する水分量計測手段と、
     前記被測定物質を溶解させる捕集液を内部に入れられる捕集容器と、
     前記対象ガスを吸引手段により吸引してサンプリングする対象ガスサンプリング手段と、
     前記対象ガスサンプリング手段でサンプリングされた前記対象ガスを前記捕集容器の内部の前記捕集液中に送給する対象ガス送給手段と、
     前記吸引手段による前記対象ガスの吸引速度が、前記圧力計測手段で計測された前記対象ガスの圧力、前記温度計測手段で計測された前記対象ガスの温度、前記流量計測手段で計測された前記対象ガスの流量、前記水分量計測手段で計測された前記対象ガス中の水分量に基づき算出された前記対象ガスのガス流速に対して所定の割合以内となるように前記吸引手段を制御する吸引量制御手段と、
     前記捕集容器内の前記液を分取する液分取手段と、
     前記液分取手段で分取された前記液中の前記被測定物質の濃度を計測する計測手段と
     を備えている
    ことを特徴とするミスト含有ガス分析装置。
  2.  請求項1に記載されたミスト含有ガス分析装置であって、
     前記被測定物質が、アミン類及びアンモニアである
     ことを特徴とするミスト含有ガス分析装置。
  3.  請求項2に記載されたミスト含有ガス分析装置であって、
     前記対象ガスが、アミン類を含有する吸収液により二酸化炭素を吸収除去された燃焼排ガスである
    ことを特徴とするミスト含有ガス分析装置。
PCT/JP2012/082883 2011-12-27 2012-12-19 ミスト含有ガス分析装置 WO2013099724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12862677.7A EP2799836B1 (en) 2011-12-27 2012-12-19 Mist-containing gas analysis device
US14/353,298 US9395342B2 (en) 2011-12-27 2012-12-19 Mist-containing gas analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-284659 2011-12-27
JP2011284659A JP5762273B2 (ja) 2011-12-27 2011-12-27 ミスト含有ガス分析装置

Publications (1)

Publication Number Publication Date
WO2013099724A1 true WO2013099724A1 (ja) 2013-07-04

Family

ID=48697215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082883 WO2013099724A1 (ja) 2011-12-27 2012-12-19 ミスト含有ガス分析装置

Country Status (4)

Country Link
US (1) US9395342B2 (ja)
EP (1) EP2799836B1 (ja)
JP (1) JP5762273B2 (ja)
WO (1) WO2013099724A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322716B2 (en) * 2014-01-07 2016-04-26 Panasonic Intellectual Property Corporation Of America Component measuring apparatus and moving body
CA2863543C (en) * 2014-09-11 2015-11-03 Vitalaire Canada Inc. On-site medical gas production plant and associated operating method
JP6117159B2 (ja) * 2014-09-17 2017-04-19 三菱重工業株式会社 ガス採取装置及びガス分析方法
CN105258983B (zh) * 2015-10-22 2018-05-15 西北大学 一种捕集co2的简便装置及检测co2中 13c和 14c的测定方法
JP6446604B2 (ja) 2016-09-08 2018-12-26 アトナープ株式会社 事前分離ユニットを有するシステム
KR101851683B1 (ko) * 2017-12-08 2018-04-24 한국가스안전공사 고발열량 연소실험 시스템
JP2021048336A (ja) * 2019-09-20 2021-03-25 三菱電機株式会社 処理液生成方法、処理液生成機構、半導体製造装置及び半導体製造方法
CN114113484B (zh) * 2021-11-26 2022-08-05 上海交通大学 液滴环境下氧浓度实时测量装置
CN114354852A (zh) * 2021-12-29 2022-04-15 深圳天祥质量技术服务有限公司 一种塑料的烟毒性气体测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890144A (ja) 1981-11-26 1983-05-28 Ishibashi Kagaku Kogyo Kk 排ガス自動等速吸引装置
JPH0634499A (ja) * 1992-07-20 1994-02-08 Mitsubishi Heavy Ind Ltd 自動ガス採取方法及び自動ガス分析方法
JPH07146227A (ja) * 1993-09-09 1995-06-06 Nkk Corp 排ガス中のダスト濃度の自動測定装置
JPH1033938A (ja) * 1996-07-26 1998-02-10 Mitsubishi Heavy Ind Ltd 脱炭酸塔排出ガス中の塩基性アミン化合物の回収方法
JPH10202053A (ja) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd 脱炭酸塔内のアミンミストの減少方法
JP2000206133A (ja) * 1998-11-10 2000-07-28 Babcock Hitachi Kk 音響式流速計測装置
JP2001349810A (ja) * 2000-06-09 2001-12-21 Miura Co Ltd 塩素化有機化合物の採取器、塩素化有機化合物の採取方法および塩素化有機化合物の採取状況確認用チェッカー
JP2003185478A (ja) * 2001-12-18 2003-07-03 Toshiba Corp ゲート流量計
JP2010256075A (ja) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd 流量計及び流量計測方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928015A (en) * 1987-08-19 1990-05-22 Ford Motor Company Measuring multicomponent constituency of gas emission flow
US5637809A (en) * 1991-11-12 1997-06-10 United Sciences, Inc. Vacuum extraction sampling system
US5187972A (en) 1992-01-17 1993-02-23 Clean Air Engineering, Inc. Gas monitor
US7091043B2 (en) * 1999-12-10 2006-08-15 Showa Denko K.K. Method for measuring water concentration in ammonia
US7771654B1 (en) * 2006-09-07 2010-08-10 Moore Randall P Apparatus for monitoring gaseous components of a flue gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890144A (ja) 1981-11-26 1983-05-28 Ishibashi Kagaku Kogyo Kk 排ガス自動等速吸引装置
JPH0634499A (ja) * 1992-07-20 1994-02-08 Mitsubishi Heavy Ind Ltd 自動ガス採取方法及び自動ガス分析方法
JPH07146227A (ja) * 1993-09-09 1995-06-06 Nkk Corp 排ガス中のダスト濃度の自動測定装置
JPH1033938A (ja) * 1996-07-26 1998-02-10 Mitsubishi Heavy Ind Ltd 脱炭酸塔排出ガス中の塩基性アミン化合物の回収方法
JPH10202053A (ja) * 1997-01-27 1998-08-04 Mitsubishi Heavy Ind Ltd 脱炭酸塔内のアミンミストの減少方法
JP2000206133A (ja) * 1998-11-10 2000-07-28 Babcock Hitachi Kk 音響式流速計測装置
JP2001349810A (ja) * 2000-06-09 2001-12-21 Miura Co Ltd 塩素化有機化合物の採取器、塩素化有機化合物の採取方法および塩素化有機化合物の採取状況確認用チェッカー
JP2003185478A (ja) * 2001-12-18 2003-07-03 Toshiba Corp ゲート流量計
JP2010256075A (ja) * 2009-04-22 2010-11-11 Aichi Tokei Denki Co Ltd 流量計及び流量計測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Hai Gas-chu no Dust Nodo no Sokutei Hoho Z 8808", JAPANESE INDUSTRIAL STANDARD (JIS), vol. Z, 1995, pages 8808 - 1995, XP008173900 *

Also Published As

Publication number Publication date
EP2799836B1 (en) 2019-02-06
EP2799836A1 (en) 2014-11-05
JP5762273B2 (ja) 2015-08-12
US9395342B2 (en) 2016-07-19
EP2799836A4 (en) 2015-10-14
JP2013134153A (ja) 2013-07-08
US20140305190A1 (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP5762273B2 (ja) ミスト含有ガス分析装置
US6295864B1 (en) Analysis system and method for water-soluble contaminants in a cleanroom environment
KR100865712B1 (ko) 입자 측정 시스템 및 그 방법
CN1926423B (zh) 用于对包含具有很高的易吸附性的气体组分的烟道气体进行取样以便分析的方法
US8443648B2 (en) Controlled humidification calibration checking of continuous emissions monitoring system
WO2013094628A1 (ja) ミスト含有ガス分析装置
JP2021527198A (ja) 粒子濃度分析システム及び方法
CN109946123A (zh) 一种大气气溶胶在线捕集及化学成分检测的方法与装置
JPH0961315A (ja) 雰囲気中不純物の捕集方法および分析装置
EP3372984B1 (en) Gas-borne fine particle measuring instrument and clean environmental device
US3960523A (en) Effluent gas monitor
KR101137585B1 (ko) 분무장치 및 이를 이용하는 유체 내 입자 검출 시스템
CN110687062A (zh) 一种烟气中三氧化硫含量的检测系统及检测方法
US9658144B1 (en) Systems and methods for chemically testing a sample and sampling probes therefor
CN106500931B (zh) 一种蒸汽中不凝气体的检测装置及检测方法
KR101547167B1 (ko) 가스 시료의 메탈에 대한 온라인 모니터링 시스템
CN206440437U (zh) 一种蒸汽中不凝气体的检测装置
CN213422729U (zh) 气溶胶收集器
JP2004117271A (ja) 吸着性の高いガス成分を含む分析用排ガス採取方法
US20190310165A1 (en) Condensate discharging system for an exhaust-gas measuring device
JP3516375B2 (ja) ガス塵埃捕集システム
CN111272524B (zh) 稀释样品液体的方法和用于后续分析的稀释单元
JPH08285738A (ja) ガス塵埃捕集分析装置
JP4645827B2 (ja) 炭酸ガス溶解水の評価方法及び炭酸ガス溶解水試料の採水装置
CN114112550A (zh) 气溶胶收集器及借助气溶胶收集器来收集气溶胶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353298

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012862677

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE