WO2013099614A1 - 光電気素子及びその製造方法 - Google Patents

光電気素子及びその製造方法 Download PDF

Info

Publication number
WO2013099614A1
WO2013099614A1 PCT/JP2012/082235 JP2012082235W WO2013099614A1 WO 2013099614 A1 WO2013099614 A1 WO 2013099614A1 JP 2012082235 W JP2012082235 W JP 2012082235W WO 2013099614 A1 WO2013099614 A1 WO 2013099614A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transport layer
electron transport
chemical formula
precursor
Prior art date
Application number
PCT/JP2012/082235
Other languages
English (en)
French (fr)
Inventor
関口 隆史
理生 鈴鹿
直毅 林
山木 健之
西出 宏之
研一 小柳津
文昭 加藤
佐野 直樹
Original Assignee
パナソニック株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 学校法人早稲田大学 filed Critical パナソニック株式会社
Priority to CN201280015921.4A priority Critical patent/CN103477408B/zh
Priority to US14/007,800 priority patent/US8952372B2/en
Priority to JP2013551596A priority patent/JP6010549B2/ja
Publication of WO2013099614A1 publication Critical patent/WO2013099614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric element that converts light into electricity or electricity into light, and a method for manufacturing the same.
  • photoelectric elements have been used for photoelectric conversion elements such as photovoltaic cells and solar cells, light-emitting elements such as organic EL, optical display elements such as electrochromic display elements and electronic paper, and sensor elements that sense temperature and light. It is used.
  • a pn junction type element has been put into practical use in a photoelectric element such as a solar cell.
  • Document 1 Japanese Patent Publication No. 2664194 (hereinafter referred to as Document 1), a photoelectric element is used.
  • Various chemical optoelectronic devices have been studied. This photoelectric element is formed by sandwiching a charge transport layer such as an electrolyte between a first electrode to which a semiconductor is attached and a second electrode.
  • a dye is used as a photosensitizer in a semiconductor. Is used as a dye-sensitized solar cell. When light is irradiated to the semiconductor, the charge generated from the semiconductor moves through the charge transport layer, and the first electrode with the semiconductor attached can be used as the negative electrode and the second electrode as the positive electrode, and electricity can be taken out to the outside. is there.
  • Such a photoelectric device is configured such that the charge generated from the semiconductor moves through the charge transport layer as described above.
  • the conversion efficiency for taking out the light emitted from the semiconductor as electricity to the outside. was not satisfactory.
  • the present invention has been made in view of the above points, and an object thereof is to provide a photoelectric element having excellent conversion efficiency and a method for manufacturing the photoelectric element.
  • the present invention provides a first electrode, a second electrode disposed opposite to the first electrode, an electron transport layer provided on a surface of the first electrode facing the second electrode, and the electron transport layer A photosensitizer carried on the substrate and a hole transport layer interposed between the first electrode and the second electrode.
  • a sealing portion made of an organic molecule is included in the electron transport layer.
  • the electron transport layer has a void portion penetrating in the thickness direction, and the sealing portion is disposed in the void portion.
  • the organic molecule preferably contains a molecule obtained by electrolytic polymerization of a precursor having two or more sites represented by the following structural formula [Chemical Formula 1] in one molecule.
  • X is an electropolymerizable functional group representing any one of a cyano group, a fluoro group, a chloro group, and a bromo group.
  • the precursor includes one having two sites represented by the structural formula [Chemical Formula 1], and the organic molecule is formed of a linear polymer.
  • the organic molecule is preferably a polymer having the following structural formula [Chemical Formula 2] or [Chemical Formula 3] as a repeating unit.
  • the precursor includes one having three or more sites represented by the structural formula [Chemical Formula 1], and the organic molecule is formed of a crosslinked polymer.
  • the organic molecule is preferably a polymer having the following structural formula [Chemical Formula 4] as a repeating unit.
  • the precursor may be at least one selected from the group consisting of bromine ions, chlorine ions, perchlorate ions, hexafluorophosphate ions, and tetrafluoroborate ions. preferable.
  • the present invention provides a first electrode, a second electrode disposed opposite to the first electrode, an electron transport layer provided on a surface of the first electrode facing the second electrode, and the electron transport layer
  • a photoelectric device comprising a photosensitizer carried on a substrate and a hole transport layer interposed between the first electrode and the second electrode, the first electrode formed with the electron transport layer
  • a step of applying a voltage lower than the reduction potential of the precursor to the first electrode to deposit organic molecules as a film on the surface of the first electrode. It is a manufacturing method of a photoelectric element.
  • the organic molecules are included in the electron transport layer as an eye stop.
  • the present invention improves the open-circuit voltage lowering factor by blocking the mediator diffusion path existing in the electron transport layer, and thus has excellent conversion efficiency.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a photoelectric element of the present invention. It is a schematic diagram which shows an example of operation
  • FIG. 4 shows an example of a photoelectric element (a dye-sensitized solar cell or the like) up to the present invention.
  • the first electrode 2 and the second electrode 3 are arranged to face each other with a predetermined gap.
  • the gap between the first electrode 2 and the second electrode 3 is enclosed and sealed by a sealing portion 9, and the sealed gap is filled with an electrolyte as a hole transport layer 4.
  • An electron transport layer 1 is formed on the surface of the first electrode 2 on the second electrode 3 side.
  • a dye as a photosensitizer 5 is formed in a layer on the surface of the electron transport layer 1 on the second electrode 3 side.
  • the electron transport layer 1 a hole-like or slit-like void portion 10 penetrating in the thickness direction is generated.
  • the main reason for the generation of the void 10 is that the electron transport layer 1 is produced in a process of applying and drying a solution containing an electron transport material, so that the entire electron transport layer 1 has a homogeneous structure. It is thought that this is because it is difficult. Further, although a part of the photosensitizer 5 enters the gap portion 10, the gap portion 10 is not completely filled with the photosensitizer 5. Accordingly, the gap portion 10 is filled with the electrolyte solution of the hole transport layer 4 and the first electrode 2 and the hole transport layer 4 are in direct contact with each other.
  • the reaction of the mediator in the hole transport layer 4 is expressed by Mox + e ⁇ Mred.
  • Mox represents an oxidant
  • e represents an electron
  • Mred represents a reductant
  • represents a redox reaction.
  • Mred is reduced to Mox, and e (electrons) released by this reduction passes through the photosensitizer 5 and the electron transport layer 1 to the first electrode 2. It is a desirable reaction to flow to the second electrode 3 side after being introduced into.
  • the gap 10 is formed in the electron transport layer 1 as described above, the electrons introduced into the first electrode 2 are directly emitted to the hole transport layer 4 filled in the gap 10, These electrons may be consumed to oxidize Mox in the hole transport layer 4 to Mred. That is, there is a problem in that it is difficult to improve the conversion efficiency of the photoelectric element A because an undesirable reaction occurs in which the gap portion 10 becomes a mediator diffusion path and electrons are consumed.
  • the inventors arrived at the present invention in solving both the problems in the prior art and the above problems obtained from the research results of the inventors.
  • FIG. 2 shows an example of the photoelectric element A of the present invention.
  • the optoelectric element A is provided with a pair of substrates 6 and 7 facing each other, with the first electrode 2 on the inner surface of one substrate 6 and the first electrode 2 on the inner surface of the other substrate 7.
  • Two electrodes 3 are provided opposite to each other.
  • the photoelectric element A of the present invention includes the first substrate 6 and the second substrate 7.
  • the first substrate 6 and the second substrate 7 are provided as a pair of substrates 6 and 7.
  • the first substrate 6 includes a first surface 601 and a second surface 602
  • the second substrate 7 includes a first surface 701 and a second surface 702. Accordingly, the first substrate 6 and the second substrate 7 are provided so that the first surface 601 of the first substrate 6 and the second surface 702 of the second substrate 7 face each other. Accordingly, the first substrate 6 and the second substrate 7 are formed as a pair.
  • the first electrode 2 is provided on the first surface 601 side of the first substrate 6, and the second electrode 3 is provided on the second surface 702 side of the second substrate 7.
  • the first electrode 2 has a first surface 201 and a second surface 202
  • the second electrode 3 has a first surface 301 and a second surface 302.
  • the 1st electrode 2 and the 2nd electrode 3 are provided facing each other so that the 1st surface 201 of the 1st electrode 2 and the 2nd surface of the 2nd electrode 3 may oppose.
  • first surface 601 of the first substrate 6 and the second surface 202 of the first electrode 2 may be in contact with each other, or a fixing agent (see FIG. (Not shown), and the first substrate 6 and the first electrode 2 may be fixed.
  • the fixing agent examples include a liquid or solid adhesive, an insulating agent, a retaining material, and the like. Furthermore, the fixing agent is preferably made of a light-transmitting material.
  • the first substrate 6 and the first electrode 2 may be fixed by bonding before the fixing agent is cured, and between the first surface 601 and the second surface 202. The first substrate 6 and the first electrode 2 may be fixed by applying a heat and pressure treatment after providing the fixing agent.
  • the fixing agent preferably has a higher light transmittance than the first electrode 2. Thereby, even if the photoelectric element A is formed so that light may enter from the second surface side of the first electrode 2, the absorption of light by the fixing agent can be suppressed as much as possible.
  • An electron transport layer 1 made of a semiconductor or the like is provided on the surface 702 opposite to the substrate 6 side of the first electrode 2, and a hole transport layer (charge transport layer) 4 is provided between the substrates 6 and 7. Is provided.
  • the electron transport layer 1 is provided on the first surface 201 of the first electrode 2.
  • the electron transport layer 1 is formed from, for example, a semiconductor.
  • a hole transport layer (charge transport layer) 4 is provided between the first substrate 6 and the second substrate 7. Such a hole transport layer 4 can be formed of a semiconductor or the like.
  • FIG. 1 shows details of an example of the photoelectric element A of the present invention.
  • the first electrode 2 and the second electrode 3 are disposed to face each other with a predetermined gap.
  • the gap between the first electrode 2 and the second electrode 3 is enclosed and sealed by a sealing portion 9, and the hole-transporting layer 4 is filled and sealed in the sealed gap.
  • the electron transport layer 1 including the sealing portion 8 is formed on the surface of the first electrode 2 on the second electrode 3 side.
  • the photosensitizer 5 is formed in a layer and supported on the surface of the electron transport layer 1 on the second electrode 3 side (including the surface of the sealing portion 8 on the second electrode 3 side).
  • the photoelectric element A of the present invention illustrated in FIG. 1 includes the first electrode 2 and the second electrode 3, and the first surface 201 of the first electrode 2 and the second surface of the second electrode 3.
  • the first electrode 2 and the second electrode 3 are arranged to face each other so as to provide a predetermined interval between the first electrode 2 and the second electrode 3.
  • a gap (predetermined interval) between the first surface 201 of the first electrode 2 and the second surface 302 of the second electrode 3 is surrounded by the sealing portion 9 and sealed. The sealed gap is filled and sealed with the hole transport layer 4.
  • the electron transport layer 1 is provided on the first surface 201 of the first electrode 2, and the electron transport layer 1 is formed so as to have the sealing portion 8.
  • the electron transport layer 1 has a void portion 10 penetrating in the thickness direction of the electron transport layer 1, and the sealing portion 8 is disposed in the void portion 10.
  • the first substrate 6 to which the first electrode 2 provided with the electron transport layer 1 is attached is made of translucent glass, film, or metal processed to transmit light. Can be formed.
  • the metal is linear (striped), wavy, grid (mesh), punched metal, or an aggregate of particles, light can pass through the gap and there is no need to use a transparent conductive material. Therefore, it is preferable from the economical viewpoint by material cost reduction.
  • a structural material such as plastic or glass from the viewpoint of durability of the element.
  • the substrate 6 can be made of a material that does not transmit light.
  • the first substrate 6 may have conductivity. That is, it is preferable that the substrate 6 is made of a conductive material so as to act as the first electrode 2.
  • a conductive material include linear (stripe) formed from materials such as carbon, aluminum, titanium, iron, nickel, copper, rhodium, indium, tin, zinc, platinum, gold, and metals such as stainless steel. ), Wavy line, lattice (mesh), metal foil, punching metal, and an alloy containing at least one kind of particle aggregate.
  • general-purpose metals can be used for the substrates 6 and 7, the first electrode 2, and the second electrode 3.
  • the substrate 7 can be formed of the same material as the substrate 6.
  • the substrate 7 may or may not be translucent, but is preferably transparent in that light can be incident from the substrates 6 and 7 on both sides.
  • the substrate 7 is preferably formed of a light-transmitting material.
  • the second surface 702 of the second substrate 7 and the first surface 301 of the second electrode 3 may be in contact with each other, or the light transmitting property may be provided between the second surface 702 and the first surface 301.
  • a fixing agent may be applied so that the second substrate 7 and the second electrode 3 are fixed.
  • translucent fixing agents examples include liquid or solid adhesives, insulating agents, anchoring materials, and the like.
  • the translucent fixing agent when used, the second substrate 7 and the second electrode 3 may be fixed together by bonding before the translucent fixing agent is cured.
  • the second substrate 7 and the second electrode 3 may be fixed by applying a heat and pressure treatment after providing a translucent fixing agent between the first surface 301 and the first surface 301.
  • the first electrode 2 is formed on the substrate 6 and functions as the negative electrode of the photoelectric element A, and may be formed of a metal itself, or a conductive material layer is laminated on a substrate or a film. You may make it form.
  • the first electrode 2 is formed on the first substrate 6, and the first electrode 2 functions as a negative electrode of the photoelectric element A, for example.
  • the first electrode 2 may be formed of metal itself, or the first electrode 2 may be formed by laminating a conductive material layer on a substrate or a film substrate.
  • a metal such as platinum, gold, silver, copper, aluminum, rhodium, or indium, or carbon, or a conductive metal oxide such as indium-tin composite oxide or antimony is doped.
  • a metal such as platinum, gold, silver, copper, aluminum, rhodium, or indium, or carbon, or a conductive metal oxide such as indium-tin composite oxide or antimony is doped. Examples thereof include tin oxide, tin oxide doped with fluorine, and composites of the above compounds.
  • a radical compound having a high electron transfer speed is used, in order to prevent leakage of electrons on the surface 201 of the first electrode 2, that is, to provide rectification, silicon oxide, tin oxide, oxidation
  • a material coated with titanium, zirconium oxide, aluminum oxide or the like is preferably used for the first electrode 2.
  • the photoelectric element A of the present invention uses a radical compound having a high electron moving speed, it is configured to prevent leakage of electrons on the first surface 201 of the first electrode 2.
  • the first electrode 2 preferably includes a conductive material layer and a coat layer, and the coat layer is preferably configured to cover the conductive material layer.
  • the coating layer is preferably made of a material such as silicon oxide, tin oxide, titanium oxide, zirconium oxide, or aluminum oxide in order to provide rectification of electrons in the conductive material layer.
  • the lower the surface resistance, the better the first electrode 2, and the preferable surface resistance range is 200 ⁇ / ⁇ or less, and more preferably 50 ⁇ / ⁇ or less.
  • the lower limit of the surface resistance is not particularly limited, but is usually 0.1 ⁇ / ⁇ .
  • the first electrode 2 has a higher light transmittance, and the preferable light transmittance range is 50% or more, and more preferably 80% or more. Further, the film thickness of the first electrode 2 is preferably in the range of 1 to 100 nm. If the film thickness is within this range, an electrode film having a uniform film thickness can be formed, and light transmittance is not lowered, and sufficient light can be incident on the electron transport layer 1. .
  • the second electrode 3 has a lower surface resistance, and the preferred surface resistance range is 200 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ or less.
  • the lower limit of the surface resistance is not particularly limited, but is usually 0.1 ⁇ / ⁇ .
  • the second electrode 3 is better as the light transmittance is higher, and a preferable light transmittance range is 50% or more, and more preferably 80% or more.
  • the film thickness of the second electrode 3 is preferably in the range of 1 to 100 nm. If the film thickness is within this range, an electrode film having a uniform film thickness can be formed, and light transmission is not lowered, and sufficient light can be incident on the hole transport layer 4. is there.
  • first electrode 2 When a transparent first electrode 2 is used, light is preferably incident from the first electrode 2 on the side where the electron transport layer 1 is deposited.
  • the photoelectric element A of the present invention includes the transparent first electrode 2, the light is preferably incident from the second surface 202 side of the first electrode 2 on which the electron transport layer 1 is deposited.
  • the second electrode 3 functions as the positive electrode of the photoelectric element A, and can be formed in the same manner as the first electrode 2 described above.
  • the second electrode 3 is preferably made of a material having a catalytic action to give electrons to the electrolyte reductant used for the hole transport layer 4.
  • the 2nd electrode 3 is comprised so that it may act efficiently as a positive electrode of the photoelectric element A.
  • Such materials include metals such as platinum, gold, silver, copper, aluminum, rhodium, and indium, or carbon materials such as graphite, carbon nanotubes, and carbon carrying platinum, or indium-tin composite oxides and antimony.
  • conductive metal oxides such as tin oxide doped with fluorine, tin oxide doped with fluorine, and conductive polymers such as polyethylenedioxythiophene, polypyrrole, and polyaniline.
  • platinum, graphite, polyethylenedioxythiophene, and the like are particularly preferable.
  • the substrate 7 on the side on which the second electrode 3 is provided can also have a transparent conductive film (not shown) on the adherend surface side of the second electrode 3.
  • the second substrate 7 can have a transparent conductive film on the side of the second electrode 3 to be adhered (the first surface 301 of the second electrode 3).
  • the second substrate 7 is located on the first surface 301 side of the second electrode 3, and the transparent conductive film is interposed between the second surface 702 of the second substrate 7 and the first surface 301 of the second electrode 3. Will be provided.
  • Such a transparent conductive film can be formed from, for example, those listed as materials for the first electrode 2.
  • the transparent conductive film can be formed by being laminated on a substrate or a film substrate.
  • the transparent conductive film includes a transparent conductive material.
  • examples of the transparent conductive material include conductive metal oxides such as indium-tin composite oxide, tin oxide doped with antimony, tin oxide doped with fluorine, or a composite thereof.
  • the second electrode 3 is also transparent. If the second electrode 3 is also transparent, the second electrode 3 and the second surface 202 of the first electrode 2 and the second electrode 3 Light may be irradiated from both sides of the electrode 3 with the first surface 301.
  • substrate 7 provided with the 2nd electrode 3 can be formed as a transparent conductive substrate.
  • the electron transport layer 1 includes Cd, Zn, In, Pb, Mo, W, Sb, Bi, Cu, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga, Si, Cr, and the like.
  • Metal element oxides, perovskites such as SrTiO 3 , CaTiO 3 , CdS, ZnS, In 2 S 3 , PbS, Mo 2 S, WS 2 , Sb 2 S 3 , Bi 2 S 3 , ZnCdS 2 , Cu 2 S, etc.
  • Sulfides CdSe, In 2 Se 3 , WSe 2 , HgS, PbSe, CdTe and other metal chalcogenides, GaAs, Si, Se, Cd 2 P 3 , Zn 2 P 3 , InP, AgBr, PbI 2 , HgI 2 BiI 3 or the like can be used.
  • a composite containing at least one selected from these semiconductor materials for example, CdS / TiO 2 , CdS / AgI, Ag 2 S / AgI, CdS / ZnO, CdS / HgS, CdS / PbS, ZnO / ZnS, ZnO / ZnSe, CdS / HgS, CdS x / CdSe 1-x , CdS x / Te 1-x , CdSe x / Te 1-x , ZnS / CdSe, ZnSe / CdSe, CdS / ZnS, TiO 2 / Cd 3 P 2 , CdS / CdSeCd y Zn 1-y S, CdS / HgS / CdS, or the like can be used.
  • organic semiconductors such as polyphenylene vinylene, polythiophene, polyacetylene, tetracen
  • the electron transport layer 1 has an oxidation-reduction portion that can be repeatedly oxidized and reduced as a part of the molecule, and an organic part having a portion that swells and contains an electrolyte solution as another part. It may be a compound.
  • the organic semiconductor is made of an organic compound, and the electron transport layer 1 may be configured to contain this organic compound.
  • the organic compound is formed so as to have a gel part that swells including an oxidation-reduction portion capable of repeated oxidation-reduction and an electrolyte solution in the molecule.
  • This organic compound has a redox part that can be repeatedly redox as a part of its molecule, and a part that swells and contains an electrolyte solution as another part (hereinafter referred to as a gel part).
  • the redox moiety is chemically bonded to the gel site.
  • the positional relationship between the redox moiety and the gel part in the molecule is not particularly limited. For example, when a skeleton such as the main chain of the molecule is formed at the gel part, the redox part binds to the main chain as a side chain. ing.
  • bonded alternately may be sufficient.
  • redox redox reaction
  • redox reaction is that an ion, atom or compound exchanges electrons, and the redox moiety can stably exchange electrons by a redox reaction (redox reaction). It means the part that can be done.
  • the organic compound has a redox portion, and forms the electron transport layer 1 in a state swollen by the electrolyte solution. That is, in the gel state, the organic compound has a three-dimensional network structure, and the network space is filled with the liquid.
  • the organic compound having a redox moiety and a gel part may be a low molecular weight substance or a high molecular weight substance.
  • a low molecular weight substance an organic compound that forms a so-called low molecular gel via a hydrogen bond or the like can be used.
  • an organic compound having a number average molecular weight of 1000 or more is preferable because it can spontaneously exhibit a gelling function.
  • the upper limit of the molecular weight of the organic compound in the case of a polymer is not particularly limited, but is preferably 1,000,000 or less.
  • the gel state is preferably, for example, konjac or an external shape such as an ion exchange membrane, but is not particularly limited.
  • a redox moiety capable of repeated redox refers to a site that reversibly becomes an oxidant and a reductant in a redox reaction.
  • This redox moiety is preferably a redox-based constituent material in which the oxidant and the reductant have the same charge.
  • An organic compound having a redox moiety and a gel site as described above in one molecule can be represented by the following general formula.
  • (X i ) nj : Y k (X i ) n and (X i ) nj represent a gel site
  • X i represents a monomer of a compound that forms the gel site, and can be formed of a polymer skeleton.
  • Y represents a redox moiety bonded to X.
  • J and k are each an arbitrary integer representing the number of (X i ) n and Y contained in one molecule, and both are preferably in the range of 1 to 100,000.
  • the redox moiety Y may be bonded to any part of the polymer skeleton that forms the gel parts (X i ) n and (X i ) nj .
  • the redox part Y may contain different types of materials, and in this case, a material having a close redox potential is preferable from the viewpoint of the electron exchange reaction.
  • a polymer having a quinone derivative skeleton in which quinones are chemically bonded examples thereof include a polymer having a phenoxyl derivative skeleton containing phenoxyl, and a polymer having a viologen derivative skeleton containing viologen.
  • the polymer skeleton is a gel site, and the quinone derivative skeleton, the imide derivative skeleton, the phenoxyl derivative skeleton, and the viologen derivative skeleton are redox portions.
  • examples of the polymer having a quinone derivative skeleton in which quinones are chemically bonded include those having the following chemical structures [Chemical Formula 5] to [Chemical Formula 8].
  • R represents methylene, ethylene, propane-1,3-dienyl, ethylidene, propane-2,2-diyl, alkanediyl, benzylidene, propylene, vinylidene, propene-1,3- Saturated or unsaturated hydrocarbons such as diyl, but-1-ene-1,4-diyl; cyclic hydrocarbons such as cyclohexanediyl, cyclohexenediyl, cyclohexadienediyl, phenylene, naphthalene, biphenylene; oxalyl, malonyl, succinyl, Glutanyl, adipoyl, alkanedioil, sebacoyl, fumaroyl, maleoyl, phthaloyl, isophthaloyl, terephthaloyl and other keto, divalent acyl
  • [Chemical Formula 5] is an example of an organic compound constituted by chemically bonding anthraquinone to the polymer main chain.
  • [Chemical Formula 6] is an example of an organic compound constituted by incorporating anthraquinone as a repeating unit into a polymer main chain.
  • [Chemical Formula 7] is an example of an organic compound in which anthraquinone is a cross-linking unit.
  • [Chemical Formula 8] shows an example of anthraquinone having a proton donating group that forms an intramolecular hydrogen bond with an oxygen atom.
  • the polyimide shown in [Chemical 9] or [Chemical 10] can be used as a polymer in which the redox part Y has an imide derivative skeleton containing imide.
  • R 1 to R 3 are an aromatic group such as a phenylene group, an aliphatic group such as an alkylene group and an alkyl ether, and an ether group.
  • the polyimide polymer skeleton may be cross-linked at R 1 to R 3 , and may not have a cross-linked structure unless it swells in the solvent used and does not elute.
  • the portion corresponds to gel sites (X i ) n and (X i ) nj .
  • the imide group may contain in the bridge
  • the imide group phthalimide, pyromellitic imide, and the like are preferable as long as they exhibit electrochemically reversible redox characteristics.
  • Examples of the polymer having a phenoxyl derivative skeleton containing phenoxyl include a galbi compound (galbi polymer) as shown in [Chemical Formula 11].
  • the galbi compound corresponds to the redox site Y
  • the polymer skeleton corresponds to the gel sites (X i ) n and (X i ) nj .
  • Examples of the polymer having a viologen derivative skeleton containing viologen include polyviologen polymers as shown in [Chemical Formula 13] and [Chemical Formula 14].
  • the portion represented by [Chemical 15] corresponds to the redox moiety Y
  • the polymer skeleton corresponds to the gel sites (X i ) n and (X i ) nj .
  • m and n shown in [Chemical Formula 5] to [Chemical Formula 7], [Chemical Formula 9] to [Chemical Formula 11], [Chemical Formula 13] and [Chemical Formula 14] represent the degree of polymerization of the monomer. A range of 100,000 is preferred.
  • the organic compound having the above-described redox portion and polymer skeleton swells with the electrolyte containing an electrolyte solution between the skeletons, whereby the electron transport layer 1 gels to form a gel layer.
  • the electrolyte solution is included between the polymer skeletons, so that the ionic state formed by the redox reaction of the redox part is compensated by the counter ion in the electrolyte solution, and the redox part can be stabilized. It is.
  • the electrolyte solution which forms the positive hole transport layer 4 mentioned later is mentioned, for example.
  • TiO 2 and the organic compound having the redox part and the gel part in one molecule avoids photodissolution in the electrolyte solution forming the hole transport layer 4, and It is preferable at the point which can obtain a high photoelectric conversion characteristic.
  • the thickness of the electron transport layer 1 formed on the surface 201 of the first electrode 2 is preferably in the range of 0.01 to 100 ⁇ m. This is because, within this range, a sufficient photoelectric conversion effect can be obtained, and the transparency to visible light and near infrared light is not deteriorated.
  • a more preferable range of the thickness of the electron transport layer 1 is 0.5 to 50 ⁇ m, and a particularly preferable range is 1 to 20 ⁇ m.
  • the layer of the electron transport layer 1 is a mixed solution of a semiconductor and a binder, and a known and commonly used method such as a coating method using a doctor blade or a bar coater, a spray method, a dip coating method, It can be formed by coating the surface of the first electrode 2 by a screen printing method, a spin coating method, or the like, and then removing the binder component by heating and baking or pressing with a press.
  • the surface roughness of the electron transport layer 1 is preferably 10 or more in terms of effective area / projected area. Since the surface area of the charge separation interface can be increased by setting the surface roughness to 10 or more, the photoelectric conversion characteristics can be improved. A more preferable surface roughness is 100 to 2000.
  • the electron transport layer 1 is an organic compound
  • a wet forming method in which a solution or the like is formed when the electron transport layer 1 is formed is preferable because it is a simpler and lower cost manufacturing method.
  • the electron transport layer 1 is formed of a so-called high molecular organic compound having a number average molecular weight of 1000 or more
  • a wet forming method is preferable from the viewpoint of moldability.
  • the wet process include a spin coating method, a drop cast method obtained by dripping and drying droplets, and a printing method such as screen printing and gravure printing.
  • vacuum processes such as sputtering and vapor deposition can also be employed.
  • the void 10 as described above may be formed. Therefore, in the present embodiment, the sealing portion 8 for closing and closing the gap portion 10 is formed.
  • the sealing portion 8 is embedded in the electron transport layer 1 with organic molecules filled in the gap portion 10.
  • the organic molecule forming the sealing portion 8 includes a molecule (compound) obtained by electrolytic polymerization of a precursor having two or more sites represented by the above structural formula [Chemical Formula 1] in one molecule.
  • a molecule compound obtained by electrolytic polymerization of a precursor having two or more sites represented by the above structural formula [Chemical Formula 1] in one molecule.
  • the organic compound thus obtained has a bipyridinium structural unit represented by the following structural formula [Chemical Formula 16] as a redox moiety.
  • the substituent represented by X was eliminated from the site having the structure represented by the structural formula [Chemical Formula 1] of the precursor and the substituent represented by X at this site was eliminated by electrolytic polymerization. Generated by combining positions.
  • organic compounds repeatedly exhibit stable redox ability.
  • an organic compound undergoes a radical state during oxidation and reduction, a very fast self-electron exchange reaction occurs, and electrons are easily transferred between the organic compounds.
  • the radical state at the time of oxidation reduction of the organic compound is observed by, for example, ESR (electron spin resonance).
  • the counter anion A of the portion shown in the above structural formula [formula 16] - as, for example, selected a bromine ion, a chlorine ion, perchlorate ion, hexafluorophosphate ion, and a flock of tetrafluoroborate And at least one anion.
  • the organic molecule precursor that forms the sealing portion 8 includes one having two sites represented by the above structural formula [Chemical Formula 1], and the organic molecule is linear from this precursor. It is preferably formed of a polymer. As a result, it is possible to effectively carry out the sealing with the polymer even in the portion where the pore diameter of the gap portion 10 is small, and the open circuit voltage and the conversion efficiency can be improved efficiently.
  • the organic molecule is a linear molecule.
  • the organic compound becomes a linear molecule represented by the above Structural Formula [Chemical Formula 2], and the precursor is represented by the following structural formula [Chemical Formula 18].
  • the organic molecule is a linear molecule represented by the structural formula [Chemical Formula 3].
  • the above [Chemical Formula 2] or [Chemical Formula 3] is used as a repeating unit.
  • a polymer made of an organic compound is effectively formed as the sealing portion 8 in the void portion 10 of the electron transport layer 1. Therefore, the contact between the first electrode 2 and the mediator of the hole transport layer 4 is suppressed, and the open circuit voltage and the conversion efficiency can be improved efficiently.
  • the precursor of the organic molecule that forms the sealing portion 8 includes one having three or more sites represented by the above structural formula [Chemical Formula 1], and the organic molecule is three-dimensionally cross-linked from this precursor. It is preferably formed of a polymer. Thereby, a polymer made of an organic compound is effectively formed as the sealing portion 8 in the void portion 10 of the electron transport layer 1. Therefore, the contact between the first electrode 2 and the mediator of the hole transport layer 4 is suppressed, and the open circuit voltage and the conversion efficiency can be improved efficiently.
  • the organic molecule becomes a cross-linked polymer.
  • the precursor is a compound represented by the following structural formula [Chemical Formula 19]
  • the organic molecule is a molecule represented by the structural formula [Chemical Formula 4].
  • more preferable organic molecules of the crosslinked polymer are those having the above [Chemical Formula 4] as a repeating unit.
  • a polymer made of an organic compound is effectively formed as the sealing portion 8 in the void portion 10 of the electron transport layer 1. Therefore, the contact between the first electrode 2 and the mediator of the hole transport layer 4 is suppressed, and the open circuit voltage and the conversion efficiency can be improved efficiently.
  • the first electrode 2 on which the electron transport layer 1 is formed and the counter electrode are immersed in a liquid (solution) containing a precursor.
  • a voltage is applied between the first electrode 2 and the counter electrode in this state, the precursor is polymerized on the first surface 201 side of the first electrode 2 by an electrochemical reaction. Thereby, the polymerized organic compound is deposited.
  • an organic compound polymerized on the surface 201 side of the first electrode 2 by applying a voltage lower than the reduction potential of the precursor to the first electrode 2 can be deposited as a film.
  • This electrolytic polymerization method does not require advanced equipment and technology as in the case of CVD (Chemical Vapor Deposition), yet the organic compound is deposited at a high rate, and the deposited organic molecules are peeled off from the first electrode 2. It becomes difficult to make the organic molecules dense and thin.
  • CVD Chemical Vapor Deposition
  • the sealing portion 8 is formed in the void portion 10 in the electron transport layer 1, the organic molecules are densified and the redox sites are densely arranged. Therefore, the electron transport layer 1 exhibits high electron transport properties.
  • the organic compound constituting the electron transport layer 1 spreads three-dimensionally, so that the stability of the organic compound is increased. Furthermore, the solubility of the organic compound in the solvent is reduced, and the range of choice of the solvent for the electrolyte solution is expanded. Moreover, since the organic compound produced
  • the thickness of the sealing portion 8 is preferably equal to the thickness of the electron transport layer 1 or slightly smaller than the thickness of the electron transport layer 1. This is because the gap effect (sealing effect) of the gap 10 is sufficiently obtained, and the permeability to visible light and near infrared light is not deteriorated.
  • the photosensitizer 5 is carried on the surface 101 (including the surface 801 of the sealing portion 8) of the electron transport layer 1 formed as described above. Thereby, since the photocharge separation interface can be formed with the photosensitizer 5, the photoelectric conversion efficiency can be improved.
  • a known material can be used, and it may be an inorganic material such as a semiconductor ultrafine particle or an organic material such as a dye or a pigment.
  • the photosensitizer 5 in the present invention is preferably a dye that efficiently absorbs light and separates charges.
  • dyes include 9-phenylxanthene dyes, coumarin dyes, acridine dyes, triphenylmethane dyes, tetraphenylmethane dyes, quinone dyes, azo dyes, indigo dyes, and cyanine dyes. Examples thereof include dyes, merocyanine dyes, and xanthene dyes.
  • RuL 2 (H 2 O) 2 type ruthenium-cis-diaqua-bipyridyl complex (where L represents 4,4′-dicarboxyl-2,2′-bipyridine), or ruthenium-tris Transition metal complexes of the type such as (RuL 3 ), ruthenium-bis (RuL 2 ), osnium-tris (OsL 3 ), osnium-bis (OsL 2 ), or zinc-tetra (4-carboxyphenyl) porphyrin, iron- Examples include hexacyanide complexes and phthalocyanines.
  • dyes as described in the DSSC chapter of “FPD / DSSC / Optical Memory and Functional Dye's Latest Technology and Material Development” can also be applied.
  • the dye having associative properties on the electron transport layer 1 is configured so as to be densely packed and cover the surface 101 of the electron transport layer 1. This is based on the viewpoint of functioning as an insulator layer of the electron transport layer 1 and the hole transport layer 4.
  • the photosensitizer 5 functions as an insulator layer, rectification of generated electrons can be imparted at the charge separation interface, and charge recombination after charge separation can be suppressed. In addition, the recombination point of electrons and holes existing in the electron transport material and the hole transport material can be drastically reduced, and the conversion efficiency of the resulting photoelectric element can be further improved. Is.
  • a dye represented by the structure of [Chemical Formula 20] is preferable, and specifically, a dye represented by the structure of [Chemical Formula 21] is preferable.
  • the association property can be discriminated from the shape of the absorption spectrum of the dye dissolved in the organic solvent or the like and the dye supported on the electron transport layer 1. It is known that the spectrum shape differs greatly between the former and the latter if they meet.
  • X 1, X 2 is an alkyl group, an alkenyl group, an aralkyl group, an aryl group comprises at least one or more hetero ring, sites for adsorbing a semiconductor good .
  • X 2 may have a substituent For example, having a carboxyl group, a sulfonyl group, or a phosphonyl group.
  • examples of the semiconductor ultrafine particles that can be used for the photosensitizer 5 include sulfide semiconductors such as cadmium sulfide, lead sulfide, and silver sulfide.
  • the particle size of the semiconductor ultrafine particles is not particularly limited as long as it has a photosensitizing effect on one electron transport layer of the present invention, but is preferably in the range of 1 to 10 nm.
  • the first method in which the electron transport layer 1 is adhered to a solution in which the photosensitizer 5 is dissolved or dispersed is used.
  • substrate 6 provided with the electrode 2 is mentioned.
  • any solvent that can dissolve the photosensitizer 5 such as water, alcohol, toluene, dimethylformamide, and the like can be used.
  • heating and refluxing or application of ultrasonic waves can be performed while being immersed in the photosensitizer solution for a certain period of time. Further, after the photosensitizer 5 is carried, it is desirable to wash with alcohol or reflux under heating in order to remove the photosensitizer 5 that has remained without being carried.
  • the supported amount of the photosensitizer 5 in the electron transport layer 1 may be in the range of 1 ⁇ 10 ⁇ 10 to 1 ⁇ 10 ⁇ 4 mol / cm 2 , particularly 0.1 ⁇ 10 ⁇ 8 to 9.0.
  • the range of ⁇ 10 ⁇ 6 mol / cm 2 is preferable. This is because within this range, the effect of improving the photoelectric conversion efficiency can be obtained economically and sufficiently.
  • An electrolyte can be used for the hole transport layer 4.
  • this electrolyte is one or both of a supporting salt and a pair of redox constituents composed of an oxidant and a reductant.
  • supporting salt examples include ammonium salts such as tetrabutylammonium perchlorate and tetraethylammonium hexafluorophosphate, imidazolium salts and pyridinium salts, alkali metal salts such as lithium perchlorate and potassium tetrafluoroborate. Etc.
  • the oxidation-reduction system constituent material means a pair of substances that are present reversibly in the form of an oxidant and a reductant in a redox reaction.
  • Examples of such a redox constituent material include chlorine compounds-chlorine, iodine compounds-iodine, bromine compounds-bromine, thallium ions (III) -thallium ions (I), mercury ions (II) -mercury ions (I ), Ruthenium ion (III) -ruthenium ion (II), copper ion (II) -copper ion (I), iron ion (III) -iron ion (II), nickel ion (II) -nickel ion (III), Examples thereof include, but are not limited to, vanadium ion (III) -vanadium ion (II), manganate ion-permanganate ion, and the like. In this case, it functions differently from the redox part of the organic compound that forms the electron transport layer 1. Moreover, the electrolyte solution may be gelled or immobilized.
  • the solvent used for dissolving the electrolyte used for the hole transport layer 4 is preferably a compound that dissolves the redox constituents and has excellent ion conductivity.
  • the solvent any of an aqueous solvent and an organic solvent can be used, but an organic solvent is preferable in order to further stabilize the constituent substances.
  • organic solvent examples include carbonate compounds such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, and propylene carbonate, ester compounds such as methyl acetate, methyl propionate, and ⁇ -butyrolactone, diethyl ether, 1, Ether compounds such as 2-dimethoxyethane, 1,3-dioxosilane, tetrahydrofuran, 2-methyl-tetrahydrofuran, heterocyclic compounds such as 3-methyl-2-oxazodilinone, 2-methylpyrrolidone, acetonitrile, methoxyacetonitrile, propionitrile, etc. And aprotic polar compounds such as nitrile compounds, sulfolane, dimethyl sulfoxide and dimethylformamide. These can be used alone or in combination of two or more.
  • carbonate compounds such as ethylene carbonate and propylene carbonate
  • heterocyclic compounds such as ⁇ -butyrolactone, 3-methyl-2-oxazodilinone and 2-methylpyrrolidone
  • acetonitrile methoxyacetonitrile
  • propionitrile 3-methoxypropio Nitrile compounds
  • nitrile and valeric nitrile are preferred.
  • an ionic liquid for the hole transport layer 4 is effective from the viewpoint of non-volatility and flame retardancy.
  • publicly known ionic liquids in general can be used.
  • imidazolium-based, pyridine-based, alicyclic amine-based, aliphatic amine-based, azonium amine-based ionic liquids and European Patent No. 718288. No., WO 95/18456, Electrochemical Vol. 65, No. 11, 923 (1997), J. Electrochem. Soc. 143, 10, 3099 (1996), Inorg. Chem. 35, page 1168 (1996).
  • hole transport layer 4 a gelled electrolyte or a polymer electrolyte can be used.
  • the gelling agent examples include a gelling agent by a technique such as a polymer or a polymer crosslinking reaction, a gelling agent by a polyfunctional monomer that can be polymerized, and an oil gelling agent.
  • the gelled electrolyte or the polymer electrolyte are those commonly used.
  • the gelled electrolyte or the polymer electrolyte in the present invention is a vinylidene fluoride polymer such as polyvinylidene fluoride, An acrylic acid polymer such as polyacrylic acid, an acrylonitrile polymer such as polyacrylonitrile, and a polyether polymer such as polyethylene oxide are preferred.
  • the gelled electrolyte or polymer electrolyte in the present invention is preferably a compound having an amide structure in the molecular structure.
  • the mediator means the redox-based constituent material exemplified above.
  • the mediator of this hole transport layer 4 becomes an oxidation-reduction pair accompanied by an electrochemical oxidation reaction or a reduction reaction.
  • the current at this time can be taken out from the photoelectric element A with the first electrode 2 as a negative electrode and the second electrode 3 as a positive electrode.
  • the gap 10 formed in the electron transport layer 1 is closed by the sealing portion 8.
  • the void 10 does not become a mediator diffusion path of the hole transport layer 4. Therefore, the open circuit voltage is hardly lowered and the conversion efficiency is excellent.
  • Mox + e ⁇ Mred the reaction of the mediator in the hole transport layer 4 is expressed by Mox + e ⁇ Mred.
  • Mox represents an oxidant
  • e represents an electron
  • Mred represents a reductant
  • represents a redox reaction.
  • Mred is reduced to Mox and e (electrons) released by this reduction passes through the photosensitizer 5 and the electron transport layer 1 to the first electrode. After being introduced to 2, it flows to the second electrode 3 side.
  • e (electrons) introduced into the first electrode 2 passes through the void 10 to the hole transport layer 4. It can be blocked by the sealing portion 8. This makes it difficult for e (electrons) introduced into the first electrode 2 to be directly emitted to the hole transport layer 4 by the sealing portion 8.
  • e (electrons) introduced into the first electrode 2 is less consumed to oxidize Mox in the hole transport layer 4 to Mred, resulting in excellent conversion efficiency.
  • Example 1 Synthesis of garbi monomer 4-Bromo-2,6-di-tert-butylphenol (135.8 g; 0.476 mol) and acetonitrile (270 ml) were placed in a reaction vessel, and N was added under an inert atmosphere. , O-bis (trimethylsilyl) acetamide (BSA) (106.3 g; 129.6 ml) was added, and the mixture was stirred at 70 ° C. overnight and reacted until crystals were completely precipitated.
  • BSA O-bis (trimethylsilyl) acetamide
  • galbi monomer 1 g of galbi monomer (p-hydrogalvinoxyl styrene) obtained by the synthesis of the galbi monomer, 57.7 mg of tetraethylene glycol diacrylate, 15.1 mg of azobisisobutyronitrile, After dissolving in 2 ml, the atmosphere was purged with nitrogen and refluxed overnight to polymerize the galbi monomer to obtain a galbi polymer represented by “4” in [Chemical Formula 22].
  • galbi monomer p-hydrogalvinoxyl styrene
  • the conductive glass substrate includes a glass substrate and a coating film made of fluorine-doped SnO 2 laminated on one surface of the glass substrate.
  • the glass substrate serves as a substrate, and the coating film serves as a first electrode.
  • the above galbi polymer (indicated by the symbol “4” in [Chemical Formula 22]) was dissolved in chlorobenzene at a ratio of 1% by mass. This solution was spin-coated at 2000 rpm on the first electrode provided on the conductive glass substrate, and dried at 60 ° C. under 0.01 MPa for 1 hour to form an electron transport layer having a thickness of 30 nm.
  • a polyviologen precursor having a site represented by the above [Chemical Formula 1] was synthesized by the Menstkin reaction. 4-Cyanopyridine and 1,3,5- (bromomethyl) -mesitylene were dissolved in acetonitrile and refluxed overnight under an inert atmosphere. After completion of the reaction, recrystallization purification was performed with methanol to obtain a polyviologen precursor (a scheme is shown in [Chemical Formula 23]).
  • the first electrode (FTO electrode) provided with an electron transport layer (galbi film) was immersed in the obtained compound (Z1) 0.02M, sodium iodide 0.1M aqueous solution, and this first electrode ( A constant voltage of ⁇ 0.75 V was applied to the FTO electrode) for 10 seconds. Further, the obtained film was end-modified in an aqueous solution of 4-cyano-1-methyl-pyridinium salt 0.02M and NaCl 0.1M, and a galbi film was formed on the first electrode provided with the electron transport layer. This galbi film is formed as a sealing portion of the first electrode.
  • the photosensitizer (dye
  • a conductive glass substrate made by Asahi Glass, 10 ⁇ / ⁇ having a thickness of 1 mm with fluorine-doped SnO 2 formed on the surface was used, and platinum was provided on the surface of SnO 2 by sputtering. An electrode was obtained.
  • a sealing material of a hot-melt adhesive ("Binel” made by Mitsui DuPont Polychemicals) is placed on the conductive glass substrate so as to surround the portion where the second electrode is formed,
  • the glass substrate on which the first electrode was formed was overlaid thereon, and pressed and bonded while heating.
  • the glass substrate on which the second electrode is formed is perforated with a diamond drill.
  • Electrolyte injection an electrolyte solution in which OH-TEMPO 0.5M and potassium chloride 0.5 mol / l were dissolved in water was prepared, and this electrolyte solution was formed in the glass substrate from the above-described holes opened with a diamond drill. After the injection, the hole was sealed with an ultraviolet curable resin to form a hole transport layer.
  • Photoelectric element evaluation When the photoelectric conversion element manufactured in Example 1 was irradiated with 200 lux light with a fluorescent lamp ("FLR20S / W / M" manufactured by Panasonic Corporation), an open circuit voltage (OCP) under this irradiation was obtained. ) was 800 mV and gradually converged to 0 mV when the light was cut off. Furthermore, when light was irradiated again, it converged to 800 mV, and this light response behavior was repeatedly expressed stably.
  • OCP open circuit voltage
  • a photovoltaic current of about 2.4 ⁇ A / cm 2 is obtained under irradiation of 200 lux light by a fluorescent lamp (“FLR20S ⁇ W / M” manufactured by Panasonic). When the light was cut off, it gradually converged to 0 A / cm 2 . Further, when the light was irradiated again, a photocurrent of about 2.4 ⁇ A / cm 2 was observed, and it was expressed repeatedly (40 cycles) stably.
  • Example 2 instead of the electrolytic polymerization treatment of Example 1, the first electrode (FTO electrode) provided with an electron transport layer (galbi film) was immersed in 0.02M of compound (Z1) and 0.1M aqueous solution of sodium iodide. A constant voltage of ⁇ 0.75 V was applied to the first electrode (FTO electrode) for 5 minutes. Others were the same as in Example 1.
  • Example 1 In Example 1, except that the electrolytic polymerization treatment was not performed (“Compound (Z1) 0.02M constant voltage application” was set to “No treatment”), the photoelectric device was subjected to the same procedure as in Example 1. Produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 第一電極2と、前記第一電極2に対向配置された第二電極3と、前記第一電極2の前記第二電極3と対向する面に設けられた電子輸送層1と、前記電子輸送層1上に担持された光増感剤5と、前記第一電極2と前記第二電極3の間に介在する正孔輸送層4とを備えた光電気素子Aに関する。前記電子輸送層1内に有機分子からなる目止め部8を内在させた。

Description

光電気素子及びその製造方法
 本発明は、光を電気に、あるいは電気を光に変換する光電気素子及びその製造方法に関するものである。
 近年、光電池や太陽電池などの光電変換による発電素子、有機ELなどの発光素子、エレクトロクロミック表示素子や電子ペーパーなどの光学表示素子、温度・光などを感知するセンサ素子などに、光電気素子が用いられている。この中で太陽電池などの光電気素子において、pn接合型の素子が実用化されているが、例えば、日本国特許公報第2664194号(以下、文献1)に記載されているように、光電気化学的な光電気素子も種々検討されている。この光電気素子は、半導体を付着した第一電極と、第二電極との間に、電解質などの電荷輸送層を挟持して形成されるものであり、半導体には一般に光増感剤として色素を担持させ、色素増感型太陽電池として使用されている。そして光が半導体に照射されると、半導体から発生した電荷が電荷輸送層を移動し、半導体を付着した第一電極を負極、第二電極を正極として、電気を外部に取り出すことができるものである。
 しかし、このような光電気素子は、上記の如く半導体から発生した電荷が電荷輸送層を移動するように構成されているが、半導体に照射された光から電気として外部へ取り出すための変換効率については満足いくものでなかった。
 本発明は上記の点に鑑みてなされたものであり、変換効率に優れる光電気素子及びその製造方法を提供することを目的とするものである。
 本発明は、第一電極と、前記第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた電子輸送層と、前記電子輸送層上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する正孔輸送層とを備えた光電気素子である。前記電子輸送層内に有機分子からなる目止め部を内在させている。
 本発明の光電気素子において、前記電子輸送層は厚み方向に貫通する空隙部を有し、前記目止め部は、前記空隙部に配置されていることが好ましい。
 本発明の光電気素子において、前記有機分子が、下記構造式[化1]に示す部位が1分子内に2つ以上存在する前駆体を電解重合して得られる分子を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
(Xは、シアノ基、フルオロ基、クロロ基またはブロモ基のいずれかを示す電解重合性の官能基である。)
 本発明の光電気素子において、前記前躯体として前記構造式[化1]に示す部位が2つ存在するものを含み、前記有機分子が直鎖状ポリマーで形成されることが好ましい。
 本発明の光電気素子において、前記有機分子が、下記構造式[化2]又は[化3]を繰り返し単位とするポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 本発明の光電気素子において、前記前躯体として前記構造式[化1]に示す部位が3以上存在するものを含み、前記有機分子が架橋型ポリマーで形成されることが好ましい。
 本発明の光電気素子において、前記有機分子が、下記構造式[化4]を繰り返し単位とするポリマーであることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 本発明の光電気素子において、前記前駆体は、対アニオンが臭素イオン、塩素イオン、過塩素酸イオン、ヘキフルオロリン酸イオン、テトラフルオロホウ酸イオンの群れから選ばれる少なくとも一つであることが好ましい。
 本発明は、第一電極と、前記第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた電子輸送層と、前記電子輸送層上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する正孔輸送層とを備えた光電気素子の製造方法において、前記電子輸送層を形成した第一電極を前躯体を含む液体に浸漬させる工程と、前記前駆体の還元電位より卑である電圧を前記第一電極に印加して前記第一電極の表面に有機分子を膜として析出させる工程とを備える光電気素子の製造方法である。前記電子輸送層内に前記有機分子を目止め部として内在させる。
 本発明は、電子輸送層に存在するメディエータ拡散経路を塞ぐことにより開放電圧低下要因を改善し、以って、変換効率に優れるものである。
本発明の光電気素子の実施の形態の一例を示す模式図である。 本発明の光電気素子の実施の形態の概略の断面図である。 本発明の光電気素子の実施の形態の動作の一例を示す模式図である。 本発明に至るまでの光電気素子の一例を示す模式図である。 本発明に至るまでの光電気素子の動作の一例を示す模式図である。
 以下、本発明を実施するための形態について説明する。なお、最初に、本発明に至るまでの経緯を説明し、その後に本発明の実施形態について説明する。
 図4に本発明に至るまでの光電気素子(色素増感型太陽電池等)の一例を示す。この光電気素子Aでは、第一電極2と第二電極3とが所定の間隙を介して対向配置されている。第一電極2と第二電極3の間隙は封止部9で囲まれて密封されており、この密封された間隙に正孔輸送層4として電解液が充填されている。また、第一電極2の第二電極3側の面には電子輸送層1が形成されている。さらに、電子輸送層1の第二電極3側の面には光増感剤5として色素が層状に形成されている。
 上記の電子輸送層1には厚み方向に貫通する孔状もしくはスリット状の空隙部10が発生している。この空隙部10が発生する主な理由は、電子輸送層1が電子輸送材を含む溶液を塗布・乾燥する工程で作製する状況であるので、電子輸送層1の全体にわたり均質な構造とすることが難しいためである考えられる。また、空隙部10には光増感剤5の一部が進入して形成されるが、空隙部10が光増感剤5で完全に埋まることはない。従って、正孔輸送層4の電解液が空隙部10に充填され、第一電極2と正孔輸送層4とが直接接触することになる。
 このような光電気素子Aにおいては、正孔輸送層4中のメディエータの反応は、Mox+e⇔Mredで表される。ここで、「Mox」は酸化体、「e」は電子、「Mred」は還元体、「⇔」は酸化還元反応を示す。そして、光電気素子Aにおいては、図5に示すように、MredがMoxに還元されると共にこの還元により放出されたe(電子)が光増感剤5及び電子輸送層1を通じて第一電極2に導入された後、第二電極3側に流れることが望ましい反応である。
 しかし、上記のように電子輸送層1には空隙部10が形成されているため、第一電極2に導入された電子が空隙部10に充填された正孔輸送層4へと直接放出され、この電子が正孔輸送層4中のMoxをMredへと酸化するのに消費されることがあった。すなわち、空隙部10がメディエータ拡散経路となって電子が消費されるという望ましくない反応が生じるために、光電気素子Aの変換効率が向上し難いという問題があった。
 そこで、発明者らは、従来技術での問題点と、発明者らの研究成果から得られた上記問題点の両方を解決するにあたり、本発明に到った。
 以下、本発明の実施形態を図1乃至図3を基にして説明する。
 図2は本発明の光電気素子Aの一例を示すものである。この光電気素子Aは、一対の基板6,7が対向して配置して具備されており、一方の基板6の内側の表面に第一電極2が、他方の基板7の内側の表面に第二電極3が相対向させて設けられている。
 言い換えると、本発明の光電気素子Aは、第1基板6及び第2基板7を有する。また、第1基板6及び第2基板7は一対の基板6、7として設けられている。この場合、第1基板6は第1面601及び第2面602を備え、第2基板7は第1面701及び第2面702を備えている。これにより、第1基板6の第1面601と第2基板7の第2面702とが対向するように第1基板6及び第2基板7が設けられる。従って、第1基板6及び第2基板7は一対として形成される。
 また、第1基板6の第1面601側には第一電極2が設けられ、第2基板7の第2面702側には第二電極3が設けられている。
 この場合、第一電極2は第1面201及び第2面202を有し、第二電極3は第1面301及び第2面302を有している。これにより、第一電極2の第1面201と第二電極3の第2面とが対向するように第一電極2及び第二電極3が相対向させて設けられている。
 また、第1基板6の第1面601と第一電極2の第2面202とは当接してもよく、若しくは、上記第1面601と上記第2面202との間に固定剤(図示せず)を付与し、第1基板6と第一電極2とが固定されるように構成されていてもよい。
 このような固定剤としては、例えば、液状又は固形の接着剤、絶縁剤、係り止め材等が挙げられる。更に、固定剤は透光性を有する材料からなることが好ましい。ここで、固定剤を用いる場合は、固定剤が硬化する前に貼り合せて第1基板6及び第一電極2を固定してもよく、上記第1面601と上記第2面202との間に固定剤を設けた後に熱圧処理を施すことにより第1基板6及び第一電極2を固定してもよい。この場合、固定剤は第一電極2よりも高い光透過率を有することが好ましい。これにより光電気素子Aが第一電極2の第2面側から光が入射されるように形成されても、固定剤による光の吸収をできる限り抑えることができる。
 第一電極2の基板6側と反対側の表面702には半導体等からなる電子輸送層1が設けられており、また、基板6,7の間には正孔輸送層(電荷輸送層)4が設けられている。
 言い換えると、第一電極2の第1面201には、電子輸送層1が設けられている。この電子輸送層1は、例えば、半導体から形成される。また、第1基板6及び第2基板7の間には正孔輸送層(電荷輸送層)4が設けられている。このような正孔輸送層4は、半導体等から形成することができる。
 図1は本発明の光電気素子Aの一例の詳細を示すものである。第一電極2と第二電極3とが所定の間隙を介して対向配置されている。第一電極2と第二電極3の間隙は封止部9で囲まれて密封されており、この密封された間隙に正孔輸送層4が充填されて封入されている。また、第一電極2の第二電極3側の面には、目止め部8を内在する電子輸送層1が形成されている。さらに、電子輸送層1の第二電極3側の表面(目止め部8の第二電極3側の表面も含む)には光増感剤5が層状に形成されて担持されている。
 言い換えると、図1で例示される本発明の光電気素子Aは、第一電極2と第二電極3とを有し、第一電極2の第1面201と第二電極3の第2面302との間に所定間隔を設けるように第一電極2及び第二電極3が対向配置されている。また、第一電極2の第1面201と第二電極3の第2面302との間の間隙(所定間隔)が封止部9で囲まれて密封されている。この密封された間隙に正孔輸送層4が充填されて封入されている。
 また、第一電極2の第1面201には電子輸送層1が設けられ、この電子輸送層1は目止め部8を内在するように形成されている。
 この場合、電子輸送層1は、当該電子輸送層1の厚み方向に貫通する空隙部10を有し、上記目止め部8は、空隙部10に配置されていることが好ましい。
 一対の基板6,7のうち、電子輸送層1を設けた第一電極2が被着される第1基板6は、透光性のガラスやフィルム、光を透過するように加工された金属で形成することができる。例えば、上記金属が線状(ストライプ)、波線状、格子状(メッシュ状)、パンチングメタル状、粒子の集合体状であれば、隙間を光が通過でき、さらに透明導電材料を用いる必要がないため、材料コスト削減による経済的な観点から好ましい。これらの形状の基板を用いる場合は、素子の耐久性の観点からプラスチックやガラスなどの構造材料と共に適用することもできる。
 また、他方に位置する第2基板7を光入射用基板として機能させるのであれば、この基板6は光を透過しない材料を用いることができる。その場合、第1基板6は導電性を有してもよい。つまり、基板6を第一電極2として作用させるように導電性材料から形成されていることが好ましい。このような導電性材料としては、例えば、炭素、アルミニウム、チタン、鉄、ニッケル、銅、ロジウム、インジウム、スズ、亜鉛、白金、金などの材料やステンレスなどの金属から形成された線状(ストライプ)、波線状、格子状(メッシュ状)、金属箔、パンチングメタル状、粒子の集合体状の材料のうち少なくとも1種類を含む合金を用いることができる。本発明では後述するように、ラジカル化合物がハロゲンイオンなどに比べて金属を腐食しにくいために、基板6,7及び第一電極2、第二電極3には汎用の金属を用いることができる。
 また、基板7は、基板6と同じ材料で形成することができる。基板7の透光性はあってもなくてもよいが、両側の基板6,7から光を入射させることを可能にすることができる点で、透明であることが好ましい。また、上記のように基板6に金属箔を使用した場合は、基板7は透光性のある材料で形成することが好ましい。
 この場合、第2基板7の第2面702と第二電極3の第1面301とは当接してもよく、若しくは、上記第2面702と上記第1面301との間に透光性固定剤を付与し、第2基板7と第二電極3とが固定されるように構成されていてもよい。
 このような透光性固定剤としては、例えば、液状又は固形の接着剤、絶縁剤、係り止め材等が上げられる。ここで、透光性固定剤を用いる場合は、透光性固定剤が硬化する前に貼り合せて第2基板7及び第二電極3を固定してもよく、上記第2面702と上記第1面301との間に透光性固定剤を設けた後に熱圧処理を施すことにより第2基板7及び第二電極3を固定してもよい。
 第一電極2は、基板6に成膜され、光電気素子Aの負極として機能するものであり、金属そのもので形成するようにしてもよく、又は基板やフィルム上に導電材層を積層して形成するようにしてもよい。
 言い換えると、第一電極2は、第1基板6に成膜され、この第一電極2は、例えば、光電気素子Aの負極として機能するものである。また第一電極2は、金属そのもので形成するようにしてもよく、若しくは第一電極2は、基板又はフィルム基板上に導電材層を積層して形成するようにしてもよい。
 このような、好ましい導電材としては金属、例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等、又は炭素、若しくは導電性の金属酸化物、例えばインジウム-錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫等、あるいは上記化合物の複合物が挙げられる。
 本発明では電子移動速度が速いラジカル化合物を用いるので、第一電極2の表面201での電子の漏れを防ぐため、つまり整流性を持たせるために、上記化合物上に酸化シリコン、酸化スズ、酸化チタン、酸化ジルコニウム、酸化アルミニウムなどでコートした材料を第一電極2に用いるのが好ましい。
 言い換えると、本発明の光電気素子Aは、電子移動速度が速いラジカル化合物を用いるので、第一電極2の第1面201での電子の漏れを防ぐように構成されている。この場合、第一電極2は導電材層及びコート層を備え、このコート層は、導電材層を覆うように構成されていることが好ましい。またコート層は導電材層での電子の整流性を持たせるために、酸化シリコン、酸化スズ、酸化チタン、酸化ジルコニウム、酸化アルミニウムなどの材料からなることが好ましい。
 この第一電極2は、表面抵抗が低い程よいものであり、好ましい表面抵抗の範囲としては、200Ω/□以下であり、より好ましくは50Ω/□以下である。表面抵抗の下限は特に制限されないが、通常0.1Ω/□である。
 また、第一電極2は光透過率が高い程よいものであり、好ましい光透過率の範囲としては50%以上であり、より好ましくは80%以上である。さらに第一電極2の膜厚は、1~100nmの範囲内にあることが好ましい。膜厚がこの範囲内であれば、均一な膜厚の電極膜を形成することができ、また光透過性が低下せず、十分な光を電子輸送層1に入射させることができるからである。
 更に、第二電極3は、第一電極2と同様に、表面抵抗が低い程よいものであり、好ましい表面抵抗の範囲としては、200Ω/□以下であり、より好ましくは50Ω/□以下である。表面抵抗の下限は特に制限されないが、通常0.1Ω/□である。
 また、第二電極3は光透過率が高い程よいものであり、好ましい光透過率の範囲としては50%以上であり、より好ましくは80%以上である。さらに第二電極3の膜厚は、1~100nmの範囲内にあることが好ましい。膜厚がこの範囲内であれば、均一な膜厚の電極膜を形成することができ、また光透過性が低下せず、十分な光を正孔輸送層4に入射させることができるからである。
 透明な第一電極2を使用する場合、光は電子輸送層1が被着される側のこの第一電極2から入射させることが好ましい。
 言い換えると、本発明の光電気素子Aが透明な第一電極2を備える場合、光は電子輸送層1が被着される第一電極2の第2面202側から入射させることが好ましい。
 第二電極3は、光電気素子Aの正極として機能するものであり、上記の第一電極2と同様に形成することができる。この第二電極3は、正孔輸送層4に用いる電解質の還元体に電子を与える触媒作用を有する素材を使用することが好ましい。これにより、第二電極3は光電気素子Aの正極として効率よく作用するように構成される。
 このような素材としては、例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等の金属、又はグラファイト、カーボンナノチューブ、白金を担持したカーボン等の炭素材料、若しくはインジウム-錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫等の導電性の金属酸化物、ポリエチレンジオキシチオフェン、ポリピロール、ポリアニリン等の導電性高分子などを挙げることができる。これらのうち、白金やグラファイト、ポリエチレンジオキシチオフェンなどが特に好ましい。
 第二電極3が設けられる側の基板7は、第二電極3の被着面側に透明導電膜(図示しない)を有することもできる。
 言い換えると、第2基板7は、第二電極3の被着面(第二電極3の第1面301)側に透明導電膜を有することもできる。この場合、第2基板7は、第二電極3の第1面301側に位置し、第2基板7の第2面702と第二電極3の第1面301との間に上記透明導電膜を設けられることとなる。
 このような透明導電膜は、例えば第一電極2の材料としてあげたものから成膜することができる。
 つまり、透明導電膜は、基板又はフィルム基板上に積層して形成するようにして成膜することができる。この透明導電膜は透明導電性材料を備える。更に透明導電性材料として、例えば、インジウム-錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫等の導電性の金属酸化物、或いはこれらの複合物が挙げられる。
 この場合、第二電極3も透明であることが好ましく、第二電極3も透明であれば、第二電極3の第1面301側から、あるいは第一電極2の第2面202と第二電極3の第1面301との両側から光を照射させるようにしてもよい。
 これは、例えば反射光などの影響により基板6,7の両側からの光照射が期待される場合に有効だからである。尚、第一電極2を備えた基板6及び第二電極3を備えた基板7を透明導電基板として形成することができる。
 電子輸送層1としては、Cd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Si、Crなどの金属元素の酸化物、SrTiO、CaTiOなどのペロブスカイト、CdS、ZnS、In、PbS、MoS、WS、Sb、Bi、ZnCdS、CuSなどの硫化物、CdSe、InSe、WSe、HgS、PbSe、CdTeなどの金属カルコゲナイド、その他GaAs、Si、Se、Cd、Zn、InP、AgBr、PbI、HgI、BiIなどを用いることができる。また、これらの半導体材料から選ばれる少なくとも一種以上を含む複合体、例えば、CdS/TiO、CdS/AgI、AgS/AgI、CdS/ZnO、CdS/HgS、CdS/PbS、ZnO/ZnS、ZnO/ZnSe、CdS/HgS、CdS/CdSe1-x、CdS/Te1-x、CdSe/Te1-x、ZnS/CdSe、ZnSe/CdSe、CdS/ZnS、TiO/Cd、CdS/CdSeCdZn1-yS、CdS/HgS/CdSなどを用いることができる。また、ポリフェニレンビニレンやポリチオフェンやポリアセチレン、テトラセン、ペンタセン、フタロシアニンなどの有機半導体を用いることもできる。
 また、さらに、電子輸送層1は、その分子内の一部として繰り返し酸化還元が可能な酸化還元部を有すると共に、他の一部として電解質溶液を含んで膨潤してゲルとなる部位を有する有機化合物でもよい。
 言い換えると、上記有機半導体は有機化合物からなり、電子輸送層1は、この有機化合物を含むことにより構成されてもよい。この場合、上記有機化合物は、その分子内に繰り返し酸化還元が可能な酸化還元部及び電解質溶液を含んで膨潤するゲル部位を有するように形成されている。
 ここで、前記電子輸送層1に用いられる有機化合物について詳しく説明する。この有機化合物は、その分子内の一部として繰り返し酸化還元が可能な酸化還元部を有すると共に、他の一部として電解質溶液を含んで膨潤してゲルとなる部位(以下ゲル部位と呼ぶ)を有する。酸化還元部はゲル部位に化学的に結合している。分子内での酸化還元部とゲル部位の位置関係は、特に限定されないが、例えばゲル部位で分子の主鎖などの骨格が形成される場合に、酸化還元部は側鎖として主鎖に結合している。またゲル部位を形成する分子骨格と酸化還元部を形成する分子骨格が交互に結合した構造であってもよい。
 ここで、酸化還元(酸化還元反応)とは、イオンや原子や化合物が電子を授受することであり、酸化還元部とは、酸化還元反応(レドックス反応)により安定的に電子を授受することができる部位をいうものである。
 また、有機化合物は酸化還元部を有しており、電解質溶液によって膨潤された状態で電子輸送層1を形成している。すなわちゲル状態では有機化合物は立体網目構造をとり、この網目空間内を液体が満たしている。
 酸化還元部とゲル部位を有する有機化合物は、低分子体でもよいし、高分子体でもよい。低分子体である場合、水素結合などを介したいわゆる低分子ゲルを形成する有機化合物を使用することができる。また高分子体の場合は数平均分子量1000以上の有機化合物であれば、自発的にゲル化の機能を発現することができるために好ましい。高分子体の場合の有機化合物の分子量の上限は特に制限されないが、100万以下であることが好ましい。また、ゲルの状態は、例えば、こんにゃく状や、イオン交換膜のような外観形状であることが好ましいが、特に制限されるものではない。
 また、「繰り返し酸化還元が可能な酸化還元部」とは、酸化還元反応において可逆的に酸化体および還元体となる部位を指す。この酸化還元部は酸化体と還元体が同一電荷を持つ酸化還元系構成物質であることが好ましい。
 上記のような酸化還元部とゲル部位とを一つの分子中に有する有機化合物は、次の一般式で表すことができる。
  (Xnj:Y
 (Xおよび(Xnjはゲル部位を示し、Xはゲル部位を形成する化合物のモノマーを示すものであり、ポリマー骨格で形成することができる。モノマーの重合度nは、n=1~10万の範囲が好ましい。YはXに結合している酸化還元部を示すものである。またj,kはそれぞれ1分子中に含まれる(X、Yの数を表す任意の整数であり、いずれも1~10万の範囲が好ましい。酸化還元部Yはゲル部位(Xおよび(Xnjをなすポリマー骨格のいかなる部位に結合していてもよい。また、酸化還元部Yは種類の異なる材料を含んでいてもよく、この場合は電子交換反応の観点から酸化還元電位が近い材料が好ましい。
 酸化還元部とゲル部位を一分子中に有し、電子輸送層1として機能する有機化合物としては、キノン類が化学結合したキノン誘導体骨格を有するポリマー、イミドを含有するイミド誘導体骨格を有するポリマー、フェノキシルを含有するフェノキシル誘導体骨格を有するポリマー、ビオロゲンを含有するビオロゲン誘導体骨格を有するポリマーなどが挙げられる。これらの有機化合物では、それぞれポリマー骨格がゲル部位となり、キノン誘導体骨格、イミド誘導体骨格、フェノキシル誘導体骨格、ビオロゲン誘導体骨格がそれぞれ酸化還元部となる。
 上記の有機化合物のうち、キノン類が化学結合したキノン誘導体骨格を有するポリマーの例として、下記[化5]~[化8]の化学構造を有するものが挙げられる。
 [化5]~[化8]において、Rはメチレン、エチレン、プロパン-1,3-ジエニル、エチリデン、プロパン-2,2-ジイル、アルカンジイル、ベンジリデン、プロピレン、ビニリデン、プロペン-1,3-ジイル、ブト-1-エン-1,4-ジイルなどの飽和又は不飽和炭化水素類;シクロヘキサンジイル、シクロヘキセンジイル、シクロヘキサジエンジイル、フェニレン、ナフタレン、ビフェニレンなど環状炭化水素類;オキサリル、マロニル、サクシニル、グルタニル、アジポイル、アルカンジオイル、セバコイル、フマロイル、マレオイル、フタロイル、イソフタロイル、テレフタロイルなどケト、二価アシル基;オキシ、オキシメチレノキシ、オキシカルボニルなどエーテル、エステル類;サルファンジイル、サルファニル、サルホニルなど硫黄を含む基;イミノ、ニトリロ、ヒドラゾ、アゾ、アジノ、ジアゾアミノ、ウリレン、アミドなど窒素を含む基;シランジイル、ジシラン-1,2-ジイルなど珪素を含む基;またはこれらの基の末端を置換した基或いは複合した基を示す。
 [化5]はポリマー主鎖にアントラキノンが化学結合して構成される有機化合物の例である。[化6]はアントラキノンが繰り返しユニットとしてポリマー主鎖に組み込まれて構成される有機化合物の例である。また[化7]はアントラキノンが架橋ユニットとなっている有機化合物の例である。さらに[化8]は酸素原子と分子内水素結合を形成するプロトン供与性基を有するアントラキノンの例を示すものである。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 また酸化還元部Yがイミドを含有するイミド誘導体骨格を有するポリマーとして、[化9]や[化10]に示すポリイミドを用いることができる。ここで、[化9]や[化10]において、R~Rはフェニレン基などの芳香族基、アルキレン基、アルキルエーテルなど脂肪族鎖、エーテル基である。ポリイミドポリマー骨格はR~Rの部分で架橋していてもよく、また、用いた溶媒中で膨潤するのみで溶出しなければ架橋構造を有さなくてもよい。架橋した場合はその部分がゲル部位(Xおよび(Xnjに相当する。また架橋構造を導入する場合、架橋ユニットにイミド基が含有されていてもよい。イミド基は、電気化学的に可逆な酸化還元特性を示すのであれば、フタルイミドやピロメリットイミドなどが好適である。
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 また、フェノキシルを含有するフェノキシル誘導体骨格を有するポリマーとして、例えば[化11]に示すようなガルビ化合物(ガルビポリマー)が挙げられる。このガルビ化合物において、ガルビノキシル基([化12]参照)が酸化還元部位Yに相当し、ポリマー骨格がゲル部位(Xおよび(Xnjに相当する。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 また、ビオロゲンを含有するビオロゲン誘導体骨格を有するポリマーとして、例えば、[化13]や[化14]に示すようなポリビオロゲンポリマーを挙げることができる。このポリビオロゲンポリマーにおいては、[化15]に示す部分が酸化還元部Yに相当し、ポリマー骨格がゲル部位(Xおよび(Xnjに相当する。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 なお、[化5]~[化7]、[化9]~[化11]、[化13]及び[化14]で示すm、nは、モノマーの重合度を示すものであり、1~10万の範囲が好ましい。
 前述したように、上記の酸化還元部とポリマー骨格を有する有機化合物は、ポリマー骨格がその骨格間に電解質溶液を含有して膨潤し、これにより電子輸送層1がゲル化してゲル層となる。このようにポリマー骨格間に電解質溶液が含まれることで、酸化還元部の酸化還元反応により形成されるイオン状態が電解質溶液中の対イオンで補償され、酸化還元部を安定化させることができるものである。前記電解質溶液としては、例えば後述する正孔輸送層4を形成する電解質溶液が挙げられる。
 以上のような電子輸送層1の中でも、TiO及び上記酸化還元部とゲル部位を一分子中に有する有機化合物が、正孔輸送層4を形成する電解質溶液中への光溶解の回避と、高い光電変換特性を得ることができる点で好ましい。
 第一電極2の表面201に形成される電子輸送層1の厚みは、0.01~100μmの範囲内であることが好ましい。この範囲内であれば、十分な光電変換効果が得られ、また、可視光及び近赤外光に対する透過性が悪化することもないからである。電子輸送層1の厚みのより好ましい範囲は0.5~50μmであり、特に好ましい範囲は1~20μmである。
 電子輸送層1が無機化合物である場合、電子輸送層1の層は半導体とバインダーの混合溶液を、公知慣用の方法、例えば、ドクターブレードやバーコータなどを使う塗布方法、スプレー法、ディップコーティング法、スクリーン印刷法、スピンコート法などにより第一電極2の表面に塗布し、その後、加熱焼成やプレス機での加圧などによりバインダー成分を除去することによって形成することができる。
 また、電子輸送層1が無機化合物である場合、電子輸送層1の層の表面粗さは、実効面積/投影面積において10以上であることが好ましい。表面粗さを10以上にすることにより、電荷分離界面の表面積を上げることができるために、光電変換特性を向上させることができるものである。より好ましい表面粗さは100~2000である。
 また、電子輸送層1が有機化合物である場合、電子輸送層1を形成するにあたっては、溶液などを塗布して形成する湿式の形成方法が、より簡便で低コストな製法であることから好ましい。特に電子輸送層1を数平均分子量1000以上のいわゆる高分子の有機化合物で形成する場合は、成形性の観点から湿式の形成方法が好ましい。湿式のプロセスとしては、スピンコート法や液滴を滴下乾燥して得られるドロップキャスト法、スクリーン印刷やグラビア印刷などの印刷法などが挙げられる。そのほか、スパッタ法や蒸着法などの真空プロセスを採用することもできる。
 上記のようにして形成される電子輸送層1においては、上記のような空隙部10が形成されることがある。従って、本実施形態では、この空隙部10を塞いで閉塞するための目止め部8が形成されている。目止め部8は有機分子が空隙部10に充填されて電子輸送層1に内在されている。
 目止め部8を形成する有機分子は、上記構造式[化1]に示す部位を1分子内に2つ以上存在する前駆体を電解重合して得られる分子(化合物)を含むことが好ましい。これにより、第一電極2と正孔輸送層4のメディエータとの接触が抑制され、開放電圧の向上、さらには変換効率の向上が図れる。
 このようにして得られる有機化合物は、酸化還元部として、下記構造式[化16]に示すビピリジニウム構造単位を有する。
 このビピリジニウム構造単位は、電解重合により、前駆体の構造式[化1]に示す構造を有する部位からXで示される置換基が脱離すると共にこの部位におけるXで示される置換基が脱離した位置同士が結合することで生成する。
 このピリジウム構造が単位1電子還元されるとピリジウムカチオンラジカルが生成し、更に1電子還元されるとピリジウムジラジカルが生成する。逆に、ピリジウムジラジカルが1電子酸化されるとピリジウムカチオンラジカルが生成し、更に1電子酸化されると元のピリジウム構造単位に戻る。
 このように有機化合物は繰り返し安定した酸化還元能を発現する。また、有機化合物が酸化還元時にラジカル状態を経ることによって、非常に速い自己電子交換反応が生じ、有機化合物間で電子が授受されやすくなる。有機化合物の酸化還元時のラジカル状態は例えばESR(電子スピン共鳴)などにより観測される。
Figure JPOXMLDOC01-appb-C000020
 また、上記構造式[化16]に示す部位の対アニオンAとしては、例えば、臭素イオン、塩素イオン、過塩素酸イオン、ヘキサフルオロリン酸イオン、及びテトラフルオロホウ酸イオンの群れから選ばれる少なくとも一つのアニオンが挙げられる。これにより、第一電極2と正孔輸送層4のメディエータとの接触が抑制され、開放電圧の向上、さらには変換効率の向上が効率的に図れる。
 より具体的には、目止め部8を形成する有機分子の前駆体としては、前記構造式[化1]に示す部位が2つ存在するものを含み、この前駆体より有機分子が直鎖状ポリマーで形成されることが好ましい。これにより、空隙部10の孔径が小さい部分に対しても効果的にポリマーによる目止めが実施でき、開放電圧の向上、さらには変換効率の向上が効率的に図れる。
 前駆体が、構造式[化1]に示す構造を有する部位を1分子中に2つ有する化合物のみである場合には、有機分子は直鎖状の分子となる。例えば、前駆体が下記構造式[化17]に示す化合物である場合には、有機化合物は前記構造式[化2]に示す直鎖状の分子となり、前駆体が、下記構造式[化18]に示す化合物である場合には、有機分子は前記構造式[化3]に示す直鎖状の分子となる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 そして、より好ましい直鎖状ポリマーの有機分子としては、上記[化2]又は[化3]を繰り返し単位とするものである。これにより、電子輸送層1の空隙部10に有機化合物からなるポリマーが目止め部8として効果的に形成される。従って、第一電極2と正孔輸送層4のメディエータとの接触が抑制され、開放電圧の向上、さらには変換効率の向上が効率的に図れる。
 また、目止め部8を形成する有機分子の前駆体としては、前記構造式[化1]に示す部位が3つ以上存在するものを含み、この前駆体より有機分子が三次元的な架橋型ポリマーで形成されることが好ましい。これにより、電子輸送層1の空隙部10に有機化合物からなるポリマーが目止め部8として効果的に形成される。従って、第一電極2と正孔輸送層4のメディエータとの接触が抑制され、開放電圧の向上、さらには変換効率の向上が効率的に図れる。
 前駆体の少なくとも一部が構造式[化1]に示す構造を有する部位を1分子中に3以上有する化合物である場合には、有機分子は架橋型ポリマーとなる。例えば、前駆体が、下記構造式[化19]に示す化合物である場合には、有機分子は前記構造式[化4]に示すような分子となる。
Figure JPOXMLDOC01-appb-C000023
 そして、より好ましい架橋型ポリマーの有機分子としては、上記[化4]を繰り返し単位とするものである。これにより、電子輸送層1の空隙部10に有機化合物からなるポリマーが目止め部8として効果的に形成される。従って、第一電極2と正孔輸送層4のメディエータとの接触が抑制され、開放電圧の向上、さらには変換効率の向上が効率的に図れる。
 電解重合法による有機化合物の重合にあたっては、例えば、前駆体を含有する液体(溶液)に、電子輸送層1が形成された第一電極2とカウンター電極とを浸漬する。この状態で第一電極2とカウンター電極との間に電圧が印加すると、電気化学的反応により前駆体が第一電極2の第1面201側で重合する。これにより重合した有機化合物が析出する。この場合、前駆体の還元電位より卑である電圧を第一電極2に印加して第一電極2の表面201側に重合した有機化合物を膜として析出させることができる。
 この電解重合法では、CVD(Chemical Vapor Deposition)の場合のような高度な設備や技術は必要とされず、それでいて有機化合物が析出する速度が速く、しかも析出した有機分子は第一電極2から剥離しにくくなり、更に有機分子の緻密化及び薄膜化が容易となる。
 このように電子輸送層1内の空隙部10に目止め部8が形成されると、有機分子が緻密化して酸化還元部位が密に配置される。このため電子輸送層1が高い電子輸送性を発揮する。
 また、電子輸送層1を構成する有機化合物が三次元的に広がることによってこの有機化合物の安定性が高くなる。更にこの有機化合物の溶媒への溶解性が低減し、電解質溶液の溶媒の選択の幅が広がる。また、電解重合によって生成する有機化合物は高分子量化するため、前駆体の電解重合により形成される目止め部8は高い耐久性を発揮する。
 目止め部8の厚みは、電子輸送層1の厚みと同等か、電子輸送層1の厚みよりも若干薄くするのが好ましい。これにより、空隙部10の閉塞効果(目止め効果)が充分に得られ、また、可視光及び近赤外光に対する透過性が悪化することもないからである。
 以上のようにして形成される電子輸送層1の表面101(目止め部8の表面801も含む)上には、光増感剤5が担持される。これにより、光増感剤5で光電荷分離の界面を形成することができるため、光電変換効率を向上させることができるものである。
 このような光増感剤5としては、公知な材料を用いることができるものであり、半導体超微粒子などの無機材料でも、色素、顔料などの有機材料でもよい。
 本発明における光増感剤5は、効率よく光を吸収し、電荷を分離する色素であることが好ましい。このような色素としては、例えば、9-フェニルキサンテン系色素、クマリン系色素、アクリジン系色素、トリフェニルメタン系色素、テトラフェニルメタン系色素、キノン系色素、アゾ系色素、インジゴ系色素、シアニン系色素、メロシアニン系色素、キサンテン系色素などが挙げられる。または、RuL(HO)タイプのルテニウム-シス-ジアクア-ビピリジル錯体(ここで、Lは4,4’-ジカルボキシル-2,2’-ビピリジンを示す。)、または、ルテニウム-トリス(RuL)、ルテニウム-ビス(RuL)、オスニウム-トリス(OsL)、オスニウム-ビス(OsL)などのタイプの遷移金属錯体、または亜鉛-テトラ(4-カルボキシフェニル)ポルフィリン、鉄-ヘキサシアニド錯体、フタロシアニンなどが挙げられる。
 その他、例えば、「FPD・DSSC・光メモリーと機能性色素の最新技術と材料開発」((株)エヌ・ティー・エス)のDSSCの章にあるような色素も適用することができる。
 中でも電子輸送層1上で会合性を有する色素は、密に充填して電子輸送層1の表面101を覆うように構成されていることが好ましい。これは、電子輸送層1と正孔輸送層4との絶縁体層として機能するという観点に基づく。
 光増感剤5が絶縁体層として機能する場合、電荷分離界面において発生電子の整流性を付与することができ、電荷分離後の電荷の再結合を抑制することができる。また、電子輸送材料と正孔輸送材料に存在する電子と正孔の再結合点を劇的に減らすことができるものであり、それにより得られる光電気素子の変換効率をより向上させることができるものである。
 会合体を形成して効果のある色素としては、[化20]の構造で示されるものが好ましく、具体的には、[化21]の構造で示される色素が好ましい。なお、有機溶剤などに溶けている色素と電子輸送層1上に担持された色素の吸収スペクトルの形状から会合性の判別は可能である。会合していれば、前者と後者でスペクトルの形状が大きく異なることが知られている。
Figure JPOXMLDOC01-appb-C000024
(但し、X、Xはアルキル基、アルケニル基、アラルキル基、アリール基、ヘテロ環を少なくとも一種類以上を含み、それぞれ置換基を有していてもよい。Xに半導体と吸着する部位、例えば、カルボキシル基、スルホニル基、ホスホニル基を有する。)
Figure JPOXMLDOC01-appb-C000025
 また、上記光増感剤5に用いることができる半導体超微粒子としては、硫化カドミウム、硫化鉛、硫化銀などの硫化物半導体などを挙げることができる。また、上記半導体超微粒子の粒子径としては、本発明の電子輸送層1層に対して光増感作用があれば特に制限はないが、1~10nmの範囲が好ましい。
 目止め部8を内在する電子輸送層1に光増感剤5を担持させる方法は、例えば、光増感剤5を溶解あるいは分散させた溶液に、電子輸送層1を被着させた第一電極2を備えた基板6を浸漬させる方法が挙げられる。この溶液の溶媒としては、水、アルコール、トルエン、ジメチルホルムアミドなど光増感剤5を溶解可能なものであれば全て使用できる。また、光増感剤溶液に一定時間浸漬させている時に、加熱還流をしたり、超音波を印加したりすることもできる。さらに光増感剤5を担持させた後、担持されずに残ってしまった光増感剤5を取り除くために、アルコールで洗浄あるいは加熱還流することが望ましい。
 光増感剤5の電子輸送層1における担持量は、1×10-10~1×10-4mol/cmの範囲内であればよく、特に0.1×10-8~9.0×10-6mol/cmの範囲が好ましい。この範囲内であれば、経済的且つ十分に光電変換効率向上の効果を得ることができるからである。
 正孔輸送層4には電解質を用いることができる。正孔輸送層4に電解質を用いる場合、この電解質は支持塩と、酸化体と還元体からなる一対の酸化還元系構成物質の、いずれか一方あるいは両方である。
 支持塩(支持電解質)としては、例えば過塩素酸テトラブチルアンモニウム、六フッ化リン酸テトラエチルアンモニウムなどのアンモニウム塩、イミダゾリウム塩やピリジニウム塩、過塩素酸リチウムや四フッ化ホウ素カリウムなどアルカリ金属塩などが挙げられる。
 酸化還元系構成物質とは、酸化還元反応において可逆的に酸化体および還元体の形で存在する一対の物質を意味するものである。
 このような酸化還元系構成物質としては、例えば、塩素化合物-塩素、ヨウ素化合物-ヨウ素、臭素化合物-臭素、タリウムイオン(III)-タリウムイオン(I)、水銀イオン(II)-水銀イオン(I)、ルテニウムイオン(III)-ルテニウムイオン(II)、銅イオン(II)-銅イオン(I)、鉄イオン(III)-鉄イオン(II)、ニッケルイオン(II)-ニッケルイオン(III)、バナジウムイオン(III)-バナジウムイオン(II)、マンガン酸イオン-過マンガン酸イオンなどが挙げられるが、これらに限定はされない。この場合、電子輸送層1を形成する有機化合物の酸化還元部とは区別されて機能する。また、電解質溶液がゲル化または固定化されていてもよい。
 正孔輸送層4に用いられる電解質を溶解するために使用される溶媒は、酸化還元系構成物質を溶解してイオン伝導性に優れた化合物が好ましい。溶媒としては水性溶媒及び有機溶媒のいずれも使用できるが、構成物質をより安定化するため、有機溶媒が好ましい。
 このような有機溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、酢酸メチル、プロピオン酸メチル、γ-ブチロラクトン等のエステル化合物、ジエチルエーテル、1,2-ジメトキシエタン、1,3-ジオキソシラン、テトラヒドロフラン、2-メチル-テトラヒドロフラン等のエーテル化合物、3-メチル-2-オキサゾジリノン、2-メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル等のニトリル化合物、スルフォラン、ジメチルスルフォキシド、ジメチルホルムアミド等の非プロトン性極性化合物などが挙げられる。これらはそれぞれ単独で用いることもでき、また、2種類以上を混合して併用することもできる。
 中でも、エチレンカーボネート、プロピレンカーボネート等のカーボネ-ト化合物、γ―ブチロラクトン、3-メチル-2-オキサゾジリノン、2-メチルピロリドン等の複素環化合物、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、3-メトキシプロピオニトリル、吉草酸ニトリル等のニトリル化合物が好ましい。
 また、正孔輸送層4にイオン性液体を用いることも、不揮発性,難燃性などの観点から有効といえる。
 その場合、公知公例のイオン性液体全般を用いることができるが、例えばイミダゾリウム系、ピリジン系、脂環式アミン系、脂肪族アミン系、アゾニウムアミン系イオン性液体や、欧州特許第718288号明細書、国際公開第95/18456号パンフレット、電気化学第65巻11号923頁(1997年)、J. Electrochem. Soc.143巻,10号,3099頁(1996年)、Inorg. Chem. 35巻,1168頁(1996年)に記載された構造のものが挙げられる。
 また、正孔輸送層4として、ゲル化電解質、あるいは高分子電解質を使用することもできる。
 ゲル化剤としては、ポリマー、またはポリマー架橋反応等の手法によるゲル化剤、または重合することができる多官能モノマーによるゲル化剤、オイルゲル化剤などが挙げられる。
 ゲル化電解質、又は高分子電解質には一般に用いられるものを適用することができるが、本発明における上記ゲル化電解質、又は高分子電解質は、例えば、ポリフッ化ビニリデンなどのフッ化ビニリデン系重合体、ポリアクリル酸などのアクリル酸系重合体、ポリアクリロニトリルなどのアクリロニトリル系重合体およびポリエチレンオキシドなどのポリエーテル系重合体であることが好ましい。若しくは本発明における上記ゲル化電解質、又は高分子電解質は、その分子の構造中にアミド構造を有する化合物であることが好ましい。
 以上のように形成される光電気素子Aにあって、電子輸送層1に光が照射されると、電子輸送層1から電子又は正孔が生成し、この電子又は正孔が正孔輸送層4中のメディエータの酸化還元反応に関与する。ここで、メディエータとは、上記例示される酸化還元系構成物質を意味する。
 この正孔輸送層4のメディエータが電気化学的酸化反応又は還元反応を伴う酸化還元対となる。このときの電流を、第一電極2を負極、第二電極3を正極として光電気素子Aから外部に取り出すことができるものである。
 そして、上記の光電気素子Aは、目止め部8により電子輸送層1に形成される空隙部10が閉塞される。これにより空隙部10が正孔輸送層4のメディエータ拡散経路となることがない。よって、開放電圧の低下が生じにくくなって、変換効率に優れるものとなる。
 すなわち、正孔輸送層4中のメディエータの反応は、Mox+e⇔Mredで表される。ここで、「Mox」は酸化体、「e」は電子、「Mred」は還元体、「⇔」は酸化還元反応を示す。
 本発明の光電気素子Aにおいては、図3に示すように、MredがMoxに還元されると共にこの還元により放出されたe(電子)が光増感剤5及び電子輸送層1を通じて第一電極2に導入された後、第二電極3側へと流れる。
 そして、電子輸送層1の空隙部10は目止め部8で閉塞されているため、第一電極2に導入されたe(電子)が正孔輸送層4へと空隙部10を通過するのを目止め部8で遮断することができる。これにより、第一電極2に導入されたe(電子)が目止め部8により正孔輸送層4へと直接放出されるにくくなる。
 従って、第一電極2に導入されたe(電子)が正孔輸送層4中のMoxをMredへと酸化するのに消費されることが少なくなり、変換効率に優れるものとなる。
 次に、本発明を実施例によって具体的に説明する。
 (実施例1)
 ・ガルビモノマーの合成
 反応容器内に、4-ブロモ-2,6-ジ-tert-ブチルフェノール(135.8g;0.476mol)と、アセトニトリル(270ml)とを入れ、さらに不活性雰囲気下で、N,O-ビス(トリメチルシリル)アセトアミド(BSA)(106.3g;129.6ml)を加え、70℃で終夜撹拌し、完全に結晶が析出するまで反応した。析出した白色結晶を濾過し、真空乾燥した後、エタノールで再結晶して精製することによって、[化22]において符号「1」で示す、(4-ブロモ-2,6-ジ-tert-ブチルフェノキシ)トリメチルシラン(150.0g;0.420mol)の白色板状結晶を得た。
 次に、反応容器内で前記(4-ブロモ-2,6-ジ-tert-ブチルフェノキシ)トリメチルシラン(9.83g;0.0275mol)を、不活性雰囲気下、テトラヒドロフラン(200ml)に溶解し、調製された溶液をドライアイス/メタノールを用いて-78℃に冷却した。この反応容器内の溶液に1.58Mのn-ブチルリチウム/ヘキサン溶液(15.8ml;0.025mol)を加え、78℃の温度で30分撹拌することでリチオ化した。その後、この溶液に4-ブロモ安息香酸メチル(1.08g;0.005mol、Mw:215.0、TCI)のテトラヒドロフラン(75ml)溶液を添加した後、-78℃~室温で終夜撹拌した。これにより溶液は黄色から薄黄色、アニオンの発生を示す濃青色へと変化した。反応後、反応容器内の溶液に飽和塩化アンモニウム水溶液を、溶液の色が完全に黄色になるまで加えた後、この溶液をエーテル/水で分液抽出することにより黄色粘稠液体状の生成物を得た。
 次に反応容器内に、前記生成物、THF(10ml)、メタノール(7.5ml)、撹拌子を入れ、溶解後、10N-HCl(1~2ml)を反応容器内の溶液が赤橙色に変化するまで徐々に加え、30分間、室温にて撹拌した。次に溶媒除去、エーテル/水による分液抽出、溶媒除去、カラムクロマトグラフィー(ヘキサン/クロロホルム=1/1)による分画、ヘキサンによる再結晶の各操作を経て精製し、[化23]において符号「2」で示す、(p-ブロモフェニル)ヒドロガルビノキシル(2.86g;0.0049mol)の橙色結晶を得た。
 次いで、反応容器内で前記(p-ブロモフェニル)ヒドロガルビノキシル(2.50g;4.33mmol)を、不活性雰囲気下、トルエン(21.6ml;0.2M)に溶解し、この溶液に2,6-ジ-tert-ブチル-p-クレゾール(4.76mg;0.0216mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.150g;0.130mmol)、トリ-n-ブチルビニルスズ(1.65g;5.20mmol,Mw:317.1,TCI)を素早く加え、100℃で17時間加熱撹拌した。
 これにより得られた反応生成物をエーテル/水で分液抽出し、溶媒除去した後、フラッシュカラムクロマトグラフィー(ヘキサン/クロロホルム=1/3)にて分画し、さらにヘキサンで再結晶して精製することによって、[化23]において符号「3」で示す、p-ヒドロガルビノキシルスチレン(1.54g;2.93mmol)の橙色微結晶を得た。
 ・ガルビモノマーの重合
 上記ガルビモノマーの合成で得られたガルビモノマー(p-ヒドロガルビノキシルスチレン)1gと、テトラエチレングリコールジアクリレート57.7mgと、アゾビスイソブチロニトリル15.1mgを、テトラヒドロフラン2mlに溶解した後、窒素置換し、一晩還流することで、ガルビモノマーを重合させ、[化22]における符号「4」で示すガルビポリマーを得た。
 ・電子輸送層の形成
 第一電極が設けられた基板として、厚み0.7mm、シート抵抗100Ω/□の導電性ガラス基板を用意した。この導電性ガラス基板はガラス基板と、このガラス基板の一面に積層された、フッ素ドープされたSnOからなるコーティング膜とから構成され、前記ガラス基板が基板、コーティング膜が第一電極となる。
 上記ガルビポリマー([化22]の符号「4」で示す)をクロロベンゼンに1質量%の割合で溶解させた。この溶液を、前記導電性ガラス基板に設けた第一電極上に、2000rpmでスピンコートし、60℃、0.01MPa下で1時間乾燥することで、厚み30nmの電子輸送層を形成した。
Figure JPOXMLDOC01-appb-C000026
 ・電子輸送層を設けた第一電極への電解重合処理
 上記[化1]で表せられる部位を有するポリビオロゲン前躯体をメンシュトキン反応により合成した。4-シアノピリジン及び1,3,5-(ブロモメチル)-メシチレンをアセトニトリルに溶解し、不活性雰囲気下で終夜還流行った。反応終了後、再結晶精製をメタノールで行い、ポリビオロゲン前駆体を得た(スキームを[化23]に示す)。次いで、得られた化合物(Z1)0.02M、ヨウ化ナトリウム0.1M水溶液中に、電子輸送層(ガルビ膜)を設けた上記第一電極(FTO電極)を浸漬し、この第一電極(FTO電極)に対し-0.75Vの定電圧印加を10秒間行った。さらに得られた膜を4-シアノ-1-メチル-ピリジニウム塩 0.02M、NaCl 0.1M水溶液中で末端修飾を行い、電子輸送層を設けた第一電極にガルビ膜を形成した。このガルビ膜が第一電極の目止め部として形成される。
 ・色素担持処理
 次に、このように目止め部を形成した電子輸送層に、構造式[化24]に示すD131色素のアセトニトリル飽和溶液をスピンコートで塗布することによって、光増感剤(色素)を電子輸送層の表面に付着させた。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 ・第二電極の作製
 一方、表面にフッ素ドープSnOを形成した厚み1mmの導電性ガラス基板(旭硝子製、10Ω/□)を用い、このSnOの表面に白金をスパッタ法により設けて第二電極とした。
 ・貼り合わせ
 そして、上記の第二電極を形成された部分を囲むように、熱溶融性接着剤(三井デュポンポリケミカル製「バイネル」)の封止材を導電性ガラス基板の上に配置し、その上に上記第一電極を形成したガラス基板を重ね、加熱しながら加圧して貼り合わせた。この第二電極を形成したガラス基板にはダイヤモンドドリルで孔が開けてある。
 ・電解液注入
 次に、水に、OH-TEMPO 0.5M、塩化カリウム 0.5mol/lをそれぞ
れ溶解した電解質溶液を調製し、この電解液をガラス基板にダイヤモンドドリルで明けた上記の孔から注入した後に、孔を紫外線硬化樹脂を用いて封止することによって、正孔輸送層を形成した。
 ・光電気素子評価
 実施例1で作製した光電変換素子に、蛍光灯(パナソニック社製「FLR20S・W/M」)で200ルクスの光を照射したところ、この照射下での開回路電圧(OCP)は800mVであり、光を遮断すると次第に0mVへと収束した。さらに再び光照射すると800mVへと収束し、この光応答挙動は繰り返して安定に発現するものであった。
 また、50mV印加でのクロノアンペロメトリー(CA測定)では、蛍光灯(パナソニック社製「FLR20S・W/M」)による200ルクスの光照射下において、2.4μA/cm程度の光起電流が観測され、光を遮断すると次第に0A/cmへと収束した。さらに再び光照射すると2.4μA/cm程度の光起電流が観測され、繰り返して(40サイクル)安定に発現するものであった。
 (実施例2)
 実施例1の電解重合処理の代わりに、化合物(Z1) 0.02M、ヨウ化ナトリウム 0.1M水溶液中に、電子輸送層(ガルビ膜)を設けた上記第一電極(FTO電極)を浸漬し、この第一電極(FTO電極)に対し、-0.75Vの定電圧印加を5分間行った。その他は実施例1と同様に行った。
 実施例2で作製した光電変換素子に、蛍光灯(パナソニック社製「FLR20S・W/M」)で200ルクスの光を照射したところ、この照射下での開回路電圧(OCP)は900mVであり、光を遮断すると次第に0mVへと収束した。さらに再び光照射すると900mVへと収束し、この光応答挙動は繰り返して安定に発現するものであった。
 また、50mV印加でのクロノアンペロメトリー(CA測定)では、蛍光灯(パナソニック社製「FLR20S・W/M」)による200ルクスの光照射下において、2.34μA/cm程度の光起電流が観測され、光を遮断すると次第に0A/cmへと収束した。さらに再び光照射すると2.34μA/cm程度の光起電流が観測され、繰り返して(40サイクル)安定に発現するものであった。
 (比較例1)
 実施例1において、電解重合処理を行わなかった(「化合物(Z1) 0.02Mの定電圧印加」を「処理を無し」とした)以外は、実施例1と同様の手順で光電気素子を作製した。
 比較例1で作製した光電変換素子に、蛍光灯(パナソニック社製「FLR20S・W/M」)で200ルクスの光を照射したところ、この照射下での開回路電圧(OCP)は566mVであり、光を遮断すると次第に0mVへと収束した。さらに再び光照射すると566mVへと収束し、この光応答挙動は繰り返して安定に発現するものであった。
 また、50mV印加でのクロノアンペロメトリー(CA測定)では、蛍光灯(パナソニック社製「FLR20S・W/M」)による200ルクスの光照射下において、2.30μA/cm程度の光起電流が観測され、光を遮断すると次第に0A/cmへと収束した。さらに再び光照射すると2.30μA/cm程度の光起電流が観測され、繰り返して(40サイクル)安定に発現するものであった。
Figure JPOXMLDOC01-appb-T000029

Claims (9)

  1.  第一電極と、前記第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた電子輸送層と、前記電子輸送層上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する正孔輸送層とを備えた光電気素子において、前記電子輸送層内に有機分子からなる目止め部を内在させたことを特徴とする光電気素子。
  2.  前記電子輸送層は厚み方向に貫通する空隙部を有し、
     前記目止め部は、前記空隙部に配置されていることを特徴とする請求項1に記載の光電気素子。
  3.  前記有機分子が、下記構造式[化1]に示す部位が1分子内に2つ以上存在する前駆体を電解重合して得られる分子を含むことを特徴とする請求項1又は2に記載の光電気素子。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、シアノ基、フルオロ基、クロロ基またはブロモ基のいずれかを示す電解重合性の官能基である。)
  4.  前記前躯体として前記構造式[化1]に示す部位が2つ存在するものを含み、前記有機分子が直鎖状ポリマーで形成されることを特徴とする請求項1~3のいずれか1項に記載の光電気素子。
  5.  前記有機分子が、下記構造式[化2]又は[化3]を繰り返し単位とするポリマーであることを特徴とする請求項1~4のいずれか1項に記載の光電気素子。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  6.  前記前躯体として前記構造式[化1]に示す部位が3以上存在するものを含み、前記有機分子が架橋型ポリマーで形成されることを特徴とする請求項1~5のいずれか1項に記載の光電気素子。
  7.  前記有機分子が、下記構造式[化4]を繰り返し単位とするポリマーであることを特徴とする請求項1~6のいずれか1項に記載の光電気素子。
    Figure JPOXMLDOC01-appb-C000004
  8.  前記前駆体は、対アニオンが臭素イオン、塩素イオン、過塩素酸イオン、ヘキフルオロリン酸イオン、テトラフルオロホウ酸イオンの群れから選ばれる少なくとも一つであることを特徴とする請求項3~7のいずれか1項に記載の光電気素子。
  9.  第一電極と、前記第一電極に対向配置された第二電極と、前記第一電極の前記第二電極と対向する面に設けられた電子輸送層と、前記電子輸送層上に担持された光増感剤と、前記第一電極と前記第二電極の間に介在する正孔輸送層とを備えた光電気素子の製造方法において、前記電子輸送層を形成した第一電極を前躯体を含む液体に浸漬させる工程と、前記前駆体の還元電位より卑である電圧を前記第一電極に印加して前記第一電極の表面に有機分子を膜として析出させる工程とを備えることによって、前記電子輸送層内に前記有機分子を目止め部として内在させることを特徴とする光電気素子の製造方法。 
PCT/JP2012/082235 2011-12-28 2012-12-12 光電気素子及びその製造方法 WO2013099614A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280015921.4A CN103477408B (zh) 2011-12-28 2012-12-12 光电元件及其制造方法
US14/007,800 US8952372B2 (en) 2011-12-28 2012-12-12 Photoelectric element and method for producing the same
JP2013551596A JP6010549B2 (ja) 2011-12-28 2012-12-12 光電気素子及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011287221 2011-12-28
JP2011-287221 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099614A1 true WO2013099614A1 (ja) 2013-07-04

Family

ID=48697106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082235 WO2013099614A1 (ja) 2011-12-28 2012-12-12 光電気素子及びその製造方法

Country Status (4)

Country Link
US (1) US8952372B2 (ja)
JP (1) JP6010549B2 (ja)
CN (1) CN103477408B (ja)
WO (1) WO2013099614A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020520095A (ja) * 2017-08-24 2020-07-02 エルジー・ケム・リミテッド 有機電子素子およびその製造方法
US11180660B2 (en) 2013-11-26 2021-11-23 Cubic Perovskite Llc Mixed cation perovskite material devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112787B (zh) * 2014-07-28 2016-04-13 武汉鑫神光电科技有限公司 一种硫化银/钙钛矿体异质结太阳能电池及其制备方法
JP2020127007A (ja) * 2019-02-01 2020-08-20 株式会社リコー 光電変換素子、太陽電池モジュール、電源モジュール、及び電子機器
KR20210071496A (ko) * 2019-12-06 2021-06-16 삼성전기주식회사 적층 세라믹 전자부품
CN113292724B (zh) * 2021-05-17 2022-03-25 天津工业大学 一种富含吡啶的阳离子共价三嗪聚合物的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024090A1 (ja) * 2008-08-28 2010-03-04 パナソニック電工株式会社 光電気素子
JP2011023344A (ja) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd 光電気素子
JP2011124567A (ja) * 2009-11-16 2011-06-23 Panasonic Electric Works Co Ltd 有機太陽電池
JP2012114063A (ja) * 2010-11-01 2012-06-14 Panasonic Corp 光電気素子、光電気素子の製造方法、及び光増感剤

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
US5728487A (en) 1993-12-29 1998-03-17 Ecole Polytechnique Federale De Lausanne Photoelectrochemical cell and electrolyte for this cell
ES2244958T3 (es) 1994-12-21 2005-12-16 Hydro Quebec Sales hidrofobicas liquidas, su prepracion y su aplicacion en electroquimica.
JPH11251067A (ja) * 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2003243054A (ja) 2002-02-18 2003-08-29 Fujikura Ltd 光電変換素子用光電極
JP2004119555A (ja) 2002-09-25 2004-04-15 Tdk Corp 光電変換素子、光電池、及び光センサー
JP2008522428A (ja) * 2004-12-02 2008-06-26 ザ、トラスティーズ オブ プリンストン ユニバーシティ 隔離された光合成複合体を使用する固体感光性デバイス
JP2006210102A (ja) 2005-01-27 2006-08-10 Kyocera Corp 光電変換装置およびそれを用いた光発電装置
KR100825731B1 (ko) 2006-09-29 2008-04-29 한국전자통신연구원 염료감응 태양전지 및 그 제조 방법
JP5167636B2 (ja) 2006-12-21 2013-03-21 セイコーエプソン株式会社 光電変換素子および電子機器
JP2009187844A (ja) 2008-02-07 2009-08-20 Panasonic Electric Works Co Ltd 光電変換素子の製造方法
US8729532B2 (en) 2009-05-22 2014-05-20 Panasonic Corporation Light-absorbing material and photoelectric conversion element
CN102804481B (zh) 2009-06-19 2015-05-20 松下电器产业株式会社 光电元件
JP5480552B2 (ja) 2009-07-31 2014-04-23 パナソニック株式会社 光電気素子
JP5658504B2 (ja) * 2009-07-31 2015-01-28 パナソニック株式会社 光電気素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024090A1 (ja) * 2008-08-28 2010-03-04 パナソニック電工株式会社 光電気素子
JP2011023344A (ja) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd 光電気素子
JP2011124567A (ja) * 2009-11-16 2011-06-23 Panasonic Electric Works Co Ltd 有機太陽電池
JP2012114063A (ja) * 2010-11-01 2012-06-14 Panasonic Corp 光電気素子、光電気素子の製造方法、及び光増感剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180660B2 (en) 2013-11-26 2021-11-23 Cubic Perovskite Llc Mixed cation perovskite material devices
JP2020520095A (ja) * 2017-08-24 2020-07-02 エルジー・ケム・リミテッド 有機電子素子およびその製造方法
US11393996B2 (en) 2017-08-24 2022-07-19 Lg Chem, Ltd. Organic electronic device and manufacturing method thereof

Also Published As

Publication number Publication date
CN103477408A (zh) 2013-12-25
JPWO2013099614A1 (ja) 2015-04-30
US20140124757A1 (en) 2014-05-08
JP6010549B2 (ja) 2016-10-19
CN103477408B (zh) 2017-02-22
US8952372B2 (en) 2015-02-10

Similar Documents

Publication Publication Date Title
JP5204848B2 (ja) 光電気素子
JP5658504B2 (ja) 光電気素子
JP5947688B2 (ja) 電極複合体、及びこれを備える光電気素子
JP5966012B2 (ja) 光電変換素子
JP5237664B2 (ja) 光電変換素子
JP5815157B2 (ja) 電気化学デバイス
JP6010549B2 (ja) 光電気素子及びその製造方法
US9236576B2 (en) Photoelectric element, process for producing photoelectric element, and photosensitizer
JP5639510B2 (ja) 光電変換素子
JP5957012B2 (ja) 光電気素子
WO2012121194A1 (ja) 光電気素子
JP5654779B2 (ja) 光電気素子
JP5584447B2 (ja) 光電気素子
JP6445378B2 (ja) 光電変換素子
JP2008186632A (ja) 光電変換素子及びその製造方法
JP6415380B2 (ja) 光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551596

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007800

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863790

Country of ref document: EP

Kind code of ref document: A1