WO2013099277A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013099277A1
WO2013099277A1 PCT/JP2012/008415 JP2012008415W WO2013099277A1 WO 2013099277 A1 WO2013099277 A1 WO 2013099277A1 JP 2012008415 W JP2012008415 W JP 2012008415W WO 2013099277 A1 WO2013099277 A1 WO 2013099277A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power supply
outdoor
state
power
Prior art date
Application number
PCT/JP2012/008415
Other languages
English (en)
French (fr)
Inventor
伸 東山
浩 堂前
池田 基伸
真也 大月
正樹 岡内
俊一 上中
万里央 林
新吾 大西
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011289602A external-priority patent/JP5246324B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/369,333 priority Critical patent/US8987946B2/en
Priority to EP12862665.2A priority patent/EP2803918B1/en
Priority to AU2012359736A priority patent/AU2012359736B2/en
Priority to CN201280064445.5A priority patent/CN104024755B/zh
Priority to KR1020147020689A priority patent/KR101458351B1/ko
Publication of WO2013099277A1 publication Critical patent/WO2013099277A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving

Definitions

  • the present invention relates to an air conditioner, and more particularly to a technology for reducing standby power of the air conditioner.
  • the power supply to the circuit in the outdoor unit is stopped during standby and the standby unit is set in the standby mode.
  • Some devices are powered and activated after the outdoor unit is released from standby mode.
  • the present invention has been made in view of such a point, and even when devices incompatible with standby power that cannot be shifted to a standby state are mixed in the apparatus, smooth operation is possible and reliability is improved.
  • the purpose is to plan.
  • the 1st invention is equipped with the outdoor unit (10) and the indoor unit (20) which are supplied with electric power from the main power line (1L), and shifts to a standby state where power is not supplied to the outdoor unit (10) when the operation is stopped. It is an air conditioner configured to be possible.
  • the outdoor unit (10) is configured to be able to shift to a standby state, and is not compatible with the indoor unit (20) capable of responding to a transition to a standby state and the transition to a standby state.
  • the outdoor control circuit (10) is configured to be connectable to an indoor unit (20) and is supplied with power from the main power line (1L) via the power wiring (1a). 13) and whether or not the power supply wiring (1a) is provided and the power supply wiring (1a) is cut off when the operation is stopped to allow the outdoor unit (10) to correspond to a device that shifts to the standby state.
  • a selection mechanism (16) is configured to be connectable to an indoor unit (20) and is supplied with power from the main power line (1L) via the power wiring
  • the selection mechanism (16) corresponds to a device that shifts to a standby state in which power is not supplied to the outdoor unit (10) when operation is stopped.
  • the selection unit (16) causes the outdoor unit (10) to correspond to a device that does not shift to the standby state when the operation is stopped.
  • the selection mechanism (16) is provided in the power supply wiring (1a), and when the operation is stopped, the power supply wiring (1a) is cut off and the outdoor unit (10)
  • the auxiliary circuit (16a) and an opening / closing part (17) provided in the auxiliary circuit (16a) for opening and closing the auxiliary circuit (16a) are provided.
  • the open / close unit (17) shuts off the auxiliary circuit (16a), and the outdoor unit (10) is shut down by the switch (K13R). Is set to shift to a standby state in which no power is supplied.
  • the open / close unit (17) makes the auxiliary circuit (16a) conductive, and the outdoor unit (10) is shut down regardless of the operation of the switch (K13R). Is set so as not to enter standby mode. Smooth operation such as starting of the outdoor unit (10) can be performed by opening and closing the opening / closing part (17).
  • the third invention is characterized in that, in the second invention, the opening / closing part (17) is a connector for conducting the auxiliary circuit (16a).
  • the connector connection pin is removed and the auxiliary circuit (16a) is shut off.
  • the connection pin of the connector is set to be inserted and the auxiliary circuit (16a) is turned on.
  • the fourth invention is characterized in that, in the second invention, the opening / closing part (17) is a latching relay for conducting the auxiliary circuit (16a).
  • the auxiliary circuit (16a) when the indoor unit (20) is a standby power compatible device, the auxiliary circuit (16a) is shut off by a latching relay. On the other hand, when the indoor unit (20) is a device that does not support standby power, the auxiliary circuit (16a) is turned on by a latching relay.
  • the selection mechanism (16) is provided in the power supply wiring (1a), opens and closes the power supply wiring (1a), and when the operation is stopped, the power supply wiring (1a) It is comprised by the latching relay which interrupts
  • the power supply wiring (1a) is opened and closed by a latching relay, the power supply wiring (1a) is turned on during operation, and the power supply wiring ( 1a) is cut off, and a transition is made to a standby state in which power is not supplied to the outdoor unit (10).
  • the indoor unit (20) is a device that does not support standby power
  • the power supply wiring (1a) is always turned on by the latching relay, and the outdoor unit (10) is set not to shift to the standby state when the operation is stopped.
  • the selection mechanism (16) is provided in the power source wiring (1a), and shuts off the power source wiring (1a) while the operation is stopped, so that the outdoor unit (10) A switch (K13R) that is in a standby state where power is not supplied, and a first and second short-circuit lines (51a, 51b) that are connected to the power supply wiring (1a) so as to bypass the switch (K13R) and are separated from each other
  • An auxiliary circuit (51) including a connector (52a) capable of connecting the first short circuit line (51a) and the second short circuit line (51b), the first short circuit line (51a) and the second short circuit line ( 51b) is connected to the short-circuit detection unit (53), and based on at least the model specification information of the indoor unit (20), it is determined whether or not to enter the standby state, and the standby state is entered.
  • the short circuit detector (53) When it is determined that the first short circuit is possible, the short circuit detector (53).
  • the outdoor unit (10 ) when the connection plug of the connector (52a) is pulled out and the short-circuit lines (51a, 51b) of the auxiliary circuit (51) are not connected, the outdoor unit (10 ) And a standby state in which the power supply to the outdoor unit (10) is cut off.
  • the abnormality detection unit (23) determines whether or not it is possible to shift to the standby state. For example, when the indoor unit (20) that does not support the standby power and the outdoor unit (10) that supports the standby power are combined, it is determined that the transition to the standby state is impossible. On the other hand, when it is determined that the transition to the standby state is possible, if the short-circuit detection unit (53) detects that both short-circuit lines (51a, 51b) are connected, the abnormality detection unit (23) An abnormal connection of the auxiliary circuit (51) is detected.
  • the forced activation setting of the forced activation mechanism is performed by the installation operator of the air conditioner at the site, and there is a risk that the installation operator will make a setting error. If the forced start setting is incorrect when using a standby power compatible outdoor unit (10) and a standby power compatible indoor unit (20), the power supply to the outdoor unit (10) will be cut off. Despite being an air conditioner that can be used, a situation occurs in which the power supply to the outdoor unit (10) cannot be cut off.
  • the abnormality detection unit (23) when it is detected by the short-circuit detection unit (53) that both short-circuit lines (51a, 51b) are connected, the abnormality detection unit (23) is connected to the auxiliary circuit (51). Detecting connection errors.
  • the short-circuit detection unit (53) is connected to the ground (GND), the external power supply terminal (53a) to which an external power supply is supplied, and the external power supply terminal (53a).
  • a detection unit (53b) for detecting a power supply voltage supplied from an external power supply terminal (53a), the first short circuit line (51a) and the second short circuit line (51b) and a ground (GND) It has the said connector (52a) comprised so that an external power supply terminal (53a) might be connected, It is characterized by the above-mentioned.
  • the seventh invention when both short-circuit lines (51a, 51b) are not connected by the connector (52a), the ground (GND) and the external power supply terminal (53a) are not connected, while the connector (52a) When both short-circuit lines (51a, 51b) are connected by the above, the ground (GND) and the external power supply terminal (53a) are connected. Therefore, a high level voltage is input to the detection unit (53b) when both short-circuit lines (51a, 51b) are not connected by the connector (52a), and both short-circuit lines (51a, 51b) are input by the connector (52a). ) Is connected, a low level voltage is input.
  • the short-circuit detector (53) is connected to a ground (GND), an external power supply terminal (53a) to which an external power supply is supplied, and the external power supply terminal (53a). Emitted when the detection unit (53b) for detecting the power supply voltage supplied from the external power supply terminal (53a) and the first short circuit line (51a) and the second short circuit line (51b) are connected. It is characterized by having a diode (53d) and a phototransistor (53e) connected between the external power supply terminal (53a) and ground (GND) and operated by the light of the light emitting diode (53d).
  • a light coupler (53d) and a phototransistor (53e) constitute a photocoupler.
  • the light-emitting diode (53d) does not emit light and the phototransistor (53e) does not operate, so the ground (GND) and the external power supply terminal
  • the ground (GND) and the external power supply terminal (53a) are electrically connected.
  • the remote controller (30) and the abnormality detection unit (23) detect a connection abnormality of the auxiliary circuit (51), the connection abnormality is detected. It is characterized by further comprising an informing unit (23) for informing the remote control (30).
  • the notification unit (23) when the abnormality detection unit (23) detects a connection abnormality of the auxiliary circuit (51), the notification unit (23) notifies the remote control (30) of the connection abnormality of the auxiliary circuit (51).
  • the selection mechanism (16) selects whether or not to correspond to a device that shifts to a standby state in which power is not supplied to the outdoor unit (10) when operation is stopped.
  • transition of the outdoor unit (10) to the standby state can be prohibited.
  • smooth operation is possible and reliability can be improved.
  • the operation of the switch (K13R) of the power supply wiring (1a) Regardless of this, it is possible to reliably cope with devices that do not support standby power.
  • the opening / closing part (17) is constituted by a connector, it is possible to cope with a case in which devices not supporting standby power are mixed with a simple configuration.
  • the opening / closing part (17) is constituted by a latching relay, the opening / closing part (17) can be automatically opened and closed, so that the operability can be improved.
  • the switch (K13R) of the power supply wiring (1a) is configured by a latching relay, the control of transition to the standby state and the response to the device not corresponding to standby power can be performed by one latching relay. It can be carried out. As a result, the configuration can be simplified.
  • the installation operator in the air conditioner capable of shifting to the standby state, when both the short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected by the connector (52a), the abnormality detection unit ( Since the connection abnormality of the auxiliary circuit (51) is detected by 23), the installation operator can notice that both short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected by mistake. Thereby, the installation operator can reset both short circuit lines (51a, 51b) to a non-connection state. Therefore, when the user uses an air conditioner that can shift to a standby state, a situation in which the power supply to the outdoor unit (10) cannot be interrupted is avoided, enabling smooth operation of the device, Reliability can be improved.
  • the detection unit (53b) detects that both short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected when a low-level voltage is input. Can do.
  • both the short-circuit lines (51a, 51b ) Can be detected.
  • the detection unit (53b) when the low level voltage is inputted, the detection unit (53b) has both short-circuit lines (51a, 51b) of the auxiliary circuit (51). The connection can be detected.
  • the notification unit (23) connects the auxiliary circuit (51) to the remote control (30). Because the abnormality is reported, the installation operator will definitely notice that both short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected by mistake, and disconnect both short-circuit lines (51a, 51b). Can be reset to state. Therefore, when the user uses an air conditioner that can shift to the standby state, the situation where the power supply to the outdoor unit (10) cannot be cut off can be avoided more reliably and the reliability can be improved. it can.
  • FIG. 1 is a block diagram of an electrical system of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a state transition diagram of the air-conditioning apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating a state of each relay at the time when a circuit charged in the smoothing capacitor is formed.
  • FIG. 4 is a diagram illustrating a state of each relay after the transition to the charging state is completed.
  • FIG. 5 is a diagram illustrating the state of each relay when the transition to the wait state is completed.
  • FIG. 6 is a diagram showing the state of each relay in the operating state.
  • FIG. 7 is a circuit diagram showing an outline of the selection mechanism.
  • FIG. 8 is a configuration diagram showing an outline of a latching relay showing a first modification of the first embodiment.
  • FIG. 9 is a configuration diagram illustrating an outline of a relay illustrating a second modification of the first embodiment.
  • FIG. 10 is a diagram illustrating an overall configuration of an air-conditioning apparatus according to Embodiment 2.
  • FIG. 11 is an electrical system block diagram of the air conditioner (suspended state) when the outdoor unit, the standby power compatible model indoor unit, and the standby power compatible model remote controller are connected.
  • FIG. 12 is an enlarged view of the vicinity of the forced activation mechanism.
  • FIG. 13 is a view corresponding to FIG. 12 when the connection plug is inserted into the short-circuit connector.
  • FIG. 14 is a diagram illustrating the state of the relay at the time when the circuit charged in the smoothing capacitor is formed.
  • FIG. 15 is a diagram illustrating the state of the relay after the transition to the charging state is completed.
  • FIG. 16 is a diagram illustrating the state of the relay in the wait state.
  • FIG. 17 is a diagram illustrating the state of the relay in the operating state.
  • FIG. 18 is an electrical system block diagram of the air conditioner when an outdoor unit, an indoor unit that does not support standby power, and a remote controller that does not support standby power are connected.
  • FIG. 19 is a flowchart for detecting a setting error of the forced activation mechanism.
  • FIG. 20 is a flowchart for determining whether or not to shift to the suspended state.
  • FIG. 21 is a diagram illustrating a modification of the short-circuit detection unit according to the second embodiment.
  • FIG. 1 is a block diagram of an electrical system of an air-conditioning apparatus (1) according to Embodiment 1 of the present invention.
  • the air conditioner (1) includes an outdoor unit (10), an indoor unit (20), and a remote controller (30).
  • the outdoor unit (10) is provided with devices such as an electric compressor, an outdoor heat exchanger, an outdoor fan, and an expansion valve.
  • the indoor unit (20) includes an indoor heat exchanger, Equipment such as a fan is provided. In the air conditioning apparatus (1), these devices constitute a refrigerant circuit (not shown) that performs a refrigeration cycle.
  • the remote controller (30) is hereinafter referred to as a remote controller (30).
  • the outdoor unit (10) receives AC (three-phase AC of 200 V in this example) from the commercial AC power source (40) to receive the circuit in the outdoor unit (10) and the electric compressor.
  • AC three-phase AC of 200 V in this example
  • the two-phase part of the three-phase alternating current is fed to the indoor unit (20).
  • signal communication is performed between the outdoor unit (10) and the indoor unit (20) for the purpose of controlling the outdoor unit (10) from the indoor unit (20) side.
  • power wiring (L) for transmitting AC power from a commercial AC power supply (40) (hereinafter also simply referred to as AC power supply), and a signal line (S) for transmitting the signal Three wires (internal / external wiring) of a common line (N) shared for transmission of the AC power and transmission of the signal are provided between the outdoor unit (10) and the indoor unit (20).
  • the power wiring (L) is connected to the R phase of the AC power source (40) in the outdoor unit (10), and the common line (N) is the S phase of the AC power source (40) in the outdoor unit (10). It is connected to the. That is, the indoor unit (20) is connected to the R phase and the S phase of the AC power supply (40) and supplied with single-phase AC.
  • the signal line (S) is used for transmission of AC power, as described later, in addition to transmission / reception of the signal. Therefore, the signal line (S) employs a wiring member having a current capacity corresponding to the transmission power. In the present embodiment, the same wiring member as the power wiring (L) and the common line (N) is used for the signal line (S).
  • the outdoor unit (10) has, as an electrical system, a first outdoor power circuit (14), a second outdoor power circuit (12), an outdoor unit transmission circuit (11), an outdoor control circuit (13), a relay (K13R , K14R, K15R).
  • the first outdoor power circuit (14) converts the three-phase AC power received from the main power line (1L) connected to the AC power source (40) into DC, so-called intelligent power module (in the figure). Abbreviated as IPM) and outdoor fan motor.
  • the intelligent power module converts the input direct current into alternating current having a predetermined frequency and voltage, and supplies power to the motor of the electric compressor.
  • the first outdoor power supply circuit (14) includes a noise filter (14a), two main relays (14b), two diode bridge circuits (14c), a reactor (14d), and a smoothing capacitor (14e). I have.
  • the noise filter (14a) is formed by a capacitor and a coil.
  • the two main relays (14b) are respectively provided in the three-phase AC R-phase and T-phase supply lines. These main relays (14b) are so-called A contact relays. Specifically, the main relay (14b) has one fixed contact and one movable contact, and when the coil of the main relay (14b) is energized, these contacts are connected (ON). Of the two diode bridge circuits (14c), one inputs the R phase and S phase of the three-phase AC and the other inputs the S phase and T phase of the three-phase AC and inputs the AC Is full-wave rectified.
  • the outputs of these diode bridge circuits (14c) are input to the smoothing capacitor (14e) via the reactor (14d) and smoothed by the smoothing capacitor (14e).
  • the direct current smoothed by the smoothing capacitor (14e) is supplied to the intelligent power module and the outdoor fan motor.
  • the second outdoor power supply circuit (12) converts the two phases of the three-phase alternating current R and S supplied from the main power supply line (1L) through the power supply wiring (1a) into direct current (in this example, 5 V). ) And supplied to the outdoor control circuit (13).
  • the second outdoor power supply circuit (12) includes a diode bridge circuit (12a), a smoothing capacitor (12b), and a switching power supply (12c).
  • the diode bridge circuit (12a) has one input connected to a three-phase AC power wiring (1a) via a relay (K13R) described in detail later, and the other input connected to the three-phase AC. Are connected to the S-phase power supply wiring (1a).
  • the output of the diode bridge circuit (12a) is smoothed by the smoothing capacitor (12b) and then input to the switching power supply (12c).
  • the switching power supply (12c) is composed of, for example, a DC-DC converter, converts the input direct current into a predetermined voltage (5V), and outputs the same to the outdoor control circuit (13).
  • the outdoor unit transmission circuit (11) performs signal communication with the indoor unit transmission circuit (21). In this communication, high-level and low-level binary digital signals are communicated based on the potential difference between the signal line (S) and the common line (N).
  • the communication circuit (not shown) in the indoor unit transmission circuit (21) has one end connected to the common line (N) and the other end connected to the signal line (S) via the relay (K14R). ing.
  • the relay (K13R) is a switch that shuts off the power supply wiring (1a) when the operation is stopped and puts the second outdoor power supply circuit (12) into a suspended state in which power is not supplied to the second outdoor power supply circuit (12).
  • the relay (K13R) is a so-called C contact relay.
  • the relay (K13R) has two fixed contacts and one movable contact. If the coil of the relay (K13R) is not energized, one fixed contact (referred to as a normally closed contact) When the movable contact is connected and the coil is energized, the other fixed contact (referred to as a normally open contact) and the movable contact are connected.
  • the outdoor control circuit (13) controls switching of the relay (K13R) (whether or not the coil is energized).
  • the movable contact of the relay (K13R) is connected to the power supply wiring (1a) that is the input of the diode bridge circuit (12a).
  • the normally closed contact is connected to the signal line (S), and the normally open contact is connected to the three-phase AC R-phase power supply wiring (1a). That is, when the coil of the relay (K13R) is not energized, the normally closed contact and the movable contact are connected, and one input of the diode bridge circuit (12a) is connected to the signal line (S).
  • the coil of the relay (K13R) is energized, the movable contact and the normally open contact are connected and AC is input to the diode bridge circuit (12a) of the second outdoor power supply circuit (12).
  • the relay (K14R) is a relay that switches connection and disconnection between the signal line (S) and the outdoor unit transmission circuit (11).
  • the relay (K14R) is a so-called A contact relay, and when the coil is energized, the fixed contact and the movable contact are turned on.
  • the outdoor control circuit (13) controls on / off of the relay (K14R).
  • the relay (K14R) has a movable contact connected to the signal line (S) and another fixed contact connected to one end of a communication circuit (not shown) in the outdoor unit transmission circuit (11).
  • the A contact relay the correspondence between the input signal and each contact may be reversed.
  • a relay (K15R) is a relay which switches the presence or absence of the electric power supply to an outdoor unit transmission circuit (11).
  • the relay (K15R) is a so-called A contact relay.
  • One contact of the relay (K15R) is connected to the power supply node of the outdoor unit transmission circuit (11), and the other contact is connected to the R phase of the three-phase AC.
  • the outdoor control circuit (13) controls on / off of the relay (K15R).
  • the outdoor control circuit (13) includes a microcomputer (hereinafter referred to as a microcomputer) and a memory storing a program for operating the microcomputer (not shown).
  • the outdoor control circuit (13) controls, for example, the electric compressor according to the signal received by the outdoor unit transmission circuit (11) from the indoor unit transmission circuit (21), and activates the outdoor unit (10). Time control (described later) is also performed.
  • the outdoor control circuit (13) when the air conditioner (1) is in the suspended state (the state where the power consumption of the air conditioner (1) as a whole is minimized, details will be described later), the power supply is cut off. Stop operation.
  • the indoor unit (20) includes, as an electrical system, an indoor power supply circuit (22), an indoor unit transmission circuit (21), an indoor control circuit (23), a relay (K2R), a first diode (D1), and a second A diode (D2) is provided.
  • the indoor power supply circuit (22) includes a noise filter (22a), a diode bridge circuit (22b), a smoothing capacitor (22c), and a switching power supply (22d).
  • the indoor power supply circuit (22) converts the alternating current supplied from the main power supply line (1L) through the power wiring (L) and the common line (N) into direct current (5V direct current in this example). Supply to the control circuit (23).
  • the noise filter (22a) is formed of two coils.
  • the diode bridge circuit (22b) performs full-wave rectification on the alternating current input from the power wiring (L) and the common line (N) via the noise filter (22a).
  • the smoothing capacitor (22c) is formed of, for example, an electrolytic capacitor, and smoothes the output of the diode bridge circuit (22b).
  • the switching power supply (22d) is composed of, for example, a DC-DC converter or the like, converts the direct current smoothed by the smoothing capacitor (22c) into a predetermined voltage (5V), and outputs the same to the indoor control circuit (23).
  • the indoor unit transmission circuit (21) performs signal communication with the outdoor unit transmission circuit (11).
  • digital signal communication is performed based on the potential difference between the signal line (S) and the common line (N)
  • one end of the communication circuit of the indoor unit transmission circuit (21) is connected to the second diode ( D2) is connected to the signal line (S)
  • the other end of the communication circuit is connected to the common line (N).
  • the relay (K2R) is a so-called A contact relay.
  • the relay (K2R) and the first diode (D1) are provided in the indoor unit (20), and are connected in series between the power wiring (L) and the signal line (S). More specifically, the movable contact of the relay (K2R) is connected to the power wiring (L), and the fixed contact of the relay (K2R) is connected to the cathode of the first diode (D1). The anode of the first diode (D1) is connected to the signal line (S).
  • the relay (K2R) functions as a switch that switches on and off between the power wiring (L) and the signal line (S).
  • the indoor control circuit (23) controls the on / off of the relay (K2R).
  • the relay (K2R) is an example of an on / off switch of the present invention.
  • the first diode (D1) blocks an alternating current flowing in the direction into the indoor unit transmission circuit (21).
  • the positional relationship between the first diode (D1) and the relay (K2R) may be reversed. That is, the cathode of the first diode (D1) is connected to the power wiring (L), the anode of the first diode (D1) is connected to one contact of the relay (K2R), and the other of the relay (K2R) is connected. You may make it connect a contact to a signal wire
  • the anode of the second diode (D2) is connected to the connection node (ND1) of the first diode (D1) and the signal line (S), and the cathode is connected to the signal input node (ND2) in the indoor unit transmission circuit (21). It is connected.
  • the second diode (D2) blocks an alternating current flowing in the direction from the indoor unit transmission circuit (21).
  • the common line (N) is connected to the S phase of the AC power supply (40), so the communication signal between the indoor unit transmission circuit (21) and the outdoor unit transmission circuit (11)
  • the S-phase alternating current is half-wave rectified by the second diode (D2) and superimposed.
  • the first and second diodes (D1, D2) constitute an example of the protection circuit of the present invention.
  • the indoor side control circuit (23) includes a microcomputer (hereinafter referred to as a microcomputer) and a memory storing a program for operating the microcomputer (not shown).
  • the indoor side control circuit (23) receives an instruction from the remote controller (30) and controls an operating state (described later) of the air conditioner (1).
  • the indoor side control circuit (23) is always supplied with power by the indoor side power supply circuit (22) in order to receive a command from the remote controller (30).
  • the remote control (30) receives a user operation and transmits a signal corresponding to the user operation to the indoor control circuit (23).
  • the user can start and stop the air conditioner (1), adjust the set temperature, and the like by operating a button on the remote controller (30).
  • the remote controller (30) may be configured as a so-called wired remote controller connected to the indoor control circuit (23) with a signal line, or communicates with the indoor control circuit (23) using infrared rays or radio waves. You may comprise as a wireless remote control.
  • the outdoor unit (10) is provided with a selection mechanism (16) in the power supply wiring (1a) for selecting whether or not to correspond to a device that shifts to a suspended state.
  • the selection mechanism (16) includes the relay (K13R), an auxiliary circuit (16a), an opening / closing part (17), and a detection circuit (18) of the opening / closing part (17).
  • the relay (K13R) is a switch for placing the outdoor unit (10) in a suspended state as described above.
  • the auxiliary circuit (16a) includes a diode (16b), is provided in parallel with the relay (K13R), and has a three-phase AC R phase and a second chamber so as to constantly supply power to the outdoor control circuit (13).
  • the input of the external power supply circuit (12) is connected.
  • the opening / closing part (17) is constituted by a connector for opening / closing the auxiliary circuit (16a), and includes a connection pin (17a).
  • the opening / closing part (17) is configured to conduct the auxiliary circuit (16a) when the connection pin (17a) is inserted, and to block the auxiliary circuit (16a) when the connection pin (17a) is removed.
  • an operator pulls out the connection pin (17a). That is, the operator determines whether the indoor unit (20) is a standby power compatible device that can be shifted to the suspended state or whether the indoor unit (20) is a standby power non-compatible device that cannot be shifted to the suspended state. To do.
  • the indoor unit (20) is a standby power compatible device
  • the connection pin (17a) Leave it plugged in.
  • connection pin (17a) When the connection pin (17a) is inserted, power is always supplied to the outdoor control circuit (13) via the second outdoor power supply circuit (12).
  • the detection circuit (18) includes a power source (18a) and a microcomputer (18b), and an interlocking pin (18c) linked to the connection pin (17a).
  • the detection circuit (18) is configured to determine that the transition to the suspend state is not performed when the connection pin (17a) is inserted and to display, for example, that the transition to the suspend state cannot be performed. Yes.
  • FIG. 2 is a state transition diagram of the air conditioner (1).
  • the air conditioner (1) transitions between four states: a suspended state, a charged state, a wait state, and an operating state, which will be described below.
  • standby power refers to “power that is steadily consumed when the device is not in use or is waiting for some input (command instruction or the like)”.
  • the standby power is the power required to perform only the standby of the remote control (30).
  • the suspended state is a state in which power is supplied to the indoor unit (20) and power is not supplied to the outdoor unit (10).
  • the suspended state of the present embodiment is a state in which the power consumption of the entire air conditioner (1) is minimized.
  • the outdoor unit (10) receives power and supplies it to the indoor unit (20), but each circuit inside the outdoor unit (10) and the electric compressor described above In such a state, no power is supplied.
  • power supply to each circuit of the outdoor unit (10) is cut off, and standby power can be reduced.
  • the indoor unit (20) is in a state where the standby power is minimized, and the portion related to the signal reception from the remote controller (30) in the indoor side control circuit (23) is the power from the indoor side power circuit (22). Is working.
  • the remote controller (30) is also in a state in which standby power is minimized, and a predetermined display such as a time display and a button operation by the user can be received.
  • the degree of power consumption (standby power) of the indoor unit (20) and the remote controller (30) is not limited to this.
  • the wait state is a state in which the above charging state is exited at the start of operation, and a transition from the operation state (described later) when the operation is stopped.
  • the outdoor unit (10) This refers to a state that can be shifted to an operating state (described later).
  • the operation of the outdoor unit transmission circuit (11) and the outdoor control circuit (13) is also possible.
  • the weight state at the time of operation stop (weight state that transitions from the operation state) is used to equalize the refrigerant pressure in the electric compressor, or when the scule operation that repeats the operation start and operation stop is set.
  • the time is 10 minutes, for example.
  • the power consumption of the indoor unit (20) is the same as in the suspended state.
  • the operational state refers to a state where the main relay (14b) is turned on and the electric compressor and the outdoor fan can be operated or are in operation. This also applies to so-called phase loss energization and thermo-off state.
  • the indoor unit (20) the indoor fan or the like is in an operating state, and the power consumption is higher than in each of the above states.
  • the remote controller (30) is in a driving instruction state (for example, a state in which individual driving states are displayed).
  • FIG. 1 shows the state of the relay in the suspended state.
  • the outdoor unit (10) is not energized in the coil of the main relay (14b), and power is not supplied from the first outdoor power supply circuit (14) to the intelligent power module or the outdoor fan motor.
  • the coils of other relays K13R, K14R, K15R
  • the relay (K14R) and the relay (K15R) are in the off state. That is, the outdoor unit transmission circuit (11) is disconnected from the signal line (S) and also supplied with power.
  • the relay (K13R) is in a state where the normally closed contact and the movable contact are connected. That is, one input of the diode bridge circuit (12a) of the second outdoor side power supply circuit (12) is connected to the signal line (S). In this state, the second outdoor power supply circuit (12) is not energized, and no power is supplied to the outdoor control circuit (13). As described above, standby power can be eliminated in the outdoor unit (10) in the suspended state.
  • the relay (K2R) coil In the indoor unit (20) in the suspended state, the relay (K2R) coil is not energized and is in the off state. That is, the signal line (S) and the power wiring (L) are electrically disconnected. As described above, in the indoor unit (20), the part related to signal reception from the remote control (30) in the indoor control circuit (23) operates by receiving power from the indoor power supply circuit (22). Yes.
  • FIG. 3 is a diagram illustrating a state of each relay at the time when a circuit charged in the smoothing capacitor (12b) is formed.
  • FIG. 4 is a diagram showing the state of each relay after the transition to the charging state is completed.
  • the indoor side control circuit (23) energizes the coil of the relay (K2R) .
  • a power transmission path (referred to as a start-time power transmission path for convenience of explanation) reaching one input of the diode bridge circuit (12a) is formed. Since the other input of the diode bridge circuit (12a) is connected to the S phase of the three-phase AC, the diode bridge circuit (12a) has a single-phase AC half-wave rectified by the first diode (D1). Is supplied. That is, a circuit charged in the smoothing capacitor (12b) is formed (see FIG. 3).
  • the power wiring (L) is generated by the first diode (D1).
  • AC current flowing in the direction flowing into the indoor unit transmission circuit (21) and the outdoor unit (10) is blocked.
  • the indoor unit transmission circuit (21) is connected to the R phase via the indoor side power supply circuit (22), but the AC current flowing in the direction from the indoor unit transmission circuit (21) to the signal line (S) is Blocked by two diodes (D2).
  • the diode bridge circuit (12a) When the potential of the S phase of the three-phase alternating current is higher than the potential of the R phase (that is, when an alternating current flows from the S phase to the R phase), a current flows through the diode bridge circuit (12a).
  • one end of the communication circuit in the indoor unit transmission circuit (21) is connected to the S phase of the three-phase AC via a common line (N), and the other end of the communication circuit is connected to the signal line (S), the relay (K13R) and the diode bridge circuit (12a) are also connected to the S phase of the three-phase alternating current. That is, the indoor unit transmission circuit (21) is connected to only one phase of the three-phase alternating current. Therefore, even if the signal line (S) is used for AC power transmission, the AC current does not flow through the communication circuit in the indoor unit transmission circuit (21). As described above, the outdoor unit transmission circuit (11) is protected from overvoltage.
  • the outdoor control circuit (13 ) starts up.
  • the activated outdoor control circuit (13) energizes the coil of the relay (K13R) to connect the normally open contact and the movable contact.
  • one input of the diode bridge circuit (12a) is connected to the R phase of the three-phase alternating current via the power transmission path in the outdoor unit (10). That is, the outdoor control circuit (13) switches to a state where power is supplied from the AC power supply (40) without passing through the signal line (S) (see FIG. 4). Thereby, in the air conditioner (1), the transition to the charged state is completed.
  • FIG. 5 is a diagram illustrating the state of each relay when the transition to the wait state is completed.
  • the relay (K2R) is turned off after a predetermined time (a time sufficient for starting the outdoor control circuit (13)) has elapsed since the relay (K2R) was turned on.
  • the signal line (S) can be used for signal transmission and reception.
  • the outdoor control circuit (13) turns on the relay (K15R) and power is supplied to the outdoor unit transmission circuit (11) in anticipation of the relay (K2R) being turned off. And turn on the relay (K14R).
  • the communication circuit in the outdoor unit transmission circuit (11) is connected to the indoor unit transmission circuit (21) via the signal line (S) and the common line (N), and communicates with the indoor unit transmission circuit (21). It becomes possible.
  • the air conditioner (1) enters a state where it can exit the charging state and shift to the immediate operation state (that is, a wait state).
  • FIG. 6 is a diagram showing the state of each relay in the operating state.
  • the outdoor control circuit (13) turns on the two main relays (14b).
  • electric power is supplied to the intelligent power module and the outdoor fan motor by the first outdoor power supply circuit (14), and the electric compressor and the like are put into operation, for example, cooling is performed.
  • the worker When the outdoor unit (10) is installed, the worker must wait for the indoor unit (20) to be in a standby power-compatible device that can be shifted to the suspended state, or the indoor unit (20) cannot be shifted to the suspended state. It is determined whether the device does not support power. Then, when the indoor unit (20) is a standby power compatible device, the worker pulls out the connection pin (17a) of the opening / closing part (17) configured with a connector. As a result, the auxiliary circuit (16a) is cut off, the relay of the power supply wiring (1a) opens and closes as described above, and the outdoor unit (10) shifts to the suspended state when the operation is stopped.
  • the indoor unit (20) is a device that does not support standby power
  • the operator sets the connection pin (17a) of the opening / closing unit (17) while being inserted.
  • the outdoor unit (10) the auxiliary circuit (16a) is conducted, and the power of the AC power supply (40) is always supplied to the outdoor control circuit (13) via the second outdoor power supply circuit (12). Power is supplied.
  • the outdoor unit (10) does not shift to the suspend state and starts independently based on the operation signal of the remote controller (30) regardless of the switching state of the relay (K13R).
  • connection pin (17a) when the connection pin (17a) is inserted, the detection circuit (18) determines that the transition to the suspended state is not performed, and displays, for example, that the suspension state cannot be transitioned.
  • the selection mechanism (16) selects whether to correspond to a device that shifts to a suspended state in which power is not supplied to the outdoor unit (10) when operation is stopped.
  • the air conditioner (1) includes devices that do not support standby power that cannot be changed to the suspended state
  • the outdoor unit (10) can be prohibited from changing to the suspended state. As a result, even when devices that do not support standby power are mixed, smooth operation is possible and reliability can be improved.
  • the opening / closing part (17) is constituted by a connector, it is possible to cope with a case where devices not supporting standby power are mixed with a simple configuration.
  • the opening / closing part (17) is configured by a latching relay in place of the opening / closing part (17) configured by a connector in the first embodiment.
  • the opening / closing part (17) includes a set coil (17b), a reset coil (17c), and a movable piece (17d).
  • the opening / closing part (17) applies a voltage to the set coil (17b
  • the movable piece (17d) is maintained in a state of conducting the auxiliary circuit (16a)
  • the opening / closing part (17) is connected to the reset coil (17c).
  • the movable piece (17d) is maintained in a state of interrupting the auxiliary circuit (16a). Note that once the auxiliary circuit (16a) is opened and closed, the open / close section (17) maintains the current state without applying voltage to the set coil (17b) and the reset coil (17c).
  • the indoor unit (20) is a device that does not support standby power
  • the operator applies a voltage to the set coil (17b) and makes the auxiliary circuit (16a) conductive.
  • the opening / closing part (17) is constituted by a latching relay, the opening / closing part (17) can be automatically opened / closed, so that the operability can be improved.
  • Other configurations, operations, and effects are the same as those of the first embodiment.
  • the relay (K13R) of the power supply wiring (1a) is configured by the latching relay of the first modification, as shown in FIG. That is, the relay (K13R) includes a set coil (17b), a reset coil (17c), and a movable piece (17d).
  • the opening / closing operation of the relay (K13R) of Embodiment 1 is performed by a latching relay.
  • the indoor unit (20) is a device that does not support standby power
  • a voltage is applied to the set coil (17b), and the power supply wiring (1a) is kept conductive.
  • the outdoor unit (10) does not enter the suspend state, but starts independently based on the operation signal of the remote controller (30).
  • the auxiliary circuit (16a) of the first embodiment and the modification 1 is not provided.
  • the relay (K13R) of the power supply wiring (1a) is configured by a latching relay, it is possible to control the transition of the suspend state and cope with a device that does not support standby power with one latching relay. As a result, the configuration can be simplified. Other configurations, operations, and effects are the same as those of the first embodiment.
  • Embodiments of Embodiment 1 A semiconductor switch (such as a transistor) may be used instead of the relay (K2R).
  • a single-phase AC may be used for the commercial AC power source (40).
  • the selection mechanism (16) is selected based on whether or not the indoor unit (20) is a standby power compatible device.
  • the selection mechanism (16) may be selected based on whether the device is a standby power compatible device.
  • FIG. 10 is a diagram illustrating an overall configuration of an air-conditioning apparatus (1) according to the second embodiment of the present invention.
  • This air conditioner (1) is an air conditioner that can be used by combining indoor units and outdoor units having different model specifications.
  • the air conditioner (1) includes an outdoor unit (10), an indoor unit (20), and a remote controller (hereinafter abbreviated as a remote controller) (30).
  • a remote controller hereinafter abbreviated as a remote controller
  • the outdoor unit (10) is configured with a standby power compatible model that can cut off the power supply while the operation is stopped.
  • the indoor unit (20) is a standby power compatible model having an activation unit that starts power supply to an outdoor unit (10) of a standby power compatible model in which power supply is cut off, or starts the outdoor unit (10). It is configured by a model that does not have the activation unit and does not support standby power.
  • the remote control (30) transmits a shut-off request signal for shutting off power supply to the outdoor unit (10) to the indoor unit (20), or transmits the shut-off request signal to the indoor unit (20). It consists of models that do not support standby power.
  • FIG. 11 is an electrical system block diagram of the air conditioner (1) when the outdoor unit (10), the standby power compatible model indoor unit (20), and the standby power compatible model remote control (30) are connected. .
  • the air conditioner (1) is an outdoor unit (10) that receives AC (three-phase AC of 200 V in this example) from a commercial AC power source (40) and receives a circuit or electric compressor ( In addition to being used as electric power (not shown), two phases of the three-phase alternating current are fed to the indoor unit (20). In addition, communication is performed between the outdoor unit (10) and the indoor unit (20) for the purpose of controlling the outdoor unit (10) from the indoor unit (20) side.
  • power wiring (L) for transmitting AC power from a commercial AC power supply (40) (hereinafter also simply referred to as AC power supply), and a signal line (S) for transmitting the signal Three wires (internal / external wiring) of a common line (N) shared for transmission of the AC power and transmission of the signal are provided between the outdoor unit (10) and the indoor unit (20).
  • the power wiring (L) is connected to the R phase of the AC power supply (40) in the outdoor unit (10), and the common line (N) is connected to the S of the AC power supply (40) in the outdoor unit (10).
  • the indoor unit (20) is connected to the R phase and the S phase of the AC power source (40) and supplied with single-phase AC.
  • the outdoor unit (10) includes, as an electrical system, a first outdoor power circuit (14), a second outdoor power circuit (12), an outdoor unit transmission circuit (11), an outdoor control circuit (13), and an outdoor storage unit. (15) It has a forced start mechanism (50) and relays (K13R, K14R, K15R). Although not shown, the outdoor unit (10) is provided with devices such as an electric compressor, an outdoor heat exchanger, an outdoor fan, and an expansion valve.
  • the first outdoor power circuit (14) converts the three-phase AC power received from the main power line (1L) connected to the AC power source (40) into DC, so-called intelligent power module (hereinafter referred to as IPM). Or a fan motor for outdoor use.
  • the IPM converts the input direct current into alternating current having a predetermined frequency and voltage, and supplies power to the motor of the electric compressor.
  • the first outdoor power supply circuit (14) includes a noise filter (14a), two main relays (14b), two diode bridge circuits (14c), a reactor (14d), and a smoothing capacitor (14e). Yes.
  • the noise filter (14a) is formed by a capacitor and a coil.
  • the two main relays (14b) are respectively provided in the three-phase AC R-phase and T-phase supply lines.
  • the two diode bridge circuits (14c) one inputs the R phase and S phase of the three-phase AC and the other inputs the S phase and T phase of the three-phase AC and inputs the AC Is full-wave rectified.
  • the outputs of these diode bridge circuits (14c) are input to the smoothing capacitor (14e) via the reactor (14d) and smoothed by the smoothing capacitor (14e).
  • the direct current smoothed by the smoothing capacitor (14e) is supplied to the IPM and the outdoor fan motor.
  • the second outdoor power supply circuit (12) converts the two phases of the three-phase alternating current R and S supplied from the main power supply line (1L) through the power supply wiring (1a) into direct current (in this example, 5 V). ) And supplied to the outdoor control circuit (13).
  • the second outdoor power supply circuit (12) includes a diode bridge circuit (12a), a smoothing capacitor (12b), and a switching power supply (12c).
  • the diode bridge circuit (12a) has one input connected to the three-phase AC R-phase power supply wiring (1a) via a relay (K13R) and the other input connected to the three-phase AC S-phase. Connected to the power supply wiring (1a).
  • the output of the diode bridge circuit (12a) is smoothed by the smoothing capacitor (12b) and then input to the switching power supply (12c).
  • the switching power supply (12c) is composed of, for example, a DC-DC converter, converts the input direct current into a predetermined voltage (5V), and outputs the same to the outdoor control circuit (13).
  • the outdoor unit transmission circuit (11) communicates with the indoor unit transmission circuit (21) by transmitting and receiving signals. In this communication, high-level and low-level binary digital signals are communicated based on the potential difference between the signal line (S) and the common line (N).
  • the communication circuit (not shown) in the indoor unit transmission circuit (21) has one end connected to the common line (N) and the other end connected to the signal line (S) via the relay (K14R). ing.
  • the relay (K13R) shuts off the power supply from the AC power supply (40) to the second outdoor power supply circuit (12) by cutting off the three-phase AC R-phase power supply wiring (1a) while the operation is stopped. It is a switch for setting a suspended state, which will be described later, and is a relay for switching the AC supply path to the second outdoor power supply circuit (12).
  • the relay (K13R) is a so-called C contact relay. Specifically, the relay (K13R) has two fixed contacts and one movable contact.
  • the outdoor control circuit (13) controls switching of the relay (K13R) (whether or not the coil is energized).
  • the movable contact of the relay (K13R) is connected to the input of the diode bridge circuit (12a).
  • the normally closed contact is connected to the signal line (S), and the normally open contact is connected to the three-phase AC R-phase power supply wiring (1a). That is, when the coil of the relay (K13R) is not energized, the normally closed contact and the movable contact are connected, and one input of the diode bridge circuit (12a) is connected to the signal line (S).
  • the coil of the relay (K13R) is energized, the movable contact and the normally open contact are connected and AC is input to the diode bridge circuit (12a) of the second outdoor power supply circuit (12).
  • the relay (K14R) is a relay that switches connection (on) and non-connection (off) between the signal line (S) and the outdoor unit transmission circuit (11).
  • the outdoor control circuit (13) controls on / off of the relay (K14R).
  • a relay (K15R) is a relay which switches the presence or absence of the electric power supply to an outdoor unit transmission circuit (11).
  • the relay (K15R) is turned on, power is supplied from the AC power source (40) to the outdoor unit transmission circuit (11).
  • the relay (K15R) is turned off, the AC power source (40) is connected to the outdoor unit transmission circuit (11). ) Is cut off.
  • the outdoor control circuit (13) controls on / off of the relay (K15R).
  • the outdoor control circuit (13) includes a microcomputer and a memory storing a program for operating the microcomputer.
  • the outdoor control circuit (13) controls, for example, the electric compressor according to the signal received by the outdoor unit transmission circuit (11) from the indoor unit transmission circuit (21), and activates the outdoor unit (10). Also controls the time.
  • the outdoor storage unit (15) is connected to the outdoor control circuit (13).
  • model specification information (bits “1” and “0”) indicating whether or not the outdoor unit (10) is a standby power compatible model is stored in advance.
  • the forced activation mechanism (50) is a mechanism for forcibly starting the outdoor unit (10) when the indoor unit (20) that does not support standby power is connected to the outdoor unit (10).
  • the forced activation mechanism (50) includes an auxiliary circuit (51) connected to the R-phase power supply wiring (1a) of the three-phase alternating current so as to bypass the relay (K13R). And a connection part (52).
  • the forced activation mechanism (50), the short-circuit detection unit (53) to be described later, the abnormality detection unit of the indoor control circuit (23) to be described later, and the relay (K13R) are the selection mechanism (16) of the first embodiment. Is configured.
  • the auxiliary circuit (51) includes a first short-circuit line (51a) connected to the normally open contact side of the relay (K13R) in the R-phase power supply wiring (1a) of the three-phase AC, and the R-phase of the three-phase AC And the second short-circuit line (51b) connected to the movable contact side of the relay (K13R) in the power supply wiring (1a).
  • the second short circuit line (51b) is provided with a diode (D3) whose anode is connected to a connection node (ND3) between the second short circuit line (51b) and the power supply wiring (1a).
  • D3 diode
  • ND3 connection node
  • the connection part (52) detects that the short-circuit connector (52a) capable of connecting the first short-circuit line (51a) and the second short-circuit line (51b) and the short-circuit line (51a, 51b) are connected. As a short-circuit detection unit.
  • the short-circuit connector (52a) is composed of a connector body (52b) and a four-pole connection plug (52c) (see FIG. 13).
  • the connector body (52b) has four plug insertion holes (52d, 52d,...) Corresponding to the connection plugs (52c).
  • the first and second short-circuit lines (51a, 51b) are connected to locations corresponding to the two plug insertion holes (52d, 52d) in the plug insertion holes (52d, 52d,).
  • the short-circuit detection unit (53) is connected to the ground (GND), the external power supply terminal (53a) to which an external power supply (in this example, 5 V) is supplied, and the external power supply terminal (53a) via a resistor.
  • a microprocessor (53b) (hereinafter abbreviated as MPU) as a detection unit is provided.
  • the ground (GND) is connected to one of the remaining two plug insertion holes (52d, 52d) not connected to the first and second short-circuit lines (51a, 51b) via a resistor, and is connected to an external power supply terminal ( 53a) and MPU (53b) are connected to the other of the remaining two plug insertion holes (52d, 52d).
  • connection plug (52c) When the connection plug (52c) is inserted into the plug insertion hole (52d, 52d,...) Of the connector main body (52b), the forced activation mechanism (50) is connected to the first and second short-circuit lines (51a, 51b). Are connected, the auxiliary circuit (51) becomes conductive, and the external power supply terminal (53a) and the ground (GND) are connected.
  • the connection plug (52c) is removed from the plug insertion hole (52d, 52d,...) Of the connector body (52b), the first and second short-circuit lines (51a, 51b) are disconnected, and the auxiliary circuit (51) is cut off, and the external power supply terminal (53a) and the ground (GND) are disconnected.
  • a high level voltage is input to the MPU (53b) when both short-circuit lines (51a, 51b) are not connected by the short-circuit connector (52a), and both short-circuit lines (51a, 51b) are input by the short-circuit connector (52a).
  • a low level voltage is input when 51b) is connected. Therefore, the MPU (53b) detects that both short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected when a low level voltage is input.
  • the indoor unit (20) consists of an indoor power supply circuit (22), an indoor unit transmission circuit (21), an indoor control circuit (23), an outdoor storage unit (24), a relay (K2R), and a first diode. (D1) and a second diode (D2).
  • the indoor unit (20) is provided with devices such as an indoor heat exchanger and an indoor fan.
  • the indoor power supply circuit (22) includes a noise filter (22a), a diode bridge circuit (22b), a smoothing capacitor (22c), and a switching power supply (22d).
  • the indoor side power supply circuit (22) converts the alternating current supplied from the main power supply line (1L) through the power wiring (L) and the common line (N) into direct current (5V direct current in this example), Supply to the inner control circuit (23).
  • the noise filter (22a) is formed by two coils.
  • the diode bridge circuit (22b) performs full-wave rectification on the alternating current input from the power wiring (L) and the common line (N) via the noise filter (22a).
  • the smoothing capacitor (22c) is formed of, for example, an electrolytic capacitor, and smoothes the output of the diode bridge circuit (22b).
  • the switching power supply (22d) is composed of, for example, a DC-DC converter or the like, converts the direct current smoothed by the smoothing capacitor (22c) into a predetermined voltage (5V), and outputs the same to the indoor control circuit (23).
  • the indoor unit transmission circuit (21) performs signal communication with the outdoor unit transmission circuit (11).
  • the indoor unit transmission circuit (21) since communication is performed based on the potential difference between the signal line (S) and the common line (N), one end of the communication circuit of the indoor unit transmission circuit (21) is connected to the signal line (S), The other end of the communication circuit is connected to a common line (N).
  • the relay (K2R) is provided on the bypass line (B) that connects the power line (L) and the signal line (S), and switches between connecting and disconnecting the power line (L) and the signal line (S). It is a relay.
  • This relay (K2R) functions as an activation unit that starts power supply to the outdoor unit (10) from which power supply is interrupted. When the relay (K2R) is turned on, the power wiring (L) and the signal line (S) are connected. When the relay (K2R) is turned off, the power wiring (L) and the signal line (S) are connected. Is disconnected.
  • the indoor control circuit (23) controls the on / off of the relay (K2R).
  • the first diode (D1) has an anode connected to a connection node (ND1) between the bypass line (B) and the signal line (S), and a cathode connected to a relay (K2R).
  • the first diode (D1) has a function of blocking an alternating current in a direction flowing into the indoor unit transmission circuit (21).
  • the second diode (D2) has an anode connected to the connection node (ND1) of the signal line (S) and a cathode connected to the signal input node (ND2) in the indoor unit transmission circuit (21).
  • the second diode (D2) has a function of blocking an alternating current flowing in the direction from the indoor unit transmission circuit (21).
  • the indoor side control circuit (23) includes a microcomputer and a memory storing a program for operating the microcomputer. In addition, the indoor side control circuit (23) receives a command from the remote control (30) and controls the operation state of the air conditioner (1). As will be described later, the indoor side control circuit (23) functions as an abnormality detection unit that detects a setting error of the forced activation mechanism (50). The indoor control circuit (23) also serves as a notification unit that notifies the remote controller (30) of the abnormality when a setting error of the forced activation mechanism (50) is detected.
  • the indoor storage unit (24) is connected to the indoor side control circuit (23).
  • model specification information bits “1” and “0” indicating whether or not the indoor unit (20) is a standby power compatible model is stored in advance.
  • the remote control (30) receives a user operation and transmits a signal corresponding to the user operation to the indoor control circuit (23). For example, the user can start and stop the air conditioner (1), adjust the set temperature, and the like by operating a button on the remote controller (30).
  • the remote controller (30) is a wired remote controller including a remote controller storage unit (31).
  • model specification information (bits “1” and “0”) indicating whether or not the remote control (30) is a standby power compatible model is stored in advance.
  • connection plug (52c) When the air conditioner (1) is shipped, the connection plug (52c) is inserted into the connector body (52b) as shown in FIG. Therefore, the installation operator of the air conditioner (1) determines whether or not the indoor unit (20) is a standby power compatible model when the apparatus is installed. When the operator determines that the indoor unit (20) is a standby power compatible model, the worker performs an operation of removing the connection plug (52c) from the connector main body (52b). Here, since the indoor unit (20) is a standby power compatible model, the connection plug (52c) is removed from the connector main body (52b) as shown in FIG. Therefore, the first short circuit line (51a) and the second short circuit line (51b) are disconnected, and the auxiliary circuit (51) is shut off.
  • the state transition of the air conditioner (1) is the same as that in FIG.
  • the air conditioner (1) transitions between four states: a suspended state, a charged state, a wait state, and an operating state, which will be described below.
  • the standby power means “power that is constantly consumed when the device is not in use or is waiting for some input (command instruction, etc.)”.
  • the standby power is the power required to perform only the standby of the remote control (30).
  • the suspended state is a state in which power is supplied to the indoor unit (20) and power is not supplied to the outdoor unit (10).
  • This suspended state is a standby state according to the present invention.
  • the suspended state of the present embodiment is a state in which the power consumption of the entire air conditioner (1) is minimized.
  • the outdoor unit (10) receives power and supplies it to the indoor unit (20), but each circuit in the outdoor unit (10) and the electric compressor In such a state, no power is supplied. That is, in the suspend state, the outdoor control circuit (13) is also cut off from power supply and stopped.
  • the suspended state power supply to each circuit of the outdoor unit (10) is cut off, and standby power can be reduced.
  • the standby power is in the minimum state, but unlike the outdoor unit (10), the part related to signal reception from the remote control (30) in the indoor side control circuit (23) It operates by receiving power from the indoor power circuit (22).
  • the remote control (30) is in a state where standby power is at a minimum, but the user can accept button operations.
  • the degree of power consumption (standby power) of the indoor unit (20) and the remote controller (30) is not limited to this.
  • the wait state is a state in which the above charging state is exited at the start of operation, and a transition from the operation state (described later) when the operation is stopped.
  • the outdoor unit (10) This refers to the state that can be shifted to the operating state.
  • both the outdoor unit transmission circuit (11) and the outdoor control circuit (13) are operating.
  • the weight state at the time of operation stop (weight state that transitions from the operation state) is for equalizing the refrigerant pressure in the electric compressor or when a schedule operation that repeats operation start and operation stop is set.
  • the time is, for example, 10 minutes.
  • the power consumption of the indoor unit (20) is the same as in the suspended state.
  • the operational state refers to a state where the main relay (14b) is turned on and the electric compressor and the outdoor fan can be operated or are in operation.
  • the so-called phase loss energization and the thermo-off state also correspond to this.
  • the indoor unit (20) the indoor fan or the like is in an operating state, and the power consumption is higher than in each of the above states.
  • the suspended state, the charged state, and the wait state, excluding this operating state correspond to “stopping operation” in this specification.
  • the main relay (14b) In the outdoor unit (10), the main relay (14b) is in an OFF state, and power is not supplied to the first outdoor power supply circuit (14), and the IPM and the outdoor fan motor are supplied from the first outdoor power supply circuit (14). Power is not supplied.
  • the relay (K13R) is in a state where the normally closed contact and the movable contact are connected, and one input of the diode bridge circuit (12a) of the second outdoor power supply circuit (12) is connected to the signal line (S). ing. In this state, no power is supplied to the second outdoor power supply circuit (12), and no power is supplied to the outdoor control circuit (13). Thus, in the suspended state, the outdoor unit (10) is cut off from the power supply.
  • the relay (K2R) is in an off state, and the signal line (S) and the power wiring (L) are not electrically connected.
  • FIG. 14 is a diagram illustrating a state of each relay at the time when a circuit charged in the smoothing capacitor (12b) is formed.
  • FIG. 15 is a diagram illustrating the state of each relay after the transition to the charging state is completed.
  • an operation command signal is transmitted from the remote control (30) to the indoor unit (20).
  • the indoor side control circuit (23) turns on the relay (K2R). Then, in the air conditioner (1), from the R phase of the three-phase alternating current, the power wiring (L), the relay (K2R), the first diode (D1), the signal line (S), and the relay (K13R) Thus, a power transmission path to one input of the diode bridge circuit (12a) is formed. Since the other input of the diode bridge circuit (12a) is connected to the S phase of the three-phase AC, the diode bridge circuit (12a) has a single-phase AC half-wave rectified by the first diode (D1). Is supplied. Thus, a circuit charged in the smoothing capacitor (12b) is formed (see FIG. 14).
  • the smoothing capacitor (12b) is charged so that the input to the switching power supply (12c) is stabilized, so that the switching power supply (12c) can output the specified DC voltage (5V in this example).
  • the outdoor control circuit (13) is activated.
  • the activated outdoor control circuit (13) energizes the coil of the relay (K13R) to connect the normally open contact and the movable contact.
  • one input of the diode bridge circuit (12a) is connected to the R phase of the three-phase AC via the power supply wiring (1a) of the outdoor unit (10). That is, the outdoor control circuit (13) switches to a state where power is supplied from the AC power supply (40) without passing through the signal line (S) (see FIG. 15).
  • the transition from the suspended state to the charged state is completed.
  • FIG. 16 is a diagram illustrating the state of each relay when the transition to the wait state is completed.
  • the relay (K2R) is turned off after a predetermined time (a time sufficient for the outdoor control circuit (13) to start) has elapsed since the relay (K2R) was turned on.
  • the signal line (S) can be used for signal transmission and reception.
  • the outdoor control circuit (13) turns on the relay (K15R) and power is supplied to the outdoor unit transmission circuit (11) in anticipation of the relay (K2R) being turned off. And turn on the relay (K14R).
  • the communication circuit in the outdoor unit transmission circuit (11) is connected to the indoor unit transmission circuit (21) via the signal line (S) and the common line (N), and communicates with the indoor unit transmission circuit (21). It becomes possible.
  • the air conditioner (1) enters a wait state in which it can exit the charged state and shift to the immediate operation state.
  • FIG. 17 is a diagram illustrating the state of each relay in the operating state.
  • the outdoor control circuit (13) turns on the two main relays (14b).
  • electric power is supplied to the IPM and the outdoor fan motor by the first outdoor power supply circuit (14), and the electric compressor and the like are in an operating state.
  • the air conditioner (1) the cooling operation or the heating operation is performed while the outdoor unit (10) and the indoor unit (20) communicate.
  • operation state for example, when the user performs operation stop operation with the remote controller (30), the operation state, the wait state, and the suspend state are changed in this order.
  • operations from the operating state to the suspended state will be described in order.
  • the outdoor control circuit (13) switches the main relay (K14b) from on to off. Thereby, the power supply to the IPM and the outdoor fan motor is cut off, and the electric compressor and the like are stopped. Thus, the transition from the operating state to the wait state is completed (see FIG. 16).
  • the predetermined remote suspension prohibition condition is determined with the remote control (30).
  • This suspend transition prohibition condition is, for example, when the time when the user has stopped the operation with the remote control (30) is within a predetermined time from the scheduled operation start time reserved by the scheduling function, the transition from the wait state to the suspend state Is prohibited.
  • a cutoff request signal is transmitted from the remote control (30) to the indoor unit (20), and a cutoff request signal is transmitted from the indoor unit (20) to the outdoor unit (10).
  • the outdoor control circuit (13) turns off the relay (K14R) and the relay (K15R). Thereby, the connection between the outdoor unit transmission circuit (11) and the indoor unit transmission circuit (21) is disconnected, and the outdoor unit (10) and the indoor unit (20) cannot communicate.
  • the indoor control circuit (13) switches the relay (K13R) from a state where the normally open contact and the movable contact are connected to a state where the normally closed contact and the movable contact are connected. Thereby, the electric power supply to a 2nd outdoor unit power supply part (12) is interrupted
  • the air conditioner (1) can be used in combination with an outdoor unit (10) and an indoor unit (20) of a model that does not support standby power.
  • the indoor unit (20) that does not support standby power does not have a relay (K2R) unlike the indoor unit (20) that supports standby power, so it activates the outdoor unit (10) in the suspended state. I can't let you.
  • the installation operator of the air conditioner (1) does not remove the connection plug (52c) from the connector body (52b) when setting the forced activation mechanism (50), and as shown in FIG. ) Is inserted into the connector body (52b).
  • the auxiliary circuit (51) becomes conductive, and a path from the AC power supply (40) to the relay (K13R) to the second outdoor power supply circuit (12) is formed.
  • electric power is always supplied from the AC power supply (40) to the outdoor control circuit (13) via the second power supply circuit (12).
  • the outdoor unit (10) can be activated.
  • the air conditioner (1) is not in the suspended state, but is in two states, a weight state and an operating state.
  • the installation operator determines the setting of the forced activation mechanism (50) at the site. For this reason, there is a possibility that the installation operator mistakes the setting of the forced activation mechanism (50). And, when using the outdoor unit (10) and the standby power compatible model indoor unit (20) in combination, the setting of the forced start mechanism (50) is wrong, that is, from the short-circuit connector (52) to the connection plug (52c) If you forget to remove the power, a path is formed from the AC power supply (40) to the second outdoor power supply circuit (12) via the auxiliary circuit (51), so power is supplied to the outdoor unit (10). The situation that cannot be cut off occurs.
  • the standby power compatible model indoor unit (20) is configured to detect a setting error of the forced activation mechanism (50).
  • the indoor side control circuit (23) detects a setting error of the forced activation mechanism (50) based on the flowchart shown in FIG. That is, first, in step S1, the indoor side control circuit (23) determines whether or not it is possible to shift to the suspended state. This determination process for determining whether or not to enter the suspended state is executed based on the flowchart shown in FIG.
  • step S1a the indoor side control circuit (23) acquires the model specification information of the outdoor unit (10) and the remote control (30) from the outdoor storage unit (15) and the remote control storage unit (31).
  • step S1b the indoor side control circuit (23) determines whether the outdoor unit (10), the indoor unit (20), and the remote control (30) are standby power compatible models based on the model specification information. To do. When the outdoor unit (10), the indoor unit (20), and the remote control (30) are all standby power compatible models, the process proceeds to step S1c, while the outdoor unit (10), the indoor unit (20), and the remote control If any of (30) is not a standby power compatible model, the process proceeds to step S1d.
  • step S1c it is determined that the state can be shifted to the suspended state.
  • step S1d it is determined that the transition to the suspended state is impossible.
  • step S2 if it is determined that the transition to the suspend state is possible, the process proceeds to step S2, whereas if it is determined that the transition to the suspend state is impossible, the process is terminated. To do.
  • step S2 it is determined whether or not the short circuit detection unit (53) detects that the first short circuit line (51a) and the second short circuit line (51b) are connected.
  • the process proceeds to step S3, while the short-circuit detection unit (53) detects both short-circuit lines (51a, 51b). If it is detected that 51b) is not connected, the process ends.
  • step S3 the indoor side control circuit (23) detects an abnormal connection of the auxiliary circuit (51).
  • the indoor side control circuit (23) detects a setting error of the forced activation mechanism (50).
  • the indoor side control circuit (23) detects the connection abnormality of the auxiliary circuit (51), it notifies the remote control (30) of the connection abnormality of the auxiliary circuit (51).
  • Embodiment 2 when it is possible to shift to the suspended state, the installation operator of the device makes a mistake in the setting of the forced activation mechanism (50), that is, removes the connection plug (52c) from the connector body (52b). If it is forgotten, the indoor control circuit (23) detects an abnormal connection of the auxiliary circuit (51). Then, the connection abnormality of the auxiliary circuit (51) is notified from the indoor side control circuit (23) to the remote control (30). Thus, the installation operator can be sure that he has forgotten to remove the connection plug (52c) from the connector body (52b), and can remove the connection plug (52c) from the connector body (52b). Therefore, when the air conditioner (1) that allows the user to enter the suspended state is used, the situation where the power supply to the outdoor unit (10) cannot be cut off is avoided, and the apparatus can be operated smoothly. And reliability can be improved.
  • both the short-circuit lines can be reduced with a simple configuration by reducing the number of parts. It can be detected that (51a, 51b) is connected.
  • the short-circuit connector (52a) connects the first short-circuit line (51a) and the second short-circuit line (51b) by inserting a two-pole connection plug (52c) into the connector body (52b) instead of four-pole. It is configured to be able to.
  • the short-circuit detection unit (53) is connected to the ground (GND), the external power supply terminal (53a) to which an external power supply (in this example, 5 V) is supplied, and the external power supply terminal (53a) via a resistor.
  • a microprocessor (53b) (hereinafter abbreviated as MPU) as a detection unit and a photocoupler (53c) are provided.
  • the second short-circuit line (51b) is connected to the other end of the detection line (53f) having one end connected to the three-phase AC S-phase power supply wiring (1a).
  • the detection line (53f) includes a voltage dividing resistor (R1) and a voltage dividing resistor (R2) in order from the second short-circuit line (51b) side to the three-phase AC S-phase power supply wiring (1a) side. Are connected in series.
  • the light emitting diode (53d) of the photocoupler (53c) is provided in parallel with the voltage dividing resistor (R2). Thereby, the light emitting diode (53d) is configured to emit light when the first short circuit line (51a) and the second short circuit line (51b) are connected.
  • the phototransistor (53e) of the photocoupler (53c) is connected between the external power supply terminal (53a) and the ground (GND).
  • a high level voltage is input to the MPU (53b) when the first short circuit line (51a) and the second short circuit line (51b) are not connected by the short circuit connector (52a), and the short circuit connector (52a).
  • the MPU (53b) detects that both short-circuit lines (51a, 51b) of the auxiliary circuit (51) are connected when a low level voltage is input.
  • Embodiment 2 may be configured as follows for the second embodiment.
  • the indoor control circuit (23) detects a setting error of the forced activation mechanism (50) (connection error of the auxiliary circuit (51)), but is not limited to this.
  • the outdoor control circuit (13) May detect a setting error of the forced activation mechanism (50).
  • the present invention is useful as an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明は、サスペンド状態の移行不可能な待機電力未対応機器が混在した場合においても円滑な運転を可能性して信頼性の向上を図る。空気調和装置(1)は、運転停止時に電源配線(1a)を遮断して室外機(10)に電力が供給されないサスペンド状態に移行する機器に対応させるか否かを選択する選択機構(16)を備えている。選択機構(16)は、電源配線(1a)に設けられ、運転停止時に電源配線(1a)を遮断して室外機(10)に電力が供給されないサスペンド状態にするリレー(K13R)と、電源配線(1a)に接続され、リレー(K13R)と並列に設けられ、室外側制御回路(13)に常時電力供給するための補助回路(16a)と、補助回路(16a)に設けられ、補助回路(16a)を開閉する開閉部(17)とを備えている。そして、開閉部(17)はコネクタで構成されている。

Description

空気調和装置
  本発明は、空気調和装置に関し、特に、空気調和装置の待機電力低減の技術に関するものである。
  空気調和装置には、特許文献1に開示されているように、待機電力を低減する目的で、運転待機時に室外機内の回路への給電を止めて待機状態にし、起動時に室内機から室外機に給電し、室外機の待機状態を解除して起動するものがある。
特開2010-243051号公報
  しかしながら、従来の空気調和装置においては、待機状態の移行可能な室外機と、待機状態の移行不可能な室内機とが混在した場合については何ら考慮されていないという問題があった。つまり、前記室内機が待機状態の移行不可能な待機電力未対応機器の場合、室外機を待機状態から起動させることができず、装置の円滑な運転を行うことができないという問題があった。
  本発明は、斯かる点に鑑みてなされたものであり、装置内に待機状態の移行不可能な待機電力未対応機器が混在した場合においても円滑な運転を可能性して信頼性の向上を図ることを目的とする。
  第1の発明は、主電源ライン(1L)から電力供給される室外機(10)と室内機(20)とを備え、運転停止時に電力が前記室外機(10)に供給されない待機状態に移行可能に構成された空気調和装置である。そして、前記第1の発明は、前記室外機(10)が、待機状態に移行可能に構成されると共に、待機状態の移行に対応可能な室内機(20)と待機状態の移行に対応不可能な室内機(20)とに接続可能に構成される一方、前記室外機(10)に設けられ、主電源ライン(1L)から電源配線(1a)を介して電力供給される室外側制御回路(13)と、前記電源配線(1a)に設けられ、運転停止時に前記電源配線(1a)を遮断して前記室外機(10)を前記待機状態に移行する機器に対応させるか否かを選択する選択機構(16)とを備えていることを特徴としている。
  前記第1の発明では、室内機(20)が待機電力対応機器である場合、選択機構(16)によって運転停止時に室外機(10)に電力が供給されない待機状態に移行する機器に対応させる。一方、前記室内機(20)が待機電力未対応機器である場合、選択機構(16)によって運転停止時に室外機(10)を待機状態に移行させない機器に対応させる。この選択機構(16)の選択によって室外機(10)の起動等の円滑な運転を行えるようにしている。
  第2の発明は、前記第1の発明において、前記選択機構(16)が、前記電源配線(1a)に設けられ、運転停止時に前記電源配線(1a)を遮断して前記室外機(10)に電力が供給されない待機状態にするスイッチ(K13R)と、前記電源配線(1a)に接続され、前記スイッチ(K13R)と並列に設けられ、前記室外側制御回路(13)に常時電力供給するための補助回路(16a)と、該補助回路(16a)に設けられ、前記補助回路(16a)を開閉する開閉部(17)とを備えていることを特徴としている。
  前記第2の発明では、室内機(20)が待機電力対応機器である場合、開閉部(17)が補助回路(16a)を遮断し、前記スイッチ(K13R)によって運転停止時に室外機(10)に電力が供給されない待機状態に移行するように設定する。一方、前記室内機(20)が待機電力未対応機器である場合、開閉部(17)が補助回路(16a)を導通させ、スイッチ(K13R)の動作に拘わらず運転停止時に室外機(10)を待機状態に移行させないように設定する。この開閉部(17)の開閉によって室外機(10)の起動等の円滑な運転を行えるようにしている。
  第3の発明は、前記第2の発明において、前記開閉部(17)が、前記補助回路(16a)を導通させるコネクタであることを特徴としている。
  前記第3の発明では、室内機(20)が待機電力対応機器である場合、コネクタの接続ピンを抜き取り、補助回路(16a)を遮断する。一方、前記室内機(20)が待機電力未対応機器である場合、コネクタの接続ピンを差し込んだままに設定し、補助回路(16a)を導通させる。
  第4の発明は、前記第2の発明において、前記開閉部(17)が、前記補助回路(16a)を導通させるラッチングリレーであることを特徴としている。
  前記第4の発明では、室内機(20)が待機電力対応機器である場合、ラッチングリレーによって補助回路(16a)を遮断する。一方、前記室内機(20)が待機電力未対応機器である場合、ラッチングリレーによって補助回路(16a)を導通させる。
  第5の発明は、前記第1の発明において、前記選択機構(16)が、前記電源配線(1a)に設けられ、該電源配線(1a)を開閉し、運転停止時に前記電源配線(1a)を遮断して前記室外機(10)に電力が供給されない待機状態にするラッチングリレーで構成されていることを特徴としている。
  前記第5の発明では、室内機(20)が待機電力対応機器である場合、ラッチングリレーによって電源配線(1a)を開閉し、運転時には電源配線(1a)を導通させ、運転停止時には電源配線(1a)を遮断して導通室外機(10)に電力が供給されない待機状態に移行させる。一方、前記室内機(20)が待機電力未対応機器である場合、ラッチングリレーによって常時電源配線(1a)を導通させ、運転停止時に室外機(10)を待機状態に移行させないように設定する。
  第6の発明は、第1の発明において、前記選択機構(16)は、前記電源配線(1a)に設けられ、運転停止中に電源配線(1a)を遮断して前記室外機(10)に電力が供給されない待機状態にするスイッチ(K13R)と、前記電源配線(1a)に前記スイッチ(K13R)を迂回するように接続され、互いに切り離された第1及び第2短絡ライン(51a,51b)を含む補助回路(51)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とを接続可能なコネクタ(52a)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていることを検出する短絡検出部(53)と、少なくとも前記室内機(20)の機種仕様情報に基づいて、前記待機状態への移行可否を判定し、待機状態に移行可能と判定したときにおいて前記短絡検出部(53)により第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていることが検出された場合に、補助回路(51)の接続異常を検知する異常検知部(23)とを備えていることを特徴としている。
  第6の発明では、例えばコネクタ(52a)の接続プラグを抜き取り、補助回路(51)の両短絡ライン(51a,51b)を接続していないときには、スイッチ(K13R)の開閉により、室外機(10)への電力供給が行われる状態と、室外機(10)への電力供給が遮断される待機状態とに切り換わる。
  一方、補助回路(51)の両短絡ライン(51a,51b)をコネクタ(52a)で接続すると、交流電源(40)からスイッチ(K13R)を迂回して室外側制御回路(13)に到る経路が形成される。そのため、スイッチ(K13R)により電源配線(1a)が遮断されていても、補助回路(51)を介して交流電源(40)から室外側制御回路(13)に常時電力が供給される。従って、待機電力未対応機種の室内機(20)と待機電力対応機種の室外機(10)とが接続されていても、室外機(10)が強制的に起動される。即ち、第6の発明では、補助回路(51)とコネクタ(52a)とが強制起動機構を構成する。
  また、異常検知部(23)により待機状態への移行可否が判定される。例えば、待機電力未対応機種の室内機(20)と待機電力対応機種の室外機(10)とが組み合わされているときには、待機状態へ移行不可と判定される。一方、待機状態へ移行可能と判定されたときに、短絡検出部(53)により両短絡ライン(51a,51b)が接続されていることが検出された場合には、異常検知部(23)が補助回路(51)の接続異常を検知する。
  つまり、強制起動機構の強制起動設定は、空気調和装置の設置作業者が現場で判断して行うため、設置作業者が設定を誤ってしまう虞がある。そして、待機電力対応機種の室外機(10)と待機電力対応機種の室内機(20)とを組み合わせて利用するときに強制起動設定を誤ると、室外機(10)への電力供給を遮断することができる空気調和装置であるのにも拘らず、室外機(10)への電力供給を遮断することができないという事態が起きる。
  そこで、第6の発明では、前記短絡検出部(53)により両短絡ライン(51a,51b)が接続されていることが検出された場合には、異常検知部(23)が補助回路(51)の接続異常を検知するようにした。
  第7の発明は、第6の発明において、前記短絡検出部(53)は、グランド(GND)と、外部電源が供給される外部電源端子(53a)と、該外部電源端子(53a)に接続され、外部電源端子(53a)から供給される電源電圧を検知する検知部(53b)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とを接続すると共にグランド(GND)と外部電源端子(53a)とを接続するように構成された前記コネクタ(52a)とを有することを特徴としている。
  第7の発明では、コネクタ(52a)により両短絡ライン(51a,51b)が接続されていないときには、グランド(GND)と外部電源端子(53a)とが非接続状態である一方、コネクタ(52a)により両短絡ライン(51a,51b)が接続されたときには、グランド(GND)と外部電源端子(53a)とが接続状態となる。そのため、検知部(53b)には、コネクタ(52a)により両短絡ライン(51a,51b)が接続されていないときにハイレベルの電圧が入力され、コネクタ(52a)により両短絡ライン(51a,51b)が接続されたときにローレベルの電圧が入力される。
  第8の発明は、第6の発明において、前記短絡検出部(53)は、グランド(GND)と、外部電源が供給される外部電源端子(53a)と、該外部電源端子(53a)に接続され、外部電源端子(53a)から供給される電源電圧を検知する検知部(53b)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されたときに発光する発光ダイオード(53d)と、前記外部電源端子(53a)とグランド(GND)との間に接続され、前記発光ダイオード(53d)の光により動作するフォトトランジスタ(53e)とを有することを特徴としている。
  第8の発明では、発光ダイオード(53d)とフォトトランジスタ(53e)とでフォトカプラを構成している。そして、コネクタ(52a)により両短絡ライン(51a,51b)が接続されていないときには、発光ダイオード(53d)が発光せず、フォトトランジスタ(53e)が動作しないから、グランド(GND)と外部電源端子(53a)とが電気的に略非接続状態である一方、コネクタ(52a)により両短絡ライン(51a,51b)が接続されたときには、発光ダイオード(53d)が発光して、フォトトランジスタ(53e)が動作するから、グランド(GND)と外部電源端子(53a)とが電気的に接続状態となる。そのため、検知部(53b)には、上記第7の発明と同様に、コネクタ(52a)により両短絡ライン(51a,51b)が接続されていないときにはハイレベルの電圧が入力され、コネクタ(52a)により両短絡ライン(51a,51b)が接続されたときにはローレベルの電圧が入力される。
  第9の発明は、第6~8の何れか1つの発明において、リモコン(30)と、前記異常検知部(23)が補助回路(51)の接続異常を検知した場合に、該接続異常をリモコン(30)に報知する報知部(23)とをさらに備えていることを特徴としている。
  第9の発明では、異常検知部(23)が補助回路(51)の接続異常を検知した場合には、報知部(23)により補助回路(51)の接続異常がリモコン(30)に報知される。
  第1の発明によれば、運転停止時に室外機(10)に電力が供給されない待機状態に移行する機器に対応させるか否かを選択機構(16)によって選択するようにしたために、装置内に待機状態の移行不可能な待機電力未対応機器が混在した場合、室外機(10)の待機状態の移行を禁止することができる。この結果、待機電力未対応機器が混在した場合においても円滑な運転を可能性して信頼性の向上を図ることができる。
  また、第2の発明によれば、補助回路(16a)の開閉によって待機状態に移行する機器に対応させるか否かを選択するようにしたために、電源配線(1a)のスイッチ(K13R)の動作に拘わらず待機電力未対応機器に確実に対応させることができる。
  また、第3の発明によれば、開閉部(17)をコネクタで構成したために、簡易な構成によって確実に待機電力未対応機器が混在した場合に対応させることができる。
  また、第4の発明によれば、開閉部(17)をラッチングリレーで構成したために、開閉部(17)の開閉を自動で行うことができるので、操作性の向上を図ることができる。
  また、第5の発明によれば、電源配線(1a)のスイッチ(K13R)をラッチングリレーで構成したために、待機状態の移行の制御と、待機電力未対応機器に対する対応とを1つのラッチングリレーで行うことができる。この結果、構成の簡略化を図ることができる。
  また、第6の発明によれば、待機状態に移行可能な空気調和装置において補助回路(51)の両短絡ライン(51a,51b)がコネクタ(52a)で接続されているときには、異常検出部(23)により補助回路(51)の接続異常が検知されるから、設置作業者は、補助回路(51)の両短絡ライン(51a,51b)が誤って接続されていることに気づき得る。これにより、設置作業者は、両短絡ライン(51a,51b)を非接続状態に設定し直すことができる。従って、ユーザーが待機状態に移行可能な空気調和装置を使用したときに、室外機(10)への電力供給を遮断することができないという事態が回避され、装置の円滑な運転を可能にして、信頼性を向上することができる。
  また、第7の発明によれば、検知部(53b)は、ローレベルの電圧が入力されたときに補助回路(51)の両短絡ライン(51a,51b)が接続されたことを検知することができる。
  また、短絡検出部(53)を、両短絡ライン(51a,51b)を接続するコネクタ(52a)を利用して構成したために、部品点数を削減して簡易な構成で両短絡ライン(51a,51b)が接続されたことを検出することができる。
  また、第8の発明によれば、第7の発明と同様に、検知部(53b)は、ローレベルの電圧が入力されたときに補助回路(51)の両短絡ライン(51a,51b)が接続されたことを検知することができる。
  また、第9の発明によれば、異常検知部(23)が補助回路(51)の接続異常を検知した場合には、報知部(23)によりリモコン(30)に補助回路(51)の接続異常が報知されるから、設置作業者は、補助回路(51)の両短絡ライン(51a,51b)が誤って接続されていることに確実に気付き、両短絡ライン(51a,51b)を非接続状態に設定し直すことができる。従って、ユーザーが待機状態に移行可能な空気調和装置を使用したときに、室外機(10)への電力供給を遮断することができないという事態がより確実に回避され、信頼性を向上することができる。
図1は、本発明の実施形態1にかかる空気調和装置の電装系統のブロック図である。 図2は、本実施形態1における空気調和装置の状態遷移図である。 図3は、平滑コンデンサに充電される回路が形成された時点の各リレーの状態を示す図である。 図4は、充電状態への移行が完了した後の各リレーの状態を示す図である。 図5は、ウエイト状態への移行完了時における各リレーの状態を示す図である。 図6は、運転状態における各リレーの状態を示す図である。 図7は、選択機構の概略を示す回路図である。 図8は、実施形態1の変形例1を示すラッチングリレーの概略を示す構成図である。 図9は、実施形態1の変形例2を示すリレーの概略を示す構成図である。 図10は、実施形態2に係る空気調和装置の全体構成を示す図である。 図11は、室外機と、待機電力対応機種の室内機と、待機電力対応機種のリモコンとが接続されたときの空気調和装置(サスペンド状態)の電装系統ブロック図である。 図12は、強制起動機構付近の拡大図である。 図13は、接続プラグが短絡コネクタに差し込まれているときの図12相当図である。 図14は、平滑コンデンサに充電される回路が形成された時点のリレーの状態を示す図である。 図15は、充電状態への移行が完了した後のリレーの状態を示す図である。 図16は、ウエイト状態におけるリレーの状態を示す図である。 図17は、運転状態におけるリレーの状態を示す図である。 図18は、室外機と、待機電力未対応機種の室内機と、待機電力未対応機種のリモコンとが接続されたときの空気調和装置の電装系統ブロック図である。 図19は、強制起動機構の設定ミスを検知するためのフローチャートである。 図20は、サスペンド状態への移行可否を判定するためのフローチャートである。 図21は、実施形態2の短絡検出部の変形例を示す図である。
  以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  《発明の実施形態1》
  〈全体構成〉
  図1は、本発明の実施形態1にかかる空気調和装置(1)の電装系統のブロック図である。空気調和装置(1)は、図1に示すように、室外機(10)、室内機(20)、及びリモートコントローラ(30)を備えている。なお、図示は省略するが、室外機(10)は、電動圧縮機、室外熱交換器、室外ファン、膨張弁などの機器が設けられ、室内機(20)には、室内熱交換器、室内ファンなどの機器が設けられている。空気調和装置(1)では、これらの機器によって、冷凍サイクルを行う冷媒回路(図示は省略)が構成されている。また、前記リモートコントローラ(30)は、以下、リモコン(30)という。
  空気調和装置(1)では、室外機(10)で、商用交流電源(40)から交流(この例では200Vの三相交流)を受電して室外機(10)内の回路や前記電動圧縮機の電力として用いる他、その三相交流の2相分を室内機(20)に給電するようになっている。また、室外機(10)と室内機(20)との間では、室内機(20)側から室外機(10)を制御するため等の目的で、信号の通信を行うようになっている。そのため、空気調和装置(1)では、商用交流電源(40)(以下、単に交流電源とも言う)からの交流電力を送電する電力配線(L)と、前記信号を伝送する信号線(S)と、前記交流電力の送電と前記信号の伝送に共用する共通線(N)との3線(内外配線)が室外機(10)と室内機(20)との間に設けられている。
  この例では、電力配線(L)は、室外機(10)において交流電源(40)のR相に接続され、共通線(N)は、室外機(10)において交流電源(40)のS相に接続されている。すなわち、室内機(20)は、交流電源(40)のR相及びS相に接続されて単相交流が供給されている。信号線(S)は、前記信号の送受信の他に、後述するように、交流電力の送電にも使用する。そのため、信号線(S)は、送電電力に応じた電流容量を有する配線部材を採用している。本実施形態では、電力配線(L)や共通線(N)と同じ配線部材を信号線(S)に用いている。
  〈室外機(10)〉
  室外機(10)は、電装系統として、第1室外側電源回路(14)、第2室外側電源回路(12)、室外機伝送回路(11)、室外側制御回路(13)、リレー(K13R,K14R,K15R)を備えている。
  -第1室外側電源回路(14)-
  第1室外側電源回路(14)は、交流電源(40)に接続された主電源ライン(1L)から受電した3相交流を直流に変換し、いわゆるインテリジェントパワーモジュール(Intelligent Power Module、図中ではIPMと略記)や室外ファンモータに供給する。なお、インテリジェントパワーモジュールは、入力された直流を所定の周波数及び電圧の交流に変換し、前記電動圧縮機のモータに給電する。この例では、第1室外側電源回路(14)は、ノイズフィルタ(14a)、2つのメインリレー(14b)、2つのダイオードブリッジ回路(14c)、リアクトル(14d)、及び平滑コンデンサ(14e)を備えている。
  ノイズフィルタ(14a)は、コンデンサとコイルで形成されている。2つのメインリレー(14b)は、前記三相交流のR相、T相の供給ラインにそれぞれ設けられている。これらのメインリレー(14b)は、いわゆるA接点リレーで構成されている。詳しくは、メインリレー(14b)は、ひとつの固定接点と、ひとつの可動接点とを有し、該メインリレー(14b)のコイルに通電すると、これらの接点が接続状態(オン)になる。2つのダイオードブリッジ回路(14c)のうち、一方は、前記三相交流のR相及びS相を入力とし、もう一方は、前記三相交流のS相及びT相を入力とし、入力された交流をそれぞれ全波整流する。これらのダイオードブリッジ回路(14c)の出力は、リアクトル(14d)を介して平滑コンデンサ(14e)に入力され、平滑コンデンサ(14e)で平滑化される。平滑コンデンサ(14e)で平滑化された直流は、前記インテリジェントパワーモジュールや室外ファンモータに供給される。
  -第2室外側電源回路(12)-
  第2室外側電源回路(12)は、前記主電源ライン(1L)から電源配線(1a)を介して供給される前記三相交流のR相及びS相の2相を直流(この例では5V)に変換し、室外側制御回路(13)に供給する。この例では、第2室外側電源回路(12)は、ダイオードブリッジ回路(12a)、平滑コンデンサ(12b)、及びスイッチング電源(12c)を備えている。ダイオードブリッジ回路(12a)は、一方の入力が、後に詳述するリレー(K13R)を介して三相交流のR相の電源配線(1a)に接続され、もう一方の入力が、前記三相交流のS相の電源配線(1a)に接続されている。ダイオードブリッジ回路(12a)の出力は、平滑コンデンサ(12b)で平滑化された後に、スイッチング電源(12c)に入力されている。スイッチング電源(12c)は、例えばDC-DCコンバータで構成され、入力された直流を所定の電圧(5V)に変換して室外側制御回路(13)に出力する。
  -室外機伝送回路(11)-
  室外機伝送回路(11)は、室内機伝送回路(21)との間で信号の通信を行う。この通信では、信号線(S)と共通線(N)との間の電位差に基づいて、ハイレベル及びローレベルの2値のデジタル信号の通信を行う。室内機伝送回路(21)内の通信回路(図示は省略)は、一端が共通線(N)に接続され、通信回路の他端はリレー(K14R)を介して信号線(S)に接続されている。
  -リレー(K13R)-
  リレー(K13R)は、運転停止時に前記電源配線(1a)を遮断して第2室外側電源回路(12)に電力が供給されないサスペンド状態にするスイッチであって、第2室外側電源回路(12)への交流供給の経路を切り替えるリレーである。リレー(K13R)は、いわゆるC接点リレーで構成されている。詳しくは、リレー(K13R)は、2つの固定接点と、ひとつの可動接点を有し、該リレー(K13R)のコイルに通電されていない場合は、一方の固定接点(ノーマルクローズ接点とよぶ)と可動接点とが接続され、該コイルに通電されると、もう一方の固定接点(ノーマルオープン接点とよぶ)と可動接点とが接続される。リレー(K13R)の切換え(コイルへの通電の有無)は、室外側制御回路(13)が制御する。
  この例では、リレー(K13R)の可動接点は、ダイオードブリッジ回路(12a)の入力である電源配線(1a)に接続されている。また、ノーマルクローズ接点は、信号線(S)に接続され、ノーマルオープン接点は、前記三相交流のR相の電源配線(1a)に接続されている。すなわち、リレー(K13R)のコイルに通電されていない場合は、ノーマルクローズ接点と可動接点とが接続されて、ダイオードブリッジ回路(12a)の一方の入力は信号線(S)に接続される。リレー(K13R)のコイルに通電されると、可動接点とノーマルオープン接点とが接続されて、第2室外側電源回路(12)のダイオードブリッジ回路(12a)に交流が入力される状態になる。
  -リレー(K14R)-
  リレー(K14R)は、信号線(S)と室外機伝送回路(11)との接続及び非接続を切り替えるリレーである。リレー(K14R)は、いわゆるA接点リレーで構成され、そのコイルに通電すると、固定接点と可動接点とがオン状態になる。リレー(K14R)のオンオフは、室外側制御回路(13)が制御する。この例では、リレー(K14R)は、可動接点が信号線(S)に接続され、もう固定接点が室外機伝送回路(11)内の通信回路(図示は省略)の一端に接続されている。勿論、A接点リレーでは、入力する信号等と各接点の対応関係は逆にしてもよい。
  -リレー(K15R)-
  リレー(K15R)は、室外機伝送回路(11)への電力供給の有無を切り替えるリレーである。リレー(K15R)は、いわゆるA接点リレーで構成されている。リレー(K15R)は、一方の接点が室外機伝送回路(11)の電源供給ノードに接続され、もう一方の接点が、前記三相交流のR相に接続されている。リレー(K15R)をオンにすれば、室外機伝送回路(11)は給電され、リレー(K15R)をオフにすれば室外機伝送回路(11)への給電が断たれる。リレー(K15R)のオンオフは、室外側制御回路(13)が制御する。
  -室外側制御回路(13)-
  室外側制御回路(13)は、マイクロコンピュータ(以下、マイコンという。)と、それを動作させるプログラムを格納したメモリーを含んでいる(図示は省略)。室外側制御回路(13)は、例えば室外機伝送回路(11)が室内機伝送回路(21)から受信した信号に応じて前記電動圧縮機等の制御を行う他、室外機(10)の起動時の制御(後述)も行う。室外側制御回路(13)は、空気調和装置(1)がサスペンド状態(空気調和装置(1)全体として消費電力が最小になる状態。詳しくは後述)の場合には、電力供給が断たれて動作を停止する。
  〈室内機(20)〉
  室内機(20)は、電装系統として、室内側電源回路(22)、室内機伝送回路(21)、室内側制御回路(23)、リレー(K2R)、第1ダイオード(D1)、及び第2ダイオード(D2)を備えている。
  -室内側電源回路(22)-
  室内側電源回路(22)は、ノイズフィルター(22a)、ダイオードブリッジ回路(22b)、平滑コンデンサ(22c)、及びスイッチング電源(22d)を備えている。室内側電源回路(22)は、電力配線(L)及び共通線(N)を介して主電源ライン(1L)から供給された交流を直流(この例では5Vの直流)に変換し、室内側制御回路(23)に供給する。
  この例では、ノイズフィルター(22a)は2つのコイルで形成されている。ダイオードブリッジ回路(22b)は、ノイズフィルター(22a)を介して電力配線(L)及び共通線(N)から入力された交流を全波整流する。平滑コンデンサ(22c)は、例えば電解コンデンサで形成され、ダイオードブリッジ回路(22b)の出力を平滑化する。スイッチング電源(22d)は、例えばDC-DCコンバータなどで構成され、平滑コンデンサ(22c)が平滑化した直流を所定の電圧(5V)に変換して室内側制御回路(23)に出力する。
  -室内機伝送回路(21)-
  室内機伝送回路(21)は、既述の通り、室外機伝送回路(11)との間で信号の通信を行う。この通信では、信号線(S)と共通線(N)との間の電位差に基づいて、デジタル信号の通信を行うので、室内機伝送回路(21)の通信回路の一端は、第2ダイオード(D2)を介して信号線(S)に接続され、通信回路の他端は共通線(N)に接続されている。
  -リレー(K2R)、第1及び第2ダイオード(D1,D2)-
  リレー(K2R)は、いわゆるA接点リレーで構成されている。本実施形態では、リレー(K2R)と第1ダイオード(D1)は、室内機(20)内に設けられ、電力配線(L)と信号線(S)との間に直列接続されている。より詳しくは、リレー(K2R)の可動接点は、電力配線(L)と接続され、リレー(K2R)の固定接点は、第1ダイオード(D1)のカソードに接続されている。そして、第1ダイオード(D1)のアノードは信号線(S)に接続されている。
  リレー(K2R)は、電力配線(L)と信号線(S)間のオンオフを切り替えるスイッチとして機能する。リレー(K2R)のオンオフは、室内側制御回路(23)が制御する。リレー(K2R)は、本発明のオンオフスイッチの一例である。また、第1ダイオード(D1)は、室内機伝送回路(21)へ流入する方向の交流電流を阻止する。なお、第1ダイオード(D1)とリレー(K2R)の位置関係は逆にしてもよい。すなわち、第1ダイオード(D1)のカソードを電力配線(L)に接続するとともに、第1ダイオード(D1)のアノードをリレー(K2R)の一方の接点に接続し、リレー(K2R)のもう一方の接点を信号線(S)に接続するようにしてもよい。
  第2ダイオード(D2)のアノードは、第1ダイオード(D1)と信号線(S)の接続ノード(ND1)に接続され、カソードは、室内機伝送回路(21)における信号入力ノード(ND2)に接続されている。第2ダイオード(D2)は、室内機伝送回路(21)から流出する方向の交流電流を阻止する。空気調和装置(1)では共通線(N)が交流電源(40)のS相に接続されているので、室内機伝送回路(21)と室外機伝送回路(11)との通信信号には、該S相の交流が第2ダイオード(D2)で半波整流されて重畳されることになる。第1及び第2ダイオード(D1,D2)で、本発明の保護回路の一例を構成している。
  -室内側制御回路(23)-
  室内側制御回路(23)は、マイクロコンピュータ(以下、マイコンという。)と、それを動作させるプログラムを格納したメモリーを含んでいる(図示は省略)。室内側制御回路(23)は、リモコン(30)からの指令を受けて、空気調和装置(1)の運転状態(後述)を制御する。室内側制御回路(23)は、リモコン(30)からの指令を受信するために、常に室内側電源回路(22)によって給電されている。
  〈リモコン(30)〉
  リモコン(30)は、ユーザーの操作を受け付けるとともに、ユーザーの操作に応じた信号を室内側制御回路(23)に送信する。ユーザーは、例えば、リモコン(30)のボタン操作により、空気調和装置(1)の運転開始、停止、設定温度調整などを行えるようになっている。リモコン(30)は、信号線で室内側制御回路(23)と結線されたいわゆるワイヤードリモコンとして構成してもよいし、赤外線や電波を用いて室内側制御回路(23)と通信を行う、いわゆるワイヤレスリモコンとして構成してもよい。
  〈強制起動機構〉
  次に、本実施形態の特徴の1つである強制起動機構について説明する。なお、以下に説明するサスペンド状態とは、本願発明における待機状態である。
  前記図1に示すように、前記室外機(10)には、サスペンド状態に移行する機器に対応させるか否かを選択する選択機構(16)が前記電源配線(1a)に設けられている。
  前記選択機構(16)は、前記リレー(K13R)と補助回路(16a)と開閉部(17)と該開閉部(17)の検出回路(18)とを備えている。前記リレー(K13R)は、上述した通り室外機(10)をサスペンド状態にするためのスイッチである。
  前記補助回路(16a)は、ダイオード(16b)を備え、前記リレー(K13R)と並列に設けられ、室外側制御回路(13)に常時電力供給するように三相交流のR相と第2室外側電源回路(12)の入力とを接続している。
  前記開閉部(17)は、図7に示すように、補助回路(16a)を開閉するコネクタによって構成され、接続ピン(17a)を備えている。そして、前記開閉部(17)は、接続ピン(17a)が差し込まれていると補助回路(16a)を導通させ、接続ピン(17a)が抜き取られると補助回路(16a)を遮断させるように構成されている。したがって、前記室外機(10)の設置時において、作業者が接続ピン(17a)の抜取作業を行う。つまり、作業者は、前記室内機(20)がサスペンド状態に移行可能な待機電力対応機器であるか、室内機(20)がサスペンド状態に移行不可能な待機電力未対応機器であるかを判定する。そして、作業者は、室内機(20)が待機電力対応機器である場合、前記接続ピン(17a)を抜き取り、室内機(20)が待機電力未対応機器である場合、前記接続ピン(17a)を差し込んだままにする。
  そして、前記接続ピン(17a)が差し込まれていると、前記第2室外側電源回路(12)を介して前記室外側制御回路(13)に常時電力が供給される。
  前記検出回路(18)は、図7に示すように、電源(18a)とマイコン(18b)とを備えと共に、前記接続ピン(17a)に連動した連動ピン(18c)を備えている。前記検出回路(18)は、前記接続ピン(17a)が差し込まれていると、サスペンド状態の移行が行われない旨を判定し、例えば、サスペンド状態の移行不可能を表示するように構成されている。
  〈空気調和装置の動作〉
  図2は、空気調和装置(1)の状態遷移図である。空気調和装置(1)は、以下に説明するサスペンド状態、充電状態、ウエイト状態、及び運転状態の4つの状態を遷移する。なお、以下において、待機電力とは「機器が非使用状態、若しくは何らかの入力(命令指示等)待ちの時に定常的に消費している電力」をいう。具体的に、空気調和装置(1)では、リモコン(30)の待ち受けのみを行うのに必要な電力が待機電力である。
  (1)サスペンド状態
  サスペンド状態とは、室内機(20)には電力が供給され、室外機(10)には電力が供給されていない状態である。
  本実施形態のサスペンド状態は、一例として、空気調和装置(1)全体として消費電力が最小になる状態となっている。具体的に、本実施形態のサスペンド状態では、室外機(10)は電力を受電してそれを室内機(20)へ供給はするが、室外機(10)内部の各回路や上記電動圧縮機などには電力が供給されていない状態である。このように、サスペンド状態では、室外機(10)の各回路への電力供給が断たれ、待機電力の低減を図ることができる。
  一方、室内機(20)は、待機電力が最小となる状態であり、室内側制御回路(23)においてリモートコントローラ(30)からの信号受信にかかわる部分は、室内側電源回路(22)から電力を受けて動作している。なお、リモートコントローラ(30)も、待機電力が最小となる状態であり、時刻表示などの所定の表示やユーザーのボタン操作の受け付けは可能な状態である。なお、室内機(20)およびリモートコントローラ(30)の消費電力(待機電力)の程度はこれに限らない。
  (2)充電状態
  充電状態とは、室外機(10)では、第2室外側電源回路(12)の平滑コンデンサ(12b)に充電される回路が形成され、室外機伝送回路(11)と室内機伝送回路(21)の間の信号伝送が開始されるまでの期間における状態をいう。このとき、室内機(20)の電力消費は、サスペンド状態と同様である。
  (3)ウエイト状態
  ウエイト状態とは、運転開始時には上記充電状態を抜けた状態であり、運転停止時には運転状態(後述)から遷移する状態であり、何れも、室外機(10)が、即時、運転状態(後述)へ移行可能な状態をいう。ウエイト状態では、室外機伝送回路(11)および室外側制御回路(13)の動作も可能である。特に、運転停止時のウエイト状態(運転状態から遷移するウエイト状態)は、電動圧縮機における冷媒圧力を均圧させるためや、運転開始と運転停止を繰り返すスクジュール運転が設定されている場合などのために設けられており、その時間は例えば10分である。なお、室内機(20)の電力消費はサスペンド状態と同様である。
  (4)運転状態
  運転状態とは、メインリレー(14b)をオンにして、電動圧縮機や室外ファンが運転可能な状態、若しくは運転している状態をいう。いわゆる欠相通電やサーモオフ状態もこれにあたる。なお、室内機(20)では、室内ファン等が運転状態となり、電力消費は、前記の各状態よりも増える。また、リモコン(30)は、運転指示状態(例えば個々の運転状態を表示した状態)である。
  -空気調和装置(1)における状態遷移-
  空気調和装置(1)では、運転開始する場合には、図2に実線矢印で示した順で、サスペンド状態から運転状態に遷移し、運転停止する場合には、同図に破線矢印で示した順で、運転状態からサスペンド状態に遷移する。以下では、一例としてサスペンド状態から運転状態までの遷移を説明する。
  〈サスペンド状態における電装系統〉
  まず、サスペンド状態における電装系統の状態を説明する。図1では、サスペンド状態におけるリレーの状態を示している。サスペンド状態では、室外機(10)は、メインリレー(14b)のコイルには通電されておらず、第1室外側電源回路(14)からはインテリジェントパワーモジュールや室外ファンモータに電力供給されない。また、他のリレー(K13R,K14R,K15R)のコイルにも通電されていない。したがって、リレー(K14R)及びリレー(K15R)はオフ状態である。すなわち、室外機伝送回路(11)は、信号線(S)との接続が断たれるとともに、電力の供給も断たれている。また、リレー(K13R)は、ノーマルクローズ接点と可動接点とが接続された状態になる。つまり、第2室外側電源回路(12)のダイオードブリッジ回路(12a)は、一方の入力が信号線(S)に接続されている。この状態では第2室外側電源回路(12)には通電されず、室外側制御回路(13)への給電も行われない。以上の通り、サスペンド状態では、室外機(10)では待機電力をなくすことができる。
  サスペンド状態における室内機(20)では、リレー(K2R)のコイルには通電されず、オフ状態である。すなわち、信号線(S)と電力配線(L)とは電気的には非接続状態である。なお、既述の通り、室内機(20)では、室内側制御回路(23)においてリモコン(30)からの信号受信にかかわる部分は、室内側電源回路(22)から電力を受けて動作している。
  〈サスペンド状態から充電状態への移行〉
  図3は、平滑コンデンサ(12b)に充電される回路が形成された時点の各リレーの状態を示す図である。また、図4は、充電状態への移行が完了した後の各リレーの状態を示す図である。例えばユーザーがリモコン(30)を操作して、空気調和装置(1)の運転開始(例えば冷房運転の開始)を指示すると、室内側制御回路(23)は、リレー(K2R)のコイルに通電させる。そうすると、空気調和装置(1)では、前記三相交流のR相から、電力配線(L)、リレー(K2R)、第1ダイオード(D1)、信号線(S)、及びリレー(K13R)を介してダイオードブリッジ回路(12a)の一方の入力に到る送電経路(説明の便宜上、起動時送電経路とよぶ)が形成される。ダイオードブリッジ回路(12a)の他方の入力は、前記三相交流のS相に接続されているので、ダイオードブリッジ回路(12a)には、第1ダイオード(D1)で半波整流された単相交流が供給される。すなわち、平滑コンデンサ(12b)に充電される回路が形成された状態になる(図3参照)。
  このとき、前記三相交流のR相の電位がS相の電位よりも高い場合(すなわちR相からS相に交流電流が流れる場合)は、第1ダイオード(D1)によって、電力配線(L)から室内機伝送回路(21)及び室外機(10)へ流入する方向の交流電流が阻止される。また、室内機伝送回路(21)は、室内側電源回路(22)を介してR相とつながるが、室内機伝送回路(21)から信号線(S)へ流出する方向の交流電流は、第2ダイオード(D2)によって阻止される。
  前記三相交流のS相の電位がR相の電位よりも高い場合(すなわちS相からR相に交流電流が流れる場合)は、ダイオードブリッジ回路(12a)に電流が流れる。この場合、室内機伝送回路(21)内の通信回路の一端は共通線(N)介して前記三相交流のS相に接続され、該通信回路の他端は、信号線(S)、リレー(K13R)、及びダイオードブリッジ回路(12a)を介して、やはり前記三相交流のS相に接続されている。つまり、室内機伝送回路(21)は、三相交流のうちの1相のみと繋がっている。それゆえ、信号線(S)を交流電力の送電に用いても、室内機伝送回路(21)内の通信回路に、その交流電流が流れることはない。以上のようにして、室外機伝送回路(11)が過電圧から保護される。
  平滑コンデンサ(12b)が充電されてスイッチング電源(12c)への入力が安定し、スイッチング電源(12c)が規定の直流電圧(この例では5V)を出力できるようになると、室外側制御回路(13)が起動する。起動した室外側制御回路(13)は、リレー(K13R)のコイルに通電させて、ノーマルオープン接点と可動接点とを接続状態とする。これにより、ダイオードブリッジ回路(12a)の一方の入力は、前記三相交流のR相に、室外機(10)内の送電経路を介して接続される。すなわち、室外側制御回路(13)は、信号線(S)を経由せずに交流電源(40)から電力供給された状態に切り換わる(図4参照)。これにより、空気調和装置(1)では、前記充電状態への移行が完了する。
  〈充電状態からウエイト状態への移行〉
  図5は、ウエイト状態への移行完了時における各リレーの状態を示す図である。室内機(20)では、リレー(K2R)をオンにしてから所定の時間(室外側制御回路(13)が起動するに十分な時間)が経過した後に、リレー(K2R)をオフにする。これにより、信号線(S)を信号の送受信に使用できるようになる。
  室外機(10)では、リレー(K2R)がオフになったのを見計らって、室外側制御回路(13)は、リレー(K15R)をオンにし、室外機伝送回路(11)に電力が供給された状態にするとともに、リレー(K14R)をオンにする。これにより、室外機伝送回路(11)内の通信回路が、信号線(S)及び共通線(N)を介して室内機伝送回路(21)と接続され、室内機伝送回路(21)と通信可能な状態になる。これで、空気調和装置(1)は、前記充電状態を抜け、即時運転状態へ移行可能な状態(すなわちウエイト状態)となる。
  〈ウエイト状態から運転状態への移行〉
  図6は、運転状態における各リレーの状態を示す図である。ウエイト状態から運転状態への移行する際には、室外側制御回路(13)は、2つのメインリレー(14b)をオンにする。これにより、第1室外側電源回路(14)によって、前記インテリジェントパワーモジュールや室外ファンモータに電力が供給されて、電動圧縮機などが運転状態になり、例えば冷房が行われる。
  〈強制起動動作〉
  次に、本実施形態の特徴の1つである強制起動動作について説明する。
  前記室外機(10)の設置時において、作業者は、前記室内機(20)がサスペンド状態に移行可能な待機電力対応機器であるか、室内機(20)がサスペンド状態に移行不可能な待機電力未対応機器であるかを判定する。そして、作業者は、室内機(20)が待機電力対応機器である場合、コネクタで構成された開閉部(17)の接続ピン(17a)を抜き取る。この結果、前記補助回路(16a)が遮断され、電源配線(1a)のリレーが上述したように開閉し、室外機(10)は、運転停止時にサスペンド状態に移行する。
  一方、前記室内機(20)が待機電力未対応機器である場合、作業者は、開閉部(17)の接続ピン(17a)を差し込んだままに設定する。この場合、前記室外機(10)は、前記補助回路(16a)が導通し、交流電源(40)の電力が第2室外側電源回路(12)を介して室外側制御回路(13)に常時電力が供給される。この結果、前記室外機(10)は、サスペンド状態に移行せず、リレー(K13R)の切換え状態に拘わらずリモコン(30)の運転信号に基づいて独自に起動する。
  また、前記検出回路(18)は、前記接続ピン(17a)が差し込まれていると、サスペンド状態の移行が行われない旨を判定し、例えば、サスペンド状態の移行不可能を表示する。
  〈本実施形態1における効果〉
  以上のように本実施形態によれば、運転停止時に室外機(10)に電力が供給されないサスペンド状態に移行する機器に対応させるか否かを選択機構(16)によって選択するようにしたために、空気調和装置(1)にサスペンド状態の移行不可能な待機電力未対応機器が混在した場合、室外機(10)のサスペンド状態の移行を禁止することができる。この結果、待機電力未対応機器が混在した場合においても円滑な運転を可能性して信頼性の向上を図ることができる。
  また、前記補助回路(16a)の開閉によってサスペンド状態に移行する機器に対応させるか否かを選択するようにしたために、電源配線(1a)のリレー(K13R)の動作に拘わらず待機電力未対応機器に確実に対応させることができる。
  また、前記開閉部(17)をコネクタで構成したために、簡易な構成によって確実に待機電力未対応機器が混在した場合に対応させることができる。
  《実施形態1の変形例1》
  本変形例1は、図8に示すように、前記実施形態1が開閉部(17)をコネクタで構成したのに変わり、開閉部(17)をラッチングリレーで構成したものである。
  前記開閉部(17)は、セットコイル(17b)とリセットコイル(17c)と可動片(17d)とを備えている。そして、前記開閉部(17)がセットコイル(17b)に電圧を印可すると、可動片(17d)が補助回路(16a)を導通させる状態に維持され、前記開閉部(17)がリセットコイル(17c)に電圧を印可すると、可動片(17d)が補助回路(16a)を遮断させる状態に維持される。なお、前記開閉部(17)は、一旦補助回路(16a)を開閉すると、セットコイル(17b)およびリセットコイル(17c)に電圧を印可しなくとも現状を維持する。
  したがって、前記室外機(10)の設置時において、作業者は、室内機(20)が待機電力対応機器である場合、リセットコイル(17c)に電圧を印可し、前記補助回路(16a)を遮断する。
  一方、前記室内機(20)が待機電力未対応機器である場合、作業者は、セットコイル(17b)に電圧を印可し、前記補助回路(16a)を導通させる。
  したがって、前記開閉部(17)をラッチングリレーで構成したために、開閉部(17)の開閉を自動で行うことができるので、操作性の向上を図ることができる。その他の構成、作用および効果は、前記実施形態1と同様である。
  《実施形態1の変形例2》
  本変形例2は、図9に示すように、電源配線(1a)のリレー(K13R)を変形例1のラッチングリレーで構成したものである。つまり、前記リレー(K13R)は、セットコイル(17b)とリセットコイル(17c)と可動片(17d)とを備えている。
  そして、前記室内機(20)が待機電力対応機器である場合、実施形態1のリレー(K13R)の開閉動作をラッチングリレーで行うことになる。
  一方、前記室内機(20)が待機電力未対応機器である場合、セットコイル(17b)に電圧を印可し、前記電源配線(1a)を導通させままの状態に維持させる。この結果、前記室外機(10)は、サスペンド状態に移行せず、リモコン(30)の運転信号に基づいて独自に起動する。なお、この変形例の場合、実施形態1および変形例1の補助回路(16a)は設けられていない。
  したがって、前記電源配線(1a)のリレー(K13R)をラッチングリレーで構成したために、サスペンド状態の移行の制御と、待機電力未対応機器に対する対応とを1つのラッチングリレーで行うことができる。この結果、構成の簡略化を図ることができる。その他の構成、作用および効果は、前記実施形態1と同様である。
  《実施形態1の他の実施形態》
  なお、リレー(K2R)の代わりに半導体スイッチ(例えばトランジスタなど)を用いてもよい。
  また、商用交流電源(40)には単相交流を用いてもよい。
  また、前記実施形態1および各変形例は、室内機(20)が待機電力対応機器であるか否かに基づいて選択機構(16)を選択するようにしたが、本発明は、リモコンなどが待機電力対応機器であるか否かに基づいて選択機構(16)を選択するようにしてもよい。
  《発明の実施形態2》
  〈全体構成〉
  図10は、本発明の実施形態2にかかる空気調和装置(1)の全体構成を示す図である。この空気調和装置(1)は、機種仕様が異なる室内機と室外機とを組み合わせて利用可能な空気調和装置である。
  前記空気調和装置(1)は、室外機(10)、室内機(20)、及びリモートコントローラ(以下、リモコンと略記する)(30)を備えている。
  室外機(10)は、運転停止中に電力供給を遮断可能な待機電力対応機種で構成される。
  前記室内機(20)は、電力供給が遮断された待機電力対応機種の室外機(10)に電力供給を開始して、該室外機(10)を起動させる起動部を有する待機電力対応機種又は前記起動部を有しない待機電力未対応機種で構成される。
  前記リモコン(30)は、室外機(10)への電力供給を遮断するための遮断要求信号を室内機(20)に送信する待機電力対応機種又は前記遮断要求信号を室内機(20)に送信しない待機電力未対応機種で構成される。
  以下、本発明の実施形態2を具体的に説明する。
  図11は、室外機(10)と待機電力対応機種の室内機(20)と待機電力対応機種のリモコン(30)とが接続されたときの空気調和装置(1)の電装系統ブロック図である。
  空気調和装置(1)は、室外機(10)で、商用交流電源(40)から交流(この例では200Vの三相交流)を受電して室外機(10)内の回路や電動圧縮機(不図示)の電力として用いる他、その三相交流の2相分を室内機(20)に給電するようになっている。また、室外機(10)と室内機(20)との間では、室内機(20)側から室外機(10)を制御するため等の目的で、通信を行うようになっている。そのため、空気調和装置(1)では、商用交流電源(40)(以下、単に交流電源とも言う)からの交流電力を送電する電力配線(L)と、前記信号を伝送する信号線(S)と、前記交流電力の送電と前記信号の伝送に共用する共通線(N)との3線(内外配線)が室外機(10)と室内機(20)との間に設けられている。この実施形態では、電力配線(L)は、室外機(10)において交流電源(40)のR相に接続され、共通線(N)は、室外機(10)において交流電源(40)のS相に接続されている。すなわち、室内機(20)は、交流電源(40)のR相及びS相に接続されて単相交流が供給されている。
  〈室外機(10)〉
  室外機(10)は、電装系統として、第1室外側電源回路(14)、第2室外側電源回路(12)、室外機伝送回路(11)、室外側制御回路(13)、室外記憶部(15)、強制起動機構(50)及びリレー(K13R,K14R,K15R)を備えている。尚、図示は省略するが、室外機(10)には、電動圧縮機、室外熱交換器、室外ファン、膨張弁などの機器が設けられている。
  -第1室外側電源回路(14)-
  第1室外側電源回路(14)は、交流電源(40)に接続された主電源ライン(1L)から受電した3相交流を直流に変換し、いわゆるインテリジェントパワーモジュール(Intelligent Power Module、以下、IPMと略記する)や室外ファンモータに供給する。尚、IPMは、入力された直流を所定の周波数及び電圧の交流に変換し、前記電動圧縮機のモータに給電する。この第1室外側電源回路(14)は、ノイズフィルタ(14a)、2つのメインリレー(14b)、2つのダイオードブリッジ回路(14c)、リアクトル(14d)、及び平滑コンデンサ(14e)を有している。
  ノイズフィルタ(14a)は、コンデンサとコイルで形成されている。2つのメインリレー(14b)は、前記三相交流のR相、T相の供給ラインにそれぞれ設けられている。2つのダイオードブリッジ回路(14c)のうち、一方は、前記三相交流のR相及びS相を入力とし、もう一方は、前記三相交流のS相及びT相を入力とし、入力された交流をそれぞれ全波整流する。これらのダイオードブリッジ回路(14c)の出力は、リアクトル(14d)を介して平滑コンデンサ(14e)に入力され、平滑コンデンサ(14e)で平滑化される。平滑コンデンサ(14e)で平滑化された直流は、前記IPMや室外ファンモータに供給される。
  -第2室外側電源回路(12)-
  第2室外側電源回路(12)は、前記主電源ライン(1L)から電源配線(1a)を介して供給される前記三相交流のR相及びS相の2相を直流(この例では5V)に変換し、室外側制御回路(13)に供給する。この第2室外側電源回路(12)は、ダイオードブリッジ回路(12a)、平滑コンデンサ(12b)、及びスイッチング電源(12c)を備えている。
  ダイオードブリッジ回路(12a)は、一方の入力が、リレー(K13R)を介して前記三相交流のR相の電源配線(1a)に接続され、もう一方の入力が、前記三相交流のS相の電源配線(1a)に接続されている。ダイオードブリッジ回路(12a)の出力は、平滑コンデンサ(12b)で平滑化された後に、スイッチング電源(12c)に入力される。スイッチング電源(12c)は、例えばDC-DCコンバータで構成され、入力された直流を所定の電圧(5V)に変換して室外側制御回路(13)に出力する。
  -室外機伝送回路(11)-
  室外機伝送回路(11)は、室内機伝送回路(21)との間で信号の送受信による通信を行う。この通信では、信号線(S)と共通線(N)との間の電位差に基づいて、ハイレベル及びローレベルの2値のデジタル信号の通信を行う。室内機伝送回路(21)内の通信回路(図示は省略)は、一端が共通線(N)に接続され、通信回路の他端はリレー(K14R)を介して信号線(S)に接続されている。
  -リレー(K13R)-
  リレー(K13R)は、運転停止中に前記三相交流のR相の電源配線(1a)を遮断して交流電源(40)から第2室外側電源回路(12)への電力供給が遮断される後述するサスペンド状態にするスイッチであって、第2室外側電源回路(12)への交流供給の経路を切り替えるリレーである。リレー(K13R)は、いわゆるC接点リレーで構成されている。詳しくは、リレー(K13R)は、2つの固定接点と、ひとつの可動接点を有し、該リレー(K13R)のコイル(不図示)に通電されていない場合は、一方の固定接点(ノーマルクローズ接点とよぶ)と可動接点とが接続され、該コイルに通電されると、もう一方の固定接点(ノーマルオープン接点とよぶ)と可動接点とが接続される。リレー(K13R)の切換え(コイルへの通電の有無)は、室外側制御回路(13)が制御する。
  リレー(K13R)の可動接点は、ダイオードブリッジ回路(12a)の入力に接続されている。また、ノーマルクローズ接点は、信号線(S)に接続され、ノーマルオープン接点は、前記三相交流のR相の電源配線(1a)に接続されている。すなわち、リレー(K13R)のコイルに通電されていない場合は、ノーマルクローズ接点と可動接点とが接続されて、ダイオードブリッジ回路(12a)の一方の入力は信号線(S)に接続される。リレー(K13R)のコイルに通電されると、可動接点とノーマルオープン接点とが接続されて、第2室外側電源回路(12)のダイオードブリッジ回路(12a)に交流が入力される状態になる。
  -リレー(K14R)-
  リレー(K14R)は、信号線(S)と室外機伝送回路(11)との接続(オン)及び非接続(オフ)を切り替えるリレーである。リレー(K14R)のオンオフは、室外側制御回路(13)が制御する。
  -リレー(K15R)-
  リレー(K15R)は、室外機伝送回路(11)への電力供給の有無を切り替えるリレーである。リレー(K15R)をオンにすれば、交流電源(40)から室外機伝送回路(11)に電力供給され、リレー(K15R)をオフにすれば、交流電源(40)から室外機伝送回路(11)への電力供給が断たれる。リレー(K15R)のオンオフは、室外側制御回路(13)が制御する。
  -室外側制御回路(13)-
  室外側制御回路(13)は、マイクロコンピュータと、それを動作させるプログラムを格納したメモリを含んでいる。室外側制御回路(13)は、例えば室外機伝送回路(11)が室内機伝送回路(21)から受信した信号に応じて前記電動圧縮機等の制御を行う他、室外機(10)の起動時の制御も行う。
  -室外記憶部(15)-
  室外記憶部(15)は、室外側制御回路(13)に接続されている。
  室外記憶部(15)には、室外機(10)が待機電力対応機種であるか否かを示す機種仕様情報(「1」、「0」のビット)が予め記憶されている。
  -強制起動機構(50)-
  強制起動機構(50)は、室外機(10)に待機電力未対応機種の室内機(20)が接続されたときに、室外機(10)を強制的に起動させるための機構である。この強制起動機構(50)は、図11および図12に示すように、前記三相交流のR相の電源配線(1a)にリレー(K13R)を迂回するように接続された補助回路(51)と、接続部(52)とを備えている。そして、前記強制起動機構(50)と後述する短絡検出部(53)と後述する室内側制御回路(23)の異常検知部と前記リレー(K13R)とは、実施形態1の選択機構(16)を構成している。
  補助回路(51)は、前記三相交流のR相の電源配線(1a)におけるリレー(K13R)のノーマルオープン接点側に接続された第1短絡ライン(51a)と、前記三相交流のR相の電源配線(1a)におけるリレー(K13R)の可動接点側に接続された第2短絡ライン(51b)とを有している。
  第2短絡ライン(51b)には、アノードが当該第2短絡ライン(51b)と電源配線(1a)との接続ノード(ND3)に接続されたダイオード(D3)が設けられている。
  接続部(52)は、第1短絡ライン(51a)と第2短絡ライン(51b)とを接続可能な短絡コネクタ(52a)と、両短絡ライン(51a,51b)が接続されていることを検出する短絡検出部としてのとを有している。
  短絡コネクタ(52a)は、コネクタ本体(52b)と、4極の接続プラグ(52c)とで構成されている(図13参照)。
  コネクタ本体(52b)には、接続プラグ(52c)に対応して4つのプラグ差込孔(52d,52d,…)が設けられている。そして、このプラグ差込孔(52d,52d,…)のうち、2つのプラグ差込孔(52d,52d)に対応する箇所に、第1、2短絡ライン(51a,51b)が接続されている。
  短絡検出部(53)は、グランド(GND)と、外部電源(この例では、5V)が供給される外部電源端子(53a)と、該外部電源端子(53a)に抵抗を介して接続された検知部としてのマイクロプロセッサ(53b)(以下、MPUと略記する)とを備えている。
  グランド(GND)は、第1、2短絡ライン(51a,51b)と接続されていない残り2つのプラグ差込孔(52d,52d)の一方に抵抗を介して接続されており、外部電源端子(53a)及びMPU(53b)は、上記残り2つのプラグ差込孔(52d,52d)の他方に接続されている。
  この強制起動機構(50)は、接続プラグ(52c)がコネクタ本体(52b)のプラグ差込孔(52d,52d,…)に差し込まれていると、第1、2短絡ライン(51a,51b)が接続されて、補助回路(51)が導通すると共に、外部電源端子(53a)とグランド(GND)とが接続される。一方、接続プラグ(52c)がコネクタ本体(52b)のプラグ差込孔(52d,52d,…)から抜き取られていると、第1、2短絡ライン(51a,51b)が切り離されて、補助回路(51)が遮断すると共に、外部電源端子(53a)とグランド(GND)とが切り離される。そのため、MPU(53b)には、短絡コネクタ(52a)により両短絡ライン(51a,51b)が接続されていないときにハイレベルの電圧が入力され、短絡コネクタ(52a)により両短絡ライン(51a,51b)が接続されたときにローレベルの電圧が入力される。従って、MPU(53b)は、ローレベルの電圧が入力されたときに、補助回路(51)の両短絡ライン(51a,51b)が接続されていることを検知する。
  〈室内機(20)〉
  室内機(20)は、電装系統として、室内側電源回路(22)、室内機伝送回路(21)、室内側制御回路(23)、室外記憶部(24)、リレー(K2R)、第1ダイオード(D1)、及び第2ダイオード(D2)を備えている。尚、図示は省略するが、室内機(20)には、室内熱交換器、室内ファンなどの機器が設けられている。
  -室内側電源回路(22)-
  室内側電源回路(22)は、ノイズフィルター(22a)、ダイオードブリッジ回路(22b)、平滑コンデンサ(22c)、及びスイッチング電源(22d)を有している。この室内側電源回路(22)は、電力配線(L)及び共通線(N)を介して主電源ライン(1L)から供給された交流を直流(この例では5Vの直流)に変換し、室内側制御回路(23)に供給する。
  ノイズフィルター(22a)は2つのコイルで形成されている。ダイオードブリッジ回路(22b)は、ノイズフィルター(22a)を介して電力配線(L)及び共通線(N)から入力された交流を全波整流する。平滑コンデンサ(22c)は、例えば電解コンデンサで形成され、ダイオードブリッジ回路(22b)の出力を平滑化する。スイッチング電源(22d)は、例えばDC-DCコンバータなどで構成され、平滑コンデンサ(22c)が平滑化した直流を所定の電圧(5V)に変換して室内側制御回路(23)に出力する。
  -室内機伝送回路(21)-
  室内機伝送回路(21)は、既述の通り、室外機伝送回路(11)との間で信号の通信を行う。この通信では、信号線(S)と共通線(N)との間の電位差に基づいて通信を行うので、室内機伝送回路(21)の通信回路の一端は信号線(S)に接続され、通信回路の他端は共通線(N)に接続されている。
  -リレー(K2R)-
  リレー(K2R)は、電力配線(L)と信号線(S)とを結ぶバイパス線(B)に設けられており、電力配線(L)と信号線(S)との接続及び非接続を切り替えるリレーである。このリレー(K2R)は、電力供給が遮断された室外機(10)に対し電力供給を開始する起動部として機能する。そして、リレー(K2R)をオンにすれば、電力配線(L)と信号線(S)とが接続され、リレー(K2R)をオフにすれば、電力配線(L)と信号線(S)とが切断される。リレー(K2R)のオンオフは、室内側制御回路(23)が制御する。
  -第1ダイオード(D1)-
  第1ダイオード(D1)は、アノードがバイパス線(B)と信号線(S)との接続ノード(ND1)に接続され、カソードがリレー(K2R)に接続されている。この第1ダイオード(D1)は、室内機伝送回路(21)へ流入する方向の交流電流を阻止する機能を有する。
  -第2ダイオード(D2)-
  第2ダイオード(D2)は、アノードが信号線(S)の接続ノード(ND1)に接続され、カソードが室内機伝送回路(21)における信号入力ノード(ND2)に接続されている。この第2ダイオード(D2)は、室内機伝送回路(21)から流出する方向の交流電流を阻止する機能を有する。
  -室内側制御回路(23)-
  室内側制御回路(23)は、マイクロコンピュータと、それを動作させるプログラムを格納したメモリを含んでいる。また、室内側制御回路(23)は、リモコン(30)からの指令を受けて、空気調和装置(1)の運転の状態を制御する。この室内側制御回路(23)は、後述するように強制起動機構(50)の設定ミスを検知する異常検知部として機能する。また、室内側制御回路(23)は、強制起動機構(50)の設定ミスを検知した場合に、該異常をリモコン(30)に報知する報知部も兼ねている。
  -室内記憶部(24)-
  室内記憶部(24)は、室内側制御回路(23)に接続されている。この室内機記憶部(24)には、室内機(20)が待機電力対応機種であるか否かを示す機種仕様情報(「1」、「0」のビット)が予め記憶されている。
  〈リモートコントローラ(30)〉
  リモコン(30)は、ユーザーの操作を受け付けるとともに、ユーザーの操作に応じた信号を室内側制御回路(23)に送信する。ユーザーは、例えば、リモコン(30)のボタン操作により、空気調和装置(1)の運転開始、停止、設定温度調整などを行えるようになっている。このリモコン(30)は、リモコン記憶部(31)を備えたワイヤードリモコンで構成されている。
  -リモコン記憶部(31)-
  リモコン記憶部(31)には、リモコン(30)が待機電力対応機種か否かを示す機種仕様情報(「1」、「0」のビット)が予め記憶されている。
   <強制起動機構の設定>
  空気調和装置(1)の出荷時には、図13に示すように、接続プラグ(52c)がコネクタ本体(52b)に差し込まれている。そこで、空気調和装置(1)の設置作業者は、装置の設置時に、室内機(20)が待機電力対応機種であるか否かを判定する。そして、作業者は、室内機(20)が待機電力対応機種であると判定した場合には、コネクタ本体(52b)から接続プラグ(52c)を抜き取る作業を行う。ここでは、室内機(20)が待機電力対応機種であるから、図12に示すように、コネクタ本体(52b)から接続プラグ(52c)が抜き取られている。そのため、第1短絡ライン(51a)と第2短絡ライン(51b)とが切り離されて、補助回路(51)が遮断されている。
  〈空気調和装置の動作〉
  空気調和装置(1)の状態遷移は、実施形態1の図2と同じである。空気調和装置(1)は、以下に説明するサスペンド状態、充電状態、ウエイト状態、及び運転状態の4つの状態を遷移する。尚、本明細書中において、待機電力とは「機器が非使用状態、若しくは何らかの入力(命令指示等)待ちの時に定常的に消費している電力」をいう。具体的に、空気調和装置(1)では、リモコン(30)の待ち受けのみを行うのに必要な電力が待機電力である。
  (1)サスペンド状態
  サスペンド状態とは、室内機(20)には電力が供給され、室外機(10)には電力が供給されていない状態である。このサスペンド状態が本発明に係る待機状態である。
  本実施形態のサスペンド状態は、一例として、空気調和装置(1)全体として消費電力が最小になる状態となっている。具体的に、本実施形態のサスペンド状態では、室外機(10)は電力を受電してそれを室内機(20)へ供給はするが、室外機(10)内部の各回路や前記電動圧縮機などには電力が供給されていない状態である。即ち、サスペンド状態のときには、室外側制御回路(13)も電力供給が断たれて動作が停止する。このように、サスペンド状態では、室外機(10)の各回路への電力供給が断たれ、待機電力の低減を図ることができる。
  一方、室内機(20)でも、待機電力が最小となる状態ではあるが、室外機(10)とは異なり、室内側制御回路(23)におけるリモコン(30)からの信号受信にかかわる部分は、室内側電源回路(22)から電力を受けて動作している。
  また、リモコン(30)でも、待機電力が最小となる状態ではあるが、ユーザーのボタン操作の受け付けは可能な状態である。尚、室内機(20)及びリモコン(30)の消費電力(待機電力)の程度は、これに限られない。
  (2)充電状態
  充電状態とは、室外機(10)では、第2室外側電源回路(12)の平滑コンデンサ(12b)に充電される経路が形成され、室外機伝送回路(11)と室内機伝送回路(21)の間の信号伝送が開始されるまでの期間における状態をいう。このとき、室内機(20)の電力消費は、サスペンド状態と同様である。
  (3)ウエイト状態
  ウエイト状態とは、運転開始時には上記充電状態を抜けた状態であり、運転停止時には運転状態(後述)から遷移する状態であり、何れも、室外機(10)が、即時、運転状態へ移行可能な状態をいう。ウエイト状態では、室外機伝送回路(11)も室外側制御回路(13)も動作している。特に、運転停止時のウエイト状態(運転状態から遷移するウエイト状態)は、電動圧縮機における冷媒圧力を均圧させるためや、運転開始と運転停止を繰り返すスケジュール運転が設定されている場合などのために設けられており、その時間は例えば10分である。なお、室内機(20)の電力消費はサスペンド状態と同様である。
  (4)運転状態
  運転状態とは、メインリレー(14b)をオンにして、電動圧縮機や室外ファンが運転可能な状態、若しくは運転している状態をいう。いわゆる欠相通電やサーモオフ状態もこれに相当する。なお、室内機(20)では、室内ファン等が運転状態となり、電力消費は、前記の各状態よりも増える。そして、この運転状態を除く、サスペンド状態、充電状態、ウエイト状態が本明細書中における「運転停止中」に相当する。
  -運転開始動作-
  空気調和装置(1)では、運転開始する場合には、図13に実線矢印で示した順で、サスペンド状態から運転状態に遷移する。
  〈サスペンド状態における電装系統〉
  まず、サスペンド状態における電装系統の状態を図11を参照しながら説明する。
  室外機(10)では、メインリレー(14b)がオフ状態であり、第1室外側電源回路(14)に電力供給されず、第1室外側電源回路(14)から前記IPMや室外ファンモータに電力が供給されていない。
  リレー(K14R)及びリレー(K15R)もオフ状態である。そのため、室外機伝送回路(11)は、信号線(S)との接続が断たれていると共に、電力の供給も断たれている。
  リレー(K13R)は、ノーマルクローズ接点と可動接点とが接続された状態であり、第2室外側電源回路(12)のダイオードブリッジ回路(12a)の一方の入力が信号線(S)に接続されている。この状態では、第2室外側電源回路(12)に電力供給されず、室外側制御回路(13)への給電も行われていない。このように、サスペンド状態では、室外機(10)は、電力供給が遮断されている。
  一方、室内機(20)では、リレー(K2R)がオフ状態であり、信号線(S)と電力配線(L)とが電気的に非接続状態である。
  〈サスペンド状態から充電状態への移行〉
  図14は、平滑コンデンサ(12b)に充電される回路が形成された時点の各リレーの状態を示す図である。また、図15は、充電状態への移行が完了した後の各リレーの状態を示す図である。
  例えばユーザーがリモコン(30)で運転開始操作をすると、リモコン(30)から室内機(20)に運転指令信号が送信される。
  室内機(20)は、運転指令信号を受信すると、室内側制御回路(23)がリレー(K2R)をオンにする。そうすると、空気調和装置(1)では、前記三相交流のR相から、電力配線(L)、リレー(K2R)、第1ダイオード(D1)、信号線(S)、及びリレー(K13R)を介してダイオードブリッジ回路(12a)の一方の入力に到る送電経路が形成される。ダイオードブリッジ回路(12a)の他方の入力は、前記三相交流のS相に接続されているので、ダイオードブリッジ回路(12a)には、第1ダイオード(D1)で半波整流された単相交流が供給される。こうして、平滑コンデンサ(12b)に充電される回路が形成された状態になる(図14参照)。
  一方、室外機(10)では、平滑コンデンサ(12b)が充電されてスイッチング電源(12c)への入力が安定し、スイッチング電源(12c)が規定の直流電圧(この例では5V)を出力できるようになると、室外側制御回路(13)が起動する。起動した室外側制御回路(13)は、リレー(K13R)のコイルに通電させて、ノーマルオープン接点と可動接点とを接続状態とする。これにより、ダイオードブリッジ回路(12a)の一方の入力は、前記三相交流のR相に、室外機(10)の電源配線(1a)を介して接続される。すなわち、室外側制御回路(13)は、信号線(S)を経由せずに交流電源(40)から電力供給された状態に切り換わる(図15参照)。こうして、サスペンド状態から充電状態への移行が完了する。
  〈充電状態からウエイト状態への移行〉
  図16は、ウエイト状態への移行完了時における各リレーの状態を示す図である。室内機(20)では、リレー(K2R)をオンにしてから所定の時間(室外側制御回路(13)が起動するのに十分な時間)が経過した後に、リレー(K2R)をオフにする。これにより、信号線(S)を信号の送受信に使用できるようになる。
  室外機(10)では、リレー(K2R)がオフになったのを見計らって、室外側制御回路(13)は、リレー(K15R)をオンにし、室外機伝送回路(11)に電力が供給された状態にすると共に、リレー(K14R)をオンにする。これにより、室外機伝送回路(11)内の通信回路が、信号線(S)及び共通線(N)を介して室内機伝送回路(21)と接続され、室内機伝送回路(21)と通信可能な状態になる。こうして、空気調和装置(1)は、前記充電状態を抜け、即時運転状態へ移行可能なウエイト状態となる。
  〈ウエイト状態から運転状態への移行〉
  図17は、運転状態における各リレーの状態を示す図である。ウエイト状態から運転状態への移行する際には、室外側制御回路(13)は、2つのメインリレー(14b)をオンにする。これにより、第1室外側電源回路(14)によって、前記IPMや室外ファンモータに電力が供給されて、電動圧縮機などが運転状態になる。そうして、空気調和装置(1)では、室外機(10)と室内機(20)とが通信しながら、冷房運転又は暖房運転が行われる。
  -運転停止動作-
  運転停止する場合には、実施形態1の図2に破線矢印で示した順で、運転状態からサスペンド状態に遷移する。
  運転状態において、例えばユーザがリモコン(30)で運転停止操作をすると、運転状態、ウエイト状態、サスペンド状態の順に遷移する。以下、運転状態からサスペンド状態までの動作を順に説明する。
  <運転状態からウエイト状態への移行>
  ユーザーがリモコン(30)で運転停止操作をすると、リモコン(30)から室内機(20)に運転停止信号が送信され、室内機(20)から室外機(10)に運転停止信号が送信される。
  室外機(10)では、運転停止信号を受信すると、室外側制御回路(13)がメインリレー(K14b)をオンからオフに切り換える。これにより、上記IPMや室外ファンモータへの電力供給が遮断されて、電動圧縮機等が停止する。こうして、運転状態からウエイト状態への移行が完了する(図16参照)。
  〈ウエイト状態からサスペンド状態への移行〉
  ユーザがリモコン(30)で運転停止操作をすると、リモコン(30)では、所定のサスペンド移行禁止条件が判定される。このサスペンド移行禁止条件は、例えばユーザーがリモコン(30)で運転停止操作をした時刻がスケジューリング機能で予約された運転開始予定時刻から所定時間以内である場合には、ウエイト状態からサスペンド状態への移行を禁止するというものである。上記サスペンド移行禁止条件に該当しない場合には、リモコン(30)から室内機(20)に遮断要求信号が送信され、室内機(20)から室外機(10)に遮断要求信号が送信される。
  室外機(10)では、遮断要求信号を受信すると、室外側制御回路(13)がリレー(K14R)及びリレー(K15R)をオフにする。これにより、室外機伝送回路(11)と室内機伝送回路(21)との接続が断たれ、室外機(10)と室内機(20)とが通信することができなくなる。また、室内側制御回路(13)は、リレー(K13R)をノーマルオープン接点と可動接点とが接続された状態からノーマルクローズ接点と可動接点とが接続された状態に切り換える。これにより、第2室外機電源部(12)への電力供給が遮断される。また、室外機(10)は、リレー(K13R,K14R,K15R)を作動させる直前に、室内機(20)へ遮断実施信号を送信する。こうして、サスペンド状態への移行が完了する(図11参照)。
  -強制起動動作-
  本空気調和装置(1)は、図18に示すように、室外機(10)と待機電力未対応機種の室内機(20)とを組み合わせて利用することができる。しかしながら、待機電力未対応機種の室内機(20)は、前記待機電力対応機種の室内機(20)と異なりリレー(K2R)を有していないため、サスペンド状態にある室外機(10)を起動させることができない。
  そこで、空気調和装置(1)の設置作業者は、強制起動機構(50)の設定時に、コネクタ本体(52b)から接続プラグ(52c)を抜き取らず、図13に示すように、接続プラグ(52c)をコネクタ本体(52b)に差し込んだままに設定する。こうすることで、補助回路(51)が導通し、交流電源(40)からリレー(K13R)を迂回して第2室外側電源回路(12)に到る経路が形成される。これにより、交流電源(40)から第2電源回路(12)を介して室外側制御回路(13)に常時電力が供給される。こうして、室外機(10)を起動させることができる。尚、この場合には、空気調和装置(1)は、サスペンド状態にはならず、ウエイト状態と運転状態との2つの状態になる。
  -強制起動機構の設定ミスの検知-
  本空気調和装置(1)では、上述したように、強制起動機構(50)の設定を設置作業者が現場で判断して行っている。そのため、設置作業者が強制起動機構(50)の設定を誤ってしまう虞がある。そして、室外機(10)と待機電力対応機種の室内機(20)とを組み合わせて利用するときに強制起動機構(50)の設定を誤る、即ち、短絡コネクタ(52)から接続プラグ(52c)を抜き取ることを忘れると、交流電源(40)から補助回路(51)を介して第2室外側電源回路(12)に到る経路が形成されているため、室外機(10)への電力供給を遮断することができないという事態が起きる。
  そこで、本空気調和装置(1)では、室外機(10)と室内機(20)とリモコン(30)とを接続して初めて起動させたときに、待機電力対応機種の室内機(20)の室内側制御回路(23)が強制起動機構(50)の設定ミスを検知するように構成している。
  具体的には、室内側制御回路(23)は、図19に示すフローチャートに基づいて、強制起動機構(50)の設定ミスを検知する。即ち、まずステップS1では、室内側制御回路(23)は、サスペンド状態に移行可能か否かを判定する。このサスペンド状態への移行可否の判定処理は、図20に示すフローチャートに基づいて実行される。
  即ち、ステップS1aでは、室内側制御回路(23)は、室外記憶部(15)及びリモコン記憶部(31)から室外機(10)及びリモコン(30)の機種仕様情報を取得する。
  続くステップS1bでは、室内側制御回路(23)は、機種仕様情報に基づいて、室外機(10)、室内機(20)、及びリモコン(30)が待機電力対応機種であるか否かを判定する。室外機(10)、室内機(20)、及びリモコン(30)が全て待機電力対応機種である場合には、ステップS1cに移行する一方、室外機(10)、室内機(20)、及びリモコン(30)の何れかが待機電力対応機種でない場合には、ステップS1dに移行する。
  ステップS1cでは、サスペンド状態に移行可能と判定される。一方、ステップS1dでは、サスペンド状態に移行不可と判定される。
  そうして、再び図19に示すフローチャートに戻って、サスペンド状態に移行可能と判定された場合には、ステップS2に移行する一方、サスペンド状態に移行不可と判定された場合には、処理を終了する。
  ステップS2では、短絡検出部(53)で第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていることが検出されているか否かを判定する。短絡検出部(53)で両短絡ライン(51a,51b)が接続されていることが検出されている場合には、ステップS3に移行する一方、短絡検出部(53)で両短絡ライン(51a,51b)が接続されていないことが検出されている場合には、処理を終了する。
  ステップS3では、室内側制御回路(23)は、補助回路(51)の接続異常を検知する。こうして、室内側制御回路(23)は、強制起動機構(50)の設定ミスを検知する。
  室内側制御回路(23)は、補助回路(51)の接続異常を検知すると、リモコン(30)に補助回路(51)の接続異常を報知する。
  <実施形態2の効果>
  本実施形態によれば、サスペンド状態に移行可能なときに、装置の設置作業者が強制起動機構(50)の設定を誤る、即ち、コネクタ本体(52b)から接続プラグ(52c)を抜き取ることを忘れると、室内側制御回路(23)が補助回路(51)の接続異常を検知する。そうして、室内側制御回路(23)からリモコン(30)に補助回路(51)の接続異常が報知される。これにより、設置作業者は、コネクタ本体(52b)から接続プラグ(52c)を抜き取ることを忘れていたことに確実に気付き、接続プラグ(52c)をコネクタ本体(52b)から抜き取ることができる。従って、ユーザーがサスペンド状態に移行可能な空気調和装置(1)を使用したときに、室外機(10)への電力供給を遮断することができないという事態が回避され、装置の円滑な運転を可能にでき、信頼性を向上することができる。
  また、短絡検出部(53)を、第1、2短絡ライン(51a,51b)を接続する短絡コネクタ(52a)を利用して構成したために、部品点数を削減して簡易な構成で両短絡ライン(51a,51b)が接続されたことを検出することができる。
  《実施形態2の変形例》
  本変形例は、図21に示すように、短絡検出部の構成が上記実施形態2と異なる。そこで、短絡検出部の構成を中心に説明する。尚、図21において、上記実施形態2と同様の構成には同一の符号を付している。
  短絡コネクタ(52a)は、4極ではなく、2極の接続プラグ(52c)をコネクタ本体(52b)に差し込むことにより第1短絡ライン(51a)と第2短絡ライン(51b)とを接続することができるように構成されている。
  短絡検出部(53)は、グランド(GND)と、外部電源(この例では、5V)が供給される外部電源端子(53a)と、該外部電源端子(53a)に抵抗を介して接続された検知部としてのマイクロプロセッサ(53b)(以下、MPUと略記する)と、フォトカプラ(53c)とを備えている。
  第2短絡ライン(51b)には、一端が前記三相交流のS相の電源配線(1a)に接続された検出ライン(53f)の他端が接続されている。
  検出ライン(53f)には、第2短絡ライン(51b)側から前記三相交流のS相の電源配線(1a)側に向かって順に、分圧抵抗(R1)と分圧抵抗(R2)とが直列に接続されている。
  フォトカプラ(53c)の発光ダイオード(53d)は、分圧抵抗(R2)と並列に設けられている。これにより、発光ダイオード(53d)は、第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されたときに発光するように構成されている。
  フォトカプラ(53c)のフォトトランジスタ(53e)は、外部電源端子(53a)とグランド(GND)との間に接続されている。
  この構成によると、短絡コネクタ(52a)により第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていないときには、発光ダイオード(53d)が発光せず、フォトトランジスタ(53e)が動作しない。そのため、グランド(GND)と外部電源端子(53a)とが電気的に略非接続状態である。一方、短絡コネクタ(52a)により第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されたときには、発光ダイオード(53d)が発光して、フォトトランジスタ(53e)が動作するから、グランド(GND)と外部電源端子(53a)とが電気的に接続状態となる。そのため、MPU(53b)には、短絡コネクタ(52a)により第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていないときにはハイレベルの電圧が入力され、短絡コネクタ(52a)により第1短絡ライン(51a)と第2短絡ライン(51b)が接続されたときにはローレベルの電圧が入力される。従って、MPU(53b)は、ローレベルの電圧が入力されたときに、補助回路(51)の両短絡ライン(51a,51b)が接続されていることを検知する。
  《実施形態2の他の変形例》
  本発明は、上記実施形態2について、以下のようにしてもよい。
  即ち、サスペンド状態への移行可否の判定処理において、室外機(10)、室内機(20)、及びリモコン(30)が全て待機電力対応機種の場合にのみサスペンド状態へ移行可能と判定したが、強制起動機構の設定ミスの検知という観点ではこうする必要はない。具体的には、図20中、ステップS1aにおいて室外機(10)及びリモコン(30)の機種仕様情報を取得せずに、ステップS1bにおいて室内機(20)が待機電力対応機種である場合に、サスペンド状態に移行可能と判定する一方、室内機(20)が待機電力未対応機種である場合に、サスペンド状態に移行不可と判定する。
  また、室内側制御回路(23)が強制起動機構(50)の設定ミス(補助回路(51)の接続異常)を検知するようにしたが、これに限られず、例えば室外側制御回路(13)が強制起動機構(50)の設定ミスを検知するようにしてもよい。
  本発明は、空気調和装置として有用である。
1       空気調和装置
1L      主電源ライン
1a      電源配線
10      室外機
12      第2室外側電源回路
13      室外側制御回路
16      選択機構
16a     補助回路
17      開閉部
20      室内機
23      室内側制御回路(異常検知部、報知部)
30      リモコン
21      室内機伝送回路
40      商用交流電源(交流電源)
51      補助回路
51a     第1短絡ライン
51b     第2短絡ライン
52      接続部
52a     コネクタ
53      短絡検出部(短絡検出部)
53a     外部電源端子
53b     マイクロプロセッサ(検知部)
53c     フォトカプラ
53d     発光ダイオード
53e     フォトトランジスタ
K2R     リレー(起動部)
K13R    リレー(スイッチ)
GND     グランド

Claims (9)

  1.   主電源ライン(1L)から電力供給される室外機(10)と室内機(20)とを備え、運転停止時に電力が前記室外機(10)に供給されない待機状態に移行可能に構成された空気調和装置であって、
      前記室外機(10)は、待機状態に移行可能に構成されると共に、待機状態の移行に対応可能な室内機(20)と待機状態の移行に対応不可能な室内機(20)とに接続可能に構成される一方、
      前記室外機(10)に設けられ、主電源ライン(1L)から電源配線(1a)を介して電力供給される室外側制御回路(13)と、
      前記電源配線(1a)に設けられ、運転停止時に前記電源配線(1a)を遮断して前記室外機(10)を前記待機状態に移行する機器に対応させるか否かを選択する選択機構(16)とを備えている
    ことを特徴とする空気調和装置。
  2.   請求項1において、
      前記選択機構(16)は、
      前記電源配線(1a)に設けられ、運転停止時に前記電源配線(1a)を遮断して前記室外機(10)に電力が供給されない待機状態にするスイッチ(K13R)と、
      前記電源配線(1a)に接続され、前記スイッチ(K13R)と並列に設けられ、前記室外側制御回路(13)に常時電力供給するための補助回路(16a)と、
      該補助回路(16a)に設けられ、前記補助回路(16a)を開閉する開閉部(17)とを備えている
    ことを特徴とする空気調和装置。
  3.   請求項2において、
      前記開閉部(17)は、前記補助回路(16a)を導通させるコネクタである
    ことを特徴とする空気調和装置。
  4.   請求項2において、
      前記開閉部(17)は、前記補助回路(16a)を導通させるラッチングリレーである
    ことを特徴とする空気調和装置。
  5.   請求項1において、
      前記選択機構(16)は、前記電源配線(1a)に設けられ、該電源配線(1a)を開閉し、運転停止時に前記電源配線(1a)を遮断して室外機(10)に電力が供給されない待機状態にするラッチングリレーで構成されている
    ことを特徴とする空気調和装置。
  6.   請求項1において、
      前記選択機構(16)は、
      前記電源配線(1a)に設けられ、運転停止中に電源配線(1a)を遮断して前記室外機(10)に電力が供給されない待機状態にするスイッチ(K13R)と、
      前記電源配線(1a)に前記スイッチ(K13R)を迂回するように接続され、互いに切り離された第1及び第2短絡ライン(51a,51b)を含む補助回路(51)と、
      前記第1短絡ライン(51a)と第2短絡ライン(51b)とを接続可能なコネクタ(52a)と、
      前記第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていることを検出する短絡検出部(53)と、
      少なくとも前記室内機(20)の機種仕様情報に基づいて、前記待機状態への移行可否を判定し、待機状態に移行可能と判定したときにおいて前記短絡検出部(53)により第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されていることが検出された場合に、補助回路(51)の接続異常を検知する異常検知部(23)とを備えている
    ことを特徴とする空気調和装置。
  7.   請求項6に記載の空気調和装置において、
      前記短絡検出部(53)は、グランド(GND)と、外部電源が供給される外部電源端子(53a)と、該外部電源端子(53a)に接続され、外部電源端子(53a)から供給される電源電圧を検知する検知部(53b)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とを接続すると共にグランド(GND)と外部電源端子(53a)とを接続するように構成された前記コネクタ(52a)とを有する
    ことを特徴とする空気調和装置。
  8.   請求項6に記載の空気調和装置において、
      前記短絡検出部(53)は、グランド(GND)と、外部電源が供給される外部電源端子(53a)と、該外部電源端子(53a)に接続され、外部電源端子(53a)から供給される電源電圧を検知する検知部(53b)と、前記第1短絡ライン(51a)と第2短絡ライン(51b)とが接続されたときに発光する発光ダイオード(53d)と、前記外部電源端子(53a)とグランド(GND)との間に接続され、前記発光ダイオード(53d)の光により動作するフォトトランジスタ(53e)とを有する
    ことを特徴とする空気調和装置。
  9.   請求項6~8の何れか1項に記載の空気調和装置において、
      リモコン(30)と、
      前記異常検知部(23)が補助回路(51)の接続異常を検知した場合に、該接続異常をリモコン(30)に報知する報知部(23)とをさらに備えている
    ことを特徴とする空気調和装置。
PCT/JP2012/008415 2011-12-28 2012-12-27 空気調和装置 WO2013099277A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/369,333 US8987946B2 (en) 2011-12-28 2012-12-27 Air conditioner
EP12862665.2A EP2803918B1 (en) 2011-12-28 2012-12-27 Air conditioning device
AU2012359736A AU2012359736B2 (en) 2011-12-28 2012-12-27 Air conditioner
CN201280064445.5A CN104024755B (zh) 2011-12-28 2012-12-27 空调装置
KR1020147020689A KR101458351B1 (ko) 2011-12-28 2012-12-27 공기조화장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-289602 2011-12-28
JP2011289602A JP5246324B2 (ja) 2011-12-28 2011-12-28 空気調和装置
JP2011287104 2011-12-28
JP2011-287104 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099277A1 true WO2013099277A1 (ja) 2013-07-04

Family

ID=48696806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008415 WO2013099277A1 (ja) 2011-12-28 2012-12-27 空気調和装置

Country Status (6)

Country Link
US (1) US8987946B2 (ja)
EP (1) EP2803918B1 (ja)
KR (1) KR101458351B1 (ja)
CN (1) CN104024755B (ja)
AU (1) AU2012359736B2 (ja)
WO (1) WO2013099277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021052A1 (en) * 2014-11-07 2016-05-18 Mitsubishi Electric Corporation Air conditioner

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132420B (zh) * 2013-05-02 2017-04-12 珠海格力电器股份有限公司 低功耗待机电路装置和空调器及空调器的控制方法
CN104864564B (zh) * 2015-05-13 2017-10-31 广东美的制冷设备有限公司 空调器、室外机及其供电通信控制系统
KR101657228B1 (ko) * 2015-06-18 2016-09-13 주식회사 에이디티 에어컨디셔너의 대기전력 제어장치
JP2017093190A (ja) * 2015-11-12 2017-05-25 ファナック株式会社 主電源電圧の異常判定機能を有するモータ駆動装置
JP6790662B2 (ja) * 2016-09-26 2020-11-25 株式会社富士通ゼネラル 電子機器
JP2018162902A (ja) * 2017-03-24 2018-10-18 三菱重工サーマルシステムズ株式会社 空気調和システム及び制御方法
KR101951675B1 (ko) * 2017-03-28 2019-02-25 엘지전자 주식회사 대기 전력 기능을 가지는 전원 장치 및 공기 조화기
KR102001934B1 (ko) * 2017-06-20 2019-07-19 엘지전자 주식회사 대기 전력 기능을 가지는 전원 장치 및 이를 포함하는 공기 조화기
US11486596B2 (en) * 2017-07-26 2022-11-01 Mitsubishi Electric Corporation Air conditioner
KR101926186B1 (ko) * 2017-11-15 2019-02-27 신우공조 주식회사 대기 전력 제어 장치가 추가된 팬 코일 유닛 시스템
KR101881422B1 (ko) * 2018-03-30 2018-07-24 신우공조 주식회사 대기전력 제어장치가 추가된 열회수형 환기 유닛 시스템
US11781776B2 (en) * 2018-04-18 2023-10-10 Mitsubishi Electric Corporation Control substrate and indoor equipment of air conditioner
KR102295972B1 (ko) * 2019-01-02 2021-08-30 엘지전자 주식회사 공기조화기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074463A (ja) * 1998-08-27 2000-03-14 Sanyo Electric Co Ltd リモコン受信装置及び空気調和機
JP2006084060A (ja) * 2004-09-14 2006-03-30 Daikin Ind Ltd セパレート型空気調和機
JP2008101895A (ja) * 2006-10-18 2008-05-01 Samsung Electronics Co Ltd 空気調和機及びその制御方法
JP2010054065A (ja) * 2008-08-26 2010-03-11 Fujitsu General Ltd 空気調和機
JP2010243051A (ja) 2009-04-06 2010-10-28 Mitsubishi Electric Corp 空気調和機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666447A (ja) * 1992-08-18 1994-03-08 Toshiba Corp 空気調和装置
JP3730808B2 (ja) * 1999-06-03 2006-01-05 株式会社日立製作所 空気調和機
JP3806882B2 (ja) * 2004-11-29 2006-08-09 ダイキン工業株式会社 空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074463A (ja) * 1998-08-27 2000-03-14 Sanyo Electric Co Ltd リモコン受信装置及び空気調和機
JP2006084060A (ja) * 2004-09-14 2006-03-30 Daikin Ind Ltd セパレート型空気調和機
JP2008101895A (ja) * 2006-10-18 2008-05-01 Samsung Electronics Co Ltd 空気調和機及びその制御方法
JP2010054065A (ja) * 2008-08-26 2010-03-11 Fujitsu General Ltd 空気調和機
JP2010243051A (ja) 2009-04-06 2010-10-28 Mitsubishi Electric Corp 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803918A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021052A1 (en) * 2014-11-07 2016-05-18 Mitsubishi Electric Corporation Air conditioner
US9951966B2 (en) 2014-11-07 2018-04-24 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
EP2803918A1 (en) 2014-11-19
KR101458351B1 (ko) 2014-11-04
AU2012359736A1 (en) 2014-07-24
EP2803918B1 (en) 2017-05-10
KR20140096179A (ko) 2014-08-04
CN104024755A (zh) 2014-09-03
CN104024755B (zh) 2017-07-04
AU2012359736B2 (en) 2014-11-13
US20150001962A1 (en) 2015-01-01
EP2803918A4 (en) 2015-11-11
US8987946B2 (en) 2015-03-24

Similar Documents

Publication Publication Date Title
WO2013099277A1 (ja) 空気調和装置
JP5382105B2 (ja) 空気調和装置
JP2013137118A (ja) 空気調和装置
JP2013137119A (ja) 空気調和装置
US9360244B2 (en) Engine driven heat pump
WO2013099275A1 (ja) 空気調和装置
JP5804009B2 (ja) 空気調和装置
JP5246324B2 (ja) 空気調和装置
JP5772588B2 (ja) 空気調和装置
JP5655775B2 (ja) 空気調和装置
JP5772587B2 (ja) 空気調和装置
JP5772578B2 (ja) 空気調和装置
JP2013137113A (ja) 空気調和装置
JP5403144B2 (ja) 空気調和装置
JP5772577B2 (ja) 空気調和装置
JP2015055450A (ja) 空気調和装置
KR101946374B1 (ko) 대기 전력 기능을 가지는 전원 장치 및 그 제어 방법
JP5772579B2 (ja) 空気調和装置
JP2013137136A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14369333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012862665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862665

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147020689

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012359736

Country of ref document: AU

Date of ref document: 20121227

Kind code of ref document: A