WO2013094844A1 - 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물 - Google Patents

저온에서의 백탁 현상이 개선된 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2013094844A1
WO2013094844A1 PCT/KR2012/006871 KR2012006871W WO2013094844A1 WO 2013094844 A1 WO2013094844 A1 WO 2013094844A1 KR 2012006871 W KR2012006871 W KR 2012006871W WO 2013094844 A1 WO2013094844 A1 WO 2013094844A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
styrene
copolymer
acrylonitrile
Prior art date
Application number
PCT/KR2012/006871
Other languages
English (en)
French (fr)
Inventor
장기보
윤종태
박형우
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Publication of WO2013094844A1 publication Critical patent/WO2013094844A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a thermoplastic resin composition. More specifically, the present invention relates to a thermoplastic resin composition which is excellent in transparency, impact resistance, flowability, and color stability, and at the same time, has improved cloudiness at low temperatures.
  • ABS resins In general, acrylonitrile-butadiene-based rubber-styrene (ABS) resins have excellent impact resistance and workability, and have good mechanical strength, heat deformation temperature, and glossiness, and thus are widely used in electrical and electronic parts and office equipment.
  • ABS resins used in high-end consumer housings such as LCD, PDP, TV, audio, etc. are easily scratched during injection molding or use, and have difficulty in expressing color of high-quality textures.
  • the surface of the ABS injection molded product with urethane or the like has been coated with UV resin or excellent scratch-resistant acrylic resin.
  • Such work is accompanied by the problem of productivity degradation such as the complexity of the work and the increase of the defective rate by the addition of additional post-processing process and the environmental pollution problem due to the painting.
  • PMMA resin, acrylic resin, etc. which have excellent colorability and glossiness, have been used as a scratch-resistant material without urethane coating.
  • the PMMA resin has a low impact resistance and is not easy to form, so it is difficult to manufacture a molded article through injection, and thus a method of attaching the sheet to the molded article surface has been used.
  • this method also has the disadvantage of high defect rate and high production cost.
  • methylmethacrylate-acrylonitrile-butadiene-styrene resin also known as 'transparent ABS resin' as a kind of g-MABS
  • g-MABS methylmethacrylate-acrylonitrile-butadiene-styrene resin
  • R-hardness and modulus of elasticity Modulus
  • the impact resistance may be excellent, but the colorability is poor and the scratch resistance is not good.
  • Korean Laid-Open Patent Publication No. 10-2007-0108008 discloses a core-shell graft impact modifier (g-MABS) containing (meth) acrylic acid alkyl ester component in an outer shell.
  • the resin composition which improved other physical properties including scratch resistance is disclosed by including in resin containing the alkyl ester component.
  • siloxane-based impact modifiers such as polydimethylsiloxane
  • the siloxane-based impact modifiers form micro-sized pores in the resin, leading to turbidity. There is a problem that becomes worse.
  • the problem of cloudiness may be solved by excluding the siloxane-based impact modifier, but the impact efficiency of the siloxane-based impact modifier is lowered, and there is a problem in that an excessive amount of MABS resin is added to solve the problem. Accordingly, it is necessary to make an effort to prepare a MABS by controlling the particle diameter structure of the rubber in the MABS resin.
  • the former method has a problem of deterioration of color stability due to excessive injection of MABS and fluidity deterioration due to injection of high molecular weight MABS.
  • the latter method has a disadvantage in that the impact efficiency due to the strengthening of the shell layer is lowered.
  • An object of the present invention is to provide a thermoplastic resin composition with improved cloudiness at low temperatures.
  • Another object of the present invention is to provide a thermoplastic resin composition having excellent fluidity.
  • Still another object of the present invention is to provide a thermoplastic resin composition having excellent transparency.
  • Still another object of the present invention is to provide a thermoplastic resin composition having excellent impact resistance.
  • Still another object of the present invention is to provide a thermoplastic resin composition having excellent color stability.
  • thermoplastic resin composition includes (A) a styrene-based thermoplastic resin; (B) siloxane based impact modifier; And (C) an acrylic copolymer having a weight average molecular weight of 1,000 g / mol to 10,000 g / mol.
  • the styrene-based thermoplastic resin (A) is a core-shell structure graft comprising a core made of a rubber polymer (a1) and a shell polymerized with an acrylate monomer, a styrene monomer, and an acrylonitrile monomer. 5-35% by weight of copolymer resin; And (a2) 65 to 95% by weight of a non-grafted copolymer resin comprising a unit derived from an acrylate monomer.
  • the thermoplastic resin composition may include 0.0001 to 0.05 parts by weight of a siloxane impact modifier (B) based on 100 parts by weight of the styrene-based thermoplastic resin; And 0.5 to 10 parts by weight of the acrylic copolymer (C).
  • B siloxane impact modifier
  • C acrylic copolymer
  • the rubber polymer is butadiene rubber, acrylic rubber, ethylene-propylene copolymer rubber, butadiene-styrene copolymer rubber, acrylonitrile-butadiene copolymer rubber, isoprene rubber, ethylene-propylene-diene terpolymer Copolymer rubber, polyorganosiloxane-polyalkyl (meth) acrylate rubber composites, and mixtures thereof.
  • the rubbery polymer has an average particle diameter of 0.10 to 0.30 ⁇ m.
  • the shell is characterized in that it comprises an inner shell and an outer shell.
  • the inner shell is a copolymer of the styrene-based monomer and acrylonitrile-based monomer
  • the outer shell is characterized in that the copolymerized acrylic monomer
  • the The inner shell and the outer shell are characterized by copolymerizing an acrylic monomer, a styrene monomer and an acrylonitrile monomer.
  • the graft copolymer resin (a1) may include 30 to 70 wt% of a rubbery polymer, 15 to 55 wt% of an acrylic monomer, 5 to 35 wt% of a styrene monomer, and 1 to 5 wt% of an acrylonitrile monomer. .
  • the graft copolymer resin (a1) is preferably methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer.
  • the graft ratio of the said graft copolymer resin (a1) is 30 to 70%.
  • the non-grafted copolymer resin (a2) is preferably a copolymer of an acrylic monomer, a styrene monomer and an acrylonitrile monomer, and most preferably a methyl methacrylate-acrylonitrile-styrene copolymer.
  • the methyl methacrylate-acrylonitrile-styrene copolymer has a low flow methyl methacrylate-acrylonitrile-styrene copolymer having a weight average molecular weight of 100,000 to 150,000 and a high flow methyl methacrylate having a weight average molecular weight of 50,000 to 100,000. It is characterized in that it comprises a rate-acrylonitrile-styrene copolymer.
  • the siloxane impact modifier (B) may be selected from the group consisting of polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and mixtures thereof, and the viscosity of the siloxane impact modifier (B) is 40 to 150 cp. It is characterized by that.
  • the said low molecular weight acrylic copolymer (C) is polybutyl acrylate.
  • thermoplastic resin composition according to the present invention is not only excellent in transparency, impact resistance and fluidity, but also exhibits no clouding at low temperatures.
  • thermoplastic resin composition of the present invention is (A) styrene-based thermoplastic resin; (B) siloxane based impact modifier; And (C) an acrylic copolymer having a weight average molecular weight of 1,000 g / mol to 10,000 g / mol.
  • the styrenic thermoplastic resin (A) of the present invention includes a graft copolymer resin (a1) and a non-graft copolymer resin (a2).
  • a1 graft copolymer resin
  • a2 non-graft copolymer resin
  • the graft copolymer resin (a1) and the non-graft copolymer resin (a2) will be described in detail.
  • the graft copolymer resin (a1) used in the preparation of the thermoplastic resin composition of the present invention has a core-shell structure.
  • the core consists of a rubbery polymer, the rubbery polymer comprising butadiene rubber, acrylic rubber, ethylene-propylene copolymer rubber, butadiene-styrene copolymer rubber, acrylonitrile-butadiene copolymer rubber, isoprene rubber, ethylene-propylene-diene Terpolymer rubber, polyorganosiloxane-polyalkyl (meth) acrylate rubber composites or mixtures thereof, preferably butadiene rubber or butadiene-styrene copolymer rubber.
  • the styrene is preferably included in less than 30% by weight.
  • the average particle size of the rubbery polymer is 0.10 to 0.30 ⁇ m. When the average particle size is within the above range, an appropriate balance of impact strength, colorability and glossiness can be maintained.
  • the shell is formed by copolymerizing an acrylate monomer, a styrene monomer and an acrylonitrile monomer on the core.
  • the specific kind of the acrylate monomer is not particularly limited.
  • the acrylate monomer are preferably (meth) acrylic acid alkyl esters having 2 to 20 carbon atoms, and examples thereof include (meth) acrylic acid methyl ester, (meth) acrylic acid ethyl ester, (meth) acrylic acid propyl ester, and (meth).
  • Methyl methacrylate is most preferred.
  • the specific kind of the styrene monomer is not particularly limited.
  • examples of the styrene monomer may be selected from the group consisting of styrene, ⁇ -ethylstyrene, ⁇ -methylstyrene, p-methylstyrene, ot-butylstyrene, bromostyrene, chlorostyrene, trichlorostyrene, and mixtures thereof. Double styrene is most preferred.
  • the specific kind of the acrylonitrile monomer is not particularly limited.
  • Examples of the acrylonitrile-based monomer may be selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, fumalonitrile, and mixtures thereof, of which acrylonitrile is most preferred.
  • the graft copolymer resin (a1) is most preferably methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer (g-MABS).
  • the shell has a dual structure of the inner shell and the outer shell.
  • the inner shell serves to improve the impact strength, and improves scratch resistance.
  • the inner shell is a polymerized styrene monomer and an acrylonitrile monomer (eg, styrene-acrylonitrile copolymer (SAN)), and the outer shell is a polymerized (meth) acrylic acid alkyl ester (example For example, polymethyl methacrylate (PMMA).
  • SAN styrene-acrylonitrile copolymer
  • PMMA polymethyl methacrylate
  • the graft copolymer resin is prepared by the following method.
  • graft polymerization of styrene-based monomers and acrylonitrile-based monomers on the surface of the core forms a inner shell (first step), and an acrylate-based monomer is added to form an outer shell surrounding the inner shell (second step).
  • the first step proceeds under a fat-soluble redox-based initiator system
  • the second step proceeds under a water-soluble initiator system.
  • the graft copolymer prepared by the second step may be prepared in a powder state through a post-treatment process such as coagulation, washing, and dehydration.
  • the inner shell and the outer shell is a copolymer of the acrylate monomer, the styrene monomer and the acrylonitrile monomer (for example, methyl methacrylate-acrylonitrile Styrene copolymer (MSAN)).
  • MSAN methyl methacrylate-acrylonitrile Styrene copolymer
  • step 1 Part of the mixture of acrylate monomers, styrene monomers and acrylonitrile monomers is graft polymerized on the surface of the core to form an inner shell (step 1), and the remaining monomer mixture is added to surround the inner shell.
  • step 2 step Preferably, the first step proceeds under a fat-soluble redox-based initiator system, and the second step proceeds under a water-soluble initiator system.
  • the graft copolymer prepared by the second step may be prepared in a powder state through a post-treatment process such as coagulation, washing, and dehydration.
  • the graft copolymer resin (a1) can improve the colorability because the refractive index difference between the core and the shell is small, the acrylate monomer is located at the end of the chain (chain) at the time of manufacturing the graft copolymer
  • the scratch resistance can be improved, and the weather resistance can be improved by wrapping the outermost part of the core with an acrylate monomer.
  • the graft copolymer resin (a1) is 30 to 70% by weight of the rubbery polymer, 15 to 55% by weight of the acrylate monomer, 1 to 5% by weight of the acrylonitrile monomer, and the styrene monomer 5 to 35 weight percent.
  • the graft ratio of the graft copolymer resin (a1) is preferably 30 to 70%. This is because when the graft rate is less than 30%, the cohesive rubber of the double particles or the plurality of particles is formed due to the collision of the rubber itself during polymerization, and the transparency is impaired. . In this case, a white powder having a uniform particle size distribution at the time of solidification and drying can be obtained, and the problem that the surface state or the surface gloss of the molded article is lowered by unplasticized particles during extrusion or injection does not occur.
  • the graft copolymer resin (a1) may be included in 5 to 35% by weight based on 100% by weight of the styrene-based thermoplastic resin (A). If less than 5% by weight can not achieve sufficient impact resistance, if exceeding 35% by weight can eliminate the low-temperature clouding phenomenon, but transparency, color stability and fluidity may be lowered.
  • the said non-grafted copolymer resin (a2) used for manufacture of the thermoplastic resin composition of this invention contains the unit derived from an acrylate-type monomer as a basic unit.
  • the non-grafted copolymer resin (B) is a copolymer of an acrylate monomer, a styrene monomer and an acrylonitrile monomer.
  • MSAN methyl methacrylate-acrylonitrile-styrene copolymer
  • the acrylate monomer, the styrene monomer and the acrylonitrile monomer may be the same monomers used in the preparation of the graft copolymer resin (a1).
  • the methyl methacrylate-acrylonitrile-styrene copolymer has a low flow methyl methacrylate-acrylonitrile-styrene copolymer having a weight average molecular weight of 100,000 to 150,000 and the weight average molecular weight It may comprise a high flow methyl methacrylate-acrylonitrile-styrene copolymer of 50,000 to 100,000. In this case, injection processability can be further improved.
  • the methyl methacrylate-acrylonitrile-styrene copolymer is 30 to 70% by weight of the low flow methyl methacrylate-acrylonitrile-styrene copolymer and the high flow methyl methacrylate-acrylonitrile-styrene copolymer 30 to 70 weight percent.
  • the non-graft copolymer resin (a2) may be included in 65 to 95% by weight relative to 100% by weight of the styrene-based thermoplastic resin (A), when included in the above range, physical properties such as impact strength, transparency The clouding phenomenon at low temperature can be improved without this deterioration.
  • the siloxane impact modifier (B) used in the preparation of the thermoplastic resin composition of the present invention is dispersed between the rubbery polymer of the graft copolymer resin (a1) and serves to increase the impact strength of the entire resin composition.
  • examples of the siloxane impact modifier (B) include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and the like, and these may be used alone or in combination.
  • the viscosity of the siloxane impact modifier (B) is 40 to 150 cp, preferably 70 to 120 cp. In the case of using the siloxane-based impact modifier (B) having a viscosity in the above range, the impact strength can be excellent.
  • the siloxane-based impact modifier (B) may be included in an amount of 0.0001 to 0.05 parts by weight, and more preferably 0.001 to 0.01 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A).
  • the impact strength may be more excellent without the appearance of a cloudiness at low temperatures.
  • the acrylic polymer (C) used in the preparation of the thermoplastic resin composition of the present invention has a weight average molecular weight of 1,000 g / mol or more and 10,000 g / mol or less, preferably 1,000 g / mol or more and 3,000 g / mol or less. If the weight average molecular weight is less than 1,000 g / mol there is a problem of gas generation by decomposition, if the weight average molecular weight exceeds 10,000 g / mol transparency may be reduced by the difference in refractive index.
  • the acrylic copolymer (C) is a copolymer made of a polymer or a mixture of acrylate monomers.
  • the specific kind of the acrylate monomer is not particularly limited. Examples may be selected from the group consisting of C 1 -C 10 alkyl acrylates, C 1 -C 10 alkyl methacrylates, and mixtures thereof.
  • Examples of the C 1 to C 10 alkyl acrylates include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, t-butyl acrylate, n-butyl acrylate, n-octyl acrylate, 2-ethyl Hexyl acrylate and the like
  • examples of the C 1 to C 10 alkyl methacrylate are methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, t-butyl methacrylate, n- Butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, and the like. Of these, n-butyl acrylate is preferably used.
  • the acrylic polymer (C) may be included in an amount of 0.5 parts by weight or more and 10 parts by weight or less based on 100 parts by weight of the styrene-based thermoplastic resin (A). When used in less than 0.5 parts by weight can not solve the low temperature clouding problem, when used in excess of 10 parts by weight may excessively increase the fluidity and lower the transparency.
  • the fluidity can be significantly improved while maintaining the transparency and impact resistance of the thermoplastic resin composition.
  • the thermoplastic resin composition may further include an additive.
  • the additives include dyes, pigments, antioxidants, flame retardants, fillers, stabilizers, lubricants, antibacterial agents, mold release agents, carbon black, and the like. These can be used individually or in mixture.
  • antioxidants examples include phenolic antioxidants, phosphorus compounds, thioester compounds, and the like.
  • the antioxidant is included in 0.1 to 1.0 parts by weight, preferably 0.2 to 0.4 parts by weight with respect to 100 parts by weight of the styrene-based thermoplastic resin (A), in this case the effect of the antioxidant within the range that does not lower other physical properties May appear.
  • Examples of the flame retardant include a phosphorus flame retardant, a halogen flame retardant, and the like.
  • Examples of the phosphorus-based flame retardant include phosphorus (Phosphate), phosphonate (Phosphonate), phosphinate (Phosphinate), phosphine oxide (Phosphine Oxide), phosphazene (Phosphazene) and metal salts thereof.
  • halogen-based flame retardant examples include decabromo diphenyl ether, decabromo diphenyl ethane, tetrabromo bisphenol-A, tetrabromo bisphenol-A epoxy oligomer, octabromo trimethylphenyl indane, ethylene-bis-tetrabromorph Deimide, tris (tribromophenol) triazine, brominated polystyrene and the like.
  • the flame retardant is included in an amount of 10 to 30 parts by weight, preferably 15 to 25 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A). In this case, the effect of the flame retardant may be exhibited within a range in which other physical properties do not decrease. have.
  • glass fiber, carbon fiber, silica, mica, alumina, clay, calcium carbonate, calcium sulfate, or glass beads may be used.
  • physical properties such as mechanical strength and heat resistance may be improved.
  • the filler is contained in 10 to 50 parts by weight, preferably 20 to 40 parts by weight with respect to 100 parts by weight of the styrene-based thermoplastic resin (A), in this case, the effect of the filler can be exhibited within the range that other physical properties are not reduced. have.
  • the stabilizer prevents the thermoplastic resin composition from being decomposed (eg, pyrolyzed), and serves to further improve various physical properties such as surface smoothness and heat resistance of the thermoplastic resin composition.
  • the stabilizer is phosphoric acid; Phosphorous acid such as 3,5-di-t-butyl-4-hydroxybenzylphosphonic acid; Phosphorous acid esters such as triphenyl phosphite, trimethyl phosphite, triisodecyl phosphite and tri- (2,4-di-t-butylphenyl) phosphite; Phosphorus compounds such as hypophosphorous acid and polyphosphoric acid; Acidic phosphoric acid esters such as methyl phosphate, dibutyl phosphate and monobutyl phosphate; And mixtures thereof.
  • the stabilizer is included in an amount of 0.1 to 1.0 parts by weight, preferably 0.2 to 0.4 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A). In this case, the effect of the stabilizer may be exhibited within a range in which other physical properties do not decrease. have.
  • the lubricant has the function of improving the processability of the resin composition, smoothing the surface of the final product, and giving gloss to the surface of the final product.
  • the inner lubricant serves to penetrate into the polymer to reduce the viscosity of the melt
  • the outer lubricant serves to reduce the extrusion load between the melt and the metal surface of the resin composition in the extruder.
  • the internal lubricant include ethylene bis stearamide, L-C polyethylene wax, and the like.
  • the external lubricants include barium stearate, calcium stearate, magnesium stearate, and the like.
  • the lubricant is included in an amount of 0.1 to 3 parts by weight, preferably 0.2 to 1.0 part by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A), in which case the effect of the lubricant may be exhibited within a range in which other physical properties do not decrease. have.
  • the antimicrobial agent refers to an antimicrobial agent, an antifungal agent, a bactericide, a sterilizer, or a fungicide.
  • the antimicrobial agent may be an oxide comprising a transition metal, silicon, aluminum, an alkali metal, an alkaline earth metal or a mixture thereof; hydroxide; And it is preferable that it is selected from the group which consists of these, and it is more preferable that it is an oxide.
  • the transition metal is selected from the group consisting of zirconium, titanium, zinc, copper, and mixtures thereof.
  • the antimicrobial agent may be included in an amount of 0.1 to 10 parts by weight, preferably 1.0 to 3.0 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A). have.
  • Fluorine-containing polymers, silicone oils, metal salts of stearyl acid, metal salts of montanic acid, montanic acid ester waxes, or polyethylene waxes can be used as the release agent.
  • the release agent may be included in an amount of 0.1 to 5.0 parts by weight, preferably 0.2 to 2.0 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A), in which case the effect of the release agent may be exhibited within a range in which other physical properties do not decrease. have.
  • the carbon black may improve scratch resistance and wear resistance.
  • the carbon black is preferably a furnace black, a thermal decomposition black, a channel black, an acetylene black, a lamp black, or the like.
  • SAF Super Abrasion Furnace
  • ISAF Intermediate Super Abrasion Furnace
  • the carbon black may be mixed with each other and used.
  • the carbon black is included in an amount of 0.1 to 3.0 parts by weight, preferably 0.2 to 2.0 parts by weight, based on 100 parts by weight of the styrene-based thermoplastic resin (A). In this case, the effect of carbon black is within a range where other physical properties are not lowered. May appear.
  • thermoplastic resin composition according to the present invention can be produced by a known method.
  • the thermoplastic resin composition may be prepared in pellet form by mixing each component and other additives at the same time, followed by melt extrusion in an extruder.
  • thermoplastic resin composition according to the present invention is excellent in impact resistance, fluidity, transparency, color stability, and the like, and is particularly preferable in electrical and electronic products and automobile parts requiring high appearance at low temperature and room temperature due to improved cloudiness at low temperatures. Can be applied.
  • a methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer having an average particle size of rubber of 0.240 ⁇ m, a rubber content of 55 parts by weight, and a graft ratio of 50% was used.
  • a methyl methacrylate-acrylonitrile-butadiene-styrene graft copolymer having an average particle size of rubber of 0.240 ⁇ m, a rubber content of 45 parts by weight, and a graft ratio of 77% was used.
  • the weight average molecular weight was 135,000, and the methylmethacrylate / acrylonitrile / styrene terpolymer (Brand name: CM-5101) of Cheil Industries was used.
  • the weight average molecular weight was 95,000, and the methylmethacrylate / acrylonitrile / styrene / methacrylic acid quaternary copolymer (brand name: AP-ECM) of Cheil Industries, Ltd. was used.
  • Polydimethylsiloxane (trade name: L-45) from Nippon Unicar, having a viscosity of 90 to 100 cp, was used.
  • a polybutyl acrylate (trade name: ADP-1200) manufactured by BASF having a weight average molecular weight of 2,300 g / mol was used.
  • polybutyl acrylate having a weight average molecular weight of 15,000 g / mol
  • a polymer manufactured by itself through solution polymerization was used as the polybutyl acrylate having a weight average molecular weight of 15,000 g / mol.
  • IZOD impact strength According to ASTM D256, the notched IZOD impact strength of the 1/8 inch thick specimen was measured.
  • MI Melt Flow Index
  • Comparative Example 1 shows that when the graft copolymer resin (A) is used in the absence of the low molecular weight acrylic polymer (D), low temperature cloudiness does not occur, but transparency and color stability are deteriorated. Can be.
  • Comparative Examples 2 to 4 did not add a low molecular weight acrylic polymer (D), resulting in low temperature clouding.
  • Comparative Example 5 did not use a siloxane-based impact modifier did not cause low-temperature clouding, but it is confirmed that a sharp drop in impact strength.
  • Comparative Example 7 the graft copolymer resin (A) having a high graft ratio was used, and the synergistic effect with the siloxane-based impact modifier was insufficient, resulting in a drop in impact strength.
  • Comparative Example 8 is a case where an excessive amount of the acrylic polymer is used, it can be seen that the fluidity is rapidly increased and the Haze value is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명에 따른 열가소성 수지 조성물은 (A) 스티렌계 열가소성 수지; (B) 실록산계 충격보강제; 및 (C) 중량평균분자량이 1,000 g/mol 내지 10,000 g/mol인 아크릴계공중합체를 포함한다. 상기 열가소성 수지 조성물은 투명성, 내충격성, 유동성 및 컬러안정성이 우수할 뿐만 아니라, 저온에서의 백탁 현상이 나타나지 않는다.

Description

저온에서의 백탁 현상이 개선된 열가소성 수지 조성물
본 발명은 열가소성 수지 조성물에 관한 것이다. 보다 구체적으로, 본 발명은 투명성, 내충격성, 유동성 및 컬러안정성이 우수한 동시에 저온에서의 백탁현상이 개선된 열가소성 수지조성물에 관한 것이다.
일반적으로 아크릴로니트릴-부타디엔계고무-스티렌(ABS) 수지는 내충격성과 가공성이 뛰어나고 기계적 강도, 열변형온도, 광택도 등이 양호하여 전기·전자부품, 사무용기기 등에 광범위하게 사용되고 있다. 그러나 LCD, PDP, TV, 오디오 등과 같은 고급 가전용 하우징에 사용되는 ABS 수지는 사출 성형이나 사용 중에 스크래치가 발생하기 쉽고 또한 고급 질감의 칼라 발현이 어려워 제품 가치가 떨어지는 문제가 있다.
이러한 문제를 해결하고자, ABS 사출품 표면에 우레탄 등으로 도장(塗裝)을 하여 UV 코팅 처리를 하거나 스크래치 특성이 우수한 아크릴계 수지를 코팅하여 왔다. 그러나 이러한 작업은 추가적인 후가공 공정의 추가로 작업의 복잡성과 불량률 증가 등 생산성이 저하되는 문제점과 도장에 따른 환경오염 문제가 수반되고 있다.
이러한 문제를 해결하고자, 우레탄 도장을 하지 않는 내스크래치 재질로서 착색성과 광택성이 뛰어난 PMMA 수지, 아크릴계 수지 등이 사용되어 왔다. 그러나 PMMA 수지는 내충격성이 취약하고 성형성이 용이하지 못해 사출을 통한 성형품 제작이 어려워 주로 압출 시이트(sheet)로 제작한 후 성형품 표면에 이 시이트를 부착하는 방법이 이용되어 왔다. 그러나 이 방법도 후가공에 따른 불량률이 높고 생산 비용이 많이 드는 단점이 있다.
상기 PMMA 수지 외에 내스크래치 소재로서 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 수지(g-MABS의 일종으로 '투명 ABS 수지'라고도 함)가 이용되기도 하는데, 이 경우에 착색성, 광택성, 및 내충격성은 양호하나 스크래치 특성에 중요한 물성인 R-경도와 굴곡탄성율(Modulus)이 저하되고 성형시 강도부족에 따른 휨이 발생하는 문제가 있다.
또한, ABS/PMMA 얼로이를 사용하는 경우에도 내충격성은 우수해질 수 있으나 착색성이 취약하고 내스크래치성이 양호하지 못하다.
한국공개특허 제10-2007-0108008호는 상기 문제점을 해결하기 위해서, 외곽쉘에 (메타)아크릴산 알킬 에스테르 성분이 포함된 코어-쉘 구조의 그라프트 충격보강제(g-MABS)를 (메타)아크릴산 알킬 에스테르 성분이 포함된 수지에 포함시킴으로써, 내스크래치성을 비롯한 다른 물성을 개선시킨 수지 조성물을 개시한다.
그러나, 최근 가전제품에 대한 인식 변화로 디자인의 중요도가 높아지면서 이를 구현하기 위해서 다양한 칼라 개발이 이루어지고 있으며, 이러한 과정에서 저온에서의 백탁 현상이 문제되고 있는데, 상기 한국공개특허에 개시된 내스크래치성 수지 조성물로는 이 백탁 현상을 해결할 수 없다.
또한, MABS/PMMA 얼로이 수지의 충격강도를 개선하기 위해서 폴리디메틸실록산과 같은 실록산계 충격보강제가 사용되기도 하는데, 이 경우에 이 실록산계 충격보강제로 인해서 수지 내에 마이크로 크기의 공극이 형성되어 백탁 현상이 더 악화되는 문제점이 있다.
투명 ABS 수지 조성물에서 실록산계 충격보강제를 배제하여 백탁 현상 문제를 해결할 수 있으나, 실록산계 충격보강제가 발현하는 충격효율성이 저하되고, 이를 해결하기 위해서는 과량의 MABS 수지를 투입할 수밖에 없는 문제점이 있다. 이에 따른 MABS 수지 내 고무의 입경 구조의 조절을 통하여 MABS를 제조해야 하는 노력이 필요하게 된다.
또한, 실록산계 충격보강제를 투입하더라도 저온 백탁의 문제를 발생시키지 않는 방안으로 MABS를 과량 투입하여 실록산계 충격보강제의 분산을 극대화하는 방안 및 MABS의 쉘층을 강화(그라프트율 상승)하여 저온 백탁 문제를 개선하는 방안이 있다. 그러나, 전자의 방법은 MABS의 과량 투입에 따라 컬러 안정성의 저하 및 고분자량의 MABS 투입에 따른 유동성 저하의 문제가 있다. 후자의 방법은 쉘층의 강화로 인한 충격효율성이 낮아지는 단점이 있다.
본 발명의 목적은 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 다른 목적은 유동성이 우수한 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 투명성이 우수한 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 내충격성이 우수한 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 컬러 안정성이 우수한 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 상기 및 기타의 목적들은 모두 하기 설명되는 본 발명에 의해서 달성될 수 있다.
본 발명에 따른 열가소성 수지 조성물은 (A) 스티렌계 열가소성 수지; (B) 실록산계 충격보강제; 및 (C) 중량평균분자량이 1,000 g/mol 내지 10,000 g/mol인 아크릴계공중합체를 포함한다.
상기 스티렌계 열가소성 수지(A)는, (a1) 고무질 중합체로 이루어진 코어 및 상기 코어에 아크릴레이트계 단량체, 스티렌계 단량체, 아크릴로니트릴계 단량체를 중합시킨 쉘을 포함하는 코어-쉘 구조의 그라프트 공중합체 수지 5∼35 중량%; 및 (a2) 아크릴레이트계 단량체로부터 유래한 단위를 포함하는 비그라프트 공중합체 수지 65∼95 중량%를 포함하는 것을 특징으로 한다.
상기 열가소성 수지 조성물은, 상기 스티렌계 열가소성 수지 100 중량부에 대하여, 실록산계 충격보강제(B) 0.0001∼0.05 중량부; 및 아크릴계 공중합체(C) 0.5∼10 중량부를 포함하는 것을 특징으로 한다.
본 발명의 구체예에 따르면, 상기 고무질 중합체는 부타디엔 고무, 아크릴 고무, 에틸렌-프로필렌 공중합체 고무, 부타디엔-스티렌 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무, 이소프렌 고무, 에틸렌-프로필렌-디엔 삼원공중합체 고무, 폴리오가노실록산-폴리알킬(메타)아크릴레이트 고무복합체, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 한다.
상기 고무질 중합체의 평균입경은 0.10∼0.30 ㎛인 것을 특징으로 한다.
본 발명의 구체예에 따르면, 상기 쉘은 내곽쉘과 외곽쉘을 포함하는 것을 특징으로 한다.
본 발명의 일 구체예에 따르면, 상기 내곽쉘은 상기 스티렌계 단량체와 아크릴로니트릴계 단량체를 공중합시킨 것이고, 상기 외곽쉘은 아크릴계 단량체를 공중합시킨 것을 특징으로 하고, 또다른 구체예에 따르면, 상기 내곽쉘과 외곽쉘은 아크릴계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체를 공중합시킨 것을 특징으로 한다.
상기 그라프트 공중합체 수지(a1)는 고무질 중합체 30∼70 중량%, 아크릴계 단량체 15∼55 중량%, 스티렌계 단량체 5∼35 중량% 및 아크릴로니트릴계 단량체 1∼5 중량%를 포함할 수 있다.
상기 그라프트 공중합체 수지(a1)는 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체인 것이 바람직하다.
상기 그라프트 공중합체 수지(a1)의 그라프트율이 30∼70%인 것이 바람직하다.
상기 비그라프트 공중합체 수지(a2)는 아크릴계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체의 공중합체인 것이 바람직하고, 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체인 것이 가장 바람직하다.
상기 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체는 중량평균분자량이 100,000 내지 150,000인 저유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 및 중량평균분자량이 50,000 내지 100,000인 고유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체를 포함하는 것을 특징으로 한다.
상기 실록산계 충격보강제(B)는 폴리디메틸실록산, 폴리메틸페닐실록산, 폴리디페닐실록산, 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으며, 상기 실록산계 충격보강제(B)의 점도가 40 내지 150 cp인 것을 특징으로 한다.
상기 저분자량 아크릴계 공중합체(C)는 폴리부틸아크릴레이트인 것이 바람직하다.
본 발명에 따른 열가소성 수지 조성물은 투명성, 내충격성, 유동성이 우수할 뿐만 아니라 저온에서의 백탁 현상도 나타나지 않는다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
본 발명의 열가소성 수지 조성물은 (A) 스티렌계 열가소성 수지; (B) 실록산계 충격보강제; 및 (C) 중량평균분자량이 1,000 g/mol 내지 10,000 g/mol인 아크릴계 공중합체;를 포함하여 이루어진다.
(A) 스티렌계 열가소성 수지
본 발명의 스티렌계 열가소성 수지(A)는 그라프트 공중합체 수지(a1) 및 비그라프트 공중합체 수지(a2)를 포함한다. 이하에서 상기 그라프트 공중합체 수지(a1) 및 상기 비그라프트 공중합체 수지(a2)에 대하여 자세히 설명하기로 한다.
(a1) 그라프트 공중합체 수지
본 발명의 열가소성 수지 조성물의 제조에 사용되는 상기 그라프트 공중합체 수지(a1)는 코어-쉘 구조를 가진다.
상기 코어는 고무질 중합체로 이루어지고, 상기 고무질 중합체는 부타디엔 고무, 아크릴 고무, 에틸렌-프로필렌 공중합체 고무, 부타디엔-스티렌 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무, 이소프렌 고무, 에틸렌-프로필렌-디엔 삼원공중합체 고무, 폴리오가노실록산-폴리알킬(메타)아크릴레이트 고무복합체 또는 이들의 혼합물을 포함하며, 바람직하게 부타디엔 고무 또는 부타디엔-스티렌 공중합체 고무를 포함한다. 상기 부타디엔-스티렌 공중합체 고무가 사용되는 경우에 상기 스티렌은 30 중량% 미만으로 포함되는 것이 바람직하다.
상기 고무질 중합체의 평균입경크기는 0.10 내지 0.30 μm이다. 상기 평균입경 크기가 상기 범위 내인 경우에, 충격강도, 착색성 및 광택도의 적절한 밸런스가 유지될 수 있다.
상기 쉘은 상기 코어에 아크릴레이트계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체를 공중합시켜 형성된다.
상기 아크릴레이트계 단량체의 구체적인 종류는 특별히 한정되지 않는다. 상기 아크릴레이트계 단량체의 예로는 탄소수 2∼20의 (메타)아크릴산 알킬에스테르인 것이 바람직하며, 그 예로 (메타)아크릴산 메틸에스테르, (메타)아크릴산 에틸에스테르, (메타)아크릴산 프로필에스테르, (메타)아크릴산 2-에틸헥실에스테르, (메타)아크릴산 데실에스테르, (메타)아크릴산 라우릴에스테르, 메틸 아크릴레이트, 부틸 아크릴레이트, 아크릴산 2-에틸헥실에스테르, 및 이들의 혼합물로 이루어진 군으로부터 선택할 수 있으며, 이 중 메틸 메타아크릴레이트가 가장 바람직하다.
상기 스티렌계 단량체의 구체적인 종류는 특별히 한정되지 않는다. 상기 스티렌계 단량체의 예로는 스티렌, α-에틸스티렌, α-메틸스티렌, p-메틸스티렌, o-t-부틸스티렌, 브로모스티렌, 클로로스티렌, 트리클로로스티렌, 및 이들의 혼합물로 이루어진 군으로부터 선택할 수 있으며, 이중 스티렌이 가장 바람직하다.
상기 아크릴로니트릴계 단량체의 구체적인 종류는 특별히 한정되지 않는다. 상기 아크릴로니트릴계 단량체의 예로는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 퓨말로니트릴, 및 이들의 혼합물로 이루어진 군으로부터 선택할 수 있으며, 이중 아크릴로니트릴이 가장 바람직하다.
본 발명의 구체예에서, 상기 그라프트 공중합체 수지(a1)는 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체(g-MABS)인 것이 가장 바람직하다.
본 발명의 하나의 구체예에서, 상기 쉘은 내곽쉘과 외곽쉘의 이중구조를 가진다. 상기 내곽쉘은 충격강도를 개선하는 역할을 하며, 내스크래치성을 개선하는 역할을 한다.
상기 내곽쉘은 스티렌계 단량체 및 아크릴로니트릴계 단량체를 중합시킨 것이고(예를 들어, 스티렌-아크릴로니트릴 공중합체(SAN)), 상기 외곽쉘은 (메타)아크릴산 알킬 에스테르를 중합시킨 것이다(예를 들어, 폴리메틸메타크릴레이트(PMMA)). 이 경우에, 상기 그라프트 공중합체 수지는 하기와 같은 방법에 의해서 제조된다.
코어의 표면에 스티렌계 단량체 및 아크릴로니트릴계 단량체를 그라프트 중합시켜 내곽쉘을 형성하고(제1 단계), 아크릴레이트계 단량체를 부가하여 이 내곽쉘을 감싸는 외곽쉘을 형성한다(제2 단계). 상기 제1 단계는 지용성 레독스계 개시제 시스템 하에서 진행하고, 상기 제2 단계는 수용성 개시제 시스템 하에서 진행하는 것이 바람직하다. 상기 제2 단계에 의해서 제조된 그라프트 공중합체는 응고, 세척, 탈수 등의 후처리 공정을 거쳐 분말상태로 제조될 수 있다.
본 발명의 다른 구체예에서, 상기 내곽쉘 및 상기 외곽쉘은 상기 아크릴레이트계 단량체, 상기 스티렌계 단량체 및 상기 아크릴로니트릴계 단량체를 공중합시킨 것이다(예를 들어, 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체(MSAN)). 이 경우에, 상기 그라프트 공중합체는 하기와 같은 방법에 의해서 제조된다.
코어의 표면에 아크릴레이트계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체의 혼합물 중 일부를 그라프트 중합시켜 내곽쉘을 형성하고(제1 단계), 잔여 단량체 혼합물을 부가하여 이 내곽쉘을 감싸는 외곽쉘을 형성한다(제2 단계). 상기 제1 단계는 지용성 레독스계 개시제 시스템 하에서 진행하고, 상기 제2 단계는 수용성 개시제 시스템 하에서 진행하는 것이 바람직하다. 상기 제2 단계에 의해서 제조된 그라프트 공중합체는 응고, 세척, 탈수 등의 후처리 공정을 거쳐 분말상태로 제조될 수 있다.
본 발명에서, 상기 그라프트 공중합체 수지(a1)는 코어와 쉘의 굴절률 차이가 작아 착색성을 개선할 수 있으며, 그라프트 공중합체의 제조시에 아크릴레이트계 단량체를 체인(chain) 끝부분에 위치시킴으로써 내스크래치성을 개선할 수 있고, 아크릴레이트계 단량체로 코어의 최외곽을 감쌈으로써 내후성을 개선할 수 있다.
본 발명에서 상기 그라프트 공중합체 수지(a1)는 상기 고무질 중합체 30 내지 70 중량%, 상기 아크릴레이트계 단량체 15 내지 55 중량%, 상기 아크릴로니트릴계 단량체 1 내지 5 중량%, 및 상기 스티렌계 단량체 5 내지 35 중량%를 포함한다.
상기 그라프트 공중합체 수지(a1)의 그라프트율(graft ratio)은 30 내지 70%인 것이 바람직하다. 그라프트율이 30% 미만일 경우 중합시 고무 자체의 충돌에 따른 쌍입자 또는 복수 입자의 응집 고무가 형성되어 투명성을 저해하며, 70%를 초과하는 경우에는 쉘층이 강화되어 충격 효율성이 저하될 수 있기 때문이다. 또한, 이 경우에 응고 및 건조시 입경 분포가 균일한 백색분말을 획득할 수 있으며, 압출 또는 사출시 미가소화 입자에 의해서 성형품의 표면상태 또는 표면광택이 저하되는 문제점이 발생하지 않게 된다.
본 발명에서, 상기 그라프트 공중합체 수지(a1)는 상기 스티렌계 열가소성 수지(A) 100 중량%에 대하여 5 내지 35 중량%로 포함될 수 있다. 5 중량% 미만인 경우 충분한 내충격성을 달성할 수 없고, 35 중량%를 초과한 경우 저온 백탁 현상을 해소할 수 있으나, 투명성, 컬러안정성 및 유동성 등이 저하될 수 있다.
(a2) 비그라프트 공중합체 수지
본 발명의 열가소성 수지 조성물 제조에 사용되는 상기 비그라프트 공중합체 수지(a2)는 아크릴레이트계 단량체로부터 유래한 단위를 기본단위로서 포함한다.
본 발명의 하나의 구체예에서, 상기 비그라프트 공중합체 수지(B)는 아크릴레이트계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체의 공중합체이다. 이 중 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체(MSAN)인 것이 가장 바람직하다.
상기 아크릴레이트계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체는 상기 그라프트 공중합체 수지(a1)의 제조에 사용된 것과 동일한 단량체들을 사용할 수 있다.
본 발명의 하나의 구체예에서, 상기 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체는 중량평균분자량이 100,000 내지 150,000인 저유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 및 중량평균분자량이 50,000 내지 100,000인 고유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체를 포함할 수 있다. 이 경우에, 사출 가공성이 더 우수해질 수 있다.
상기 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체는 상기 저유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 30 내지 70 중량% 및 상기 고유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 30 내지 70 중량%를 포함한다.
본 발명에서, 상기 비그라프트 공중합체 수지(a2)는 상기 스티렌계 열가소성 수지(A) 100 중량%에 대하여 65 내지 95 중량%로 포함될 수 있으며, 상기 범위로 포함시, 충격강도, 투명성 등의 물성이 저하되지 않으면서 저온에서의 백탁 현상이 개선될 수 있다.
(B) 실록산계 충격보강제
본 발명의 열가소성 수지 조성물의 제조에 사용되는 상기 실록산계 충격보강제(B)는 상기 그라프트 공중합체 수지(a1)의 고무질 중합체 사이에 분산되어 전체 수지 조성물의 충격강도를 증가시키는 역할을 한다. 상기 실록산계 충격보강제(B)의 예로는 폴리디메틸실록산, 폴리메틸페닐실록산, 폴리디페닐실록산 등이 있으며, 이들을 단독으로 또는 혼합하여 사용할 수 있다.
상기 실록산계 충격보강제(B)의 점도는 40 내지 150 cp, 바람직하게는 70 내지 120 cp이다. 상기 범위의 점도를 가진 실록산계 충격보강제(B)를 사용하는 경우에, 충격강도가 우수해질 수 있다.
본 발명에서, 상기 실록산계 충격보강제(B)는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여, 0.0001 내지 0.05 중량부로 포함될 수 있으며, 보다 바람직하게는 0.001 내지 0.01 중량부로 포함될 수 있다. 상기 실록산계 충격보강제(B)가 상기 범위로 포함되는 경우에, 저온에서의 백탁 현상이 나타나지 않으면서 충격강도가 더 우수해질 수 있다.
(C) 아크릴계 중합체
본 발명의 열가소성 수지 조성물의 제조에 사용되는 상기 아크릴계 중합체(C)는 중량평균분자량이 1,000 g/mol 이상 10,000 g/mol 이하이며, 바람직하게는 1,000 g/mol 이상 3,000 g/mol 이하이다. 중량평균분자량이 1,000 g/mol 미만인 경우 분해에 의한 가스 발생 문제가 있으며, 중량평균분자량이 10,000 g/mol 초과하는 경우 굴절율 차이에 의한 투명성이 저하될 수 있다.
상기 아크릴계 공중합체(C)는 아크릴레이트계 단량체의 중합체 또는 혼합물로 이루어진 공중합체이다. 예를 들어, 폴리부틸아크릴레이트를 사용하는 것이 바람직하다.
상기 아크릴레이트계 단량체의 구체적인 종류는 특별히 한정되지 않는다. 그 예로는 C1∼C10 알킬 아크릴레이트, C1∼C10 알킬 메타크릴레이트, 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 C1∼C10 알킬 아크릴레이트의 예로는 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 이소프로필 아크릴레이트, t-부틸 아크릴레이트, n-부틸 아크릴레이트, n-옥틸 아크릴레이트, 2-에틸헥실 아크릴레이트 등이 있으며, 상기 C1∼C10 알킬 메타크릴레이트의 예로는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 이소프로필 메타크릴레이트, t-부틸 메타크릴레이트, n-부틸 메타크릴레이트, n-옥틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트 등이 있다. 이 중에서 n-부틸아크릴레이트를 사용하는 것이 바람직하다.
상기 아크릴계 중합체(C)는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.5 중량부 이상 10 중량부 이하로 포함될 수 있다. 0.5 중량부 미만으로 사용하는 경우 저온 백탁 문제를 해결할 수 없고, 10 중량부를 초과하여 사용하는 경우 과도하게 유동성을 상승시키고 투명성을 저하시킬 수 있다.
상기 범위로 사용하는 경우에, 상기 열가소성 수지 조성물의 투명성과 내충격성이 유지되면서 유동성이 현저히 개선될 수 있다.
(D) 첨가제
본 발명의 일 실시예에서, 상기 열가소성 수지 조성물은 첨가제를 더 포함할 수 있다. 첨가제의 예로는 염료, 안료, 산화방지제, 난연제, 충진재, 안정제, 활제, 항균제, 이형제, 카본블랙 등이 있다. 이들은 단독으로 또는 혼합하여 사용할 수 있다.
상기 산화방지제의 예로는 페놀계 산화 방지제, 포스포러스 화합물, 티오에스테르 화합물 등이 있다. 상기 산화방지제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 1.0 중량부, 바람직하게 0.2 내지 0.4 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 산화방지제의 효과가 나타날 수 있다.
상기 난연제의 예로는 인계 난연제, 할로겐계 난연제 등이 있다. 상기 인계 난연제의 예로는 적인, 포스페이트(Phosphate), 포스포네이트(Phosphonate), 포스피네이트(Phosphinate), 포스핀옥사이드(Phosphine Oxide), 포스파젠(Phosphazene) 및 이들의 금속염 등이 있다. 상기 할로겐계 난연제의 예로는 데카브로모 디페닐 에테르, 데카브로모 디페닐 에탄, 테트라브로모 비스페놀-A, 테트라브로모 비스페놀-A 에폭시 올리고머, 옥타브로모 트리메틸페닐 인단, 에틸렌-비스-테트라브로모프탈이미드, 트리스(트리브로모페놀)트리아진, 브롬화폴리스티렌 등이 있다. 상기 난연제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 10 내지 30 중량부, 바람직하게 15 내지 25 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 난연제의 효과가 나타날 수 있다.
상기 충진재로서 유리섬유, 탄소섬유, 실리카, 마이카, 알루미나, 점토, 탄산칼슘, 황산칼슘 또는 유리 비드를 사용할 수 있으며, 상기 충전재를 첨가할 경우에, 기계적 강도, 내열성 등의 물성을 향상시킬 수 있다. 상기 충진재는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 10 내지 50 중량부, 바람직하게 20 내지 40 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 충진재의 효과가 나타날 수 있다.
상기 안정제는 열가소성 수지 조성물이 분해(예를 들어, 열분해)되는 것을 방지하며, 열가소성 수지 조성물의 표면 평활성 및 내열성 등의 제반 물성을 보다 향상시키는 역할을 한다. 상기 안정제는 인산; 3,5-디-t-부틸-4-하이드록시벤질포스포닉산 등의 아인산; 트리페닐포스파이트, 트리메틸포스파이트, 트리이소데실포스파이트, 트리-(2,4-디-t-부틸페닐)포스파이트 등의 아인산 에스테르류; 차아인산, 폴리인산 등의 인화합물; 메틸포스페이트, 디부틸포스페이트, 모노부틸포스페이트 등의 산성 인산 에스테르류; 및 이들의 혼합물로 이루어진 군에서 선택된다. 상기 안정제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 1.0 중량부, 바람직하게 0.2 내지 0.4 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 안정제의 효과가 나타날 수 있다.
상기 활제는 수지 조성물의 가공성을 향상시키고, 최종제품의 표면을 매끄럽게 하고, 그리고 최종제품의 표면에 광택을 부여하는 기능을 가진다. 이 중에서도, 내부활제는 중합체 내부에 침투하여 용융물의 점도를 감소시키는 역할을 하고, 외부활제는 압출기 내의 수지 조성물의 용융물과 금속표면 사이의 압출부하를 감소시키는 역할을 한다. 상기 내부활제의 예로는 에틸렌비스스테아로아마이드, 엘-씨 폴리에틸렌왁스 등이 있다. 상기 외부활제의 예로는 금속스테아레이트로는 바륨스테아레이트, 칼슘스테아레이트, 마그네슘스테아레이트 등이 있다. 상기 활제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게 0.2 내지 1.0 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 활제의 효과가 나타날 수 있다.
상기 항균제는 항균제, 항곰팡이제, 살균제, 멸균제, 또는 감균제 등을 말한다. 상기 항균제는 전이 금속, 규소, 알루미늄, 알칼리 금속, 알칼리 토금속 또는 이들의 혼합물을 포함하는 산화물; 수산화물; 및 이들의 혼합물로 이루어진 군에서 선택되는 것이 바람직하고, 산화물인 것이 더욱 바람직하다. 상기 전이 금속은 지르코늄, 티타늄, 아연, 구리, 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 상기 항균제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 10 중량부, 바람직하게 1.0 내지 3.0 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 항균제의 효과가 나타날 수 있다.
상기 이형제로서 불소 함유 중합체, 실리콘 오일, 스테아릴산의 금속염, 몬탄산의 금속염, 몬탄산 에스테르 왁스, 또는 폴리에틸렌 왁스를 사용할 수 있다. 상기 이형제는 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 5.0 중량부, 바람직하게 0.2 내지 2.0 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 이형제의 효과가 나타날 수 있다.
상기 카본블랙은 내스크래치성 및 내마모성을 향상시킬 수 있다. 상기 카본블랙은 퍼니스(Furnace) 블랙, 열분해(Thermal) 블랙, 채널(Channel) 블랙, 아세틸렌(Acetylene) 블랙, 램프(Lamp) 블랙 등이 바람직하다. 특히 입자경이 작아 마모 특성이 우수한 SAF(Super Abrasion Furnace) 블랙, ISAF(Intermediate Super Abrasion Furnace) 블랙이 가장 바람직하다. 또한 상기 카본블랙은 서로 혼합되어 사용될 수도 있다. 상기 카본블랙은 상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여 0.1 내지 3.0 중량부, 바람직하게 0.2 내지 2.0 중량부로 포함되며, 이 경우에 다른 물성이 저하되지 않는 범위 내에서 카본블랙의 효과가 나타날 수 있다.
본 발명에 따른 열가소성 수지 조성물은 공지의 방법에 의해서 제조될 수 있다. 예를 들어, 상기 열가소성 수지 조성물은 각 구성 성분과 기타 첨가제를 동시에 혼합한 후에 압출기 내에서 용융 압출하여 펠렛 형태로 제조할 수 있다.
본 발명에 따른 열가소성 수지 조성물은 내충격성, 유동성, 투명성 및 컬러 안정성 등이 우수하고, 특히 저온에서의 백탁 현상이 개선되어, 저온 및 상온에서의 고외관이 요구되는 전기전자제품, 자동차부품 등에 바람직하게 적용될 수 있다.
본 발명은 하기의 실시예에 의해 보다 구체화될 것이나, 하기의 실시예는 본 발명을 예시하기 위한 목적으로 사용될 뿐이며 본 발명의 보호범위를 한정하고자 하는 것은 아니다.
실시예
실시예에서 사용된 각 구성성분은 하기와 같다.
(A) 스티렌계 열가소성 수지
(a1') 그라프트 공중합체 수지
고무의 평균입경크기가 0.240 μm이고 고무의 함량이 55 중량부이며, 그라프트율이 50%인 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 사용하였다.
(a1") 그라프트 공중합체 수지
고무의 평균입경크기가 0.240 μm이고 고무의 함량이 45 중량부이며, 그라프트율이 77%인 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 사용하였다.
(a2') 비그라프트 공중합체 수지
중량평균분자량이 135,000이고, 제일모직(주)의 메틸메타크릴레이트/아크릴로니트릴/스티렌 3원공중합체(상품명: CM-5101)를 사용하였다.
(a2") 비그라프트 공중합체 수지
중량평균분자량이 95,000이고, 제일모직(주)의 메틸메타크릴레이트/아크릴로니트릴/스티렌/메타크릴산 4원공중합체(상품명: AP-ECM)를 사용하였다.
(B) 실록산계 충격보강제
점도가 90 내지 100 cp인 Nippon Unicar사의 폴리디메틸실록산(상품명: L-45)을 사용하였다.
(C) 아크릴계 중합체
(C') 아크릴계 중합체
중량평균분자량이 2,300 g/mol인 BASF사의 폴리부틸아크릴레이트(상품명: ADP-1200)를 사용하였다.
(C") 아크릴계 중합체
중량평균분자량이 15,000 g/mol인 폴리부틸아크릴레이트는 용액 중합을 통해 자체 제조한 중합품을 사용하였다.
실시예 및 비교실시예
상기 각 구성성분 및 첨가제를 하기 표 1에 기재된 중량부대로 혼합한 뒤, 이 혼합물을 60 kg/hr의 속도로 공급하고, 스크류의 rpm이 250이고 직경이 45 mm이며, L/D=36인 이축 압출기를 사용하여 210 ℃의 온도에서 압출하였으며, 이 압출물을 펠렛 형태로 제조하였다. 제조된 펠렛을 80 ℃에서 4시간 이상 건조시킨 후, 220 ℃의 온도에서 사출하여 2.2 mm × 10 mm × 6 mm 크기의 시편을 제조하였다. 제조된 시편에 대하여 하기와 같은 방법으로 물성을 측정하였으며, 그 결과를 하기 표 1 및 표 2에 나타내었다.
물성 측정 방법
(1) IZOD 충격강도: ASTM D256에 준하여, 1/8 inch 두께 시편의 노치 IZOD 충격강도를 측정하였다.
(2) 용융흐름지수(MI): ASTM D1238에 준하여, 220 ℃의 온도에서 용융흐름지수를 측정하였다.
(3) Haze: ASTM D1003에 준하여 측정하였다.
(4) 황색도(YI): CCM 3.2T 미놀타 측정기로 측정하였다.
(5) 저온 백탁: 3∼4 mm 두께의 칼라칩 시편을 -35 ℃의 저온 냉동고에 2시간 동안 체류시킨 후 상온에서 육안으로 판정하였다.
(O : 저온백탁 발생, X : 저온백탁 미발생)
표 1
Figure PCTKR2012006871-appb-T000001
표 2
Figure PCTKR2012006871-appb-T000002
상기 표 1을 보면, 실시예 1 내지 3은 각 구성성분을 본원발명의 함량범위 내에서 사용하여 충격강도, 유동성, 투명성 및 컬러안정성이 모두 우수하고, 저온에서의 백탁 현상이 개선됨이 확인된다.
표 2를 보면, 비교실시예 1은 저분자량 아크릴계 중합체(D)가 없는 조건 하에서 그라프트 공중합체 수지(A)를 과량 사용한 경우로서 저온 백탁 현상이 발생하지 않았으나, 투명성 및 컬러 안정성이 저하됨을 확인할 수 있다.
비교실시예 2 내지 4는 실시예 1 내지 3과 달리 저분자량 아크릴계 중합체(D)를 투입하지 않은 결과 저온 백탁 현상이 발생하였다.
비교실시예 5는 실록산계 충격보강제를 사용하지 않아 저온 백탁 현상이 발생하지 않았으나, 급격한 충격강도의 저하가 확인된다.
비교실시예 6은 중량평균분자량이 10,000 g/mol을 초과한 폴리부틸아크릴레이트를 사용한 경우로서 투명성이 저하된다.
비교실시예 7은 그라프트율이 높은 그라프트 공중합체 수지(A)를 사용한 경우로서 실록산계 충격보강제와의 시너지 효과가 미비하여 충격강도가 저하되었다.
비교실시예 8은 아크릴계 중합체를 과량 사용한 경우로서 유동성이 급격하게 증가하고 Haze값이 상승함을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (19)

  1. (A) 스티렌계 열가소성 수지;
    (B) 실록산계 충격보강제; 및
    (C) 중량평균분자량이 1,000 g/mol 내지 10,000 g/mol인 아크릴계공중합체;
    를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 제1항에 있어서, 상기 스티렌계 열가소성 수지(A)는,
    (a1) 고무질 중합체로 이루어진 코어 및 상기 코어에 아크릴레이트계 단량체, 스티렌계 단량체, 아크릴로니트릴계 단량체를 중합시킨 쉘을 포함하는 코어-쉘 구조의 그라프트 공중합체 수지 5∼35 중량%; 및
    (a2) 아크릴레이트계 단량체로부터 유래한 단위를 포함하는 비그라프트 공중합체 수지 65∼95 중량%;
    로 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 제1항에 있어서, 상기 열가소성 수지 조성물은,
    상기 스티렌계 열가소성 수지(A) 100 중량부에 대하여,
    실록산계 충격보강제(B) 0.0001∼0.05 중량부; 및
    아크릴계 공중합체(C) 0.5∼10 중량부;
    로 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  4. 제2항에 있어서, 상기 고무질 중합체는 부타디엔 고무, 아크릴 고무, 에틸렌-프로필렌 공중합체 고무, 부타디엔-스티렌 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무, 이소프렌 고무, 에틸렌-프로필렌-디엔 삼원공중합체 고무, 폴리오가노실록산-폴리알킬(메타)아크릴레이트 고무복합체, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 열가소성 수지 조성물.
  5. 제2항에 있어서, 상기 고무질 중합체의 평균입경은 0.10∼0.30 ㎛인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 제2항에 있어서, 상기 쉘은 내곽쉘과 외곽쉘로 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  7. 제6항에 있어서, 상기 내곽쉘은 상기 스티렌계 단량체 및 아크릴로니트릴계 단량체를 공중합시킨 것이고, 상기 외곽쉘은 아크릴계 단량체를 공중합시킨 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제6항에 있어서, 상기 내곽쉘 및 상기 외곽쉘이 아크릴계 단량체, 스티렌계 단량체 및 아크릴로니트릴계 단량체를 공중합시킨 것을 특징으로 하는 열가소성 수지 조성물.
  9. 제2항에 있어서, 상기 그라프트 공중합체 수지(a1)는 고무질 중합체 30∼70 중량%, 아크릴계 단량체 15∼55 중량%, 스티렌계 단량체 5∼35 중량% 및 아크릴로니트릴계 단량체 1∼5 중량%로 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  10. 제2항에 있어서, 상기 그라프트 공중합체 수지(a1)는 메틸메타크릴레이트-아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 제2항에 있어서, 상기 그라프트 공중합체 수지(a1)의 그라프트율이 30∼70%인 것을 특징으로 하는 열가소성 수지 조성물.
  12. 제2항에 있어서, 상기 비그라프트 공중합체 수지(a2)는 아크릴계 단량체, 스티렌계 단량체, 및 아크릴로니트릴계 단량체의 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 제2항에 있어서, 상기 비그라프트 공중합체 수지(a2)는 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  14. 제13항에 있어서, 상기 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체는 중량평균분자량이 100,000 내지 150,000인 저유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체, 중량평균분자량이 50,000 내지 100,000인 고유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체, 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  15. 제14항에 있어서, 상기 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체는 저유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 30 내지 70 중량% 및 고유동 메틸메타크릴레이트-아크릴로니트릴-스티렌 공중합체 30 내지 70 중량%로 이루어지는 것을 특징으로 하는 열가소성 수지 조성물.
  16. 제1항에 있어서, 상기 실록산계 충격보강제(B)는 폴리디메틸실록산, 폴리메틸페닐실록산, 폴리디페닐실록산, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 열가소성 수지 조성물.
  17. 제1항에 있어서, 상기 실록산계 충격보강제(B)의 점도가 40 내지 150 cp인 것을 특징으로 하는 열가소성 수지 조성물.
  18. 제1항에 있어서, 상기 아크릴계 공중합체(C)는 폴리부틸아크릴레이트인 것을 특징으로 하는 열가소성 수지 조성물.
  19. 제1항에 있어서, 염료, 안료, 산화방지제, 난연제, 충진재, 안정제, 활제, 항균제, 이형제, 카본블랙 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 첨가제를 더 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
PCT/KR2012/006871 2011-12-20 2012-08-28 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물 WO2013094844A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110138511A KR101464250B1 (ko) 2011-12-20 2011-12-20 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물
KR10-2011-0138511 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013094844A1 true WO2013094844A1 (ko) 2013-06-27

Family

ID=48668699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006871 WO2013094844A1 (ko) 2011-12-20 2012-08-28 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물

Country Status (2)

Country Link
KR (1) KR101464250B1 (ko)
WO (1) WO2013094844A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115380071A (zh) * 2020-10-30 2022-11-22 株式会社Lg化学 热塑性树脂组合物、制备其的方法和包含其的模制品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972220B1 (ko) * 2017-07-14 2019-04-24 롯데첨단소재(주) 열가소성 수지 조성물 및 이로부터 제조된 성형품
KR102298294B1 (ko) * 2018-01-19 2021-09-07 주식회사 엘지화학 열가소성 수지 조성물
WO2023068526A1 (ko) * 2021-10-22 2023-04-27 (주) 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
CN116348550A (zh) * 2021-10-22 2023-06-27 株式会社Lg化学 热塑性树脂组合物、其制备方法和使用其制造的成型制品
CN116348549A (zh) * 2021-10-22 2023-06-27 株式会社Lg化学 热塑性树脂组合物、制备其的方法和使用其制造的成型品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638434B1 (ko) * 2004-10-25 2006-10-24 주식회사 엘지화학 우수한 착색성을 갖는 실리콘-아크릴계 충격보강제 및이를 포함하는 열가소성 수지조성물
KR100709593B1 (ko) * 2005-12-29 2007-04-20 제일모직주식회사 내충격성 및 내화학성이 우수한 스티렌계 열가소성 수지조성물
KR20110012991A (ko) * 2009-07-31 2011-02-09 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20110048377A (ko) * 2009-11-02 2011-05-11 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20110077805A (ko) * 2009-12-30 2011-07-07 제일모직주식회사 코어-쉘 구조를 포함하는 그라프트 공중합체를 포함하는 열가소성 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083619A1 (fr) * 2000-04-28 2001-11-08 Toagosei Co., Ltd. Plastifiant
KR100417070B1 (ko) * 2001-09-28 2004-02-05 주식회사 엘지화학 메틸메타크릴레이트-부타디엔-스티렌 공중합체 및 그의제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638434B1 (ko) * 2004-10-25 2006-10-24 주식회사 엘지화학 우수한 착색성을 갖는 실리콘-아크릴계 충격보강제 및이를 포함하는 열가소성 수지조성물
KR100709593B1 (ko) * 2005-12-29 2007-04-20 제일모직주식회사 내충격성 및 내화학성이 우수한 스티렌계 열가소성 수지조성물
KR20110012991A (ko) * 2009-07-31 2011-02-09 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20110048377A (ko) * 2009-11-02 2011-05-11 제일모직주식회사 열가소성 수지 조성물 및 이를 이용한 성형품
KR20110077805A (ko) * 2009-12-30 2011-07-07 제일모직주식회사 코어-쉘 구조를 포함하는 그라프트 공중합체를 포함하는 열가소성 조성물

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115380071A (zh) * 2020-10-30 2022-11-22 株式会社Lg化学 热塑性树脂组合物、制备其的方法和包含其的模制品

Also Published As

Publication number Publication date
KR101464250B1 (ko) 2014-11-24
KR20130071156A (ko) 2013-06-28

Similar Documents

Publication Publication Date Title
WO2017095060A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
WO2013094844A1 (ko) 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물
KR20120078583A (ko) 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물
WO2010143796A1 (ko) 폴리에스테르/폴리카보네이트 얼로이 수지 조성물 및 이를 이용한 성형품
WO2012053693A1 (ko) 저온 백화가 발생하지 않는 고투명, 고충격 열가소성 수지 조성물
WO2014007442A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2018038573A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2012015128A1 (ko) 난연성 및 내열성이 우수한 투명 열가소성 수지 조성물
WO2016076503A1 (ko) 폴리카보네이트계 열가소성 수지 조성물 및 이를 이용한 제품
WO2013062170A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2014061891A1 (ko) 유리섬유 강화 폴리카보네이트 난연 수지 조성물
WO2012091307A2 (ko) 난연성 열가소성 수지 조성물
EP2558533A2 (en) Impact-resistant methyl methacrylate resin composition having improved scratch resistance
WO2013085090A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
CN103172960A (zh) 具有流动性、透明性和冲击强度的热塑性树脂组合物
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2018070631A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018124790A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2011052849A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2012091294A1 (ko) 내충격성 및 저광 특성이 우수한 난연성 열가소성 수지 조성물
WO2011081317A2 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2014208857A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2013100303A1 (ko) 고광택 폴리카보네이트계 수지 조성물 및 그 성형품
WO2020111618A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2012091296A1 (ko) 저온에서의 백탁 현상이 개선된 열가소성 수지 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858810

Country of ref document: EP

Kind code of ref document: A1