WO2013094613A1 - 熱伝導性シート及び熱伝導性シートの製造方法 - Google Patents

熱伝導性シート及び熱伝導性シートの製造方法 Download PDF

Info

Publication number
WO2013094613A1
WO2013094613A1 PCT/JP2012/082817 JP2012082817W WO2013094613A1 WO 2013094613 A1 WO2013094613 A1 WO 2013094613A1 JP 2012082817 W JP2012082817 W JP 2012082817W WO 2013094613 A1 WO2013094613 A1 WO 2013094613A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
filler
thermally conductive
heat conductive
thermal
Prior art date
Application number
PCT/JP2012/082817
Other languages
English (en)
French (fr)
Inventor
荒巻 慶輔
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201280061296.7A priority Critical patent/CN103975429B/zh
Publication of WO2013094613A1 publication Critical patent/WO2013094613A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat conductive sheet that promotes heat dissipation from a heat-generating electronic component and the like, and a method for manufacturing the heat conductive sheet.
  • the semiconductor is attached to a heat sink such as a heat dissipating fan or a heat dissipating plate via a heat conductive sheet.
  • a heat conductive sheet a sheet in which a filler such as an inorganic filler is dispersed and contained in silicone is widely used.
  • further improvement in thermal conductivity is required, and in general, for the purpose of high thermal conductivity, it is possible to respond by increasing the filling rate of the inorganic filler mixed in the matrix. Yes.
  • the filling rate of the inorganic filler is increased, flexibility is impaired, or powder falling occurs because the filling rate of the inorganic filler is high, so there is a limit to increasing the filling rate of the inorganic filler.
  • the inorganic filler examples include alumina, aluminum nitride, and aluminum hydroxide.
  • scale-like particles such as boron nitride and graphite, carbon fibers, and the like may be filled in the matrix. This is due to the anisotropy of the thermal conductivity of the scaly particles.
  • carbon fiber has a thermal conductivity of about 600 to 1200 W / mK in the fiber direction.
  • Boron nitride has a thermal conductivity of about 110 W / mK in the plane direction and about 2 W / mK in a direction perpendicular to the plane direction, and is known to have anisotropy. .
  • the thermal conductivity of a thermally conductive sheet is improved when the filling amount of the thermally conductive filler is increased.
  • the fibrous heat conductive filler cannot increase the filling amount as compared with the spherical filler. Therefore, high thermal conductivity cannot be obtained with the fibrous thermal conductive filler alone.
  • the surface direction of the fibrous heat conductive filler is made the same as the thickness direction of the heat conductive sheet, which is the heat transfer direction, that is, the fibrous heat conductive filler is arranged in the thickness direction of the heat conductive sheet. By orienting, the thermal conductivity can be dramatically improved.
  • Patent Document 1 describes a method of applying a heat conductive composition containing carbon fiber and orienting the carbon fiber by applying a magnetic field. However, since fluidity is required for the orientation of the carbon fibers, the method described in Patent Document 1 cannot increase the filling amount of the heat conductive filler. Therefore, a heat conductive sheet is desired in which the heat conductive filler is oriented along the thickness direction of the heat conductive sheet and the heat conductivity in the thickness direction is good.
  • This invention is proposed in view of such a situation, and it aims at providing the manufacturing method of the heat conductive sheet with favorable heat conductivity of the thickness direction, and a heat conductive sheet.
  • the present inventor has expressed the “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when the surface of the heat conductive sheet is measured. It was found that there is a high correlation between the brightness L * and the thermal conductivity, and the present invention has been completed.
  • the present invention relates to a thermally conductive sheet comprising a thermally conductive composition containing a curable resin composition and a filler that aligns the thermally conductive filler in a predetermined direction, wherein the thermally conductive filler is thermally conductive.
  • the lightness L * represented by the “L *” value in the b color system is 32.5 or more.
  • the manufacturing method of the heat conductive sheet which concerns on this invention produces the heat conductive composition containing the curable resin composition, the heat conductive filler, and the filler which aligns a heat conductive filler in a predetermined direction.
  • JIS Z 8729 and “JIS Z 8730” as measured when the surface of the thermally conductive sheet is measured and the surface of the thermally conductive sheet is oriented along the thickness direction of the thermally conductive sheet and contains at least aluminum nitride.
  • the L * a * b Table lightness represented by "L *" value in the color scheme L * is 32.5 or more.
  • the thermal conductivity evaluation method includes a thermally conductive composition containing a curable resin composition, a thermally conductive filler, and a filler that aligns the thermally conductive filler in a predetermined direction.
  • the lightness L * represented by the “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when measuring the surface of the conductive sheet
  • the thermal conductivity of the sheet is evaluated.
  • the thermal conductive filler is oriented along the thickness direction of the thermal conductive sheet, and includes at least aluminum nitride as a filler.
  • the heat conductive filler is oriented along the thickness direction of the heat conductive sheet, and the heat in the thickness direction of the heat conductive sheet is The conductivity can be improved.
  • FIG. 1 is a flowchart for explaining an example of a method for producing a thermally conductive sheet according to the present invention.
  • FIG. 2 is an external view showing an example of an ultrasonic cutting machine used in a cutting step in the method for producing a thermally conductive sheet according to the present invention.
  • FIG. 3 is an external view showing an example of a slicing apparatus.
  • FIG. 4 is a flowchart for explaining an example of the arranging step in the method for producing another thermally conductive sheet according to the present invention.
  • Drawing 5 is a mimetic diagram for explaining an example of a temporary forming process, an alignment process, and a main forming process in a manufacturing method of a heat conductive sheet concerning the present invention.
  • FIG. 1 is a flowchart for explaining an example of a method for producing a thermally conductive sheet according to the present invention.
  • FIG. 2 is an external view showing an example of an ultrasonic cutting machine used in a cutting step in the method for producing a thermally conductive
  • FIG. 6 is a perspective view showing an example of a laminate obtained in the alignment step in the method for manufacturing a heat conductive sheet according to the present invention.
  • FIG. 7A is a perspective view showing an example of the molded body that has not been pressed, and
  • FIG. 7B is a perspective view showing an example of the molded body that has been pressed.
  • the thermally conductive sheet 1 includes a thermally conductive composition containing a curable resin composition, a thermally conductive filler, and a filler that aligns the thermally conductive filler in a predetermined direction.
  • the heat conductive filler is oriented along the thickness direction of the heat conductive sheet.
  • the thermally conductive sheet according to the present embodiment includes at least aluminum nitride in the thermally conductive sheet, and described in “JIS Z 8729” and “JIS Z 8730” when the surface of the thermally conductive sheet is measured.
  • the lightness L * represented by the “L *” value in the L * a * b color system is 32.5 or more.
  • the thermally conductive filler is oriented along the thickness direction of the thermally conductive sheet, and the thickness direction of the thermally conductive sheet is Thermal conductivity can be improved.
  • the color of an object generally consists of three elements: lightness (brightness), hue (hue), and saturation (brightness).
  • lightness (brightness), hue (hue), and saturation (brightness).
  • hue (hue)
  • saturation (brightness).
  • a color system that expresses these numerically objectively is necessary.
  • An example of such a color system is the L * a * b color system.
  • the L * a * b color system can be easily measured by a measuring instrument such as a commercially available spectrophotometer.
  • the L * a * b color system is a color system described in “JIS Z 8729” and “JIS Z 8730”, for example, and is shown by arranging each color in a spherical color space.
  • lightness is indicated by a position in the vertical axis (z-axis) direction
  • hue is indicated by a position in the outer peripheral direction
  • saturation is indicated by a distance from the central axis.
  • the position in the vertical axis (z-axis) direction indicating brightness is indicated by L *.
  • the value of the lightness L * is a positive number. The smaller the number, the lower the lightness and the darker the tendency. Specifically, the value of L * varies from 0 corresponding to black to 100 corresponding to white.
  • the positive direction of the x axis is the red direction
  • the positive direction of the y axis is the yellow direction
  • the negative direction of the x axis is the green direction
  • y The negative direction of the axis is the blue direction.
  • the position in the x-axis direction is represented by a * taking a value from ⁇ 60 to +60.
  • the position in the y-axis direction is represented by b * taking values from ⁇ 60 to +60.
  • a * and b * are positive and negative numbers representing chromaticity, and the closer to 0, the blacker the color becomes. Hue and saturation are represented by these a * and b * values.
  • the color becomes green when a * is less than ⁇ 1 and the color becomes red when a * is ⁇ 1 or more.
  • the color becomes bluish, and when b * exceeds +1, the color becomes yellow.
  • the lightness L * when it becomes 32.5 or more, it becomes whitish. This is because when the lightness L * is 32.5 or more, when the heat conductive sheet is observed from the direction perpendicular to the cut surface, the area of the heat conductive filler in the heat conductive sheet decreases, This is because white alumina and aluminum nitride are exposed on the surface of the heat conductive sheet. That is, when the lightness L * is 32.5 or more, it means that the thermally conductive filler is oriented along the thickness direction of the thermally conductive sheet.
  • the lightness L was obtained when the cross section of the heat conductive sheet containing carbon fiber as the heat conductive filler and containing aluminum nitride and alumina as the filler was used. When it becomes less than 32.5, it becomes dark. This is because when the lightness L * is less than 32.5, when the thermally conductive sheet is observed from a direction perpendicular to the cut surface, the area of the thermally conductive filler in the thermally conductive sheet increases, This is because white alumina and aluminum nitride are not easily exposed from the surface of the heat conductive sheet. That is, when the lightness L * is less than 32.5, it means that the heat conductive filler is not oriented along the thickness direction of the heat conductive sheet, compared to when the lightness L * is 32.5 or more. .
  • the thermal conductivity of the thermally conductive sheet is improved.
  • the thermal conductivity is improved when a large amount of pitch-based carbon fibers, for example, is filled as the thermally conductive filler. That is, it is considered that the thermal conductivity is improved when the lightness L * on the surface of the thermal conductive sheet is reduced.
  • the viscosity of the thermally conductive composition at the time of extrusion is not only increased by adding the content of the thermally conductive filler, but also by maintaining the shape by adding a filler. It is important to orient the heat conductive filler along the thickness direction of the heat conductive sheet.
  • the present inventor has expressed the “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when the surface of the heat conductive sheet is measured. It was found that there is a high correlation between the brightness L * and the thermal conductivity. Moreover, in order to orient the heat conductive filler along the thickness direction of the heat conductive sheet, the amount of aluminum nitride having a lower thermal conductivity than the heat conductive filler is less than the amount of heat conductive filler. I found that it has a big influence.
  • At least aluminum nitride is contained in the heat conductive sheet, and the lightness L * when the surface of the heat conductive sheet is measured is set to 32.5 or more, whereby the heat conductive filler is in the thickness direction of the heat conductive sheet.
  • the thermal conductivity in the thickness direction of the thermal conductive sheet can be improved.
  • the curable resin composition contained in the heat conductive sheet is not particularly limited, and for example, a silicone-based adhesive, an acrylic resin-based adhesive, or the like is used.
  • a silicone-based adhesive a condensation curable type or an addition curable type can be used.
  • the content of the curable resin composition is not particularly limited, and can be, for example, 25 to 45% by volume.
  • thermally conductive filler for example, carbon fibers can be used, and it is particularly preferable to use pitch-based carbon fibers.
  • Pitch-based carbon fibers are made from pitch as a main raw material and graphitized by heat treatment at a high temperature exceeding 2000 to 3000 ° C. or 3000 ° C. after each processing step such as melt spinning, infusibilization and carbonization.
  • the raw material pitch is divided into an isotropic pitch that is optically disordered and does not exhibit deflection, and an anisotropic pitch (mesophase pitch) in which constituent molecules are arranged in a liquid crystal form and exhibit optical anisotropy.
  • Carbon fibers manufactured from anisotropic pitch have better mechanical properties than carbon fibers manufactured from isotropic pitch, and electrical and thermal conductivity is increased. Therefore, it is preferable to use a mesophase pitch graphitized carbon fiber.
  • the average fiber length of the heat conductive filler is preferably 100 ⁇ m or more. By setting the average fiber length of the heat conductive filler to 100 ⁇ m or more, the heat conductive filler can be easily aligned in the same direction, so that the heat conductivity in the thickness direction of the heat conductive sheet can be improved.
  • the content of the heat conductive filler in the heat conductive sheet is preferably 15 to 25% by volume.
  • the content of the heat conductive filler is preferably 15 to 25% by volume.
  • the thermal resistance value can be more effectively lowered, so that the heat conductivity in the thickness direction of the heat conductive sheet can be improved.
  • content of a heat conductive filler shall be 25 volume% or less, when extruding a heat conductive composition with an extruder, it can prevent that extrusion becomes difficult, for example.
  • the filler makes it easy to align the thermally conductive filler in a predetermined direction due to the difference in flow rate from the thermally conductive filler in the thermally conductive composition, that is, the thermally conductive filler is thermally conductive along the extrusion direction. It is used to facilitate the orientation of the filler.
  • the filler is also used to function as a heat conductive material.
  • the filler for example, alumina, aluminum nitride, boron nitride, zinc oxide, silicon powder, metal powder can be used, and at least aluminum nitride is used.
  • Aluminum nitride has nitrogen in the molecule, and this nitrogen inhibits the reaction of the curable resin composition and suppresses the increase in the viscosity of the thermally conductive composition. Therefore, by using at least aluminum nitride as the filler, the heat conductive filler is more effectively placed in a predetermined direction, that is, the thickness of the heat conductive sheet, compared to when only alumina particles are used as the filler. It can be oriented along the direction. Therefore, since at least aluminum nitride is used as the filler, the thermally conductive filler can be more effectively oriented along the thickness direction of the thermally conductive sheet. Property can be improved.
  • the thermally conductive filler is oriented along the thickness direction of the thermally conductive sheet by using two or more kinds of spherical particles having different particle diameters as the filler, the thickness direction of the thermally conductive sheet The thermal conductivity of can be made better.
  • the content of the filler in the heat conductive sheet is preferably 40 to 50% by volume. Moreover, it is preferable to contain 5.1 volume% or more of aluminum nitride in a heat conductive sheet. By making the content of aluminum nitride in the thermally conductive sheet 5.1 volume% or more, the increase in the viscosity of the thermally conductive composition is effectively suppressed, and the thermally conductive filler is more effectively thermally conducted. Can be oriented along the thickness direction of the adhesive sheet.
  • the brightness L * represented by the “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when the surface of the heat conductive sheet was measured It can be more effectively 32.5 or more.
  • the heat conductivity of the thickness direction of a conductive sheet can be made more favorable by content of aluminum nitride in a heat conductive sheet being 5.1 volume% or more.
  • the average particle diameter of the filler is preferably 0.5 to 5 ⁇ m. By setting the average particle size of the filler to 0.5 ⁇ m or more and 5 ⁇ m or less, it functions sufficiently as a thermally conductive material, and the orientation of the thermally conductive filler is less likely to be disturbed in the thermally conductive composition.
  • the thermal conductivity in the thickness direction of the thermal conductive sheet 1 can be made better.
  • the large spherical particles may be 2 to 5 ⁇ m and the small spherical particles may be 0.3 to 2 ⁇ m. preferable.
  • the brightness L * represented by the “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when the surface of the heat conductive sheet is measured It can be surely 32.5 or more.
  • the L * a * b color system is taken as an example, but the method of selecting the color system is not particularly limited, and a table that can be converted into the L * a * b color system. Any color system may be used. For example, an XYZ color system or an L * C * h color system may be used.
  • the heat conductive sheet 1 mentioned above can be produced by the following manufacturing method, for example.
  • the manufacturing method of the heat conductive sheet which concerns on this Embodiment has heat conductive composition preparation process S1, orientation process S2, and cutting process S3, as shown in FIG.
  • Thermal conductive composition creation step S1 In heat conductive composition creation process S1, the heat conductive composition mentioned above is created.
  • the blending amount in the heat conductive composition is preferably, for example, 15 to 25% by volume of the heat conductive filler and 40 to 50% by volume of the filler.
  • the thermally conductive composition created in the thermally conductive composition creating step S1 is formed in a columnar shape, and the thermally conductive filler is oriented in the columnar longitudinal direction.
  • a columnar heat conductive composition in which the heat conductive filler is aligned in the columnar longitudinal direction L as shown in FIG. Article 2 can be formed.
  • the heat conductive composition prepared in the heat conductive composition preparation step S1 is applied onto a polyester film coated with a release material, and the columnar heat conduction as shown in FIG. The composition 2 may be formed.
  • the columnar thermal conductivity in the direction V perpendicular to the longitudinal direction L of the columnar thermal conductive composition 2 using an ultrasonic cutter 3 is used.
  • the thermally conductive sheet 1 can be formed while maintaining the orientation of the thermally conductive filler. Therefore, the orientation of the heat conductive filler is maintained in the thickness direction, and the heat conductive sheet 1 having good heat conduction characteristics can be obtained.
  • the ultrasonic cutting machine 3 includes a work table 5 on which the columnar heat conductive composition 2 is placed, and a columnar heat conductive composition on the work table 5 while applying ultrasonic vibration. And an ultrasonic cutter 4 for slicing 2.
  • the work table 5 is provided with a silicone rubber 7 on a metal moving table 6.
  • the moving table 6 can be moved in a predetermined direction by the moving mechanism 8, and sequentially feeds the columnar heat conductive composition 2 to the lower part of the ultrasonic cutter 4.
  • the silicone rubber 7 has a thickness sufficient to receive the cutting edge of the ultrasonic cutter 4.
  • the ultrasonic cutter 4 has a knife 9 for slicing the columnar thermal conductive composition 2, an ultrasonic oscillation mechanism 10 for applying ultrasonic vibration to the knife 9, and an elevating mechanism 11 for raising and lowering the knife 9.
  • the knife 9 has its cutting edge directed toward the work table 5 and is moved up and down by the elevating mechanism 11 to slice the columnar thermal conductive composition 2 placed on the work table 5.
  • the dimensions and material of the knife 9 are determined according to the size and composition of the columnar heat conductive composition 2.
  • the knife 9 is made of steel having a width of 40 mm, a thickness of 1.5 mm, and a cutting edge angle of 10 °.
  • the ultrasonic oscillation mechanism 10 applies ultrasonic vibration to the knife 9 in the slicing direction of the columnar thermal conductive composition 2.
  • the transmission frequency is 20.5 kHz
  • the amplitude is 50 ⁇ m, 60 ⁇ m
  • Adjustment is possible in three stages of 70 ⁇ m.
  • Such an ultrasonic cutting machine 3 slices the columnar thermal conductive composition 2 while applying ultrasonic vibration to the ultrasonic cutter 4, thereby aligning the thermal conductive filler of the thermal conductive sheet 1. Can be maintained in the thickness direction of the heat conductive sheet 1.
  • the heat conductive sheet 1 sliced while applying ultrasonic vibration by the ultrasonic cutting machine 3 has a lower thermal resistance than the heat conductive sheet sliced without applying ultrasonic vibration. Since the ultrasonic cutter 3 imparts ultrasonic vibration in the slicing direction to the ultrasonic cutter 4, the thermal conductive filler has a low interface thermal resistance and is oriented in the thickness direction of the thermal conductive sheet 1. This is because it is difficult to be laid down by the knife 9. On the other hand, in a thermally conductive sheet sliced without applying ultrasonic vibration, the orientation of the thermally conductive filler is disturbed by the frictional resistance of the knife, and the exposure to the cut surface is reduced, which increases the thermal resistance. End up. Therefore, by using the ultrasonic cutting machine 3, the heat conductive sheet 1 having excellent heat conduction characteristics can be obtained.
  • the heat conductive filler is oriented along the thickness direction of the heat conductive sheet 1 and the surface of the heat conductive sheet 1 is measured.
  • a heat conductive sheet 1 having a lightness L * of 32.5 or more represented by an “L *” value in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” can be obtained. .
  • the alignment step S ⁇ b> 2 of the above-described method for manufacturing a heat conductive sheet may include a temporary molding step S ⁇ b> 21, an alignment step S ⁇ b> 22, and a main molding step S ⁇ b> 23.
  • the heat conductive sheet 1 having a lightness L * represented by a value of “*” of 32.5 or more can be obtained more reliably.
  • the heat conductive fillers in the heat conductive sheet 1 can be more reliably aligned in the same direction, and the heat conductivity in the thickness direction of the heat conductive sheet 1 can be further improved.
  • the detailed description is abbreviate
  • Temporal molding process S21 In temporary molding process S21, as shown to FIG. 5 (A), the heat conductive composition 12 created by heat conductive composition preparation process S1 is extruded with the extruder 13, and a heat conductive filler is followed along an extrusion direction.
  • a long columnar temporary molded body 14 (hereinafter referred to as a temporary molded body 14) in which is oriented.
  • the extruder 13 is configured in an elongated cylindrical shape, and the diameter W2 of the opening 12B on the side from which the heat conductive composition 12 is discharged is the main body portion. It is preferable that the diameter is smaller than the inner diameter W1 of 12A. Further, in the extruder 13, the inner diameter W1 of the main body 12A is reduced in a taper shape from a predetermined position in the longitudinal direction toward the extrusion direction, and the aperture W2 of the opening 12B is larger than the inner diameter W1 of the main body 12A. The diameter may be reduced.
  • the heat conductive filler is easily along the extrusion direction. Thereby, a heat conductive filler can be more reliably orientated in the longitudinal direction of the temporary molding 14.
  • the diameter W2 of the opening 12B is set to about 1.5 to 9.5 mm. Is preferred. In this case, when the diameter W2 of the opening 12B is set to 1.5 mm or more, it is possible to prevent the extrusion from becoming difficult when the heat conductive composition 12 is extruded by the extruder 13. Moreover, since the orientation of the heat conductive filler is hardly disturbed by setting the diameter W2 of the opening 12B to 9.5 mm or less, the heat conductivity in the thickness direction of the heat conductive sheet 1 can be further improved. it can.
  • the cross-sectional shape of the opening 12B can be, for example, a circular shape, a triangular shape, a rectangular shape, or a square shape, but is preferably a rectangular shape or a square shape.
  • the temporary molded body 14 has a prismatic shape. Therefore, in the alignment step S22, the plurality of temporary molded bodies 14 are aligned so as to be adjacent to the direction orthogonal to the longitudinal direction, and the aligned plurality of temporary molded bodies 14 are arranged in a direction substantially orthogonal to the alignment direction.
  • the laminated body 14A When obtaining the laminated body 14A (hereinafter, referred to as the laminated body 14A), it is difficult to generate a gap between the laminated bodies 14A. Thereby, since it becomes difficult for bubbles to be contained in the laminated body 14A, it is possible to obtain the main molded body 16 having more excellent flame retardancy in the main molding step S23.
  • the temporary molded body 14 has heat conductive fillers oriented along the direction of extrusion by the extruder 13, and has an elongated columnar shape, for example, an elongated square columnar shape, an elongated triangular columnar shape, or an elongated columnar shape.
  • the plurality of temporary molded bodies 14 formed in the temporary molding step S21 are adjacent to each other in the direction orthogonal to the longitudinal direction.
  • the laminated body 14A is obtained.
  • the temporary molded bodies 14 are aligned in a predetermined frame 15, and a laminated body 14A in which the temporary molded bodies 14 are arranged in a rectangular parallelepiped shape or a cubic shape is obtained.
  • the frame 15 is used as a fixing means for fixing the laminated body 14A when the main molded body 16 is molded in the main molding step S23, and prevents the laminated body 14A from being greatly deformed.
  • the frame 15 is made of, for example, metal.
  • the laminated body 14A obtained in the alignment step S22 is cured, so that FIG. 5E, FIG. 7A, and FIG.
  • the molded body 16 in which the temporary molded bodies 14 constituting the laminated body 14A are integrated is molded.
  • the method of curing the laminate 14A include a method of heating the laminate 14A with a heating device and a method of heating and pressurizing the laminate 14A with a heating and pressurizing device.
  • an acrylic resin is used as the curable resin composition constituting the heat conductive composition 12, for example, the laminate 14A is cured at room temperature by including an isocyanate compound in the heat conductive composition 12. It is possible.
  • a method of heating and pressurizing the laminate 14A with a heating and pressurizing device that is, when curing the laminate 14A, a plurality of temporary molded bodies 14 constituting the laminate 14A. It is preferable to press in a direction perpendicular to the longitudinal direction (vertical direction). By pressing the laminated body 14A in this way, air bubbles can be more reliably removed from the laminated body 14A, so that it is possible to obtain the molded body 16 with better flame retardancy in the main molding step S23. It becomes.
  • the main molded body 16 molded in the main molding step S23 is cut into a predetermined dimension by the ultrasonic cutting machine 3 in a direction orthogonal to the longitudinal direction of the temporary molded body 14.
  • the ultrasonic cutting machine 3 slices the molded body 16 into individual heat conductive sheets 1 in order to obtain the heat conductive sheet 1.
  • the main molded body 16 is sliced by the ultrasonic cutter 4 in the direction of the arrow perpendicular to the longitudinal direction of the temporary molded body 14, so that heat conduction is maintained while maintaining the orientation of the thermally conductive filler.
  • the sheet 1 can be formed. Therefore, it is possible to obtain the heat conductive sheet 1 having good heat conduction characteristics in which the orientation of the heat conductive filler is maintained in the thickness direction.
  • the color evaluation method according to the present embodiment is “L” in the L * a * b color system described in “JIS Z 8729” and “JIS Z 8730” when the surface of the above-described heat conductive sheet 1 is measured.
  • the thermal conductivity of the heat conductive sheet 1 is evaluated using the lightness L * represented by the value “*”. For example, when the lightness L * when the surface of the thermal conductive sheet 1 is measured is 32.5 or more, the thermal conductive filler is oriented along the thickness direction of the thermal conductive sheet 1, and thus the thermal conductivity. It can be evaluated that the thermal conductivity in the thickness direction of the sheet 1 is good.
  • the heat conductive filler is not oriented along the thickness direction of the heat conductive sheet 1, and thus the heat conduction. It can be evaluated that the thermal conductivity in the thickness direction of the conductive sheet 1 is not good.
  • thermo conductivity sheets obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were evaluated for the orientation, thermal conductivity, and appearance of pitch-based carbon fibers.
  • Example 1 In Example 1, 24% by volume of alumina particles (filler) (product name: DAW-03, manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle size of 3 ⁇ m were added to the two-component addition reaction type liquid silicone resin, and the average particle size Aluminum nitride particles 1 ⁇ m in diameter (manufactured by Tokuyama Co., Ltd.) 18.3% by volume, pitch-based carbon fiber (thermal conductive filler) having an average major axis length of 150 ⁇ m and an average minor axis length of 8 ⁇ m (manufactured by Teijin Limited A silicone resin composition (thermally conductive composition) was prepared by dispersing 24.1% by volume of trade name: Lahima R-A301).
  • the two-component addition reaction type liquid silicone resin is composed of 16.8% by volume of silicone A solution (organopolysiloxane having a vinyl group) and 18.8% by volume of silicone B solution (organopolysiloxane having an H—Si group). Are mixed.
  • the obtained silicone resin composition was extruded into a mold (20 mm ⁇ 20 mm) coated with a release material to mold a silicone molded body.
  • the obtained silicone molding was cured in an oven at 100 ° C. for 1 hour to obtain a silicone cured product.
  • the obtained cured silicone was cut with an ultrasonic cutter so as to have a thickness of 2.0 mm to obtain a thermally conductive sheet having a thickness of 2.0 mm.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Example 2 In Example 2, alumina particles having an average particle diameter of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 16.8 vol% of silicone A liquid and 18.8 vol% of silicone B liquid were mixed.
  • Product name: DAW-03 11.7% by volume
  • aluminum nitride particles having an average particle diameter of 1 ⁇ m Tokuyama Co., Ltd.
  • average major axis length 150 ⁇ m average minor axis
  • a silicone resin composition was prepared by dispersing 23.5% by volume of pitch-based carbon fiber (trade name: Lahima R-A301, manufactured by Teijin Limited) having a length of 8 ⁇ m, the same as in Example 1.
  • pitch-based carbon fiber trade name: Lahima R-A301, manufactured by Teijin Limited
  • Example 3 In Example 3, alumina particles having an average particle diameter of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 18.8% by volume of a silicone A liquid and 18.8% by volume of a silicone B liquid were mixed.
  • Example 4 alumina particles having an average particle diameter of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 18.8 vol% of silicone A liquid and 18.8 vol% of silicone B liquid were mixed.
  • Product name: DAW-03 28% by volume
  • aluminum nitride particles having an average particle diameter of 1 ⁇ m made by Tokuyama Co., Ltd.
  • 14.3% by volume average major axis length 150 ⁇ m
  • average minor axis length A silicone resin composition was prepared by dispersing 20.1% by volume of 8 ⁇ m pitch-based carbon fiber (trade name: Lahima R-A301, manufactured by Teijin Limited).
  • the obtained silicone resin composition was coated (laminated coating) on a polyester film coated with a release material to prepare a silicone molded body.
  • the obtained silicone molded body was heated in an oven at 100 ° C. for 1 hour to obtain a cured silicone product.
  • the obtained cured silicone was cut with an ultrasonic cutter so as to have a thickness of 2.0 mm to obtain a thermally conductive sheet having a thickness of 2.0 mm.
  • the slice speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • Example 5 alumina particles having an average particle diameter of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 18.8 vol% of silicone A liquid and 18.8 vol% of silicone B liquid were mixed.
  • Product name: DAW-03 37.2% by volume
  • aluminum nitride particles having an average particle diameter of 1 ⁇ m made by Tokuyama Co., Ltd.
  • a silicone resin composition was prepared by dispersing 20.1% by volume of pitch-based carbon fiber (trade name: Lahima R-A301, manufactured by Teijin Ltd.) having a length of 8 ⁇ m.
  • pitch-based carbon fiber trade name: Lahima R-A301, manufactured by Teijin Ltd.
  • Example 6 aluminum nitride particles having an average particle diameter of 1 ⁇ m (inc.) Were added to a two-component addition reaction type liquid silicone resin in which 17.1% by volume of silicone A liquid and 17.1% by volume of silicone B liquid were mixed. 42.6% by volume) and 23.2% by volume of pitch-based carbon fiber having an average major axis length of 150 ⁇ m and an average minor axis length of 8 ⁇ m (manufactured by Teijin Limited, trade name: Lahima R-A301).
  • a thermally conductive sheet was obtained in the same manner as in Example 1 except that the silicone resin composition was prepared by dispersing.
  • Comparative Example 1 alumina particles having an average particle size of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 18.8 vol% of silicone A liquid and 18.8 vol% of silicone B liquid were mixed.
  • Product name: DAW-03 42.3% by volume
  • pitch-based carbon fiber with an average major axis length of 150 ⁇ m and an average minor axis length of 8 ⁇ m manufactured by Teijin Limited, trade name: Lahima R-A301
  • a thermally conductive sheet was obtained in the same manner as in Example 1 except that 24.1% by volume was dispersed to prepare a silicone resin composition.
  • Comparative Example 2 In Comparative Example 2, alumina particles having an average particle diameter of 3 ⁇ m (electrochemical industry) were added to a two-component addition reaction type liquid silicone resin in which 18.8 vol% of silicone A liquid and 18.8 vol% of silicone B liquid were mixed.
  • Product name: DAW-03 41.3% by volume
  • pitch-based carbon fiber with an average major axis length of 150 ⁇ m and an average minor axis length of 8 ⁇ m manufactured by Teijin Limited, trade name: Lahima R-A301
  • a thermally conductive sheet was obtained in the same manner as in Example 4 except that 20.1% by volume was dispersed to prepare a silicone resin composition.
  • Comparative Example 3 In Comparative Example 3, alumina particles having an average particle diameter of 3 ⁇ m (manufactured by Denki Kagaku Kogyo Co., Ltd.) were added to a two-component addition-reaction type liquid silicone resin in which 18% by volume of silicone A solution and 18% by volume of silicone B solution were mixed.
  • Product name: DAW-03 44.8% by volume
  • pitch-based carbon fiber having an average major axis length of 150 ⁇ m and an average minor axis length of 8 ⁇ m (trade name: Lahima R-A301, manufactured by Teijin Limited), 19.2 volumes % Was dispersed in the same manner as in Example 1 except that a silicone resin composition was prepared.
  • Table 1 shows a summary of conditions and the like of Examples 1 to 6 and Comparative Examples 1 to 3.
  • the orientation of the pitch-based carbon fibers was evaluated by observing the cross section of the thermally conductive sheet with an SEM and measuring the blackness using the L * a * b color system.
  • the pitch-based carbon fibers were oriented with respect to the thickness direction of the heat conductive sheets.
  • the heat conductive sheets obtained in Examples 1 to 3, Example 5 and Example 6 are better in pitch-based carbon fiber than the heat conductive sheets obtained in Example 4.
  • the blackness of the cross section of the heat conductive sheet was measured using the L * a * b color system.
  • a color display method representing the L * a * b color system defined in “JIS Z 8729” was used as an index of blackness.
  • a spectrophotometer product name: CM-700d, manufactured by Konica Minolta Sensing Co., Ltd. was used for measurement of blackness using the L * a * b color system.
  • the heat conductive sheets obtained in Examples 1 to 6 are “L *” values in the L * a * b color system described in “JIS Z 8729” when the surface of the heat conductive sheet is measured.
  • the lightness L * expressed was 32.5 or more.
  • the heat conductive sheets obtained in Comparative Examples 1 to 3 are “L *” in the L * a * b color system described in “JIS Z 8729” when the surface of the heat conductive sheet is measured.
  • the lightness L * represented by the value was less than 32.5. From these results, the heat conductive sheets obtained in Examples 1 to 6 are more effective in pitch-based carbon fibers than the heat conductive sheets obtained in Comparative Examples 1 to 3. It is thought that it is orientated along the thickness direction of a heat conductive sheet.
  • the lightness L * represented by the “L *” value in the L * a * b color system when aluminum nitride is contained in the heat conductive sheet and the surface of the heat conductive sheet is measured is 32. It was found that the pitch-based carbon fiber was oriented along the thickness direction of the heat conductive sheet and the heat conductivity in the thickness direction of the heat conductive sheet could be improved by being 0.5 or more.
  • Table 1 shows the measurement results of the thermal conductivity of the thermal conductive sheets obtained in Examples 1 to 6 and Comparative Examples 1 to 3. Evaluation of thermal conductivity was performed by a measurement method based on ASTM-D5470.
  • the heat conductive sheets obtained in Examples 1 to 6 have a heat conductivity in the thickness direction of the heat conductive sheet of 22.3 to 33.1 W / mK in the entire cross section of the heat conductive sheet. It was found that the thermal conductivity in the thickness direction was good. This is because the heat conductive sheets obtained in Examples 1 to 6 have the lightness represented by the “L *” value in the L * a * b color system when the surface of the heat conductive sheet is measured. Since L * was 32.5 or more, it is considered that the pitch-based carbon fibers were oriented along the thickness direction of the thermal conductive sheet, and the thermal conductivity in the thickness direction of the thermal conductive sheet could be improved. .
  • the thermal conductive sheets obtained in Comparative Examples 1 to 3 have a thermal conductivity of 20.2 W / mK or less, compared with the thermal conductive sheets obtained in Examples 1 to 6. Thus, it was found that the thermal conductivity in the thickness direction is not good. This is because the thermal conductive sheets obtained in Comparative Examples 1 to 3 do not contain aluminum nitride in the thermal conductive sheet, and the L * when the surface of the thermal conductive sheet is measured. This is presumably because the lightness L * represented by the “L *” value in the a * b color system is not 32.5 or higher.
  • the defect rate was evaluated based on the number of air bubbles entrained on the surface of the thermally conductive sheet or through holes in the thermally conductive sheet when the thermally conductive sheet was sliced from the cured silicone. .
  • the presence or absence of bubbles and whether or not the sheet has a through hole were determined by visually observing the cross section of the thermally conductive sheet.
  • the heat conductive sheet obtained in Comparative Example 1 had a high defect rate of 28% because bubbles were entrained on the surface and through holes were present in the sheet. This is presumably because the dispersibility of the silicone resin composition was poor because aluminum nitride was not contained in the heat conductive sheet.
  • the heat conductive sheet obtained in Comparative Example 3 has no bubbles entrained on the surface of the heat conductive sheet, and since there are no through holes in the heat conductive sheet, the defect rate is less than 5%. It was low. However, compared with Examples 1 to 6, the thermal conductivity was not good. This is presumably because the heat conductive sheet obtained in Comparative Example 3 did not contain aluminum nitride and the amount of alumina was too large.

Abstract

 厚み方向の熱伝導性が良好な熱伝導性シートを提供する。熱伝導性シートは、シリコーン樹脂と、熱伝導性フィラーと、熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含み、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されており、充填材として、少なくとも窒化アルミニウムを含む。また、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上である。

Description

熱伝導性シート及び熱伝導性シートの製造方法
 本発明は、発熱性電子部品等の放熱を促す熱伝導性シート及び熱伝導性シートの製造方法に関する。
 本出願は、日本国において2011年12月20日に出願された日本特許出願番号特願2011-278788を基礎として優先権を主張するものであり、これらの出願は参照されることにより、本出願に援用される。
 電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。半導体は、効率よく放熱させるために、熱伝導性シートを介して放熱ファン、放熱板等のヒートシンクに取り付けられている。熱伝導性シートとしては、シリコーンに無機フィラー等の充填材を分散含有させたものが広く使用されている。このような放熱部材においては、更なる熱伝導率の向上が要求されており、一般には、高熱伝導性を目的として、マトリックス内に配合されている無機フィラーの充填率を高めることにより対応している。しかし、無機フィラーの充填率を高めると、柔軟性が損なわれたり、無機フィラーの充填率が高いことから粉落ちが発生するため、無機フィラーの充填率を高めることには限界がある。
 無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等をマトリックス内に充填させることがある。これは、鱗片状粒子等の有する熱伝導率の異方性によるものである。例えば、炭素繊維の場合には、繊維方向に約600~1200W/mKの熱伝導率を有する。窒化ホウ素の場合には、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度の熱伝導率を有しており、異方性を有することが知られている。
 一般に、熱伝導性シートは、熱伝導性フィラーの充填量を多くすると熱伝導率が向上することが知られている。しかしながら、繊維状の熱伝導性フィラーは、球状のフィラーと比べて充填量を多くすることができない。そのため、繊維状の熱伝導性フィラー単独では、高い熱伝導率を得ることができない。ここで、繊維状の熱伝導性フィラーの面方向を熱の伝達方向である熱伝導性シートの厚み方向と同じにする、すなわち、繊維状の熱伝導性フィラーを熱伝導性シートの厚み方向に配向させることによって、熱伝導性を飛躍的に向上させることができる。
 特許文献1には、炭素繊維を含む熱伝導性組成物を塗布し、磁場をかけて炭素繊維を配向させる方法が記載されている。しかし、炭素繊維が配向するには、流動性が必要となるため、特許文献1に記載の方法では、熱伝導性フィラーの充填量を多くすることができない。そのため、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向させ、厚み方向の熱伝導性が良好な熱伝導性シートが望まれている。
特開2006-335957号公報
 本発明は、このような実情に鑑みて提案されたものであり、厚み方向の熱伝導性が良好な熱伝導性シート及び熱伝導性シートの製造方法を提供することを目的とする。
 本件発明者は、鋭意検討の結果、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*と熱伝導率との間に、高い相関関係があることを見出し、本発明を完成するに至った。
 本発明は、硬化性樹脂組成物と、熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含む熱伝導性シートにおいて、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されており、充填材として、少なくとも窒化アルミニウムを含み、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上である。
 本発明に係る熱伝導性シートの製造方法は、硬化性樹脂組成物と、熱伝導性フィラーと、熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物作成する熱伝導性組成物作成工程と、熱伝導性組成物作成工程で作成した熱伝導性組成物を柱状に形成するとともに、熱伝導性フィラーを柱状の長手方向に配向させる配向工程と、柱状の熱伝導性組成物を、長手方向と直交する方向に、超音波切断機により所定の寸法に切断して熱伝導性シートを得る切断工程とを有し、熱伝導性シートは、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されており、充填材として、少なくとも窒化アルミニウムを含み、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色方式における「L*」値で表される明度L*が32.5以上である。
 本発明に係る熱伝導率評価方法は、硬化性樹脂組成物と、熱伝導性フィラーと、熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含む熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*を用いて、熱伝導性シートの熱伝導率を評価し、熱伝導性シートは、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されており、充填材として、少なくとも窒化アルミニウムを含む。
 本発明によれば、熱伝導性シート中に少なくとも窒化アルミニウムを含み、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*を32.5以上とすることにより、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向され、熱伝導性シートの厚み方向の熱伝導性を良好にすることができる。
図1は、本発明に係る熱伝導性シートの製造方法の一例を説明するためのフローチャートである。 図2は、本発明に係る熱伝導性シートの製造方法における切断工程において用いられる超音波切断機の一例を示す外観図である。 図3は、スライス装置の一例を示す外観図である。 図4は、本発明に係る他の熱伝導性シートの製造方法における配列工程の一例を説明するためのフローチャートである。 図5は、本発明に係る熱伝導性シートの製造方法における仮成型工程、整列工程及び本成型工程の一例を説明するための模式図である。 図6は、本発明に係る熱伝導性シートの製造方法における整列工程で得られた積層体の一例を示す斜視図である。 図7(A)はプレスを施していない本成型体の一例を示す斜視図であり、図7(B)はプレスを施した本成型体の一例を示す斜視図である。
 以下、本発明の実施の形態(以下、本実施の形態と称する。)について、図面を参照しながら下記順序にて詳細に説明する。
1.熱伝導性シート
2.熱伝導性シートの製造方法
3.他の熱伝導性シートの製造方法
4.熱伝導率評価方法
<1.熱伝導性シート>
 本実施の形態に係る熱伝導性シート1は、硬化性樹脂組成物と、熱伝導性フィラーと、熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含み、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されている。また、本実施の形態に係る熱伝導性シートは、熱伝導性シート中に少なくとも窒化アルミニウムを含み、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上である。熱伝導性シートの表面を測定したときの明度L*を32.5以上とすることにより、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向され、熱伝導性シートの厚み方向の熱伝導性を良好にすることができる。
(L*a*b表色系における明度L*と熱伝導率との間の相関関係について)
 物体の色は、一般に、明度(明るさ)、色相(色合い)及び彩度(鮮やかさ)の3つの要素からなる。これらを正確に測定し、表現するには、これらを客観的に数値化して表現する表色系が必要となる。このような表色系としては、例えば、L*a*b表色系が挙げられる。L*a*b表色系は、例えば、市販されている分光測色計などの測定器によって、容易に測定を行うことができる。
 L*a*b表色系は、例えば、「JIS Z 8729」及び「JIS Z 8730」に記載されている表色系であって、各色を球形の色空間に配置して示される。L*a*b表色系においては、明度を縦軸(z軸)方向の位置で示し、色相を外周方向の位置で示し、彩度を中心軸からの距離で示す。
 明度を示す縦軸(z軸)方向の位置は、L*で示される。明度L*の値は正の数であり、その数字が小さいほど明度が低いことになり、暗くなる傾向を持つ。具体的に、L*の値は黒に相当する0から白に相当する100まで変化する。
 また、球形の色空間をL*=50の位置で水平に切断した断面図において、x軸の正方向が赤方向、y軸の正方向が黄方向、x軸の負方向が緑方向、y軸の負方向が青方向である。x軸方向の位置は、-60~+60の値をとるa*によって表される。y軸方向の位置は、-60~+60の値をとるb*によって表される。このように、a*と、b*は、色度を表す正負の数字であり、0に近づくほど黒くなる。色相及び彩度は、これらのa*の値及びb*の値によって表される。
 L*a*b表色系においては、明度L*が32以上になると白っぽくなり、明度L*が32未満になると黒っぽくなる。また、L*a*b表色系においては、a*が-1未満になると緑っぽくなり、a*が-1以上となると赤っぽくなる。また、b*が-1未満になると青っぽくなり、b*が+1を超えると黄色っぽくなる。
 例えば、熱伝導性フィラーとして炭素繊維を含み、充填材として窒化アルミニウムとアルミナとを含む熱伝導性シートの断面をL*a*b表色系を用いて黒色度を測定したときに、明度L*が32.5以上になると白っぽくなる。これは、明度L*が32.5以上になると、熱伝導性シートを切断面に対して垂直方向から観察したときに、熱伝導性シート中の熱伝導性フィラーの面積が少なくなり、また、白色のアルミナと窒化アルミニウムが熱伝導性シート表面に露出するためである。すなわち、明度L*が32.5以上になると、熱伝導性フィラーが、熱伝導性シートの厚み方向に沿って配向されていることを意味する。
 一方、熱伝導性フィラーとして炭素繊維を含み、充填材として窒化アルミニウムとアルミナとを含む熱伝導性シートの断面をL*a*b表色系を用いて黒色度を測定したときに、明度L*が32.5未満になると黒っぽくなる。これは、明度L*が32.5未満になると、熱伝導性シートを切断面に対して垂直方向から観察したときに、熱伝導性シート中の熱伝導性フィラーの面積が多くなり、また、白色のアルミナと窒化アルミニウムが熱伝導性シート表面から露出されにくくなるためである。すなわち、明度L*が32.5未満になると、明度L*が32.5以上のときと比較して、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向されなくなることを意味する。
 一般に、熱伝導率が高い熱伝導性フィラーを熱伝導性シートに充填すると、熱伝導性シートの熱伝導率が向上する。本来であれば、熱伝導性フィラーとして、例えばピッチ系炭素繊維を多量に充填すると、熱伝導率が向上すると考えられる。すなわち、熱伝導性シートの表面における明度L*が小さくなると、熱伝導率が向上すると考えられる。しかし、高い熱伝導率を得るには、熱伝導性フィラーの含有量を単純に増やすのではなく、充填材を添加して形状を保持するだけでなく、押出し時の熱伝導性組成物の粘度を下げて、熱伝導性フィラーを熱伝導性シートの厚み方向に沿って配向させることが重要となる。
 本件発明者は、鋭意検討の結果、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*と熱伝導率との間に高い相関関係があることを見出した。また、熱伝導性フィラーを熱伝導性シートの厚み方向に沿って配向させるためには、熱伝導性フィラーの配合量よりも、熱伝導性フィラーよりも熱伝導率が低い窒化アルミニウムの配合量が大きく影響することを見出した。すなわち、熱伝導性シート中に少なくとも窒化アルミニウムを含み、熱伝導性シートの表面を測定したときの明度L*を32.5以上とすることにより、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向され、熱伝導性シートの厚み方向の熱伝導性を良好にすることができる。
(硬化性樹脂組成物)
 熱伝導性シートに含まれる硬化性樹脂組成物は、特に限定されず、例えば、シリコーン系接着剤、アクリル樹脂系接着剤等が用いられる。シリコーン系接着剤としては、縮合硬化型や付加硬化型のものを用いることができる。硬化性樹脂組成物の含有量は、特に限定されないが、例えば、25~45体積%とすることができる。
(熱伝導性フィラー)
 熱伝導性フィラーとしては、例えば、炭素繊維を用いることができ、特にピッチ系の炭素繊維を用いることが好ましい。ピッチ系の炭素繊維は、ピッチを主原料とし、溶融紡糸、不融化及び炭化などの各処理工程後に2000~3000℃又は3000℃を超える高温で熱処理して黒鉛化させたものである。原料ピッチは、光学的に無秩序で偏向を示さない等方性ピッチと、構成分子が液晶状に配列し、光学的異方性を示す異方性ピッチ(メソフェーズピッチ)に分けられる。異方性ピッチから製造された炭素繊維は、等方性ピッチから製造された炭素繊維よりも機械特性に優れており、電気及び熱の伝導性が高くなる。そのため、メソフェーズピッチ系の黒鉛化炭素繊維を用いることが好ましい。
 熱伝導性フィラーの平均繊維長は、100μm以上であることが好ましい。熱伝導性フィラーの平均繊維長を100μm以上とすることにより、熱伝導性フィラーが同じ方向に整列しやすくなるため、熱伝導性シートの厚み方向の熱伝導性をより良好にすることができる。
 熱伝導性シート中の熱伝導性フィラーの含有量は、15~25体積%とすることが好ましい。熱伝導性フィラーの含有量を15体積%以上とすることにより、より効果的に熱抵抗値を下げることができるため、熱伝導性シートの厚み方向の熱伝導性をより良好にすることができる。また、熱伝導性フィラーの含有量を25体積%以下とすることにより、例えば押出機で熱伝導性組成物を押出す際に、押出しが困難となることを防止することができる。
(充填材)
 充填材は、熱伝導性組成物における熱伝導性フィラーとの流速の違いにより、所定の方向に熱伝導性フィラーを整列させやすくする、すなわち、熱伝導性フィラーを押出方向に沿って熱伝導性フィラーを配向させやすくするために用いられている。また、充填材は、熱伝導性材料として機能させるためにも用いられている。
 充填材としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、酸化亜鉛、シリコン粉、金属粉末を用いることができ、少なくとも窒化アルミニウムが用いられる。窒化アルミニウムは、その分子内に窒素を有しており、この窒素が硬化性樹脂組成物の反応を阻害して、熱伝導性組成物の粘度の上昇を抑制する。そのため、充填材として、少なくとも窒化アルミニウムを用いることにより、充填材としてアルミナ粒子のみを用いたときと比較して、より効果的に熱伝導性フィラーを所定の方向、すなわち、熱伝導性シートの厚み方向に沿って配向させることができる。したがって、充填材として、少なくとも窒化アルミニウムを用いることにより、より効果的に熱伝導性フィラーを熱伝導性シートの厚み方向に沿って配向させることができるため、熱伝導性シートの厚み方向の熱伝導性を良好にすることができる。
 また、充填材としては、粒径が異なる2種以上の球状粒子を用いることにより、より効果的に、熱伝導性シートの厚み方向に沿って熱伝導性フィラーを配向させやすくすることができる。その結果、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*をより確実に32.5以上とすることができる。このように、充填材として、粒径が異なる2種以上の球状粒子を用いることにより、熱伝導性フィラーが熱伝導性シートの厚み方向に沿って配向されるため、熱伝導性シートの厚み方向の熱伝導性をより良好にすることができる。
 熱伝導性シート中の充填材の含有量は、40~50体積%とすることが好ましい。また、窒化アルミニウムは、熱伝導性シート中において5.1体積%以上含むことが好ましい。熱伝導性シート中における窒化アルミニウムの含有量を5.1体積%以上とすることにより、熱伝導性組成物の粘度の上昇を効果的に抑制し、より効果的に熱伝導性フィラーを熱伝導性シートの厚み方向に沿って配向させることができる。その結果、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*を、より効果的に32.5以上とすることができる。このように、熱伝導性シート中における窒化アルミニウムの含有量を5.1体積%以上とすることにより、伝導性シートの厚み方向の熱伝導性をより良好にすることができる。
 充填材の平均粒子径は、0.5~5μmであることが好ましい。充填材の平均粒子径を0.5μm以上5μm以下とすることにより、熱伝導性材料として十分に機能し、また、熱伝導性組成物中において、熱伝導性フィラーの配向が乱されにくくなるため、熱伝導性シート1の厚み方向の熱伝導性をより良好にすることができる。
 また、充填材として、上述したように、粒径が異なる2種以上の球状粒子を用いた場合には、大きい球状粒子を2~5μmとし、小さい球状粒子を0.3~2μmとすることが好ましい。これにより、より効果的に、熱伝導性シートの厚み方向に沿って熱伝導性フィラーを配向させやすくすることができる。その結果、熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*をより確実に32.5以上とすることができる。
 なお、上述した説明では、L*a*b表色系を例に挙げたが、表色系の選び方は、特に限定されるものではなく、L*a*b表色系に換算可能な表色系であればよい。例えば、XYZ表色系、L*C*h表色系であってもよい。
<2.熱伝導性シートの製造方法>
 上述した熱伝導性シート1は、例えば、以下のような製造方法によって作製することができる。本実施の形態に係る熱伝導性シートの製造方法は、図1に示すように、熱伝導性組成物作成工程S1と、配向工程S2と、切断工程S3とを有する。
(熱伝導性組成物作成工程S1)
 熱伝導性組成物作成工程S1においては、上述した熱伝導性組成物を作成する。熱伝導性組成物中の配合量は、例えば、熱伝導性フィラーを15~25体積%とし、充填材を40~50体積%とすることが好ましい。また、熱伝導性組成物において、充填材として、窒化アルミニウムを5.1体積%以上含有させることが好ましい。
(配向工程S2)
 配向工程S2においては、熱伝導性組成物作成工程S1で作成した熱伝導性組成物を柱状に形成するとともに、熱伝導性フィラーを柱状の長手方向に配向させる。配向工程S2においては、例えば、離型材を塗布した金型の中に押出しすることによって、図2に示すように、熱伝導性フィラーが柱状の長手方向Lに配向された柱状の熱伝導性組成物2を形成することができる。また、配向工程S2においては、例えば、熱伝導性組成物作成工程S1で作成した熱伝導性組成物を、離型材を塗布したポリエステルフィルム上に塗布して図2に示すような柱状の熱伝導性組成物2を形成してもよい。
(切断工程S3)
 切断工程S3においては、配向工程S2で形成した柱状の熱伝導性組成物2を、長手方向と直交する方向に、超音波切断機により所定の寸法に切断して熱伝導性シート1を得る。
 切断工程S3においては、例えば、図2及び図3に示すように、超音波切断機3を用いて、柱状の熱伝導性組成物2の長手方向Lと直交する方向Vに柱状の熱伝導性組成物2を超音波カッター4でスライスすることにより、熱伝導性フィラーの配向を保った状態で熱伝導性シート1を形成することができる。そのため、熱伝導性フィラーの配向が厚み方向に維持され、熱伝導特性が良好な熱伝導性シート1を得ることができる。
 超音波切断機3は、図3に示すように、柱状の熱伝導性組成物2が載置されるワークテーブル5と、超音波振動を加えながらワークテーブル5上の柱状の熱伝導性組成物2をスライスする超音波カッター4とを備える。
 ワークテーブル5は、金属製の移動台6上に、シリコーンラバー7が配設されている。移動台6は、移動機構8によって所定の方向に移動可能とされ、柱状の熱伝導性組成物2を超音波カッター4の下部へ、順次、送り操作する。シリコーンラバー7は、超音波カッター4の刃先を受けるに足りる厚さを有する。ワークテーブル5は、シリコーンラバー7上に柱状の熱伝導性組成物2が載置されると、超音波カッター4のスライス操作に応じて移動台6が所定方向へ移動され、柱状の熱伝導性組成物2を順次超音波カッター4の下部に送る。
 超音波カッター4は、柱状の熱伝導性組成物2をスライスするナイフ9と、ナイフ9に超音波振動を付与する超音波発振機構10と、ナイフ9を昇降操作する昇降機構11とを有する。
 ナイフ9は、ワークテーブル5に対して刃先が向けられ、昇降機構11によって昇降操作されることによりワークテーブル5上に載置された柱状の熱伝導性組成物2をスライスしていく。ナイフ9の寸法や材質は、柱状の熱伝導性組成物2の大きさや組成等に応じて決定される。例えば、ナイフ9は、幅40mm、厚さ1.5mm、刃先角度10°の鋼からなる。
 超音波発振機構10は、ナイフ9に対して柱状の熱伝導性組成物2のスライス方向に超音波振動を付与するものであり、例えば、発信周波数が20.5kHzで、振幅を50μm、60μm、70μmの3段階に調整可能とされている。
 このような超音波切断機3は、超音波カッター4に超音波振動を付与しながら柱状の熱伝導性組成物2をスライスしていくことにより、熱伝導性シート1の熱伝導性フィラーの配向を熱伝導性シート1の厚み方向に保つことができる。
 超音波切断機3によって超音波振動を付与しながらスライスした熱伝導性シート1は、超音波振動を付与せずにスライスした熱伝導性シートに比べて、熱抵抗が低く抑えられる。超音波切断機3は、超音波カッター4にスライス方向への超音波振動を付与していることから、界面熱抵抗が低く、熱伝導性シート1の厚み方向に配向されている熱伝導性フィラーがナイフ9によって横倒しされ難いことによる。一方、超音波振動を付与せずにスライスした熱伝導性シートでは、ナイフの摩擦抵抗によって熱伝導性フィラーの配向が乱れ、切断面への露出が減少してしまい、そのため、熱抵抗が上昇してしまう。したがって、超音波切断機3を用いることにより、熱伝導特性に優れた熱伝導性シート1を得ることができる。
 以上のような熱伝導性シートの製造方法によれば、熱伝導性フィラーが、熱伝導性シート1の厚み方向に沿って配向されており、熱伝導性シート1の表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色方式における「L*」値で表される明度L*が32.5以上である熱伝導性シート1を得ることができる。
<3.他の熱伝導性シートの製造方法>
 熱伝導性シート1は、以下のような製造方法により作製してもよい。すなわち、図4に示すように、上述した熱伝導性シートの製造方法の配向工程S2において、仮成型工程S21と、整列工程S22と、本成型工程S23とを有してもよい。このような熱伝導性シートの製造方法によれば、熱伝導性シート1の表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上である熱伝導性シート1を、より確実に得ることができる。すなわち、熱伝導性シート1中の熱伝導性フィラーをより確実に同じ方向に整列させることができ、熱伝導性シート1の厚み方向の熱伝導性をより良好にすることができる。なお、以下の説明では、上述した熱伝導性組成物作成工程S1については、その詳細な説明を省略する。
(仮成型工程S21)
 仮成型工程S21では、図5(A)に示すように、熱伝導性組成物作成工程S1で作成した熱伝導性組成物12を押出機13で押出して、押出方向に沿って熱伝導性フィラーが配向した細長柱状の仮成型体14(以下、仮成型体14と称する。)を成型する。
 押出機13は、例えば、図5(A)に示すように、細長状の筒形に構成されており、熱伝導性組成物12が排出される側の開口部12Bの口径W2が、本体部12Aの内径W1よりも縮径していることが好ましい。また、押出機13は、本体部12Aの内径W1が、長手方向の所定位置から押出方向に向かってテーパー状に縮径して、開口部12Bの口径W2が、本体部12Aの内径W1よりも縮径していてもよい。熱伝導性組成物12をこのような押出機13で押出して、押出機13内において本体部12Aの内径W1よりも縮径している部分に向かって熱伝導性組成物12を通過させることによって、熱伝導性フィラーが押出方向に沿いやすくなる。これにより、仮成型体14の長手方向に熱伝導性フィラーをより確実に配向させることができる。
 例えば、押出機13は、熱伝導性組成物12中の熱伝導性フィラーの含有量が15~25体積%であるときには、開口部12Bの口径W2を1.5~9.5mm程度とすることが好ましい。この場合において、開口部12Bの口径W2を1.5mm以上とすることにより、熱伝導性組成物12を押出機13で押出す際に、押出しが困難となることを防止することができる。また、開口部12Bの口径W2を9.5mm以下とすることにより、熱伝導性フィラーの配向が乱されにくくなるため、熱伝導性シート1の厚み方向の熱伝導性をより良好にすることができる。
 押出機13において、開口部12Bの断面形状は、例えば、円状、三角状、矩形状、正方形状とすることができるが、矩形状又は正方形状とすることが好ましい。開口部12Bの断面形状を矩形状又は正方形状とすることにより、仮成型体14が角柱状となる。そのため、整列工程S22において、複数の仮成型体14を長手方向と直交する方向に隣接するように整列させ、整列させた複数の仮成型体14を整列方向と略直交する方向に配設させた積層体14A(以下、積層体14Aと称する。)を得る際に、積層体14Aの間に隙間が生じにくくなる。これにより、積層体14A中に気泡が含まれにくくなるため、本成型工程S23において、より難燃性に優れた本成型体16を得ることができる。
 仮成型体14は、押出機13による押出方向に沿って熱伝導性フィラーが配向しており、細長柱状の形状、例えば、細長の四角柱状、細長の三角柱状、細長の円柱状である。
(整列工程S22)
 整列工程S22においては、例えば、図5(B)、図5(C)、図6に示すように、仮成型工程S21で成形した複数の仮成型体14を長手方向と直交する方向に隣接するように整列させ、積層体14Aを得る。例えば、整列工程S22においては、所定の枠15内に、仮成型体14を整列させ、直方体状や立方体状に仮成型体14を配設させた積層体14Aを得る。枠15は、本成型工程S23において本成型体16を成型する際に、積層体14Aを固定する固定手段として用いられ、積層体14Aが大きく変形してしまうことを防止する。枠15は、例えば金属で形成されている。
(本成型工程S23)
 本成型工程S23においては、例えば、図5(D)に示すように、整列工程S22で得られた積層体14Aを硬化させることにより、図5(E)及び図7(A)、(B)に示すように、積層体14Aを構成する仮成型体14同士が一体化した本成型体16を成型する。積層体14Aを硬化させる方法としては、例えば、積層体14Aを加熱装置で加熱する方法や、積層体14Aを加熱加圧装置で加熱加圧する方法が挙げられる。また、熱伝導性組成物12を構成する硬化性樹脂組成物としてアクリル樹脂を用いたときには、例えば、イソシアネート化合物を熱伝導性組成物12中に含有させることにより、積層体14Aを常温で硬化させることが可能である。
 これらの積層体14Aを硬化させる方法としては、積層体14Aを加熱加圧装置で加熱加圧する方法、すなわち、積層体14Aを硬化させる際に、積層体14Aを構成する複数の仮成型体14の長手方向に直交する方向(垂直方向)にプレスすることが好ましい。このように積層体14Aをプレスすることにより、積層体14A中から気泡をより確実に取り除くことができるため、本成型工程S23において、より難燃性に優れた本成型体16を得ることが可能となる。
 切断工程S4では、本成型工程S23で成形した本成型体16を、仮成型体14の長手方向と直交する方向に、超音波切断機3により、所定の寸法に切断する。超音波切断機3は、熱伝導性シート1を得るために本成型体16を個々の熱伝導性シート1にスライスする。超音波切断機3を用いて、仮成型体14の長手方向と直交する矢印方向に本成型体16を超音波カッター4でスライスすることにより、熱伝導性フィラーの配向を保った状態で熱伝導性シート1を形成することができる。そのため、熱伝導性フィラーの配向が厚み方向に維持された熱伝導特性が良好な熱伝導性シート1を得ることができる。
<4.色の評価方法>
 本実施の形態に係る色の評価方法は、上述した熱伝導性シート1の表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*を用いて、熱伝導性シート1の熱伝導率を評価する。例えば、熱伝導性シート1の表面を測定したときの明度L*が32.5以上であるときには、熱伝導性フィラーが熱伝導性シート1の厚み方向に沿って配向されるため、熱伝導性シート1の厚み方向の熱伝導性が良好と評価することができる。また、熱伝導性シート1の表面を測定したときの明度L*が32.5未満であるときには、熱伝導性フィラーが熱伝導性シート1の厚み方向に沿って配向されていないため、熱伝導性シート1の厚み方向の熱伝導性が良好ではないと評価することができる。
 以下、本発明の実施例について説明する。なお、本発明は、これらの実施例に限定されるものではない。本実施例では、実施例1~6及び比較例1~3で得られた熱伝導性シートについて、ピッチ系炭素繊維の配向性、熱伝導率、及び外観について評価した。
(実施例1)
 実施例1では、2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(充填材)(電気化学工業株式会社製、製品名:DAW-03)24体積%と、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)18.3体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(熱伝導性フィラー)(帝人株式会社製、商品名:ラヒーマR-A301)24.1体積%とを分散させて、シリコーン樹脂組成物(熱伝導性組成物)を調製した。2液性の付加反応型液状シリコーン樹脂は、シリコーンA液(ビニル基を有するオルガノポリシロキサン)16.8体積%と、シリコーンB液(H-Si基を有するオルガノポリシロキサン)18.8体積%とを混合したものである。得られたシリコーン樹脂組成物を、離型材を塗布した金型(20mm×20mm)の中に押し出ししてシリコーン成型体を成型した。得られたシリコーン成型体をオーブンにて100℃で1時間硬化してシリコーン硬化物とした。得られたシリコーン硬化物を、厚み2.0mmとなるように超音波カッターで切断し、厚み2.0mmの熱伝導性シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(実施例2)
 実施例2では、シリコーンA液16.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)11.7体積%と、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)31.2体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)23.5体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
(実施例3)
 実施例3では、シリコーンA液18.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)20.2体積%と、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)20.1体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)24.1体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
(実施例4)
 実施例4では、シリコーンA液18.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)28体積%と、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)14.3体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)20.1体積%とを分散させて、シリコーン樹脂組成物を調製した。得られたシリコーン樹脂組成物を、離型材を塗布したポリエステルフィルム上に塗布(積層塗布)してシリコーン成型体を作製した。得られたシリコーン成型体をオーブンにて100℃で1時間加熱してシリコーン硬化物とした。得られたシリコーン硬化物を、厚み2.0mmとなるように超音波カッターで切断し、厚み2.0mmの熱伝導性シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。また、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。
(実施例5)
 実施例5では、シリコーンA液18.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)37.2体積%と、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)5.1体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)20.1体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
(実施例6)
 実施例6では、シリコーンA液17.1体積%と、シリコーンB液17.1体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径1μmの窒化アルミニウム粒子(株式会社トクヤマ社製)42.6体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)23.2体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
(比較例1)
 比較例1では、シリコーンA液18.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)42.3体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)24.1体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
(比較例2)
 比較例2では、シリコーンA液18.8体積%と、シリコーンB液18.8体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)41.3体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)20.1体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例4と同様にして熱伝導性シートを得た。
(比較例3)
 比較例3では、シリコーンA液18体積%と、シリコーンB液18体積%とを混合した2液性の付加反応型液状シリコーン樹脂に、平均粒径3μmのアルミナ粒子(電気化学工業株式会社製、製品名:DAW-03)44.8体積%と、平均長軸長さ150μm、平均短軸長さ8μmのピッチ系炭素繊維(帝人株式会社製、商品名:ラヒーマR-A301)19.2体積%とを分散させて、シリコーン樹脂組成物を調製したこと以外は、実施例1と同様にして熱伝導性シートを得た。
 実施例1~実施例6、比較例1~比較例3の条件等をまとめたものを表1に示す。
Figure JPOXMLDOC01-appb-T000001
(ピッチ系炭素繊維の配向性について)
 ピッチ系炭素繊維の配向性は、熱伝導性シートの断面をSEMで観察することと、L*a*b表色系を用いた黒色度の測定とによって評価した。
 実施例1~実施例6で得られた熱伝導性シートの断面をSEMで観察したところ、ピッチ系炭素繊維が熱伝導性シートの厚み方向に対して配向していた。特に、実施例1~実施例3、実施例5及び実施例6で得られた熱伝導性シートは、実施例4で得られた熱伝導性シートと比較して、より良好にピッチ系炭素繊維が熱伝導性シートの厚み方向に沿って配向されていた。これは、実施例1~実施例3、実施例5及び実施例6では、離型材を塗布した金型の中に押出ししてシリコーン成型体を成型したためと考えられる。
 一方、比較例1~比較例3で得られた熱伝導性シートの断面をSEMで観察したところ、実施例1~実施例6で得られた熱伝導性シートと比較して、ピッチ系炭素繊維が熱伝導性シートの厚み方向に対して配向していなかった。
 また、熱伝導性シートの断面について、L*a*b表色系を用いて黒色度を測定した。黒色度の指標として、「JIS Z 8729」に規定されているL*a*b表色系を表される色表示方法を用いた。L*a*b表色系を用いた黒色度の測定には、分光光度計(製品名:CM-700d、コニカミノルタセンシング株式会社製)を用いた。
 実施例1~実施例6で得られた熱伝導性シートは、熱伝導性シートの表面を測定したときの「JIS Z 8729」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上であった。一方、比較例1~比較例3で得られた熱伝導性シートは、熱伝導性シートの表面を測定したときの「JIS Z 8729」記載のL*a*b表色系における「L*」値で表される明度L*が32.5未満であった。この結果から、実施例1~実施例6で得られた熱伝導性シートは、比較例1~比較例3で得られた熱伝導性シートと比較して、より効果的にピッチ系炭素繊維が熱伝導性シートの厚み方向に沿って配向されていると考えられる。
 これらの結果から、熱伝導性シート中に窒化アルミニウムを含み、熱伝導性シートの表面を測定したときのL*a*b表色系における「L*」値で表される明度L*が32.5以上であることにより、ピッチ系炭素繊維が熱伝導性シートの厚み方向に沿って配向され、熱伝導性シートの厚み方向の熱伝導性を良好にできることが分かった。
(熱伝導率の評価について)
 実施例1~実施例6、比較例1~比較例3で得られた熱伝導性シートの熱伝導率の測定結果を表1に示す。熱伝導率の評価は、ASTM-D5470に準拠した測定方法により行った。
 実施例1~実施例6で得られた熱伝導性シートは、熱伝導性シートの厚み方向における熱伝導率が、熱伝導性シートの断面全体で22.3~33.1W/mKであり、厚み方向の熱伝導性が良好であることが分かった。これは、実施例1~実施例6で得られた熱伝導性シートは、熱伝導性シートの表面を測定したときのL*a*b表色系における「L*」値で表される明度L*が32.5以上であったため、ピッチ系炭素繊維が熱伝導性シートの厚み方向に沿って配向され、熱伝導性シートの厚み方向の熱伝導性を良好にすることができたと考えられる。
 一方、比較例1~比較例3で得られた熱伝導性シートは、熱伝導率が20.2W/mK以下であり、実施例1~実施例6で得られた熱伝導性シートと比較して、厚み方向の熱伝導性が良好でないことが分かった。これは、比較例1~比較例3で得られた熱伝導性シートは、熱伝導性シート中に窒化アルミニウムが含有されておらず、また、熱伝導性シートの表面を測定したときのL*a*b表色系における「L*」値で表される明度L*が32.5以上ではないためと考えられる。
(外観評価について)
 不良率の評価は、シリコーン硬化物から熱伝導性シートをスライスしたときに、熱伝導性シートの表面に気泡を巻き込んでいたり、熱伝導性シートに貫通孔があったものの数に基づいて行った。気泡の有無と、シートに貫通孔があるかは、熱伝導性シートの断面を目視することによって判断した。
 実施例1~実施例6で得られた熱伝導性シートは、熱伝導性シートの表面に気泡が巻き込まれておらず、また、熱伝導性シートに貫通穴が存在していないため、不良率が5%未満と低かった。
 一方、比較例1で得られた熱伝導性シートは、表面に気泡が巻き込まれており、また、シートに貫通穴が存在したため、不良率が28%と高かった。これは、熱伝導性シート中に窒化アルミニウムが含まれていないことにより、シリコーン樹脂組成物の分散性が悪かったためと考えられる。
 比較例2で得られた熱伝導性シートは、積層塗布により作製したため、比較例1と比べて気泡の量が少なくなり、また、比較例1と比べて不良率を下げることができたものの、ピッチ系炭素繊維の配向が乱れ、熱伝導率のばらつきが大きかった。これは、熱伝導性シート中に窒化アルミニウムが含まれておらず、また、積層塗布によりシリコーン成型体を作製したためと考えられる。
 比較例3で得られた熱伝導性シートは、熱伝導性シートの表面に気泡が巻き込まれておらず、また、熱伝導性シートに貫通穴が存在していないため、不良率が5%未満と低かった。しかし、実施例1~実施例6と比較して、熱伝導率が良好ではなかった。これは、比較例3で得られた熱伝導性シート中に窒化アルミニウムが含まれておらず、また、アルミナの配合量が多すぎたためと考えられる。
1 熱伝導性シート、2 柱状の熱伝導性組成物、3 超音波切断機、4 超音波カッター、5 ワークテーブル、6 移動台、7 シリコーンラバー、8 移動機構、9 ナイフ、10 超音波発振機構、11 昇降機構、12 熱伝導性組成物、13 押出機、14 仮成型体、14A 積層体、15 枠、16 本成型体

Claims (8)

  1.  硬化性樹脂組成物と、熱伝導性フィラーと、上記熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含む熱伝導性シートにおいて、
     上記熱伝導性フィラーが、当該熱伝導性シートの厚み方向に沿って配向されており、
     上記充填材として、少なくとも窒化アルミニウムを含み、
     当該熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度L*が32.5以上である熱伝導性シート。
  2.  上記窒化アルミニウムを5.1体積%以上含む請求項1記載の熱伝導性シート。
  3.  上記充填材として、上記窒化アルミニウムとは粒径の異なる球状の粒子を含む請求項2記載の熱伝導性シート。
  4.  上記球状の粒子は、アルミナ粒子である請求項3記載の熱伝導性シート。
  5.  上記熱伝導性フィラーは、炭素繊維であり、平均繊維長が100μm以上である請求項1乃至4のうちいずれか1記載の熱伝導性シート。
  6.  硬化性樹脂組成物と、熱伝導性フィラーと、上記熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物作成する熱伝導性組成物作成工程と、
     上記熱伝導性組成物作成工程で作成した熱伝導性組成物を柱状に形成するとともに、上記熱伝導性フィラーを上記柱状の長手方向に配向させる配向工程と、
     上記柱状の熱伝導性組成物を、長手方向と直交する方向に、超音波切断機により所定の寸法に切断して熱伝導性シートを得る切断工程とを有し、
     上記熱伝導性シートは、
     上記熱伝導性フィラーが、上記熱伝導性シートの厚み方向に沿って配向されており、
     上記充填材として、少なくとも窒化アルミニウムを含み、
     上記熱伝導性シートの表面を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色方式における「L*」値で表される明度L*が32.5以上である熱伝導性シートの製造方法。
  7.  上記配向工程は、
     上記熱伝導性組成物作成工程で作成した熱伝導性組成物を押出機で押出して、押出方向に沿って上記熱伝導性フィラーが配向した細長柱状の仮成型体を成型する仮成型工程と、
     複数の仮成型体を長手方向と直交する方向に隣接するように整列させ、整列させた複数の仮成型体を上記整列方向と略直交する方向に配設させた積層体を得る整列工程と、
     上記積層体を硬化させることにより、積層体を構成する複数の仮成型体同士が一体化した本成型体を成型する本成型工程とを含み、
     上記切断工程では、上記本成型体の長手方向と直交する方向に、超音波切断機により所定の寸法に切断して上記熱伝導性シートを得る請求項6記載の熱伝導性シートの製造方法。
  8.  硬化性樹脂組成物と、熱伝導性フィラーと、上記熱伝導性フィラーを所定の方向に整列させる充填材とを含有する熱伝導性組成物を含む熱伝導性シートの表面の色を測定したときの「JIS Z 8729」及び「JIS Z 8730」記載のL*a*b表色系における「L*」値で表される明度Lを用いて、上記熱伝導性シートの熱伝導率を評価し、
     上記熱伝導性シートは、
     上記熱伝導性フィラーが、当該熱伝導性シートの厚み方向に沿って配向されており、
     上記充填材として、少なくとも窒化アルミニウムを含む熱伝導率評価方法。
PCT/JP2012/082817 2011-12-20 2012-12-18 熱伝導性シート及び熱伝導性シートの製造方法 WO2013094613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280061296.7A CN103975429B (zh) 2011-12-20 2012-12-18 导热性片以及导热性片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278788 2011-12-20
JP2011278788A JP6034562B2 (ja) 2011-12-20 2011-12-20 熱伝導性シート及び熱伝導性シートの製造方法

Publications (1)

Publication Number Publication Date
WO2013094613A1 true WO2013094613A1 (ja) 2013-06-27

Family

ID=48668500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082817 WO2013094613A1 (ja) 2011-12-20 2012-12-18 熱伝導性シート及び熱伝導性シートの製造方法

Country Status (4)

Country Link
JP (1) JP6034562B2 (ja)
CN (2) CN103975429B (ja)
TW (1) TWI611013B (ja)
WO (1) WO2013094613A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228590A4 (en) * 2014-12-02 2018-07-25 Sekisui Chemical Co., Ltd. Thermally-conductive sheet and method for producing same
EP3412733A4 (en) * 2016-02-01 2019-10-09 Bando Chemical Industries, Ltd. HEAT-RESISTANT RESIN FORMING
JP6692512B1 (ja) * 2018-12-25 2020-05-13 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
WO2020137086A1 (ja) * 2018-12-25 2020-07-02 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
CN115141460A (zh) * 2021-03-30 2022-10-04 太阳油墨(苏州)有限公司 热固性树脂组合物、固化物以及电子部件
WO2023238693A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法
WO2023238692A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法
WO2023238694A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6069112B2 (ja) 2013-06-19 2017-02-01 デクセリアルズ株式会社 熱伝導性シート及び熱伝導性シートの製造方法
JP2015073067A (ja) * 2013-09-06 2015-04-16 バンドー化学株式会社 熱伝導性樹脂成形品
JP6178389B2 (ja) * 2014-12-25 2017-08-09 デクセリアルズ株式会社 熱伝導シートの製造方法、熱伝導シート、及び半導体装置
CN106810876B (zh) * 2015-12-02 2020-11-10 中国科学院金属研究所 一种填料定向排布的复合材料及其制备方法
CN107022196A (zh) * 2016-02-02 2017-08-08 中兴通讯股份有限公司 导热材料、其制备方法及导热件
EP3575366A4 (en) * 2017-01-19 2020-10-28 University of Fukui MATERIAL WITH HIGH THERMAL CONDUCTIVITY AND METHOD FOR MANUFACTURING THEREOF
WO2020100482A1 (ja) * 2018-11-16 2020-05-22 富士高分子工業株式会社 熱伝導性シート及びその製造方法
CN110625877B (zh) * 2019-09-05 2021-06-08 上海阿莱德实业股份有限公司 一种导热界面材料的制备方法
DE112020005651T5 (de) * 2020-02-21 2022-10-13 Sekisui Polymatech Co., Ltd. Wärmeleitende folie und verfahren, um diese zu erzeugen
CN112712944B (zh) * 2020-12-24 2022-04-08 武汉肯达科讯科技有限公司 一种高导热绝缘垫片及其制备方法
CN114106564B (zh) * 2021-11-17 2023-08-29 深圳市鸿富诚新材料股份有限公司 一种取向型导热凝胶、制备方法及其应用
JP2023120623A (ja) * 2022-02-18 2023-08-30 信越化学工業株式会社 熱伝導性シート及び熱伝導性シートの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345040A (ja) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk 熱伝導性シリコーン成形体の製造方法
JP2006124206A (ja) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd 窒化アルミニウム脱脂中間体及び焼結体
JP2007326976A (ja) * 2006-06-08 2007-12-20 Polymatech Co Ltd 熱伝導性成形体及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294676A (ja) * 2000-04-13 2001-10-23 Jsr Corp 熱伝導性シート、熱伝導性シートの製造方法および熱伝導性シートを用いた放熱構造
US8404768B2 (en) * 2007-01-10 2013-03-26 Momentive Performance Materials Inc. Thermal interface materials and methods for making thereof
JP2008266586A (ja) * 2007-03-27 2008-11-06 Toyoda Gosei Co Ltd 低電気伝導性高放熱性高分子材料及び成形体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345040A (ja) * 1999-06-02 2000-12-12 Denki Kagaku Kogyo Kk 熱伝導性シリコーン成形体の製造方法
JP2006124206A (ja) * 2004-10-27 2006-05-18 Sumitomo Electric Ind Ltd 窒化アルミニウム脱脂中間体及び焼結体
JP2007326976A (ja) * 2006-06-08 2007-12-20 Polymatech Co Ltd 熱伝導性成形体及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3228590A4 (en) * 2014-12-02 2018-07-25 Sekisui Chemical Co., Ltd. Thermally-conductive sheet and method for producing same
EP3412733A4 (en) * 2016-02-01 2019-10-09 Bando Chemical Industries, Ltd. HEAT-RESISTANT RESIN FORMING
US11441011B2 (en) 2016-02-01 2022-09-13 Bando Chemical Industries, Ltd. Thermally conductive molded resin article
JP6692512B1 (ja) * 2018-12-25 2020-05-13 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
WO2020137086A1 (ja) * 2018-12-25 2020-07-02 富士高分子工業株式会社 熱伝導組成物及びこれを用いた熱伝導性シート
US11781053B2 (en) 2018-12-25 2023-10-10 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and thermally conductive sheet using the same
CN115141460A (zh) * 2021-03-30 2022-10-04 太阳油墨(苏州)有限公司 热固性树脂组合物、固化物以及电子部件
CN115141460B (zh) * 2021-03-30 2023-09-01 太阳油墨(苏州)有限公司 热固性树脂组合物、固化物以及电子部件
WO2023238693A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法
WO2023238692A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法
WO2023238694A1 (ja) * 2022-06-08 2023-12-14 デクセリアルズ株式会社 積層体及びその製造方法

Also Published As

Publication number Publication date
JP6034562B2 (ja) 2016-11-30
CN108384248A (zh) 2018-08-10
JP2013131563A (ja) 2013-07-04
CN108384248B (zh) 2021-10-19
TW201341519A (zh) 2013-10-16
TWI611013B (zh) 2018-01-11
CN103975429A (zh) 2014-08-06
CN103975429B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
JP6034562B2 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
WO2014203875A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
KR101681861B1 (ko) 열전도 시트의 제조 방법, 열전도 시트, 및 방열 부재
JP6178389B2 (ja) 熱伝導シートの製造方法、熱伝導シート、及び半導体装置
KR101682328B1 (ko) 열전도 시트의 제조 방법, 열전도 시트 및 방열 부재
KR102614679B1 (ko) 열전도성 시트
WO2014010520A1 (ja) 熱伝導性シート
JPWO2018061447A1 (ja) 高耐荷重性および高熱伝導性を有する放熱シート
JP7233564B2 (ja) 放熱シート及びその製造方法
KR20210018427A (ko) 열전도성 시트 및 그의 제조 방법, 열전도성 시트의 실장 방법
JP2013131564A (ja) 熱伝導性シート、この熱伝導性シートを用いた半導体装置及び半導体装置の製造方法
WO2016104169A1 (ja) 熱伝導シートの製造方法、熱伝導シート、及び半導体装置
JP2013131562A (ja) 熱伝導性シートの製造方法
WO2022264790A1 (ja) 熱伝導シート及び熱伝導シートの製造方法
WO2022085284A1 (ja) 熱伝導性シート及び熱伝導性シートの製造方法
KR101611513B1 (ko) 탄소계 충진재가 첨가된 열전도 테이프의 제조 방법 및 그에 의해 제조된 열전도 테이프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860151

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860151

Country of ref document: EP

Kind code of ref document: A1